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A Research Machine

My first introduction to the proton transfer reaction mass spectrometer manufactured by Kore 

Technology Ltd. was at the premises of Smiths Industries in Watford. This was the instrument 

which the Molecular Physics group at the University of Birmingham was to have on permanent 

loan. From the description of Smith’s attempts to use it, it occurred to me that it was going to 

take at least six months to get this working satisfactorily. In the event, it took about a year from 

delivery to get accurate and useful data.

Had the instrument been fully working, I would not have learned nearly so much about its 

intricacies and it would have seemed much more of a ‘black box’. However, the process of 

discovering the instrument’s features, as well as being able to see its separate functional units, 

gave a much better feel for how it works: I compare this with the Ionicon Analytik GmbH PTR- 

Quad-MS in our laboratory which is contained in a washing-machine-sized metal housing from 

which no conceptual model can be assembled and expertise in its use was already available.

I found the PTR-TOF-MS by turns frustrating, challenging and, occasionally, a joy to work with; 

for example, my delight on seeing, for the very first time, the pattern presented by the isotopes of 

chlorine in trichlorobenzene. And then the surprise in seeing an unexpected spectrum from a 

dichlorobenzene sample only to realise that I had used a deuterated version of the chemical 

instead of the usual non-deuterated version. Both of these examples are illustrated below.
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140 Td, TCB is present at 100 ppbV ±10%. (parts per billion by volume)
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Abstract

This work concerns a proton transfer reaction time-of-flight mass spectrometer, PTR-TOF-MS, a 

bespoke model manufactured by Kore Technology Ltd. for Smiths Detection. This instrument 

achieves ’soft' ionization of volatile organic compounds (VOCs) by proton transfer from 

protonated water vapour in a reaction chamber at 1 mbar (= 100 Pa). The resulting ions are 

separated by mass in a field-free time-of-flight tube prior to detection by a multi-channel plate. 

The instrument was modified to facilitate direct determination of the electric field in the reaction 

chamber.

Sensitivity measurements determined a value of 4-6 counts per second per parts per billion by 

volume (ncps ppbv'1) normalised to 106 H30 +. The calibration gas mixture used in this 

investigation consisted of 14 compounds, (alkylbenzenes and chlorobenzenes) spanning an m/z 

range of 78 to 180. Each of these was separately investigated over E/N = 90 to 245 Td to 

establish fragmentation behaviour and possible interfering contributions. For example, several of 

the alkylbenzenes fragmented to product ions occurring at m/z 79, the same value as that of 

protonated benzene. Most of this occurred at the higher E/N  values with ethylbenzene a notable 

exception. The isobaric compounds ethyl benzene and the xylenes exhibit very different 

fragmentation patterns so enabling differentiation of these two compounds. However, it is not 

possible to distinguish the individual xylene isomers using this method.

Benchmarking was continued using the hexenol compounds cis-3-, cis-2-, trans-3- and trans-2- 

hexen-l-ols. This work demonstrated that the same four product ions are seen for all of the 

hexenol isomers at m/z 39 (C3H3+), 41 (C3Hs+), 55 (C4H7+) and 83 (C6Hn+) when reacted with 

H30 + in a PTR-TOF-MS. A characteristic peak at m/z 99 was seen in /r<ms-2-hexen-l-ol and cis- 

2-hexen-l-ol at low E/N  values (< 140 Td) when the protonated parent ion, m/z 101, is absent. In 

trans-3 -hexen-1 -ol and c/s-3-hexen-l-ol the M Ff ion at m/z 101 is seen at these lower E/N 

values but there is no product ion at m/z 99. This suggests a possible method for distinguishing 

between the 2- and 3-hexenols. It may also be possible to further identify the individual isomers 

from the differences in the percentage yield of these product ions.
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Chapter 1 Introduction



C h a pt e r  I :Tn t r o d u c t io n



Ch a p t e r  1: In t r o d u c t io n

1.1 Background

Analytical science seeks to investigate the chemical composition and structure of materials in 

many fields of endeavour. It encompasses the development of new methods and tools, and the 

analysis and interpretation of data produced. One of the tools with a significant role in this 

field is the mass spectrometer, an instrument which ionises a substance, generally in gaseous 

form, and then separates these ions according to their mass-to-charge ratio (m/z). The ions 

reach a detector and are processed into a spectrum from which identification can be made and 

structure inferred. There are different techniques for ionising the analyte, e.g. electron impact 

and chemical ionisation.

