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Abstract: Environmental protection is the major concern of any form of manufacturing industry
today. As focus has shifted towards sustainable cooling strategies, minimum quantity lubrication
(MQL) has proven its usefulness. The current survey intends to make the MQL strategy more effective
while improving its performance. A Ranque–Hilsch vortex tube (RHVT) was implemented into
the MQL process in order to enhance the performance of the manufacturing process. The RHVT
is a device that allows for separating the hot and cold air within the compressed air flows that
come tangentially into the vortex chamber through the inlet nozzles. Turning tests with a unique
combination of cooling technique were performed on titanium (Grade 2), where the effectiveness
of the RHVT was evaluated. The surface quality measurements, forces values, and tool wear
were carefully investigated. A combination of analysis of variance (ANOVA) and evolutionary
techniques (particle swarm optimization (PSO), bacteria foraging optimization (BFO), and teaching
learning-based optimization (TLBO)) was brought into use in order to analyze the influence of
the process parameters. In the end, an appropriate correlation between PSO, BFO, and TLBO was
investigated. It was shown that RHVT improved the results by nearly 15% for all of the responses,
while the TLBO technique was found to be the best optimization technique, with an average time of
1.09 s and a success rate of 90%.

Keywords: MQL; RHVT; optimization; turning; titanium; evolutionary algorithm

Materials 2019, 12, 999; doi:10.3390/ma12060999 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-4926-2189
https://orcid.org/0000-0002-0777-1559
https://orcid.org/0000-0002-8351-1871
https://orcid.org/0000-0002-5568-8928
http://dx.doi.org/10.3390/ma12060999
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/12/6/999?type=check_update&version=2


Materials 2019, 12, 999 2 of 17

1. Introduction

In manufacturing industries, the economical and productive aspects of any production process
rely directly on the manufacturing parameters [1]. As such, for machining processes, the concept of
machining time, cost, and quality of product is of great concern, and this has inspired researchers to
conduct comprehensive research [2]. During the cutting operation, the conversion of the mechanical
energy generates heat energy [3]—this phenomenon elevates the cutting zone temperatures. This
elevation varies from material to material. Factors such as the spindle speed, cutting depth, and cutting
feed influence the cutting temperature [4]. Most of the machining problems and defects are directly or
indirectly linked to this heating of the cutting area. In a nut shell, every machining process needs the
use of a sophisticated cooling strategy. The past two decades have witnessed the use of a number of
techniques, but because of economic and environmental constraints, more sustainable techniques are
in demand [5]. The International Organization for Standardization’s (ISO’s) standard 14001 has been
framed, with the main target of reducing environmental hazards from such industrial processes [6].

Titanium (Grade 2) is a well-known, difficult to machine super alloy utilized in numerous
industries, like the aerospace and medical industries [7]. Its speciality lies in the fact that it remains
stable and holds on to its original properties, even at high temperatures. The main issue related to the
retention of these properties lies in the fact that it becomes a difficult-to-machine material, and as a
result, it leads to issues like a poor tool life or to higher cutting forces during machining. The use of
a suitable cooling strategy serves as the best possible solution for this issue. Although flooding has
been used for decades, recent times have seen the development of more efficient and cost effective
techniques, such as minimum quantity lubrication (MQL), which uses small amounts of a coolant or
a lubricant mixed with a carrier gas [8–10]. In this system, the small quantities of the lubricant are
directly supplied to the cutting zone. Many significant contributions have been made in the field of
MQL. Attanasio et al. [11] performed a turning of 100Cr6 using MQL cooling, and studied its effects
on the tool wear. It was concluded that MQL led to significant reductions in the flank wear, but did
not contribute towards reducing the wear on the rake side of the tool. In a work related to the grinding
of EN24 steel, Kalita et al. [12] used nano-particle enriched fluids. The specific energy and coefficient
of friction were used as the result indicators. It was observed that a significant reduction of these
indicators occurred as a result of increased nano-particle concentrations. It was also observed that
MQL resulted in being very close to the flooding condition in terms of the residual stresses and cutting
forces. The flow rate of MQL was also found to improve the results up to a particular level, after
which it failed to do so [13]. On the basis of the available literature, it has been proven time and
again that MQL causes better cooling of the cutting zone as a result of the better penetrating power of
the mist, and also leads to a lowered wear of the tool accompanied by a better surface finish [14–16].
The combination of the lubrication and of the cooling effect of the fluids also reduces the friction
significantly. Balan et al. [17] conducted the grinding of Inconel 751 assisted by MQL. The results saw
a decent reduction in the grinding force, temperature, and the roughness. This was also accompanied
by the absence of any sort of crest flattening on the material surface. In a study by Amini et al. [18], the
turning of AISI 4142 was performed. The fluid flow rate and nozzle positions were varied so as to study
their effect on the tool life. Optimization was carried out along with a comparison to dry machining.
The MQL gave much better results. On the basis of the existing work, the area regarding the effect of
a vortex tube on the MQL process is still unexplored and may lead to interesting improvements in
the process.

