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Abstract
The established Machine Learning algorithm Random Forest (RF) has previously been shown to be effective at performing
automated defect detection for test pieces which have been processed using fluorescent penetrant inspection (FPI). The work
presented here investigates three methods (two previously proposed in other fields, one novel method) of modifying the FPI
RF based on the individual performance of decision trees within the RF. Evaluating based on the F2 Score, which is the
harmonic mean of precision and recall which places a larger weighting on recall, it is possible to reduce the RF in size by up to
50%, improving speed and memory requirements, whilst still gain equivalent results to a full RF. Introducing a performance
based weighting or retraining decision trees which fall below a certain performance level however, offers no improvement on
results for the increased computation time required to implement.
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1 Introduction

Non-destructive testing (NDT) performs a vital role in
inspecting the quality and integrity of materials and com-
ponents for many industries, but especially for the safety
critical aerospace industry. Developing reliable and repeat-
able testing methods for different applications is a challenge
regularly faced by NDT engineers in many industries. There
are a number of NDT methods which are used to detect
both surface and subsurface cracks and defects, includ-
ing ultrasonic, eddy current and radiography. The most
widely used NDT method for detecting surface breaking
cracks or defects in aerospace components is fluorescent
penetrant inspection (FPI) which is used to inspect over
90% of metallic components at least once during manufac-
ture [1,2].

Visual inspection of FPI processed parts can suffer the
effects of human factors which may lead to variable results.
Previous work has investigated the use of the established
Machine Learning method Random Forest (RF) to perform
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automated defect detection for FPI. Results of this work
found that RF was able to correctly identify 76% of defects
with a false call rate of 0.42, demonstrating capability compa-
rable to that of a human operator [3].Whilst thiswork showed
promising results, in order for this method to be successfully
implemented in industry it will be necessary to improve the
results to provide a higher true positive rate and lower false
call rate.

This paper presents threemodifications whichwere devel-
oped in an attempt to improve the effectiveness of RF at
performing automated defect detection. Each of the three
methods evaluates the performance of individual trees within
the RF and based on this performance the RF is modi-
fied.

(1) ReducedRF: the first method removes poor performing
trees from the RF, creating a smaller RF.

(2) Weighted RF: the second method introduces a per-
formance based weighting to each of the trees in the
RF such that those which have performed well on a
validation set contribute more strongly to the final clas-
sification than those which have performed poorly.

(3) Retrained RF: the final method removes poor perform-
ing trees as in Reduced RF however a new tree is trained
to replace it. The performance of this newly trained tree
is tested. Should the newly trained tree perform above

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10921-019-0574-9&domain=pdf
http://orcid.org/0000-0002-5494-6702


   37 Page 2 of 11 Journal of Nondestructive Evaluation            (2019) 38:37 

the performance threshold it is retained and if not, the
retraining process is repeated until there is a full RF of
well performing trees.

The remainder of this paper is laid out as follows; Sect. 2
gives the reader an introduction to FPI (Sect. 2.1), Machine
Learning specifically RF (Sect. 2.2) and an overview of the
proceeding work, using RF for FPI [3] (Sect. 2.3). A review
of literature related to modifications of the RFmethod is then
presented in Sect. 2.4. Section 3 outlines the three methods
used before presenting results in Sect. 4 and drawing conclu-
sions in Sect. 5.

2 Background

2.1 Fluorescent Penetrant Inspection

FPI is one of the oldest and simplest non-destructive testing
(NDT) methods and yet still one of the most widely used in
industry. The method works by applying a fluorescent dye
to the surface of a clean component. During an allocated
dwell time, this dye penetrates any surface breaking defects
via capillary action. After the dwell time has elapsed, excess
penetrant iswashed off. The component is then dried, initially
using compressed air and then in an oven. Developer powder
applied to the surface encourages penetrant contained within
defects to seep out, making them visible when the part is
inspected under UV light.

FPI has the ability to easily and cheaply inspect large com-
plex geometries and this has led to its prominence within
industry. There are three main circumstances under which
FPI takes place in the aerospace industry; new manufacture,
repair and overhaul, and in-situ.

During new manufacture, FPI is predominantly used as
a process control check. Because of this, components can
be inspected numerous times at subsequent stages of manu-
facture, with a very low defect occurrence rate. Automated
processing of parts has been common in industry for a num-
ber of years. Parts are loaded onto a carousel which then
automatically cleans the components and then applies and
subsequently removes the dye and developer, meaning parts
exit the carousel ready for manual inspection.

