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Abstract—This paper proposes an algorithm for mapping
logical to physical memory resources on Field-Programmable
Gate Arrays (FPGAs). Our greedy strategy based algorithm
is specifically designed to facilitate timing closure on modern
multi-die FPGAs for static-dataflow accelerators utilising most
of the on-chip resources. The main objective of the proposed
algorithm is to ensure that specific sub-parts of the design under
consideration can fully reside within a single die to limit inter-
die communication. The above is achieved by performing the
memory mapping for each sub-part of the design separately while
keeping allocation of the available physical resources balanced.
As a result the number of inter-die connections is reduced on
average by 50% compared to an algorithm targeting minimal
area usage for real, complex applications using most of the on-
chip’s resources. Additionally, our algorithm is the only one out
of the four evaluated approaches which successfully produces
place and route results for all 33 applications and benchmarks.

Index Terms—Memory Allocation, Memory Mapping, Greedy
Heuristic, FPGA, Multi Die

I. INTRODUCTION

The recent trends of big data, cloud computing and ma-
chine learning call for significant increases in compute power
and energy efficiency beyond what current general purpose
computers are able to provide. Furthermore, with CMOS tech-
nology feature sizes approaching interatomic distances, highly
heterogeneous systems which can outperform state-of-the-art
Central Processing Units (CPUs) in both performance and
energy efficiency have been considered as a valid alternative.

While the usage of General Purpose Graphics Processing
Units (GPGPUs) is becoming more and more common prac-
tice, alternative approaches make use of Application-Specific
Integrated Circuits (ASICs), like Google’s Tensor Processing
Unit (TPU) [1], True North by IBM [2], specialised coarse
grain reconfigurable devices [3] or FPGAs. The use of FPGAs
is of special interest, since they can provide better energy
efficiency and performance than GPGPUs and especially CPUs
[4]–[8], while offering higher flexibility and significantly lower
development costs compared to ASICs. As a result multiple
industry vendors adopted FPGAs in their high performance
computing environments. One of the most notable efforts in
this direction is the general availability of FPGA-based cloud
instances on the Amazon AWS EC2 cloud [9]. Additionally,
Microsoft uses FPGAs in their Azure cloud [10] and some
server vendors, like Dell, offer servers with FPGA support
[11]. This is further emphasised by Xilinx’s current focus
on the datacenter, the driver behind the development of the
Alveo accelerator cards [12]. However, there are still many
unresolved challenges around the large scale deployment and

usage of FPGA based systems. Most notable, efficient pro-
gramming FPGAs and migrating existing designs from one
FPGA generation to the next is often not straight forward and
might require considerable time and resources. As a result
FPGA usage for High-Performance Computing (HPC) is still
far from true large-scale adoption.

To alleviate the programmability challenge many different
programming frameworks, paradigms and languages exist. The
implementation is typically described at a high level and then
automatically instantiated on the available FPGA hardware
resources. For example, a logical memory defined by the
programmer is automatically mapped to the available physical
resources by the High-Level Synthesis (HLS) tool.

The automatic mapping of logical into physical hardware
resources has become a lot more challenging with modern
FPGA devices, especially in the case of memory resources.
The reason for this is twofold. Intel as well as Xilinx have
introduced additional memory types with their latest chips
[13], increasing the diversity of the available memory re-
sources an HLS tool has to manage. Additionally, Xilinx’
biggest FPGAs consist of multiple silicon dies on the same
interposer, also known as Super Logic Regions (SLRs) [14].
One example of such a device is the VU9P which also powers
the Amazon EC2 F1 instances. In order to facilitate timing
closure, it is beneficial when a hardware structure described
by the designer can fully reside within a single SLR to avoid
slow and scarce inter-SLR connections. Since the number
of individual memory resources within each SLR is limited,
efficient logical to physical memory mapping is important. The
reason for this is that over allocation of a specific memory
resource, e.g., allocating more resources than available within
a single SLR, will automatically lead to a design in which
the hardware structures span across multiple SLRs. Such SLR
crossing will hinder timing closure and often produce slower
designs. As a result, it is important for an HLS tool to allocate
different memory resources so that the programmed structure
resides as much as possible within a single SLR.