In the current work, major upgrades have been made in the MQL technique, assisted by a
Ranque–Hilsch vortex tube (RHVT). In their experimental work to validate the effectiveness of an
RHVT, Selek et al. [19] made use of infra-red technology. Experiments were performed by varying
the cutting depth and speed. The results obtained using the infra-red thermography showed a
significant reduction in the cutting zone temperatures. Liu and Chou [20] machined hyper eutectic
Al–Si alloys using RHVT cooled systems. Significant reductions in the tool wear were observed.
Mia et al. [21] employed an RHVT-assisted MQL condition to improve the precision machinability of
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the Al 6061-T6 alloy. A few other instances are also available where the use of an RHVT has also been
made, but negligible experimental studies exist where both RHVT and MQL have been combined.

In similar studies, Hussain et al. [22] worked on difficult-to-machine titanium (Ti 6246) by adding
lanthanum. The new alloys that were formed gave a better machinability that was visible through
the chip length. The mechanical properties remained similar to the standard alloy. Priarone et al. [23]
compared MQL with other cooling techniques, while machining a gamma titanium aluminide
alloy. MQL led to the best outcome. Ramana et al. [24] executed similar experimentation on
Ti–6Al–4V, assisted by different types cutting tools. The MQL again outperformed its counterparts.
Jawaid et al. [25] machined a Ti-6246 alloy using two types of uncoated tungsten carbide inserts—one
with grain size of 0.68 µm, and the other with a grain size of 1µm. The maximum cutting speed used
was 100 m/min. The outcomes were concluded using SEM analysis. In yet another exhaustive piece of
work, Pervaiz et al. [26] conducted a study on the effect of the tool material on the machining properties
of different materials. Uncoated carbide, coated carbide, Cubic Boron Nitride (CBN), Polycrystalline
Diamond (PCD) and so on, were carefully examined for their suitability in different ranges of cutting
speeds and conditions. The turning of another alloy of titanium (TC21) was performed by Wu and
Guo [27]. An in-depth analysis of the cutting parameters and the tool geometry was done. The results
were cross checked using a finite element method (FEM) simulation. Sharma et al. [28] also reported a
lowering in the cutting temperatures using MQL. The outcomes were based on the studies of different
processes using a wide range of materials. Hegab et al. [29,30] performed the machining experiments
on a Ti–6Al–4V alloy under nano-fluids-assisted MQL cooling conditions. For this, the multi-walled
carbon nanotubes-based nano-fluids were applied on the titanium alloy. Furthermore, Hegab et al. [31]
performed a sustainability assessment on the machining of Inconel 718 under nano-fluids cooling
conditions. Khatri and Jhan [32] also investigated the mechanisms of tool wear during the turning
of a titanium alloy under different cooling conditions. Mia et al. [33] experimentally studied the
machinability of a Ti–6Al–4V alloy under the perspective that the cutting of this alloy generates a
significant amount of heat, and thus requires extreme chilling by the use of a cryogenic cooling system.
Their focus was on the life cycle assessment of such machining. Maruda et al. [34,35] enhanced the
performance of minimum quantity cooling lubrication by the inclusion of extreme pressure anti-wear
additives in the machining of steel. They have claimed to have a better surface topography and tool
wear behavior in those improved conditions. For another superalloy, Wojtewicz et al. [36] improved
the performance of the minimum quantity cooling by adding MoS2 and graphite during the machining
of Inconel. For the same group of materials, the performance of MQL was reported to improve when
using hBN nanoparticles [37].

Optimization is a process that does not belong to any particular field. These techniques are
used in almost all fields, including science, engineering, and commerce. Even in the machining field,
the optimization process involves solving problems that are usually non-differentiable, non-linear,
multimodal, multi-dimensional, stochastic, and computationally time consuming. Karkalos et al. [38]
conducted a machining study for a Ti–6Al–4V ELI alloy, and developed models for the optimization
of the parameters using artificial neural network and response surface methodology. The classical
optimization techniques are not that reliable when solving such tasks. The natural evolutionary
techniques have been found to be much more useful in solving such problems [39–41]. Techniques
such as particle swarm optimization (PSO), bacteria foraging optimization (BFO), and teaching
learning-based optimization (TLBO) are population-based, flexible, and stochastic methods.