The nature of new manufacture inspection of FPI pro-
cessed parts means identical, newly manufactured compo-
nents are inspected in low light conditions, with a very low
defect occurrence rate. Work by Wall explains that human
factors in NDT can refer to environmental, organisational
and job factors, and human and individual characteristics,
which influence the effectiveness, performance and reliabil-
ity achieved in NDT inspections [4]. Considering all this, it
is perhaps unsurprising that human factors contribute signif-
icantly in the visual inspection of FPI for new manufacture.

However, these attributes cause FPI of new manufacture to
be a good first application for automated inspection.

The two other inspection areas for FPI are in-situ and
repair and overhaul. In-situ inspections are reactive rather
than part of planned maintenance and therefore are bespoke
to a specific situation. Repair and overhaul on the other hand,
involves stripping an engine and inspecting each individ-
ual component. There is therefore a large component variety
and a higher probability of components containing defects.
Engine run components also typically cause much higher
background noise levels as the components are dirtier and
may contain surface scratches. This means distinguishing
between penetrant associated with defects and excess pen-
etrant from other sources can be more difficult. For these
reasons automated FPI is unlikely to be initially introduced
to in-situ and repair and overhaul inspections.

2.2 Machine Learning

Machine Learning, a branch of artificial intelligence, is the
process of using a computer to design a system which is
capable of learning from data in a manner of being trained.
Generally systems learn and improve with experience, and
with time, themodel is refined so that is can be used to predict
outcomes based on previous learning [5,6]. Machine Learn-
ing algorithms fall into one of two categories: supervised or
unsupervised. Supervised learning consists of labelled train-
ing data and unsupervised consists of unlabelled training data
[7].

An established supervised learningmechanism is decision
trees, or Classification and Regression Trees (CART). They
were among the first statistical algorithms to be implemented
in electronic form in the latter decade of the 20th century
[8]. The building of decision trees begins with a parent node
containing all data points. This data is then split to produce
two child nodes with greater homogeneity than the parent
node [9]. This process of recursive partitioning continues
until subsequent child nodes consist of only data points of
one class. These child nodes are then known as leaf nodes.
When all branches terminate in leaf nodes the decision tree
is fully grown.

Despite their simplicity, decision trees represent a power-
ful techniquewhich allows for complex non-linearitywithout
having to specify the structure in advance [10,11]. They
also offer exceptionally interpretable results which enhances
understanding and dissemination of results [8]. However,
their simplicity comes at a cost as large trees suffer from
over-fitting whilst smaller trees may not be able to capture
the main structure of the data [12]. These limitations of deci-
sion tree methods can be overcome by the use of ensemble
techniques.

One such ensemble technique is Random Forest (RF). RF
was developed by Leo Breiman in 2001 [13]. RF combines
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predictionsmade by decision trees using amajority vote deci-
sion rule. Bootstrap sampling, a method of random sampling
with replacement, is used to create a subset onwhich each tree
is grown. A number of features are then randomly selected at
each node which are considered for splitting [11,14,15]. The
injection of randomnessmakes them accurate classifiers. The
ability of an RF to predict has been found to be determined
by the strength of the individual predictors and also the cor-
relation between them (with low correlation producing the
strongest performance) [13]. Random Forest has been found
to be effective as it has accuracy as good, if not better than
the Adaboost method [13], a similar decision tree technique
without random elements. It is robust to outliers and noise
and it is faster than other decision tree methods such as bag-
ging or boosting [13]; the Law of Large Numbers also means
over-fitting does not tend to occur for Random Forest [13].
Other advantages of the Random Forest method are that is
it easy to follow the logic taken [16], easy to train [16,17],
fast to train [18] and it has been demonstrated to be effective
even with a small number of training examples (around 500
training examples were used by Chan et al. to train around
1–700 trees with 1–10 input features [17]). These attributes
mean the method is well suited to the problem of automated
defect detection.

2.3 Random Forest for Fluorescent Penetrant
Inspection

Previous work considered the use of Random Forest (RF)
to perform automated inspection of a number of test pieces
which had been processed using FPI [3]. A brightness thresh-
old was first performed on the images to obtain regions of
interest (ROIs)which formed the training data set. 21 features
were extracted from the ROIs which were used to train 100
decision trees. At each node, one of four possible data split
methods were selected: decision stump, 2D linear decision
learner, conic section or radial basis functions.