This paper proposes a greedy algorithm which automati-
cally allocates hardware memory resources for user defined
memories, considering modern technology trends like SLRs
and increasingly heterogenous on-chip memory resources. The
aim of our algorithm is to balance the allocation of different
memory resources for individual sub-parts of the design and
minimise the number of inter-SLR connections, which will
facilitate timing closure and reduce routing congestion. We
target the latest Xilinx technology, however, the algorithm is



generally applicable to systems with similar properties.
The main contributions of this paper are as follows:
• A simple greedy Balanced Memory Mapping (BMM)

algorithm, which optimises timing closure by reducing
the number of SLR crossings;

• Two additional mapping strategies, Threshold Based
Memory Mapping (TBM2) and Wastage Reducing Mem-
ory Mapping (WRM2), to provide a realistic comparison
baseline, inspired by previous work and circumventing
industry tools shortcomings;

• Careful evaluation of the proposed algorithms based on a
set of use cases for small, medium and large workloads.

The remainder of the paper is organised as follows. Section II
provides a background overview and section III discusses re-
lated work. In section IV the proposed algorithm is presented.
The evaluation of this algorithm is given in section V. Finally
section VI concludes the paper.

II. BACKGROUND

A. SLRs

In order to increase chip area, while keeping yield and
production costs in check Xilinx has introduced SLRs in recent
FPGA generations. This is achieved by a technology called
Stacked Silicon Interconnect (SSI) by Xilinx, where multiple
FPGA dies are mounted on a single silicon interposer [14].

As a result the inter-die communication can only be per-
formed using a limited number of slower wires on the silicon
interposer. For example the Xilinx VU9P has just above
20,000 inter-die connections in total. However, SLR crossings
are only available between neighbouring SLRs. As a result
routing between different and especially non adjacent SLRs is
challenging and requires special attention.

B. Memory Resources

The Xilinx UltraScale FPGAs contain three different phys-
ical memory types [15], [16]:

1) Distributed RAM;
2) BlockRAM;
3) UltraRAM.
One logic slice of the Xilinx Ultrascale FPGAs contains

eight 6-input Look Up Tables (LUTs) that are used to construct
a single 512 bits distributed RAM. In the Xilinx documentation
this is referred to as SLICEM. Multiple SLICEM can be
combined together to form deeper memories, however, this
comes with a significant overhead. Individual SLICEMs can
be tiled in a multitude of different configurations in terms of
depth, width and number of read and write ports.

BlockRAM (BRAM) modules are separate physical hard-
ware memory units. Each BRAM of the UltraScale architec-
ture can store up to 36 Kbits of data and can be used as a single
or two independent memory units. In both cases they consist
of two read and two write ports and it is possible to tile them
into different depth and width configurations. As an example
a 68 bit wide and 850 deep single port logical memory would
occupy two BRAM modules with a tiling of 36x1024. The

number of tiling options is further increased considering the
number of supported read and write port combinations.

Finally, the UltraRAMs (URAMs) represent an additional
dedicated memory resource. One URAM module can store up
to 288 Kbits of data, but has only one single write and one
read port. Additionally, URAMs can be used only as 72 bit
wide and 4,096 deep memories and some specific functions,
e.g., dual clock FIFO implementations, are not supported. To
summarise, URAMs are the least flexible from all available
memory types but usually contribute most to the overall on-
chip memory capacity of the Xilinx Ultrascale devices.

III. RELATED WORK

In [17] the authors present an algorithm which maps logical
memories to shared physical memories, by taking advantage of
dual port functionality. The algorithm tries to tile logical mem-
ories and reduce resource wastage by letting two logical single
port memories share the same physical dual port memory. Our
algorithm considers the effects of multi SLR platforms with
more heterogenous memory resources. Moreover, this specific
or similar optimisations can be easily included.

In [18] a technique to improve energy efficiency is pre-
sented. The power usage can be reduced by disabling the clock
enable in cases where a memory is idle. Additionally logical
memories are allocated purely based on their depth. Our
algorithm uses a more advanced method to choose between
physical memories considering width and depth. The proposed
power optimisations are orthogonal to our algorithm.

To our knowledge there is no previous work on memory
allocation, which takes SLRs into consideration, however,
multi chip partitioning algorithms like [19]–[21] have a sim-
ilar optimisation target. The above algorithms partition the
complete design, whereas in this work only the mapping
of memories to different physical resource types ignoring
other components is discussed. These decisions provide a
preprocessing stage to multi chip partitioning algorithms. In
our case it is possible to ignore other resource types, since
the penalty of moving data between SLRs is still order of
magnitudes smaller than between different FPGAs.