The PSO optimization technique possesses a very simple concept and is easily implementable in
a few lines of a computer code. It takes genetic algorithms and the evolution strategies into account
while functioning, thus, easily solving the continuous optimization problems [42]. This technique
mainly works on the concept of examining the moving trends of a group of birds. This movement
is then converted into a computer-based model. The movement of these birds or of the swarm is
modelled with the assistance of vectors. Each flock is referred to as an intelligent agent of particles,
and then the entire space is randomly searched during several iterations. During each iteration, they
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look for the local best (pbest) result, and at the end of the process, they converge to the global best
(gbest). Velocity updating takes place after each iteration. When the pbest gives a better result than the
gbest, automatic replacement takes place. The bacteria foraging optimization technique, on the other
hand, is based on the behavior during foraging by a group of bacteria [41]. Bacteria such as E. coli
are considered when modelling the behavioral aspects. These bacteria behave in a different manner
during the chemotactic processes, and move accordingly. Like the PSO process, this process treats the
bacteria as intelligent agents, and their movement in search of food as the motivation to move towards
the optimally best solution. The teaching learning-based algorithm is based on the effectiveness of a
teacher in the learning process of the class [43]. This algorithm basically codes the teaching–learning
process in a class room. In this case, the different input variables act as the different subjects given to
the students, while the best solution signifies the teacher itself [44]. The application of the algorithm is
generally split up into two different phases.

From the current state-of-art, it has been noted that a good amount of research is available on
the machining of titanium alloys, but, on the contrary, very little research has been conducted on
the Grade 2 (pure titanium). This grade has many significant properties, such as biocompatibility
and resistance to corrosion. Therefore, the current work provides a proper comparative analysis
of the results obtained using these evolutionary techniques (i.e., PSO, BFO, and TLBO). The results
were compared with the commonly used concept of desirability. Moreover, the MQL process has not
been upgraded in most of the cases. The use of RHVT alone has been made in many cases. But its
combined use with MQL and the relative comparison have rarely been made for Ti machining. Thus,
the importance of a lowered temperature can be observed and its effects can be quantified through this
study. Machining pure titanium at a higher speed and combining the cooling technique with the effect
of an RHVT may lead to significant results. A comparison of the evolutionary optimization techniques
has been performed in such a domain of experiments. All of these points contribute to the uniqueness
of the current study, and make advancements towards sustainable manufacturing.

2. Materials and Methods

2.1. Materials and Tools

Titanium (Grade 2), commercially pure titanium, was selected for the experiment, in the form of
cylindrical bars of 150 mm in length and 50 mm in diameter. The selection of the work material was
based on the lesser availability of literature related to this specific grade of titanium. Table 1 depicts
the chemical composition along with more significant properties. The tool inserts that were used were
uncoated carbide ones (Widia, Essen, Germany) with a nose radius of 0.8 mm, while the relief angle
was 7◦ and the rake angle was 6◦. Although sustainable manufacturing was the main consideration
of the experimental work, cost effectiveness was also kept in mind, which justified the choice of the
inserts used.

Table 1. Composition and properties (provided by: Maharaja Associates, Mumbai, India).

Composition or Properties Data

C <0.12%
Fe <0.33%
H <0.015%
N <0.034%
O <0.24%

Ti (balance) (%) 98.8%
Density 4500 Kg/m3

Specific heat 520 J/(Kg·K)
Thermal conductivity 16 W/(m·K)
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2.2. Turning Experiments and MQL Parameters

CNC of make BATLIBOI and model Sprint 20TC (Gujarat, India), comprising of a motor of 11 kW
with a speed range of 50–4200 rpm, was used for the experiments. The minute quantities of the coolant
were dispensed through the NOGAMINI MQL system with one inlet and two outlet nozzles. The
coolant used was a Rhenus FU60 ester-based oil mixed with water, in the ratio of 20:1. The cooling
effect of the vortex tube was used for further cooling the pressurized air coming from the compressor.
The development of the vortex tube used was Essen engineers 002H (Mumbai, India). A significant
reduction in the temperature of the ambient air was obtained prior to mixing it with the coolant. The
major contribution of the experimentation was to evaluate the improvements in the results obtained by
using MQL with cooled air. The experimental setup is clearly shown in Figure 1. The other parameters
related to MQL, such as the outlet air pressure and the flow rate, were maintained at 6 bars and
35 mL/h, respectively.
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2.3. Measurements

The optical inspection of the worn surfaces provides the necessary information to quantitatively
and qualitatively evaluate the tool surfaces [45]. This measurement is considered a non-destructive
method, which can be performed with different devices, as per the accuracy requirements. The most
common are the scanning electron microscope (SEM), white light interferometric (WLI) microscopy,
confocal microscopy, optical diffraction technique, and the stylus methods. Therefore, the optical
micrographs and surface profiles offer great information related to the dominant wear mechanisms [46].