The paper showed good capability of the RF method to
be able to perform automated defect detection, with the opti-
mum RF being able to detect 76% of the defects within the
test set with a false call rate of 0.42. This paper aims to fur-
ther this work to investigate modifications to the RF to see if
performance can be improved.

2.4 Random Forest Modifications

Here, we review what work has been done previously with
regard to modifications to the RF method.

2.4.1 Weighted Random Forest

A number of papers have investigated the introduction of
weightings to the RF method. These mainly seem to fall into

one of two categories: weighted training data or weighted
voting mechanisms.
Weighted Training Data

Schulter et al. [19] propose the Alternating Decision
Forest (ADF).During training, globally trackedweight distri-
butions are assigned to each training sample. These weights
are iteratively updated, i.e. becoming higher for hard-to-
classify samples and lower for easy ones. They also differ
from traditional RFs as they are trained breadth-first rather
than depth-first. Of the five data sets tried, results showed the
ADF to perform better compared to the standard RF.

Robnik–Sikonja noted that not all trees are equally suc-
cessful in labelling instances. Internal estimates were there-
fore used to identify instances most similar to the ones which
are being classified. The votes of the treeswere thenweighted
with the strength they demonstrate of those near instances.
(More details given in Sect. 4 of [20]). Results demonstrated
a minor improvement when using weighted compared to tra-
ditional RF.

Chen considered the problem of class imbalance [21].
Using a largely imbalanced data-set can cause the RF clas-
sifier to become more biased towards the majority class. In
order to overcome this, a weight is applied to each class
with the minority class given a higher misclassification cost.
Results demonstrated superior performance compared to
other class-imbalance techniques. However it can be vul-
nerable to noise (e.g. misclassified training data).
Weighted Voting Mechanisms

A number of papers have also investigated the use
of weighted voting mechanisms to improve performance.
Gunter et al. considered the problem of handwritten word
recognition. Rather than applying a performance based
weighting, a more general approach was used where the
weights were considered as parameters to be selected such
that the overall performance of the combined system is opti-
mised. A genetic algorithm is used to actually determine an
optimal combination of weight values. Comparing perfor-
mance based weighting and genetic algorithms, it was found
that the highest recognition rate was obtained with genetic
weight optimisation [22].

Another modification into the voting mechanism per-
formed by RF was into the use of dynamic integration to
combine the predictions from each of the individual clas-
sifiers. Traditional RF sums the votes to come up with an
overall prediction. Using dynamic integration based on local
performance estimates was shown to improve the accuracy
in 12 out of 27 datasets [23].

2.4.2 Reduced Random Forest

Bernard et al. posed the question of whether there are any
decision trees in an RF which deteriorate the performance
of an ensemble and if so, is it possible to form a more
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accurate committee via removal of decision trees with poor
performance. Two methods were used: Sequential Forward
Selection (SFS) and Sequential Backward Selection (SBS).
For SFS, at each iteration, each remaining classifier is added
to the current subset and the one which optimises the perfor-
mance is retained. Similarly, for SBS each classifier of the
current subset is removed and the one for which the remain-
ing ensemble exhibits the best accuracy is discarded. Both
these methods were tested on 10 datasets and it was found
there always exists a subset of well selected trees able to
outperform an ensemble grown with classical RF. Moreover,
the best sub-forests were found to contain significantly fewer
trees than the initial RF [24].

2.4.3 Other Random Forest Modifications

A number of other modification methods have been investi-
gated includingmodifications to feature selection [14,22,25],
sampling methods [19,21,24], node splitting [15,20], per-
formance evaluation [20], considering similarity between
training examples [20,23,26] and others, details of which
can be found in [15].

3 Experimental Method

As outlined in Sect. 1, this work builds on that done by Ship-
wayet al. in using theRFmethod toperformautomateddefect
detection for FPI. This paper investigates the use of perfor-
mance based modifications to improve the current method,
investigating whether there are individual trees within the
RF which consistently performed highly and whether there
were some which consistently classified incorrectly. Using
this information, the three theories were posed. The first
investigation was whether the poor performing trees could be
removed from the RF altogether without effecting the overall
performance, hence creating a leaner RF which is computa-
tionally more efficient and yet is able to make classifications
to the same standard as the full RF. The second theory was
whether performance based weightings could be introduced
to the classifications. Trees which consistently perform well
in classification would contribute more strongly to the final
decision, and on the contrary, trees which consistently per-
form poorly would contribute less. The final theory which is
investigated in this paper is to retrain trees until they perform
above a certain level.