In contributions like [22] multiple algorithms and tools are
used to perform design space exploration across multiple HLS
pragmas. In this work we focus on a single design space
dimension in the context of multi-die FPGAs and aim at
finding a reasonable solution within it by using a simple
algorithm with the main optimisation criterion being balancing
the memory allocation rates between different resources.

IV. ALGORITHM DESCRIPTION

Generally a good memory mapping algorithm should:
1) use as few resources as possible; and
2) facilitate timing closure.
In order to address the first objective the utilisation of

the available memory resources needs to be considered. As
shown in eq. 1, the utilisation of a given physical memory
resource (BRAM or URAM) is the maximum utilisation of its
valid tilings. The utilisation of each tiling is the ratio between



the user defined logical memory size and the product of the
physical memory unit size (both in #bits) and the required
number of physical memories. To minimise hardware wastage
the memory type with the best utilisation is selected.

max

(
logical memorysize

unitsize ∗#units

)N

tiling=1

(1)

We call a group of hardware resources with high inter-
connectivity placed in close proximity on the FPGA fabric
a design unit. Design units can be specified explicitly by the
user, implicitly by using language structures or by creating a
high-level floorplan model. As such a design unit could, for
example, contain all resources of a single computational unit,
e.g., a kernel. Alternatively, if a floorplan is used, a design
unit could also contain all the resources which are mapped
to a certain SLR. In order to reduce SLR crossings and as
a result aid timing closure, it is of major concern to balance
the allocation of memory resources between different design
units. Consider a case where a specific design unit requires
more BRAMs than a single SLR capacity. As a result BRAMs
from neighbouring SLRs have to be allocated increasing SLR
crossings and routing congestion. As such redirecting some
of the memories to URAMs is beneficial even though this
introduces overheads in terms of allocated memory bits. In
short, balanced allocation between BRAMs and URAMs is
expected to improve SLR locality of individual design units. In
the authors experience SLR crossings and the related routing
congestions limit timing closure. Our experience is based on
thousands of place and route attempts for dozens of real
applications on the Xilinx VU9P. As a result the major goal
for a timing optimised multi-die aware memory mapping
algorithm is avoidance of unnecessary SLR crossings.

To address the above we propose the following Balanced
Memory Mapping (BMM) algorithm. BMM runs per design
unit and its input is the list of logical memories. In few cases
a logical memory can only be mapped to a specific physical
memory, due to specific hardware features, e.g., dual clock
domain support. Such special logical memories are handled
first to ensure mapping to the appropriate hardware resources.

Afterwards another preprocessing stage decides which of
the remaining logical memories should be mapped to dis-
tributed RAM. Since the logic resources used to implemented
distributed RAM are less scarce, this mapping can be based
on a simple heuristic and does not need to consider SLRs.
This heuristic is based on the BRAM utilisation calculated
using eq. 1. It is not needed to test URAM utilisation, since
URAMs are significantly larger than BRAMs and because of
the tiling restrictions will never achieve a better utilisation for a
given logical memory than BRAMs. The decision on mapping
to distributed RAM uses a simple BRAM threshold. When
logical memory BRAM utilisation is lower than 1/8 it will be
mapped to distributed RAM. Otherwise, the algorithm decides
between URAMs and BRAMs on a later stage. The BRAM
threshold value was deduced by considering the BRAM tiling
with the smallest possible depth of 512 and a width of 36
bits. The above datapath width was chosen based on our

experience that 18 bits is typically not sufficient for small
memories implemented in distributed RAM. If we consider a
36 bits wide logical memory matching BRAM widths, it will
be mapped to distributed RAM when its depth is 64 or less.
It should be noted that a depth of 64 matches a distributed
RAM tiling. Comparing utilisation provides a simple metric
which accounts for both, width and depth. The reason for this
low utilisation requirement is that the amount of distributed
RAM available is very small in comparison to the other
memory resources. Additionally logic resources are also used
to implement arithmetic and other user design features. As
such saving logic resources is in general considered beneficial.
However, in the context of static dataflow designs with many
shallow FIFOs we have to use distributed RAM. For those
FIFOs BRAM utilisation will be very low.

When beneficial, BRAM threshold value can be customised
for each specific design depending on the overall logic util-
isation. For example, when a design requires an exceptional
amount of logic resources it is possible to skew the balance
towards BRAMs by decreasing the threshold. As a result
BRAM threshold best value is application specific; however,
the setting used here achieved good results for all use cases.

After the first memory mapping stage all memories not
mapped to distributed RAM are grouped by design units.
Design units’ memories are stored in a global list, sorted by
decreasing URAM utilisation. This list is used by the memory
allocation algorithm to decide if a particular logical memory
should be implemented as BRAMs or URAMs.