The TeLC DKM2010 dynamometer (TeLC, Unna, Germany) was brought into use for measuring
force and power. Flank wear measurements were conducted with the assistance of Leica DFC 290 tool
maker’s microscope (Leica Microsystems Inc., Wetzlar, Germany). Similarly, the Mitutoyo make SJ
301 model surface tester (Kawasaki, Japan) was employed for recording the surface roughness.

One important factor that was kept in mind during the experimentation was the use of a fixed
machining time. It was very clear that at different conditions, the length of cut would vary accordingly,
which could alter the results. It was estimated that the wear of the insert was proportional to the
machining time. The time for each experiment was fixed at 30 s for all of the machining conditions.
Furthermore, to improve on the accuracy of the measured results, measurements of both the flank
wear and the surface roughness were taken at three different points.
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2.4. Experimental Design

The input parameters were all varied in three levels. Response surface methodology (RSM)
was brought into use for the experimental design. The cooling condition, the sole categorical factor,
was given at two levels. The rest of the parameters were selected based on the literature survey
and as per the tool manufacturer’s recommendations. The Box–Behnken RSM approach suggested
26 turning experiments.

3. Results

The present study concentrated on four machining characteristics, namely, the average surface
roughness parameter, cutting force, power consumption, and tool flank wear. Following the
measurement principle, as discussed earlier, the experimental results were collected from the previous
published results and shown in Table 2 [47]. Afterward, the mathematical, statistical, and optimization
models were formulated. The adequacy and significance of the developed models were confirmed
using an analysis of variance (ANOVA). Table 3 summarizes the results obtained after ANOVA for all
of the responses.

Table 2. Experimental results [47]. MQL—minimum quantity lubrication; VMQL—vortex
tube-assisted MQL.

Serial
Number

Cutting
Speed,

vc (m/min)

Feed Rate,
f (mm/rev)

Depth of
Cut,

ae (mm)

Cooling
Condition

Surface
Roughness,

Ra (µm)

Cutting
Force,
Fc (N)

Power
Consumption

(Watts)

Tool wear,
VBmax

(µm)

1 0 0 0 MQL 0.49 156 716 221.82
2 0 1 1 MQL 0.34 94 390 134.39
3 −1 −1 0 MQL 0.75 165 825 224.11
4 1 1 0 MQL 1.13 154 704 177.86
5 0 0 0 MQL 0.42 80 399 160.95
6 1 0 1 MQL 0.44 102 467 176
7 1 −1 0 MQL 0.46 94 468 175.82
8 0 −1 1 MQL 0.27 68 344 157.57
9 1 0 −1 MQL 0.47 85 354 175.17

10 0 0 0 MQL 0.7 115 528 208.71
11 0 −1 −1 MQL 0.45 115 526 179.64
12 0 0 0 MQL 0.58 126 525 180.25
13 −1 0 −1 MQL 0.9 150 683 197.4
14 0 1 −1 VMQL 0.35 121 504 147.54
15 0 0 0 VMQL 0.52 140 699 189.14
16 −1 0 1 VMQL 0.42 95 435 168.06
17 −1 1 0 VMQL 0.35 74 372 148
18 −1 0 1 VMQL 0.6 135 610 176.17
19 1 1 0 VMQL 0.4 110 506 140.24
20 0 0 0 VMQL 0.5 135 675 179.24
21 0 −1 1 VMQL 0.38 104 479 142.65
22 1 −1 0 VMQL 0.35 97 404 145.74
23 −1 1 0 VMQL 0.28 96 402 81.86
24 0 0 0 VMQL 0.55 121 604 133.32
25 0 1 1 VMQL 0.22 58 265 170.84
26 0 1 −1 VMQL 0.42 89 444 150.41

Table 3. Analysis of variance (ANOVA) table.