In Sect. 3.1 an overview of the work done in [3] shall be
presented. All three modification methods are based on the
performance of individual trees within the RF so Sect. 3.2
presents the performance evaluation methods used before
going on to present the three modification methods in Sects.
3.3, 3.4 and 3.5.

3.1 Data and Original TrainingMethod

The dataset for this work and the preceding work was
produced from a set of rectangular titanium alloy plates
(100 mm× 50 mm× 4 mm) each with a number of cracks
of known size artificially induced at random locations using
thermal fatigue loading. 36 plates were used with 124 cracks
ranging from 0.1 mm to 3.4 mm in length.

The parts were processed using ultra high sensitivity pen-
etrant (1D4 [27]) and photographed using a Canon EOS 6D
DSLR camera with an EF 100mm f/2.8 USM macro lens.
Each image obtained was annotated manually using a graph-
ics editor to indicate which indications are defects. This
creates a mask image which provides ground truth informa-
tion to the defect detection software. Each pixel is a 16-bit
integer and therefore has brightness up to 65,535. The first
step in the method performs a brightness threshold on the
images, extracting ROIs around any pixel with a brightness
level greater than 1000. This focuses the software to only
regions containing penetrant. 10,733 ROIs were extracted
from the 36 training images and 4617 were extracted from
the 18 test images.

Next, a number of features were extracted from each of
the ROIs and these features were subsequently used to train
the RF. A total of 21 features were extracted including area,
average and standard deviation of pixels within an ROI of
brightness greater than 100, peak brightness and Haar like
features. A number of these features were extracted from
greyscale, red, green and blue levels.

These features were then used to train the RF. An RF
is grown by selecting a random subset of the total dataset
and training a decision tree. Another random subset is then
selectedwith replacement and another decision tree is grown.
This process is continued until all trees within the forest have
been grown.

To use the RF to perform automated defect detection,
the brightness threshold is performed to extract ROIs and
the same features are extracted from these as was done
for the training data. These features are then passed down
each tree within the forest so each tree votes for whether
it believes a particular ROI to be defective or not. For an
RF of 100 trees, if 25 trees voted that an ROI was defec-
tive and 75 trees voted it to be defect free the system
would output that it was 75% confident the region is defect
free.

This section has provided an overview of themethodology
more thoroughly laid out in Sect. 3 of [3].

3.2 Performance EvaluationMethods

This paper aims to investigate the use of performance evalu-
ation methods to improve the overall performance of the RF
method in performing automated defect detection for FPI.
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Six performance metrics were used and these shall be pre-
sented below.

3.2.1 Precision

Precision, or confidence as it is commonly known [28],
can be seen as a way to analyse the cost performance of
an algorithm. Precision, in the case of automated defect
recognition, is considering the total number of regions
identified by the software as being defective and determin-
ing the proportion of those which correspond to an actual
defect. Should the precision be low, the algorithm will be
incorrectly identifying false indications as being defective
which could lead to a high scrap rate or a large num-
ber of components which need to go forward for human
inspection.

Precision = True Posi tives

True Posi tives + False Posi tives
(1)

3.2.2 Recall

Recall, or sensitivity, on the other hand, is a way to
analyse the safety performance of an algorithm. Consider-
ing the total number of defects within the dataset, recall
denotes how many were correctly identified by the soft-
ware. Should the recall be low, a large proportion of the
defects are being missed. This could lead to defective com-
ponents continuing on to the next stage of manufacture or
in the worst case, onto engine build. From this, it can be
seen that for applications such as the aerospace or medi-
cal industry, recall is of the utmost importance. However,
for other industries such as in the case of food packaging
or other less safety critical environments, precision may be
prioritised.

Recall = True Posi tives

T rue Posi tives + False Negatives
(2)

3.2.3 F1 Score

Often an effective solution is one which balances both pre-
cision and recall. The F1 score aims to perform this by
calculating the harmonic mean between precision and recall.

F1 Score = 2(Precision)(Recall)

Precision + Recall

= 2(True Posi tives)

2(True Posi tives)+ False Posi tives + False Negatives

(3)

3.2.4 F2 Score

The F2 score is a development on the aforementioned F1
score. It calculates the harmonic mean of precision and recall
however places a larger weighting on recall, i.e. safety.