Fig. 1 shows the BMM algorithm in more detail. The
algorithm uses a score, which is initialised to zero and is
used to decide in which order the memories are allocated. The
score is based on BRAM cost and used to track of the balance
between BRAMs and URAMs. As a result when the algorithm
selects to map a given logical memory to BRAMs the score is
increased by the number of BRAMs allocated. When URAMs
are selected, the score will be decreased as explained next.
Since the score is based on BRAM cost we need to find a factor
relating BRAM to URAM cost. This is achieved by using
the ratio between the available BRAM and URAM modules.
Consequently, if a logical memory is mapped to URAMs the
score will be decreased by the product of this ratio and the
number of URAMs needed to implement the logical memory
resource. This procedure is repeated for each design unit until
the corresponding list of unmapped memories is emptied. As
a result our algorithm will perform best in the case of single
design unit per SLR. This will avoid segmentations and the
consequent suboptimal mapping resulting in slightly increased
memory utilisation. However, when the HLS toolflow does
not support floor planning, the above is highly unlikely and
resources have to be grouped into design units based on other
properties. The evaluation presented here assumes the less
advantageous later option, where design units are implicitly
inferred by language structures.

Within the mapping loop of the BMM algorithm there are
three possible cases which are handled separately. If the score
is close to zero the allocation between BRAMs and URAMs is
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Fig. 1. BMM algorithm with greedy, score-based proportional mapping

considered as balanced. In this case the next unmapped logical
memory is picked from the beginning of the list. Since the list
is ordered by URAM utilisation, highest URAM suitability
of the selected unmapped logical memory is ensured. The
memory will be actually mapped to URAMs only when its
utilisation is bigger than the URAM threshold. Otherwise a
new memory from the end of the list, hence suited to BRAMs,
is selected and mapped to BRAMs. This URAM threshold
together with the score enforce when a logical memory is
mapped to URAMs and can be modified by the designer. In the
authors experience a URAM threshold of 0.6 provides good
results. This means that logical memories with at least 60%
URAM utilisation are directly mapped. The URAM threshold
ensures that design units with only a single logical memory
benefit from the best suited physical memory resource.

It should be mentioned that the URAM threshold in most
cases has a very limited impact, due to the algorithm capability
to balance allocation between BRAMs and URAMs within the
same design unit. However, the URAM threshold becomes
important for certain rare edge cases. These consist of designs
composed of multiple design units with only one or two
memories of significant size. The default value of 0.6 tries to
find a good balance with the target of decreasing the overall
memory wastage. However it might be necessary to adapt the
URAM threshold manually in those rare edge cases.

In the case of a positive score more BRAMs than URAMs
are used and again the logical memory from the beginning of
the list is mapped to URAMs without considering the URAM
threshold. Finally, in the last case of a negative score a memory
from the list end will be mapped to BRAMs.

Each time a memory is mapped to a specific resource the
score is adjusted as described above. It will be increased in the
case of BRAM mapping or decreased in the case of URAMs.
As a result BRAMs and URAMs are allocated at a comparable
rates with respect to the overall availability.

By ordering the memories based on URAM utilisation it is
ensured that always the memories most suited to URAMs or
BRAMs are mapped first. This greedy strategy ensures that
as many memories as possible are mapped to their best suited
physical memory resource therefore saving area and address-
ing the first objective of the algorithm. To further improve
memory resources utilisation it is possible to combine our
algorithm with already existing memory allocation approaches,
e.g., by tiling logical memories and making use of dual port
memories as in [17]. However, it is necessary that all additional
optimisation algorithms do not disturb accurate estimation
of the number of physical memory resources that have to
be allocated. Additionally, the second algorithm objective is
fulfilled by allocating memories to URAMs and BRAMs at the
same rate and hence minimising SLR crossings, which causes
routing congestion reduction and aid timing closure.

V. EVALUATION

In order to evaluate the proposed BMM algorithm we
perform place and route on multiple designs for the Xilinx
VU9P FPGA using Vivado 2017.4. In all cases Maxeler’s
MaxCompiler is used and only the memory selection is
influenced to enforce VHDL with the desired memory macros
instantiated. As a result, when the designs satisfy the same
timing constraints, the achieved throughput remains the same
as well as the logic and arithmetic resources utilisation. For
all designs we use the set of implementation strategies able
to achieve the best results in meeting a specific frequency. In
cases where designs could not fit on the chip, we report the
synthesis results on area utilisation to emphasise the reason
why designs failed to fit. For all experimets we use the URAM
and BRAM thresholds suggested in the last section. In section
V-A the memory mapping algorithms used to compare against
are described. Section V-B introduces the test cases used and
V-C provides the experimental results.