The basis of this thesis is the use of a proton transfer reaction - time of flight - mass 

spectrometer (PTR-TOF-MS), specifically an instrument manufactured by Kore Technology 

Limited, Ely, UK. PTR-based instruments have been in use since the mid-1990s. There are 

currently more than 150 operational instruments (Jordan 2009): the majority of these have 

been manufactured by Ionicon Analytik GmbH, a spin-off company from the Institute of Ion 

Physics, University of Innsbruck whence the technology originated. Kore instruments are 

manufactured on a bespoke basis and they are considered to be primarily research tools. 

Currently, there are approximately 15 Kore PTR-TOF instruments in use. (Kore Technology 

2013)

PTR-MS instruments are best used wherever there is a need for the real-time detection and 

monitoring of trace chemicals in environments (volatile organic compounds or VOCs) where 

there are many complicating factors, for example, atmospheric pollution or the detection of 

explosives or drugs. The instrument offers many of the essential characteristics for this type of 

work: high sensitivity, reduced sample preparation, accuracy and fast response and recovery 

times.

The research undertaken here aims to exemplify and demonstrate the capabilities of the more 

unusual Kore time of flight instrument. Consequently, diverse areas have been investigated: 

food sciences, with a proof-of-principle study of the ageing of pears; environmental studies,

1
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examining the four isomers of hexenol; a detailed investigation into the sensitivity of the 

instrument which resulted in outcomes with applications in atmospheric chemistry; and a 

foray into biosciences, looking at quorum-signalling chemicals from bacteria.

1.2 Applications of PTR-TOF-MS Instruments

Prior to the advent of the proton transfer reaction mass spectrometer, the conventional method 

of identifying VOCs was gas chromatography-mass spectrometry, (GC-MS), or high- 

performance liquid chromatography (HPLC-MS). The advantages of PTR technology over 

these and other VOC detection methods are:

• It produces a simpler mass spectrum as a result of the lower energy interactions involved in 

proton transfer as compared with electron ionisation mass spectrometry.

• Reduced sample preparation is required, unlike GC-MS, so simplifying and speeding up the 

detection process.

• Limit of detection is in the range of parts per trillion by volume (pptv).

• None of the components of air reacts in the instrument, so air can be used as a carrier gas

PTR-MS instruments have consequently become frequently used by many research groups in 

such diverse applications as medicine: detecting acetonitrile in smokers’ breath (Jordan 1995, 

Lirk 2003); food: detection of meat spoilage (Mayr 2003, Nhu-Thuc Phan 2012, Heenan 

2012); environmental studies: detecting chemicals in typical homes (Jordan 1995), 

measurement of atmospheric dimethyl sulphide and benzene (Hayward 2002, Inomata 2008, 

Holzinger 2010), biosciences (Cresp 2011), and security (Mayhew 2010, Agarwal 2011, 

Whyte 2007). An extended review of additional applications of PTR instruments can be found 

in Blake et a/.’s review (2009) and an up-to-date literature review is available in Ellis and 

Mayhew 2014.

Until recently, all research studies used a quadrupole mass analyser. Lately, PTR instruments 

with a time of flight analyser (TOF) have been used (Heenan 2012).

2
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1.3 Development of PTR Instruments

Proton transfer reaction is a method of converting an analyte into positively charged ions by

the transfer of a proton so that the sample molecules remain intact for subsequent detection. It 

is derived from ‘soft’ or chemical ionisation mass spectrometry, (CIMS) introduced by 

Munson and Field over 40 years ago (Munson 1966) when ion-molecule reaction kinetics 

were studied by injecting ions into an inert buffer gas that contained a small amount of neutral 

reactant. This method achieved reactions at thermal or near-thermal collision energies 

(Fehsenfeld, F. C. et al. 1966) but was found to be unsuitable for complex molecular ions: the 

lack of any ion selection prior to reaction could produce a variety of secondary ions in the 

discharge source leading to severe complications in the product analysis. This significant 

problem led to the introduction of the selected ion flow tube (SIFT) technique (Adams and 

Smith 1976). It was this early work with SIFT that produced most of the kinetic data that 

guides PTR-MS work today.