F2 Score = 5(Precision)(Recall)

5(Precision)+ Recall

= 5(True Posi tives)

5(True Posi tives)+ False Posi tives + 4(False Negatives)
(4)

3.2.5 Overall Accuracy

The overall accuracy is perhaps the simplest of all metrics
considered. It calculated the proportion of instances which
were correctly classified.

Overall Accuracy

= True Posi tives + True Negatives

No. of image patches
(5)

3.2.6 Overall Performance

The final metric considered is overall performance. The five
metrics described above all have advantages as they each
draw out particular aspects of a well performing algorithm.
The author wanted to introduce a metric which combines
these fivemetrics in order to attempt to produce amore versa-
tile performancemetric. This overall performancemetricwas
therefore one developed by the author which simply sums the
five metrics presented above.

Overall Per f ormance = Precision + Recall

+F1 Score

+F2 Score + Overall Accuracy (6)

3.3 Reduced Random Forest

The first of the three RF modifications is the reduced RF.
This aims to investigate whether there are some trees which
can be removed without affecting, or perhaps increasing, the
performance of the RF. The complete dataset is split into four
groups, A, B, C and D. Of these four subsets, two are used
to train the original Random Forest, one is used to analyse
the performance of the RF and based on the results of this
some trees are removed. The final subset is used to analyse
the overall performance of the reduced RF.

An RF of 100 trees is trained using the 21 features laid
out in [3] and the images from data subsets A and B. Subset
C is then passed down the RF. Each of the six performance
evaluation methods in Sect. 3.2 is then calculated for each of
the 100 treeswithin theRF. These have been sorted according
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Fig. 1 Graphs to show how each of the six performance evaluation varies for four different RFs

to overall performance and plotted in Fig. 1. Cross Validation
has been used to demonstrate the results are not dependent
on the input data, allowing the evaluation of the algorithm
performance independent to input data. Cross Validation 1
trains on groups A and B, reduces based on group C and
tests on group D. Cross Validation 2 trains on groups B and
C, reduces based on group D and tests on group A. Cross
Validation 3 trains on groups C and D, reduces based on
group A and tests on group D. Cross Validation 4 trains on
groups D and A, reduces based on group B and tests on
group C.

Trials were undertaken varying the threshold value at
which trees are removed. Six different values were used and
these can be seen in Fig. 2. Ordering the metrics into ascend-
ing order, thresholds are selected at 25%, 50% and 75% of
each of the X and Y axis. The X axis represents the num-
ber of trees, so the threshold value would be the value of
e.g. the overall performance of the 25th best performing tree
within the forest. The Y axis is the performance metric. So

for example we could calculate the maximum overall perfor-
mance value out of all the trees and then set the threshold
value at 25% of this value.

3.4 Weighted Random Forest

The second of the three RF modifications is the weighted
RF. As explained in Sect. 3.1, when an RF is being used
to perform defect classification, each tree within the forest
produces a probability that the region of interest contains a
defect. The average of all the probabilities produced by the
RF are then averaged in order to find the overall probability
of a region being defective. This modification introduces a
weighting to each of the individual tree probabilities, with
those trees which have performed well contributing more
highly than those which have not. The weighting value,W , is
calculated as shown in equation 7where P is the performance
metric, n is a variable, and 2.7 is an arbitrary value selected
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Fig. 2 Threshold Values used to reduce and retrain RFs

as it is approximately 50% of the overall range of Overall
Performance values, see Fig. 2.

W =
(

P

2.7

)n

(7)

The overall prediction, Y , by an RF is given in equation 8
where t is the number of trees and yi is the prediction by an
individual tree.

Y =
t

i=1

∑
(W yi )

t
(8)

3.5 Retrained Random Forest

The final RF modification was retraining. As in Sect. 3.3,
an RF of 100 trees was trained using the images from data
subsets A and B. The performance of these 100 trees was
then evaluated using the six performance metrics laid out in
Sect. 3.2. Any trees which perform under a specified thresh-
old (again, the six threshold values used in Sect. 3.3 are used)
are removed, and instead another tree is grown. The perfor-
mance of this tree is evaluated and should it perform above
the threshold it is added to the RF. Should the performance be
less than the threshold, the tree is disregarded and another tree
is trained. This process is repeated until the RF consists of
100 trees which all perform above the threshold value when

tested on the data from subset C. The algorithm is illustrated
in Fig. 3.