A. Algorithms

To evaluate the proposed BMM algorithm, three other
mapping algorithms are used in our comparison below.

In the first case all mapping decisions are left to the Xilinx
Vivado toolchain by using the XPM MEMORY core and
setting the memory style to auto. Vivado, however, currently
only uses distributed RAM and BRAMs [23]. Since URAMs
are not yet supported by Vivado for the sake of fair comparison
we introduce two additional algorithms. They both implement
traditional memory mapping approaches and extend them with
URAM support to form a realistic comparison base line.

The first additional algorithm, called Threshold Based Mem-
ory Mapping (TBM2), uses the same mapping to distributed
RAM as BMM, but it simply uses the same fixed URAM
threshold as in BMM to decide which memories should be
mapped to URAMs or to BRAMs. As a result, if the URAM
utilisation for a logical memory is above 0.6 it will be mapped
to URAMs otherwise BRAMs will be selected. This algorithm
implements standard techniques which, for example, only



consider the depth of a logical memory as in [18]. It aims only
at efficient utilisation of each individual physical resource.

Additionally, we introduce the Wastage Reducing Memory
Mapping (WRM2) algorithm. This third and final algorithm,
as depicted in fig. 2 improves on the TBM2, by alleviating
over usage of a single resource when other memory resources
are still available. First, it uses the same mapping to distributed
RAM as described before. Next, all remaining unmapped
memories are ordered by URAM suitability as with BMM. In
contrast to the BMM this ordered logical memory resources
list is global and not on a per design unit basis.

The memories on that list are then allocated using the same
URAM threshold of 0.6 as for the previous algorithms. In
addition, WRM2 also keeps track on how much of the avail-
able resources are already allocated. When more than 80%
of one physical memory resource is allocated, the remaining
memories will be mapped to the other resource type. If both
resources exceed 80% this limit will be increased in steps
of 10%. For example, when 80% of BRAMs are used, the
algorithm will only map to URAMs until the overall URAM
usage also exceeds 80%. Due to ordering by suitability, when
mapping to URAMs, the algorithm will only pick memories
from the front of the list and consequently, when mapping to
BRAMs it consider memories from the back. As a result, this
algorithm tries to maximise physical memory utilisation and
always aims at mapping logical memories to the best suited
physical memory resource while not over-allocating resources.
This approach allows us to study the area overhead introduced
by the proposed BMM algorithm.

sorted memories by suitability

limit = 0.8

all mapped?

first
memory
suited to
URAM?

BRAM
allocation
< limit

URAM
allocation
< limit

pick first memory;
map to URAM

pick last memory;
map to BRAM

if URAM allocation ≥ 0.8 &&
BRAM allocation ≥ 0.8; limit += 0.1

mapped memories

no yes

no

yes

no

yes

no

yes

Fig. 2. WRM2 algorithm with greedy, global area optimised mapping

To the best of our knowledge no alternative multi-die aware
memory mapping algorithm exists with the target to facilitate
timing closure that can be used for direct comparison.

B. Test Cases

The four algorithms in our study are applied to three
different sets of use cases. The first set consists of 16 small
benchmarks (S1-S16), which only occupy a small area on the
VU9P and can comfortably reside within a single SLR.

The second set of use cases consists of eight different
medium sized designs (M1-M8). These examples occupy more
than a single SLR, but still do not fully fill up the VU9P
chip. M1-M5 are small synthetic examples, while M6-M8
are different versions of an FPGA based implementation of a
real application, SPECFEM3D [24]. SPECFEM3D is a widely
used HPC workload, which simulates different geophysical
events, like wave propagation through different materials.

Finally, the last set of use cases consists of nine real
applications (L1-L9). These applications represent real HPC
workloads, which typically use most of the available on-chip
resources, span multiple SLRs and make extensive use of
the PCIe and DDR interfaces and hence decrease the overall
number of available BRAMs and URAMs.

L1-L5 are machine learning applications. L1 is a fully
connected network, while L2-L5 implement two convolutional
neural networks with and without Winograd transform and all
incorporate three copies of the same network implementation.
L2 and L3 do not use Winograd and differ only in enforcing
the design copies to specific SLRs or not. L4 and L5 use
Winograd and follow L2 and L3 in their placement constraints.