In 1993, Lindinger et al. (1993) used an ion/molecule-reaction mass spectrometer which 

exploited CIMS and proved to be the forerunner of today's PTR-MS. The following year they 

analysed trace organic gases in air (Lagg et al. 1994) using a mass-selected H30 + (hydronium) 

source with a flow drift tube, which combines ion transport by carrier gas (flow tube) and 

electric field (drift tube). As well as providing a means of ion transport, the electric field also 

increases the average collision velocity of an ion with the buffer gas thereby reducing the 

clustering of the hydrated hydronium ions H30 +.(H20)„ , n = 1,2,3.

This team in Innsbruck continued to develop the approach to producing protonated species, 

making two further significant changes (Hansel et al. 1995): first, using concepts and methods 

developed in the 1950's (Little and von Engel 1954), they used a hollow-cathode discharge 

source that could generate H30 + with high efficiency (> 99.5%) without any need for a mass 

filter. The second innovation was to replace the flow tube with a relatively short drift tube: 

instead of using a carrier gas to transport VOCs along the tube, the analyte sample was

3
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directly injected into the drift tube and the unreactive components of the air (N2, 0 2, etc.) 

served as thermalizing agents.

The PTR-MS has distinct advantages over its predecessor, the SIFT-MS: it is a simpler 

instrument to operate, there being no necessity to select the reagent ion and its main benefit is 

its improved detection sensitivity of around two orders of magnitude. SIFT-MS has the 

advantage of being able to select which ions enter the reaction region, theoretically providing 

a greater range of possible reagent ions. In practice, however, the reagent ions used tend to be 

the same as those found in the PTR-MS: NO+, 0 2+ and H30 +. The SIFT’s great contribution 

to the field is its ability to work at thermal energies and so measure absolute rate coefficients. 

The PTR-MS works at higher energies as result of the electric field in the drift tube but 

generally there is no need to measure absolute rate coefficients for exothermic H30 + reactions 

which always occur at the collisional rate, a barrier-less transition. All of the preceding 

attributes, higher sensitivity, simpler use plus the relatively compact size, have led to a 

substantial increase in interest in the technique over the past decade (Blake et a l 2009).

Most of the work with PTR techniques has used quadrupole spectrometry. These instruments 

have several disadvantages in comparison with the time of flight detection method as shown in 

Table 1.1. The PTR ionisation processes require a protonated reagent which reacts

Table 1.1: Comparison of features PTR-Quad-MS and PTR-TOF-MS

PTR-QUAD-MS PTR-TOF-MS

Mass resolution {mlAm) <100 At least 1000

Mass range Rarely exceeds 1000 Da No theoretical limit

Speed of detection Slow - Detects limited 
mass range in one scan

Fast - Detects complete mass 
range in one spectrum

Sensitivity pptv ppbv (Ennis 2005)

m/z detection Peaks are measured only 
at integer values

Has a mass precision of ~ 0.1 
amu

exothermically with the trace gas of interest. The reaction, however, has a low exothermicity, 

generally resulting in non-dissociative interactions because there is little excess energy
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available to fragment the sample gas. This method generally produces simplified spectra and 

so enables the analysis of complex gas mixtures, in contrast to electron impact ionisation 

where higher collision energies produce complicated and often impenetrable results.

A complete description of the PTR-MS development and comparisons with the SIFT-MS and 

PTR-Quad can be found in Ellis and Mayhew 2014.

The work with this PTR-TOF-MS instrument has mostly used protonated water, H30 + 

(hydronium) as the reagent, produced by a plasma discharge in a hollow cathode. Sample 

molecules, M, react with the hydronium in the following way:

H30 + + M ->  MH+ + H20  

This will only occur if M has a higher proton affinity than that of water (691 kJ mol"1, where

96.5 kJ mol'1 = 1 eV) \  Generally, most organic compounds have a proton affinity greater than 

that of water, unlike the main components of air which can therefore be used as the buffer gas 

for such samples. See §2.1, Table 2.1 for proton affinities for some common chemicals. The 

positively charged sample molecules can then be analysed, for example, using a quadrupole 

filter or a time of flight tube.

It is possible to calculate the concentration of molecules in the sample, [M], by measuring the 

ion counts for [H30 +] and [MH+] and using the following equation:

[M] = J_ IMH^l 
kt [H30 +]

where: k  = rate coefficient for PTR

t = average time in drift tube (reaction chamber)

This equation holds only if the sample gas concentration is very high compared with the 

density of H30 +. In practice this means that the number of counts of the reagent ions must not 

change by more than one or two percent on the introduction of the sample i.e. MH+ « H30 + 

(Hayward et al. 2002).