Factors

Responses

Cutting Force,
Fc (N)

Tool Wear,
VBmax (µm)

Surface
Roughness,

Ra (µm)

Power
Consumption

(Watts)

R-square 0.8867 0.6362 0.56 0.8957
Adjusted R-Square 0.8651 0.5669 0.4762 0.8758
Predicted R-Square 0.8225 0.4312 0.3148 0.8364
Adequate Decision 22.129 10.164 8.97 22.089

Model F-Value 41.08 9.18 6.68 45.07
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The surface finish had a dominant effect on the performance of the machined part, along with
the cost considerations. This contributed towards its inclusion as one of the responses in this study.
Figure 2a shows a clear-cut comparison between both of the cooling processes, when taking surface
roughness into consideration. The results suggest that the vortex tube-assisted MQL (VMQL) reduced
the roughness values at different combinations of input parameters. The reduction in the cutting zone
temperatures due to pre-cooled air accounts for this significant reduction in the surface roughness (Ra)
values. The higher cooling may also have drastically reduced the thermal softening of the material,
which further affected the frictional forces between the work and the insert [21]. The combined effect
of all of the above-mentioned factors justifies the attained values of the surface roughness. In addition
to this, Figure 2a shows the peaks formed at the higher levels of feed, which is common to both of the
cooling techniques, but with different magnitudes. This led to the conclusion that VMQL becomes
more effective at greater values of feed. Equations (1) and (2) were generated for the surface roughness
(Ra). Figure 3a,b indicates the perturbation curves for the MQL and VMQL cooling, respectively. It can
be clearly seen that the feed (represented by “B” in the figure) has the maximum effect on the surface
roughness (Ra), while the speed (represented by “A” in the figure) and depth of cut (represented
by “C” in figure) have minor effects. This observation explains and validates why the model states
them as insignificant factors. It could also be seen that there was a noticeable reduction in the surface
roughness when the vortex cooling was engaged.

MQL : Ra = −0.53 + 1.83 × 10−2vc + 3.25 f + 0.76ae (1)

VMQL : Ra = −0.69 + 1.83 × 10−2vc + 3.25 f + 0.76ae (2)
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Figure 2b depicts the cutting force (Fc) ranges recorded during experimentation with both of the
cooling strategies. It can be directly stated that VMQL leads to cutting forces of lower magnitudes. The
highest value of forces under the VMQL strategy was found to be nearly 16% lower than the parameter
result corresponding with the MQL process. Similarly, at higher feed values, the difference recorded
in the cutting forces was much more than the one recorded at lower feed levels. The depreciating
cutting zone temperature clearly justified this sudden fall in the cutting forces. The lowered cutting
temperature further lowered the friction at the cutting zone, which further depreciated the cutting
forces. This finding directly influences the wear, surface quality, and generated heat. The machinability
of any particular material can be studied through this. Figure 3c,d shows the perturbation curves for
the MQL and VMQL techniques, respectively. It is clearly visible that the basic trends of all of the
input parameters remain the same for both of the techniques, with VMQL giving cutting force (Fc)
magnitudes on the lower side. Feed (f ) appears to be the driving parameter in effecting the cutting
force (Fc), while the cutting speed (vc) remains neutral. Regression Equations (3) and (4) for the cutting
force (Fc) for both of the cooling techniques have been shown. The results suggested by the model are
incomplete agreement with the literature available. Stachurski et al. [48] concluded the role of feed (f )
to be completely independent of the type of the cooling method applied. This result relates well to the
perturbation curves obtained, showing the same trend of feed (f ) for both of the cooling techniques.
In another study, Agustina et al. [49] found the feed (f ) to be the main factor affecting the cutting force
(Fc), while the speed remained ineffective. This again consolidates the results generated by the model.

Heat generation is a part of any machining process. However, the heat levels beyond specific
limits may prove to be detrimental for the life of the insert and for the surface quality of the material
being machined. There are three basic modes of tool failure, namely, diffusion, adhesion, or aberration.
Although the widely practiced flooding technique may cause significant cooling, the penetrating
effect of the MQL mist plays a leading role in reducing the flank wear (VBmax). Although Vbavg
mostly proves to be a better indicator of the wear as compared to VBmax, because of its statistical
consistency, in the present case, as a result of higher speed levels, the wear that was recorded was
highly non-uniform. Thus, VBmax was chosen as the wear indicator so as to eliminate misleading
results. Figure 2c indicates the flank wear (VBmax) comparisons for both of the cooling strategies in a
wide range of cutting parameters.
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Figure 3. (a) Perturbation analysis for Ra under the MQL technique; (b) perturbation analysis for Ra