4 Results and Discussion

The results below have been presented as Free-Response
Receiver Operator Characteristic (FROC) curves. The FROC
curve shows the true positive rate plotted against the number
of false calls per image. It is a modification of the Receiver
OperatorCharacteristic (ROC) curvewhich canbeusedwhen
there can be more than one region of interest in an image.
For each of the methods, the cross validation laid out in Sect.
3.3 has been performed. Four different results are therefore
presented for each case, showing the methods dependency
on the data. For each of the figures in this section, a solid
line shows the original RF whilst a dashed line shows the
modified RF.

4.1 Reduced Random Forest

A subset of the results from using a reduced RF are shown in
Fig. 4. Three performancemetrics are shown in each column:
overall performance, F2 score and overall accuracy. Each
metric is then shown at the three Y-axis threshold values
explained in Sect. 3.3, making up 3 columns of Fig. 4. Y-axis
threshold values are shown as they offer a wider range of
threshold values compared to the X-axis threshold values.

Considering overall performance (Fig. 4a–c), it can be
seen that at threshold values of 25% and 50% of the over-
all range of performance values, a reduced RF produces
results equivalent to the full RF for all cross validations. At
a threshold value of 75%, performance drops off for CV2
and CV3. As CV1, on the whole, appears to perform worse
than the other cross validations, the fact that performance
improves for CV1 at a threshold value of 75% shall be treated
with caution. The same trends were followed for Recall and
F1 score. Precision followed similar results however perfor-
mance degraded at a threshold value of 50%and above. These
results have been omitted for brevity.

The second set of results shown in Fig. 4 are those of F2
score (Fig. 4d–f). As for overall performance, at threshold
values of 25% and 50% the performance is equivalent to that
of the full RF. For a 75% reduction in trees, the degradation

Fig. 3 Algorithm in order to
retrain trees for RF
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Fig. 4 Reduced RF: the results of reducing an RF based on three performance metrics for three different threshold values. Each graph shows the
results of four different datasets, arranged using cross validation

in performance is smaller than that for overall performance,
precision, recall and F1 score.

Thefinal set of results shown are those for overall accuracy
(Fig. 4g–i). Of all six performance metrics, those produced
using overall accuracy offer the best performance, with
reduction at all three thresholds offering performance equiv-
alent to that of the full RF. However, overall accuracymust be
treated with caution when being used in a situation in which
there is a large class imbalance. For example, if the training
data consists of 95% non-defective ROIs and 5% defective

ROIs, having a classifier which always classifies an ROI as
being defective would still produce an accuracy of 95%.

The distinction between the performance metrics can be
seen most clearly in the case of a 75% threshold, see Fig. 5.
It can be seen that F2 score and overall accuracy consistently
perform well (excluding CV1) and therefore F2 score shall
be selected as the most appropriate performance metric.

Considering the points above, it can be said that using
performance evaluation, an RF can be reduced by as much
as 50% whilst still offering results equivalent to that of a full
RF.
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Fig. 5 Reduced RF: the results of reducing an RF based on one threshold value. This figure allows the comparison of the different performance
metrics for each of the four cross-validation datasets

4.2 Weighted Random Forest

Results of a weighted RF are shown in Fig. 6. It can be seen
that for all but CV1, using a weighted RF appears to perform
worse than the original RF. As discussed in Sect. 4.1, CV1
appears to perform differently compared to the other cross
validation datasets and therefore it shall be concluded that
using a performance basedweighted RF performsworse than
an unmodified RF.

4.3 Retrained Random Forest

Results of the retrained RF thresholding on the F2 score are
shown in Fig. 7. As for Sect. 4.1, the three Y-axis threshold
values explained in Sect. 3.3 are presented.

The trends followed in the case of the F2 score are equiv-
alent to those shown for the other performance metrics and
therefore only those produced using F2 score have been

shown for brevity. It can be seen in Fig. 7 that by retrain-
ing trees within the RF, no improvement in performance
is observed. As the retraining process is computationally
expensive, it therefore offers no advantage to use retraining.

5 Conclusions

This paper has investigated threemethods of introducing per-
formance based evaluation of individual decision treeswithin
an RF in order to boost performance. Whilst two of these
methods were found to offer no improvement, one method
offered the ability to have a computationally leaner RFwhilst
still producing results of the same standard.