1 http://users.mccammon.ucsd.edu/~blu/Research-Handbook/phvsical-constant.html Accessed 16 /05 /2013
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A detailed description of the PTR-TOF-MS is given in Chapter 2.

1.4 Areas Investigated

1.1.1 Sensitivity

This was an obvious area of investigation for this relatively unusual instrument. The 

Molecular Physics department at the University of Birmingham has close links with the team 

using Ionicon’s PTR-MS instruments at the University of Innsbruck (Ionicon Analytik). 

Hence a comparison of functionality between the instruments used and this Kore Technology 

manufactured instrument was of interest. The calibration gas used consisted of 14 

compounds, (alkylbenzenes and chlorobenzenes) spanning a mass range of 78 to 180.

1.1.2 Benchmarking with Hexenols

The 2010 paper from Demarcke et al. examined two of the four hexenol isomers in a PTR-

MS quad. This prompted the investigation of all of the four hexenol isomers.
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Chapter 2 The Kore Proton Transfer Reaction Time of Flight Mass 

Spectrometer

“There are too many degrees o f  freedom for optimisation to proceed simply by working round the 
whole set ofparameters ...A  fairly clear mental model o f  what is happening inside the system is very 
useful.”

From “An update on our thinking regarding the operation of Kore PTR-TOF-MS”

Kore Technology Ltd. January 2006
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2.1 Introduction

Proton transfer reaction mass spectrometry was developed to detect very low concentrations of 

volatile organic compounds (VOCs) in various environments by Lindinger et al. in the mid- 

1990s at the University of Innsbruck. The technique is comprehensively documented in the 

literature, from the original paper by Hansel et al. (1995) to that in the review by Blake et al. 

(2009) and textbook by Ellis and Mayhew (2013). In brief, a proton transfer reaction produces 

a positively charged ion for subsequent detection in a mass spectrometer, a process which 

involves exothermic proton transfer between the VOC molecules and H30 + ions, providing 

that the VOC has a higher proton affinity than that of water. This is a form of chemical 

ionisation mass spectrometry, (CIMS) introduced by Munson and Field over 40 years ago 

(Munson 1966). Protonated water, H30 +(hydronium), is produced by a plasma discharge in a 

hollow cathode. Within the hollow cathode, electron ionisation produces 0 +, H*, H2+, OH* and 

H20 +. These ions all react with H20  ultimately producing H30 + (hydronium). There are other 

methods of producing an ionised reagent, such as a plane electrode dc discharge source 

(Inomata (2006)) and a radioactive ion source (Hanson et al. (2003)).

H30 + ions enter a drift tube reactor where they mix with a constant flow of the sample gas at 

viscous flow pressures of 1-2 mbar. A very small proportion of the contents of the drift tube is 

sampled through an orifice (400 pm) at the end of the drift tube. These ions are then steered 

towards the time of flight tube where they travel in a field-free region, arriving at the detector 

in a sequence dependent on their mass, the lighter molecules arriving before heavier ones. The 

resulting spectra for the PTR-TOF show counts per second plotted against m/z, where m = 

mass and z  = charge. The charge always corresponds to z  = 1 for this ionisation method.

The energy of this reaction is “soft” meaning that fragmentation of the protonated parent ions 

is minimized. Generally this produces a less complex mass spectrum as compared with that 

produced by the more standard technique of creating ions through electron impact which 

substantially fragments the parent molecular species.
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The proton affinity (PA) of water is 691 kJ mof1 and transfer of the proton from H30 + occurs 

only if the analyte has a higher PA than this. Conveniently, many organic species fulfil this 

criterion whereas the main constituents of air, such as nitrogen, oxygen and carbon dioxide, do 

not (Table 2.1). Air can therefore act as the buffer gas for the analysis of mixed samples.