L6 is a nanoscale material simulation application called
Quantum ESPRESSO [25] another widely used HPC work-
load. L7 is an FPGA implementation of BQCD [26] a quantum
chromodynamics application. L8 implements the ocean engine
of NEMO [27] a commonly used weather simulation tool.
Lastly, L9 is a dense matrix matrix multiplication1, a main
building block of many HPC applications.

The smaller synthetic test cases are included to study how
the proposed algorithm behaves for smaller applications which
do not make use of all on-chip resources even though this was
not its typical optimisation target. The use cases M6-M8 as
well as L1-L8 are real world applications which are deployed
in HPC environments and as a result represent the primary
target for the design of the presented algorithm. Especially
M6-M8 as well as L6-L8 represent a significant portion of the
workloads running currently on HPC systems.

C. Results

Fig. 3 and fig. 4 show the BRAM and URAM usage for
the small use cases. It can be observed that all algorithms
apart from BMM use the exact same number of BRAMs and
URAMs. Since the BMM algorithm tries to find a balance
between allocating BRAMs and URAMs, it maps some of the
logical memories to URAMs. As a result the overall memory
usage in allocated bits is increased by 38%. As this may seem
quite high, the total number of allocated memory blocks and
therefore the expected power consumption stay close. All four
algorithms allocate the same amount of distributed RAM.

1https://github.com/nilsv/Dense-Matrix-Multiplication
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Fig. 3. BRAM usage for the four different algorithms on the test set of small applications.
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Fig. 4. URAM usage for the four different algorithms on the test set of small applications.

The memory resource usage for the set of medium sized use
cases is shown in fig. 5 and 6. The standard Vivado algorithm
does not map any logical memories to URAMs. As a result M8
does not fit into the chip, due to a significant overallocation
of distributed RAM. The simple TBM2 algorithm and WRM2
both reached the same mapping decisions, since no single
resource exceeded 80%. The proposed BMM algorithm again
uses URAMs and BRAMs more balanced than the other
algorithms. As a result the overall number of allocated bits
is increased by 85% compared to the WRM2 algorithm.
However, it should be noted that using large amounts of a
particular resource usually makes timing closure harder. The
allocation of distributed RAM is very similar between all
algorithms. Only for the use case of M8 the standard Vivado
algorithm allocates significantly more distributed RAM.

Finally, the resource usage for the large test cases is shown
in fig. 7 and 8. Vivado and the simple TBM2 algorithm both
fail to place and route test cases L2, L3, L6, L8 and L9.
Additionally, the high resource usage for the standard Vivado
algorithm prevents successful place and route of L7.

L2 and L3 designs instantiate three copies of the same large
design unit. In the case of L2, Vivado placement constraints
are used to force each design unit in a single SLR, while in
L3 has no placement constraints. The WRM2 algorithm has
difficulties with designs like the above. It maps one of the
three design units mainly to BRAMs and the other two mainly
to URAMs. This causes all three design units to span across
multiple SLRs. As a result L2 fails to meet its placement
constraints and L3 fails due to very high routing congestion,
even though the total count of allocated BRAMs and URAMs
is similar between WRM2 and the proposed BMM algorithm.
Only the latter is able to find a mapping, facilitating successful
place and route completion.

L9 provides a similar test case as above consisting of three

individual design units. WRM2 again allocates resources very
unevenly between the three design units, mapping one entirely
to URAMs and the other two mostly to BRAMs. However, the
mapped workload is less complex making successfully place
and route possible, even though the number of SLR crossings
is increased by a factor of 2.6.

The mapping behaviour for designs with multiple big design
units was the main motivation behind the proposed BMM
algorithm. Since both memory resources are allocated at the
same rate, it is guaranteed that no single resource is heavily
overused. Only when the overall memory usage of a design
unit is larger than a single SLR capacity, multiple SLRs will
be used. This ensures that the toolchain does not limit place
and route of valid, well designed architectures.

In the case of L8 the WRM2 algorithm also fails to facilitate
successful place and route completion. Here WRM2 makes
use of all available URAMs, which leads to a violation of a
placement constraint introduced by the Xilinx DDR IP core
causing place and route to fail. This could be potentially
avoided by predicting the BRAM usage more accurately,
since only 85% of BRAMs are used. In general, we noticed
that WRM2 requires precise estimations in order to avoid
overallocation of a single resource.

