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More bulk boundary breakdown
plots

Behaviour of β ă 1 systems

Figure S1 shows |E| for N “ 600 particle finite plas-
monic chains with (a) β “ 1.4 and (b) β “ 0.6 with
changing kspd. Zak phase transitions occur for the chain
at β “ 1 and at values symmetric around β “ 1, so that
symmetrically either side of β “ 1 the Zak phase is ex-
actly opposite. Comparing the chiral (red) case for (a)
and (b) we see that topologically protected edge modes
exist in the appropriate regions given the changing Zak
phase. The non-chiral (blue) full dipolar case highlights
that although BBC breakdown leads to the disappear-
ance of edge modes in the β ą 1 case (a), it does not
lead to the appearance of edge modes for the opposite
β ă 1 in (b). In addition to this we see that for β “ 1.4
the movement of the bulk dominates BEC breakdown
in (a), where the edge modes are nearly zero until they
enter the bulk for the first time.

As mentioned in the main text, we observe in the
(blue) full dipolar case the presence of modes outside
the bulk in the β “ 1.4 case (which do not exist for
β “ 0.6) for approximately kspd{π ą 0.9. As discussed
in the main text these modes and are localised to the
edges of the chain but their existence does not agree
with the Zak phase, they are far from |E| “ 0, and
do not appear to be well protected from disorder. As
such we do not label these as topologically protected
edge states and consider the system to still have broken
bulk-edge correspondence. Although it appears that
these are approaching the |E| “ 0 point in this plot
these modes actually move back up into the bulk as
kspd{π increases. This return and loss of modes outside
of the band which do not correspond to the Zak phase
continues to happen as kspd{π increases.

Real and imaginary parts

Figure S2 shows the real and imaginary parts of the fre-
quency ω for figure S1(a), similar to 3(b) in the main
text but for β “ 1.4, using E “ d3{αpωq. In the non-
chiral (blue) case edge modes disappear as the bulk
crosses their path, as shown in the |E| plots featured

Figure S1: Eigenvalues of the chiral (red) and full dipo-
lar (blue) topological plasmonic chain with changing kspd
for the transverse polarisation with (a) β “ 1.4 and (b)
beta “ 0.6. Topologically protected edge modes are yellow.
The dark grey area indicates the region where the CDA is
not valid as the particles are too closely spaced. Vertical
black lines indicate Zak phase transitions as predicted by
the closing of the bulk gap.
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Figure S2: Frequency values of the chiral (red) and full dipo-
lar (blue) topological plasmonic chain with changing kspd for
the transverse polarisations. Topologically protected edge
modes are yellow. Vertical black lines indicate Zak phase
transitions as predicted by the closing of the bulk gap.

in the main text.

Figure S3 shows the real and imaginary parts of the
eigenvalues for figure 4(b) and (c) in the main text. For
the real part in Figure S3(b) the bulk obscures the edge
modes, but BEC correspondence doesn’t break down
until the edge modes disappear in the imaginary part
plot.

Perturbation theory for NNN
edge state energies

We start with a finite SSH model with complex hop-
pings v and w with symmetric but non-Hermitian
Hamiltonian of the form,

Figure S3: (a) and (b) Bulk (blue) and edge mode (yel-
low) eigenvalues of the non-Hermitian NNN SSH model for
changing values of |J |, for different choices of hopping pa-
rameters and phases corresponding to figures 4(b) and (c)
respectively in the main text.

H0 “v
N
ÿ

n“1

r|n,Ayxn,B| `H.c.s

`w
N´1
ÿ

n“1

r|n` 1, Ayxn,B| `H.c.s . (1)

We treat the addition of next nearest neighbour hop-
pings as a perturbation by an operator J , which fea-
tures A to A and B to B hoppings and is of the form,

J “ J
N´1
ÿ

n“1

r|n` 1, Ayxn,A| ` |n` 1, Byxn,B| `H.c.s.

(2)
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We wish to find what happens to the zero energy edge
modes of H0 as we increase the strength of the next
nearest neighbour hopping, by examining the matrix
H1 “ H0 ` J , where we treat J as the small parame-
ter which turns on the next nearest neighbour hopping.
Since H0 is symmetric its right and left eigenvectors are
related simply,

H0v0
n “ E0

nv
0
n, (3)

pv0
nq

TH0 “ E0
npv

0
nq

T , (4)

with the orthogonality condition that pv0
mq

Tv0
n “ 0 if

m ‰ n. We are interested in looking at the edge modes
which have E0 “ 0, so we can work through the usual
perturbation theory using the symmetry properties to
show that, to first order, the energy of the perturbed
edge modes will be given by

E1 “
pv0qTJ v0

pv0qTv0
. (5)

According to section 1.5.6 of A Short Course On
Topological Insulators [1], in the thermodynamic limit
the left and right edge modes of the unperturbed SSH
chain are approximately given by the following:

|Ly “
N
ÿ

m“1

am|m,Ay, |Ry “
N
ÿ

m“1

bm|m,By, (6)

where am and bm are given by

am “ a1

ˆ

´v

w

˙m´1

(7)

bm “ bN

ˆ

´v

w

˙N´m

@m P t1, . . . , Nu, (8)

and a1 and bN fix normalisation.
First we calculate the numerator of equation 5

|LyTJ |Ly “ 2J
N´1
ÿ

m“1

amam`1, (9)

and use equation 7 to see that

|LyTJ |Ly “ ´2J
v

w
a21

N´1
ÿ

m“1

´ v

w

¯2m´2

. (10)

Next we calculate the denominator of equation 5. For
the left eigenvalues this is given by

|LyT |Ly “
N
ÿ

m“1

a2m, (11)

“ a21

N
ÿ

m“1

´ v

m

¯2m´2

, (12)

So the energy of the left edge mode for small next near-
est neighbour hopping is given by

EL “ ´2J
v

w

řN´1
m“1

`

v
m

˘2m´2

řN
m“1

`

v
m

˘2m´2 (13)

In the thermodynamic limit N Ñ 8, given that |v| ă
|w| (which is required for edge modes to exist), this
converges to

EL “ ´2J
v

w
, (14)

as predicted for the Hermitian case by numerical fit [2].

For completeness we perform the same calculation for
the right edge mode. We have, for the numerator,

|RyTJ |Ry “ 2J
N´1
ÿ

m“1

bmbm`1, (15)

which when combined with equation 8 has

|RyTJ |Ry “ 2Jb2N

N´1
ÿ

m“1

ˆ

´v

w

˙2N´2m´1

(16)

Next we rearrange the sum by making the substitution
j “ N ´ m, at which point it becomes clear that the
calculation is the same as for the left edge modes,

|RyTJ |Ry “ ´2J
v

w
b2N

N´1
ÿ

m“1

´ v

w

¯2m´2

. (17)

For the right edge modes the denominator of equa-
tion 5. is given by

|RyT |Ry “
N
ÿ

m“1

b2m, (18)

“ b2N

N
ÿ

m“1

´ v

m

¯2N´2m

, (19)

“ b2N

N
ÿ

m“1

´ v

m

¯2m´2

, (20)

(21)

As with the left eigenmode the energy for small next
nearest neighbour hopping is given by

ER “ ´2J
v

w

řN´1
m“1

`

v
m

˘2m´2

řN
m“1

`

v
m

˘2m´2 (22)

Again, in the thermodynamic limit N Ñ8, given that
|v| ă |w| (which is required for edge modes to exist),
this converges to

ER “ ´2J
v

w
, (23)

so as expected for this symmetric Hamiltonian both
edge modes have the same path in complex space as
the next nearest neighbour hopping J changes.
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