under the VMQL technique; (c) perturbation analysis for Fc under the MQL technique; (d) perturbation
analysis for Fc under the VMQL technique; (e) perturbation analysis for VBmax under MQL cooling;
(f) perturbation analysis for VBmax under the VMQL technique; (g) perturbation analysis for P under
thermal technique; (h) perturbation analysis for P under the VMQL technique at vc = 275 m/min,
f = 0.09 mm/rev, and ae = 0.4 mm. (A = cutting speed; B = feed; C = depth of cut, where the X-axis
represents the coded values and the Y-axis represents the selected responses) [47].
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Similarly, Figure 4a,b depicts the flank wear in both of the techniques at microscopic
magnifications. Significant reductions in the VBmax values can be seen when using the VMQL
technique. The perfect combination of the lubricating effect of the cutting fluid, accompanied with
the chilling properties of the water component of the fluid, may have cooled the cutting zone more
efficiently. It is a very well-established fact that the wear properties of the carbide tools are greatly
affected by variations in temperature values [50,51]. This may have led to significant reductions in
the tool wear values as a result of the reduction in the stickiness of the work material. The retention
of the strength and the hardness of the tool material as a result of the lowered temperature also may
have been a contributing factor. Another conclusion made was regarding the dominance of the feed at
higher speeds in affecting the VBmax levels. The higher feed yielded higher VBmax values. Moreover,
while evaluating the difference in the performance of the MQL and VMQL processes, the VBmax
differences got higher at higher feed levels. As per the recorded values, VMQL may be established
as the better out of the two methods. Figure 3e,f depicts the perturbation graphs of the VBmax for
both MQL and VMQL, respectively. Feed appears to be the most vital factor, while cutting speed
remains neutral. VMQL leads to a noticeable decline in the flank wear when compared with MQL. The
regression Equations (3) and (4) for flank wear (VBmax) have been listed.

MQL Vbmax = 35.74 + 0.33vc + 534.26 f + 36.18ae (3)

VMQL Vbmax = 5.25 + 0.33vc + 534.26 f + 36.18ae (4)
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vc = 275 m/min, f = 0.13 mm/rev, ae = 0.30 mm; (b) Condition: MQL, vc = 250 m/min, f = 0.05 mm/rev
and ae = 0.40 mm; (c) Condition: VMQL, vc = 275 m/min, f = 0.13 mm/rev, ae = 0.30 mm; (d) Condition:
MQL, vc = 250 m/min, f = 0.05 mm/rev and ae = 0.40 mm.

While using higher speeds and rough operations, the cutting power (P) acts as another important
parameter. Using the machine with an accurate range of power rating for specific operations also helps
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make the process more economical. Keeping the tool capacity under notice and selecting the right
machining parameters on the basis of the power rating also helps in deciding the selection of the most
apt parameters for the best material removal rate (MRR). The calculation of the cutting power is made
on the basis of the Equation (5).

P =
Fcvc

60
(5)

We also know that Fc = kcae f , where kc is the coefficient of specific energy (N/mm2). Thus, the
cutting power can be calculated as shown in Equation (6).

P =
kcae f vc

60
(6)

The generated equation proves that the cutting power (P) directly depends on all of the process
parameters. Figure 2d indicates the cutting power (P) comparisons between the MQL and VMQL
techniques. It can be clearly visualized that the pattern followed by the power consumption is similar
to the one formed by the cutting forces. As explained earlier, the temperature reduction caused the
friction to fall, thus reducing the power consumed. Reduced flank wear also plays a role in reducing
the power consumed. Figure 3g,h shows the perturbation curves for both of the techniques. The
power consumption follows the same path as the force (Fc), as the feed (f ) is a dominant parameter and
the speed (vc) remains insignificant. The model shows a similar decrease in the power consumption
values, thus confirming the experimental results. The regression Equations (6) and (7) were obtained
for the power consumption (P). Hence, the use of the vortex principle for cooling led to reduced
power consumption.

MQL P = −544.12 + 1.63vc + 3365.35 f + 843.03ae (7)

VMQL P = −583.40 + 1.63vc + 3365.35 f + 843.03ae (8)

3.1. Optimization

The result analysis process was followed by the optimization process. Optimization was carried
out in a comparative manner by comparing the PSO, BFO, TLBO, and desirability methods. The
combined objective (C.O.) equation was calculated as per Equation (8).

MinimumC.O. = Wt1

Ra

Ramin

+ Wt2

Fc

Fcmin

+ Wt3

Vbmax
Vbmaxmin

+ Wt4
P

Pmin
(9)

The weights were assigned in such a way that their summation added on to unity. The finalization
of these weights may also be done using random combinations. The variation in the weightings can be
allowed to vary from 0.1 to 0.5, in such a way that their summation remains unified. One similar result
was presented in the current work, where each of the response parameters was assigned an equal
weight of 0.25. The result yielded by the combined objective (C.O.) approach may lead to outcomes
totally different from the individual ones, which points to the pros of employing this technique.