To summarise, only the proposed BMM algorithm manages
to successfully generate place and route results for all large
designs, even though the memory usage in number of bits is
on average 13% higher. However, in cases where the memory
usage of both physical resources approaches levels above 80%
the BMM and the WRM2 algorithm both allocate a similar
amount of BRAMs and URAMs.

Fig. 9 shows the average number of SLR crossings across
multiple implementation strategies for all medium and large
use cases and all four mapping algorithms.

In order to compare the average number of SLR crossings
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Fig. 5. BRAM usage for the four different algortithms on the test set of medium applications
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Fig. 6. URAM usage for the four different algortithms on the test set of medium applications
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Fig. 7. BRAM usage for the four different algortithms on the test set of large applications

between algorithms, we considered only those cases where
place and route finished successfully since this is necessary
to obtain a figure on SLR crossings. This means that cases
in which those algorithms performed especially poorly are
not taken into account, creating a bias against the proposed
BMM algorithm. In general, there is no straight forward way
to include the test cases currently not taken into account.
One could for example assume that in the not routable cases
all SLR crossings are fully used, which is not realistic and
would create unnecessary bias in favour of the proposed BMM.
However, even the used less advantageous test case selection
shows the advantages of the proposed algorithm.

For the medium use cases the proposed BMM algorithm
achieves a reduction in the average number of SLR crossings
by 46%, 11% and 6% compared to the standard Vivado,
the TBM2 and the WRM2 algorithms respectively. For the
three large cases successfully routed by Vivado and BMM
on average the same number of SLR crossings were created.
However, in the six other test cases Vivado failed to finish
place and route. In comparison to TBM2 and WRM2 the usage

of the BMM algorithm leads to an average reduction in number
of SLR crossings by 7% and 52% respectively.

Lastly, fig. 10 shows the Total Negative Slack (TNS) for
test cases in which at least one algorithm produced a TNS
value while failing timing closure. Additionally, at least two
algorithms produce TNS values to facilitate comparison. In the
case where a design is very congested TNS values are often
not generated by Vivado. As a result it is only possible to
draw meaningful conclusions from the five test cases shown
in the figure. The depicted TNS is the average over multiple
implementation strategies.

By comparing fig. 9 and fig. 10 one can observe that there
is a strong correlation (not a causation) between the number
of SLR crossings and the average TNS. For example in the
case of M6 the standard Vivado algorithm creates by far
the most SLR crossings, resulting in the worst average TNS.
Accordingly, BMM creates the least amount of SLR crossings
and achieves the lowest TNS.

The same correlation holds true for L1 and L4. However,
in the case of L7 BMM creates the highest average TNS even
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though the number of SLRs crossings is the lowest. The reason
for this is that for one of the implementation strategies the
TNS is 50,114,977 ps. This single outlier impacts average
TNS significantly. If this implementation strategy is excluded
the average drops to 1,265,720 ps, which would be the lowest
average TNS for this use case.

As a result we conclude that comparing the number of SLR
crossings is a good metric to estimate the impact of memory
mapping algorithms on TNS. The advantage of this is, that it
provides an easier to compare metric, generating more data

points in a smaller value range, whereas TNS can be very
prone to outliers or other design properties. Similarly, it is hard
to take into account if for a few implementation strategies no
TNS value is generated, since the design can not be routed.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the Balanced Memory Mapping
(BMM) algorithm, which allocates logical to physical mem-
ories. The proposed algorithm aims at balancing allocation
between different physical memory resources in partitioned
large designs, to facilitate locality in multi-die FPGAs. Our
proposal was compared against three memory mapping algo-
rithms representing different optimisation goals and commonly
used methods, including the standard Xilinx Vivado memory
mapping algorithm, using 33 different use cases. Only our
proposal managed to successfully produce place and route
results for all test cases and managed to reduce the number of
inter die connections by an average of 50% compared to the
second best performing algorithm.

The proposed algorithm and thresholds values were shown
to work well in the case of static dataflow applications. We
believe our proposal is applicable to other FPGA design
styles; however, the thresholds used in this work will have
to be revisited. Future work includes automatic adjustment of
thresholds based on area usage predictions as well as more
precise BRAM usage predictions. Additionally, it would be of
interest to study tiling of the same logical memory on multiple
physical memory resources.



REFERENCES

[1] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. ACM, 2017,
pp. 1–12.