Evaluating the performance of trees using the F2 score (a
harmonic mean of precision and recall which places a larger
weighting on safety) and disregarding the worst performing
50% is able to produce equivalent results than the entire RF.
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Fig. 6 Weighted RF: the results of weighting an RF based. Results shown for each of the four cross-validation datasets

Fig. 7 Retrained RF: the results of retraining an RF based on one performance metric, F2 Score, for three different threshold values. Each graph
shows the results of four different datasets, arranged using cross validation

This demonstrates the potential to have a faster classification
algorithm for detecting defects in FPI processed parts.

Introducing a performance based weighting to each tree
such that well performing trees contribute more significantly
to the final classification than poor performing trees offers

no improvement for the increase in computation. Similarly,
retraining poor performing trees until they perform above a
certain level also offers no improvement for the increased
computational requirements.

123



Journal of Nondestructive Evaluation            (2019) 38:37 Page 11 of 11    37 

Acknowledgements This work was supported by the Engineering
& Physical Sciences Research Council Grant Nos. EP/L015587/1,
EP/M020207/1 and by Rolls-Royce plc.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Brasche, L., Lopez, R., Larson, B.: A study of drying and cleaning
methods used in preparation for fluorescent penetrant inspection.
AIP Conf. Proc. 657, 1323–1330 (2003)

2. Technik, A.G.L., Engine Overhauls: The Search forMaterial Dam-
age. https://www.lufthansa-technik.com/engine-overhauls

3. Shipway, N., Barden, T., Huthwaite, P., Lowe, M.: Automated
defect detection for fluorescent penetrant inspection using random
forest. NDT&E International, p. NDT&E International. Elsevier,
New York (2018)

4. Wall, M.: Human factors guidance to improve reliability of
non-destructive testing in the offshore oil and gas industry. In:
7th European-American Workshop on Reliability of NDE, 2017.
https://www.esrtechnology.com/index.php/news/latest-news/
44-news/archived-news-articles/239-hois-project-presented-at-
prestigious-reliability-workshop

5. Bell, J.: Machine learning. Wiley (2014). https://doi.org/10.1002/
9781119183464

6. Mitchell, T.: Machine Learning, International Edition. McGraw-
Hill series in Computer Science. McGraw-Hill, New York (1997)

7. Zhao, Z., Liu, H.: Spectral feature selection for supervised and
unsupervised learning. In: Proceedings of the 24th International
Conference on Machine Learning (2007)

8. De Ville, B.: Decision trees. Wiley Interdiscip. Rev. 5(6), 448–455
(2013)

9. Speybroeck, N.: Classification and regression trees. Int. J. Public
Health 57, 243–246 (2012)

10. Ledolter, J.: Decision trees (Chap. 13). Data Mining and Business
Analytics with R. Wiley, New York (2013)

11. Webb, A.R., Copsey, K.D.: Ensemble methods. Statistical Pattern
Recognition, pp. 361–403. Wiley, Chichester (2011)

12. Hassan, M.A., Khalil, A., Kaseb, S., Kassem, M.A.: Exploring
the potential of tree-based ensemble methods in solar radiation
modeling. Applied Energy, vol. 203. Elsevier, New York (2017)

13. Breiman, L.: Random forests. Machine Learning 45(1), 5–32
(2001)

14. Schroff, F., Criminisi, A., Zisserman,A.:Object class segmentation
using randomforests, In: Proceedings of theBritishMachineVision
Conference, BMVA Press, (2008), pp. 54.1–54.10, https://doi.org/
10.5244/C.22.54.

15. Tripoliti, E.E., Fotiadis, D.I., Manis, G.: Modifications of the con-
struction and voting mechanisms of the random forests algorithm.
Data Knowl. Eng. 87, 41–65 (2013). https://doi.org/10.1016/j.
datak.2013.07.002

16. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2),
197–227 (2016)

17. Chan, J.C.W., Beckers, P., Spanhove, T., Borre, J.V.: An evalua-
tion of ensemble classifiers for mapping Natura 2000 Heathland in
Belgium using spaceborne angular hyperspectral (CHRIS/Proba)
imagery. Int. J. Appl. Earth Observ. Geoinform. 18, 13–22 (2012)

18. Belgiu, M., Dragut, L.: Random forest in remote sensing: a
reviewof applications and future directions. ISPRS J. Photogramm.
Remote. Sens. 114, 24–31 (2016)

19. Schulter, S., Wohlhart, P., Leistner, C., Saffari, A., Roth, P. M.,
Bischof, H.: Alternating decision forests. In: 2013 IEEE Confer-
ence on Computer Vision and Pattern Recognition, (2013), pp.
508–515. https://doi.org/10.1109/CVPR.2013.72