3.2. Parametric Optimization Using Desirability Function Approach

Apart from the evolutionary algorithms, the desirability technique was also used for optimizing
the results. It is usually performed in both single and multiple objective functions. Unlike other single
response optimization strategies, this technique prevents the response clashing. The variation of the
input parameters was done in order to allow them to take any value within the given range. The
output, that is, the combined objective in this case, was chosen to be minimized in order to achieve
optimum results. Table 4 lists the top three desirable results. It could be concluded that VMQL
leads to the most optimum results, where the values of feed, cutting depth, and cutting speed were
0.07 mm/rev, 0.31 mm, and 255 m/min respectively.
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Table 4. Optimized results (desirability approach).

Cutting Speed
(m/min)

Feed Rate
(mm/rev)

Depth of Cut
(mm)

Cooling
Condition

Combined
Objective Desirability

255 0.07 0.31 VMQL 1.26708 0.906
250 0.05 0.40 VMQL 1.27166 0.906

3.3. Parametric Optimization Using PSO, BFO, and TLBO

To conduct optimization using these techniques, the regression analysis was used to obtain the
combined objective function equations. This was followed by the use of MATLAB for implementing
the obtained fitness function. The same procedure was applied for all three of the techniques, while the
combined objective was minimized each time. Equation (9) shows the generated objective function.

C.O. = +2.01 + 0.12vc + 0.46 f + 0.26ae − 0.16CC (10)

Table 5 depicts the developed PSO model with the constraints. Figure 5 throws light on the
convergence characteristics obtained by these techniques for the current experimentation. The success
of the technique lies in the iterations performed. The higher the number of iterations, the better the
learning rate of the intelligent agents is, and the search space is explored more efficiently. The main
aim of the techniques is to converge towards the global best values within a minimum time, thus
saving valuable time. Moreover, the maximum magnitude of the particle velocity is also controlled
using an equation. The control is important, because an uncontrolled velocity may lead to velocities in
the opposite (negative) direction.

Table 5. Particle swarm optimization (PSO) parameters.

Parameters Values

Number of variates 5
Number of particles 55
Number of iterations 120
Inertial weight (W) 0.7

Rate of learning -
C1max = C2max 1.7
C1min = C2min 0.5

C1 = C2 = Cmin + R × (Cmax − Cmin) Where R = current iterations/total iterations
Xmin [250 0.05 0.3 MQL]
Xmax [300 0.13 0.5 VRHVT]
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Similarly, in case of the BFO, the parameters were selected on the basis of the available literature.
S represents the number of bacteria and was kept at 55. The number of chemotactic steps was taken
as 120, while the reproduction steps were maintained at 5. Like the iterations in the PSO process, the
numbers of chemotactic steps controlled the convergence characteristics of the process. The optimal
results were obtained by fixing the probability of elimination and dispersal at 0.1 as shown in Table 6.
Figure 5 also depicts the convergence graph for BFO, and it accounts for its stability and precision. The
TLBO technique consists of a continuous repetition of the parameters (like the number of iterations or
the size of the population). Such a continuous process ultimately leads to an optimal solution. The
updating of the solutions takes place in both the learner and the teacher phases. Moreover, while
commencing with the step for the duplication elimination, the existence of duplicate solutions leads to
their random modification. Therefore, the main calculations in TLBO are as follows: (2 × Iteration
number × size of population) + (duplicative elimination). The counting of the function evaluations is
accomplished through the above-mentioned formula. For the present work, 2000 evaluations were
performed in order to eliminate the duplicity.

Table 6. Parameters of bacteria foraging optimization (BFO).

Input Parameters Value of Parameters

p, search area dimension 4
S, number of bacteria 55

Nc, number of chemotactic steps 120
Nre, number of reproduction steps 5

Ned, number of elimination-dispersal events 5
Ns, maximum swim steps 4

Ped, probability of elimination and dispersal 0.1
Cmax, run length (maximum) 0.2
Cmin, run length (minimum) 0.01

RP
U , Upper search space constraints [250 0.05 0.3 MQL]