[2] P. A. Merolla et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:
http://science.sciencemag.org/content/345/6197/668

[3] Wave Computing, “Wave Computing.” [Online]. Available: https:
//wavecomp.ai

[4] L. Gan et al., “Accelerating solvers for global atmospheric equations
through mixed-precision data flow engine,” in 2013 23rd International
Conference on Field programmable Logic and Applications, Sept 2013,
pp. 1–6.

[5] O. Lindtjorn et al., “Beyond traditional microprocessors for geoscience
high-performance computing applications,” IEEE Micro, vol. 31, no. 2,
pp. 41–49, March 2011.

[6] G. C. T. Chow et al., “A mixed precision monte carlo methodology for
reconfigurable accelerator systems,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’12. New York, NY, USA: ACM, 2012, pp. 57–66. [Online].
Available: http://doi.acm.org/10.1145/2145694.2145705

[7] J. Arram et al., “Hardware acceleration of genetic sequence alignment,”
in Reconfigurable Computing: Architectures, Tools and Applications,
P. Brisk, J. G. de Figueiredo Coutinho, and P. C. Diniz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 13–24.

[8] C. Guo, H. Fu, and W. Luk, “A fully-pipelined expectation-maximization
engine for gaussian mixture models,” in 2012 International Conference
on Field-Programmable Technology, Dec 2012, pp. 182–189.

[9] Amazon, Amazon F1 Instance. [Online]. Available: https://aws.amazon.
com/ec2/instance-types/f1/

[10] Microsoft, Inside the Microsoft FPGA-based configurable cloud.
[Online]. Available: https://azure.microsoft.com/en-gb/resources/videos/
build-2017-inside-the-microsoft-fpga-based-configurable-cloud/

[11] ZDNet, Intel FPGAs picked up by Dell EMC and Fujitsu. [Online].
Available: https://www.zdnet.com/article/intel-fpgas-picked-up-by-dell-
emc-and-fujitsu/

[12] Xilinx, Xilinx ALVEO Adaptable Accelerator Cards for Data
Center Workloads. [Online]. Available: https://www.xilinx.com/
products/boards-and-kits/alveo.html

[13] ——, UltraScale+ FPGAs. Product Tables and Product Selection Guide.
[Online]. Available: https://www.xilinx.com/support/documentation/
selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf

[14] ——, Large FPGA Methodology Guide. [Online].
Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx13 4/ug872 largefpga.pdf

[15] ——, UltraScale Architecture Memory Resources. User Guide. [Online].
Available: https://www.xilinx.com/support/documentation/user guides/
ug573-ultrascale-memory-resources.pdf

[16] ——, UltraScale Architecture Configurable Logic Block. User Guide.
[Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug574-ultrascale-clb.pdf

[17] W. K. C. Ho and S. J. E. Wilton, “Logical-to-physical memory mapping
for fpgas with dual-port embedded arrays,” in Field Programmable Logic
and Applications, P. Lysaght, J. Irvine, and R. Hartenstein, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 111–123.

[18] R. Tessier et al., “Power-efficient ram mapping algorithms for fpga
embedded memory blocks,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 278–290,
Feb 2007.

[19] K. Roy and C. Sechen, “A timing driven N-way chip and multi-
chip partitioner,” in Proceedings of 1993 International Conference on
Computer Aided Design (ICCAD), Nov 1993, pp. 240–247.

[20] R. V. Cherabuddi and M. A. Bayoumi, “Automated system partitioning
for synthesis of multi-chip modules,” in Proceedings of 4th Great Lakes
Symposium on VLSI, March 1994, pp. 15–20.

[21] F. Mao et al., “Modular placement for interposer based multi-FPGA
systems,” in 2016 International Great Lakes Symposium on VLSI
(GLSVLSI), May 2016, pp. 93–98.

[22] G. Zhong et al., “Design space exploration of fpga-based accelerators
with multi-level parallelism,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 1141–1146.

[23] Xilinx, Vivado HLS: How can I infer UltraRAM in HLS? [Online].
Available: https://www.xilinx.com/support/answers/71259.html

[24] D. Komatitsch et al., SPECFEM3D Cartesian v2.0.2 [software]. Avail-
able: https://geodynamics.org/cig/software/specfem3d/ , Computational
Infrastructure for Geodynamics.

[25] P. Giannozzi et al., “Advanced capabilities for materials modelling with
quantum espresso,” Journal of Physics: Condensed Matter, vol. 29,
no. 46, p. 465901, 2017. [Online]. Available: http://stacks.iop.org/0953-
8984/29/i=46/a=465901
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