20. Robnik-Å ikonja, M.: Improving random forests. In: Boulicaut, J.,
Esposito, F., Giannotti, F., Pedreschi, D. (eds.) Machine Learning:
ECML. Lecture Notes in Computer Science, vol. 3201, pp. 359–
370. (2004). https://doi.org/10.1007/978-3-540-30115-8_34

21. Chen, C., Breiman, L.: Using random forest to learn imbalanced
data. University of California, Berkeley

22. Guenter, S., Bunke, H.: Optimization of weights in a multiple clas-
sifier handwritten word recognition system using a genetic algo-
rithm. Electron. Lett. Comput. Vis. ImageAnal. 3(1):25–44 (2004).
https://elcvia.cvc.uab.es/article/view/v3-n1-guenter-bunke

23. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Dynamic inte-
gration with random forests. In: FÃŒrnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) Machine Learning: ECML. Lecture Notes
in Computer Science, vol. 4212. Springer, Berlin (2006)

24. Bernard, S., Heutte, L., Adam, S.: On the selection of decision
trees in random forests. In: 2009 International Joint Conference
on Neural Networks (2009), pp. 302–307. https://doi.org/10.1109/
IJCNN.2009.5178693

25. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a
new classifier ensemble method. IEEE Trans Pattern Anal Mach
Intell 28(10), 1619–1630 (2006). https://doi.org/10.1109/TPAMI.
2006.211

26. Cunningham, P.: A taxonomy of similarity mechanisms for case-
based reasoning. IEEE Trans Knowl Data Eng 21(11), 1532–1543
(2009). https://doi.org/10.1109/TKDE.2008.227

27. AMSKNonDestructiveMethods andProcessesCommittee (2013)
Inspection Material, Penetrant AMS2644F. SAE International.
https://doi.org/10.4271/AMS2644F

28. Powers, D.: Evaluation: from precision, recall and f-measure to
ROC, informedness, markedness & correlation. J Mach Learn
Technol 2, 37–63 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.lufthansa-technik.com/engine-overhauls
https://www.esrtechnology.com/index.php/news/latest-news/44-news/archived-news-articles/239-hois-project-presented-at-prestigious-reliability-workshop
https://www.esrtechnology.com/index.php/news/latest-news/44-news/archived-news-articles/239-hois-project-presented-at-prestigious-reliability-workshop
https://www.esrtechnology.com/index.php/news/latest-news/44-news/archived-news-articles/239-hois-project-presented-at-prestigious-reliability-workshop
https://doi.org/10.1002/9781119183464
https://doi.org/10.1002/9781119183464
https://doi.org/10.5244/C.22.54.
https://doi.org/10.5244/C.22.54.
https://doi.org/10.1016/j.datak.2013.07.002
https://doi.org/10.1016/j.datak.2013.07.002
https://doi.org/10.1109/CVPR.2013.72
https://doi.org/10.1007/978-3-540-30115-8_34
https://elcvia.cvc.uab.es/article/view/v3-n1-guenter-bunke
https://doi.org/10.1109/IJCNN.2009.5178693
https://doi.org/10.1109/IJCNN.2009.5178693
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1109/TKDE.2008.227
https://doi.org/10.4271/AMS2644F

	Performance Based Modifications of Random Forest to Perform Automated Defect Detection for Fluorescent Penetrant Inspection
	Abstract
	1 Introduction
	2 Background
	2.1 Fluorescent Penetrant Inspection
	2.2 Machine Learning
	2.3 Random Forest for Fluorescent Penetrant Inspection
	2.4 Random Forest Modifications
	2.4.1 Weighted Random Forest
	2.4.2 Reduced Random Forest
	2.4.3 Other Random Forest Modifications


	3 Experimental Method
	3.1 Data and Original Training Method
	3.2 Performance Evaluation Methods
	3.2.1 Precision
	3.2.2 Recall
	3.2.3 F1 Score
	3.2.4 F2 Score
	3.2.5 Overall Accuracy
	3.2.6 Overall Performance

	3.3 Reduced Random Forest
	3.4 Weighted Random Forest
	3.5 Retrained Random Forest

	4 Results and Discussion
	4.1 Reduced Random Forest
	4.2 Weighted Random Forest
	4.3 Retrained Random Forest

	5 Conclusions
	Acknowledgements
	References