RP
L , Lower search space constraints [300 0.13 0.5 RHVT]

dattract = drepellent, depth of attractant and repellent
signals 0.1

wattract, attractant signal width 0.1
wrepellent, repellent signal width 0.1

Table 7 depicts the different values of the C.O. function. There were 100 runs that were conducted
to calculate the success rate and the consumed time. Each method disclosed similar results. The
most suitable of the techniques was TLBO, with a success rate of 90% and an average time of 1.10 s,
whereas PSO and BFO consumed 6.5 and 14.63 s with a success rate of 62% and 53%, respectively. The
success rate of the TLBO was high and the average time taken was much less compared with PSO and
BFO. This is because TLBO is free from any algorithm parameters and converges within 20 iterations,
whereas PSO and BFO take 100 iterations. For example, in PSO, the total number of particles was taken
as 46, and for 100 iterations, the total number of fitness evaluations will be 46 × 100 = 4600. In BFO,
a total of 60 bacteria were considered, with 100 chemotactic, 4 reproduction, and 5 elimination and
dispersal events. Thus, the total fitness evaluations were computed as 60 × 100 = 6000 before the first
reproduction stage. There were a total of four reproduction stages, thus, the total evaluations became
4 × 6000 = 24,000 before the elimination and dispersal event. Then according to 0.1 Ped (probability
of elimination and dispersal), 10% of the bacteria among the total 60 bacteria were further dispersed
randomly, so as to avoid the chance of being trapped in the local minima. These bacteria further
enhanced the number of fitness evaluations, thus the total fitness evaluations were more than 24,000.
In the case of TLBO, only 1000 steps were involved. This explains the higher evaluation in PSO and
BFO when compared to TLBO. Moreover, from the convergence characteristics graphs, it is clearly
seen that the convergence of TLBO mimics good convergence characteristics, as compared with PSO
and BFO (shown in Figure 5). Validation experiments were also performed on the basis of the obtained
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results. Table 8 also shows that the optimum values obtained using PSO, BFO, and TLBO are slightly
higher when compared with the ones obtained with desirability. This leads to the conclusion regarding
the effectiveness of the evolutionary algorithms when compared to the desirability method when
finding the optimized parameters. In addition to the optimization process, confirmation experiments
were also conducted in order to confirm the generated results, as listed in Table 8. From the given
results, it has been noted that a cutting speed of 255 m/min, feed rate of 0.07 mm/rev, depth of cut of
0.31, and VMQL conditions are the ideal conditions during the machining of titanium alloy.

Table 7. Comparison of combined objective values by PSO, BFO, teaching learning-based optimization
(TLBO), and desirability function approach.

Technique Best Case Worst Case Average
Reading Time Taken Success (%)

PSO 1.049 1.056 1.053 6.40 60
BFO 1.056 1.057 1.058 14.70 50

TLBO 1.042 1.049 1.045 1.09 90

Desirability Function 1.267

Table 8. Optimal parameter settings.

Parameters Cutting Speed
(m/min)

Feed Rate
(mm/rev)

Depth of Cut
(mm) Cooling Mode CO

PSO 255 0.07 0.31 VMQL 1.053
BFO 255 0.07 0.31 VMQL 1.058

TLBO 255 0.07 0.31 VMQL 1.044
Desirability 255 0.07 0.31 VMQL 1.267

Experimental 255 0.07 0.31 VMQL 1.042

4. Conclusions

The present study concentrated on the machinability investigation and on the optimization of the
turning parameter of the difficult-to-cut pure Ti alloy under traditional MQL and upgraded vortex
tube-assisted MQL, with respect to the surface roughness, power consumption, tool wear, and cutting
forces. This study highlights that the use of the VMQL technique allows for obtaining a highly
improved surface finish (Ra) with a reduction that varies from 15%–18%, when compared with the
MQL process alone. Furthermore, reductions in the cutting force (Fc) and the power consumed (P)
were achieved. The feed rate was identified as the most dominant of the input parameters. Flank
wear (VBmax) witnessed a downward trend when measured for the VMQL process. Hence, the
manufacturing industries of Ti can extract benefits from this survey by using the new addition of
RHVT, resulting in economic and sustainable benefits. The experimental results were compared
to the mathematical models generated by ANOVA. A robust agreement was achieved between the
experimental results and the mathematical models. The evolutionary optimization strategies, namely,
the PSO, BFO, and TLBO techniques, were compared to the desirability technique, while the VMQL
technique seems to be a better one. The TLBO technique was concluded as the best one amongst the
rest, giving a high success rate of 90% and using the minimum time. These methods are proven to
be effective, especially from the perspective of the smart and intelligent controlling of manufacturing
systems as part of the Industry 4.0. Apart from the mentioned advantages, the cooling technique led to
making the process greener, through the simple addition of an RHVT.
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