Table 2.1: Proton affinities (PAs) of some common chemicals (NIST)

Molecule PA /kJm ol'1 PA/eV

o 2 421 4.39

n 2 494 5.15

C 0 2 541 5.64

Methane 544 5.67

Ethane 596 6 . 2 1

Acetylene 641 6 . 6 8

H20 691 7.20

Benzene 750 7.81

Ethanol 776 8.08

(H20 ) 2 808 8.42

Acetone 812 8.46

Compounds with PA < PA of water do not react with H30 + 
in the PTR-MS

PTR-MS can detect trace gases to parts per trillion by volume (pptv) in seconds. The TOF-MS 

can achieve a higher mass resolution than the Quad-MS and obtains spectra across the full mass 

range more quickly. Advantages of the PTR-TOF-MS are primarily its fast response time, high 

sensitivity and the need for little or no sample preparation.

2.2 Instrument Description

The PTR-TOF-MS is a complex instrument consisting of the following systems:

• Hardware - ion source, PTR chamber, TOF source and flight tube, reflectron, detector

• Electronics -  control units for hardware

• Heating elements and controls for the inlet and source areas
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• Vacuum systems for the ion source, source drift and PTR chamber (all at around 1 

mbar), transfer section (KT4  mbar) and TOF tube (10' 7 mbar), flow rate ~ 100-200 

mL/min.

• Software in two parts:

o GRAMS/AI software that is responsible for data acquisition used for producing 

the spectra

o A software interface written by Kore through which experimental details are 

input: mass range, how spectra will be displayed, filenames, calibration, etc. 

There are two options for collecting data:

^  Single Spectrum

Data are collected for a set time and a single spectrum is displayed 

showing the total counts at each m/z value for the requested mass 

range. An example of this type of collection is shown in Figure 2.5.

■=> Time series

With this method, data are collected, also for a set time but now there 

is one spectrum for each time interval e.g. for each second. At the end 

of the collection time a spectrum can be viewed for each time interval 

as well as a view of the total ion counts’ progression over the whole 

collection period. It is also possible to see a time progression for any of 

the m/z values. An example of this type of collection is shown in 

Figure 6.15 showing a total ion count for indole for a collection time of 

780 s.

The instrument is shown in Figure 2.1 as delivered. It can be divided into four main functional 

or pressurised sections as shown in the schematic diagram in Figure 2.2.
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Oven Housing for PTR drift tube, 
electrical connections and gas Inlets 

(Removable blue casing)
Time of Flight Tube

Pumps main 
control unit

HV supply unit

PTR control unit

Computer 
system unit

Figure 2.1: PTR-TOF-MS as delivered

H20

Pressure 
~l-6 mbar nIHollow Cathode 

and Source Drift

.Analyte Gas In
Pressure 
~l-2 mbar

Chambdr

Pressure 
~10'7 mbar Pressure __ L^.

~10'4mbar Transfer
Chamber

Field-free
Section4

Steering
Section

TOF Source

Reflectron Detector

Figure 2.2: PTR-TOF-MS schematic
---------------------- Ion flow

Section 1: Hollow cathode and source drift at ~ 1-6 m bar for production o f  reagent ions H30 +.
Section 2: Reaction cham ber at ~ 1-2 m bar with viscous flow resulting in many ion/m olecule reactions 
Section 3: T ransfer cham ber and optics at ~  lO 'V ibar with no ion/ion reactions
Section 4: Tim e o f  flight source, steering section and tube with reflection to im prove m ass resolution at 10 mbar.
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2.2.1 Hollow C athode and  Source D rift

Figure 2.3 shows the hollow cathode (glow discharge GD or plasma discharge, historically)

and source drift region (SD). This section produces the primary beam o f H30  ions from the

PTR Cell

Figure 2.3: PTR assembly
(Courtesy of Kore Technology Ltd. manual z5852M) 

water vapour entering the system through the 'Reagent gas’ inlet. Inside the glow discharge

hollow cathode (aluminium), a plasma forms that typically operates at 1 to 5 m bar and 400-

500 V ultimately producing H3CT (hydronium) among other ions. These ions move into a

short source drift section and then into the PTR reaction chamber or drift tube (DT).

Ideally, H30 + would be the only ion produced in the hollow cathode region. However, there is

some back flow o f air from the DT into the hollow cathode, and other species are present,

primarily NCF and 0 2+, which do not react with H20  (Blake et al. 2009).

2.2.2 P T R  C ham b er o r D rift T ube

The proton transfer reaction cell (PTR or drift tube, DT) is shown schematically in Figure 2.4.

The pressure in this section is ~  1-2 mbar which results in viscous flow conditions so that 

there are many collisions between the protonated reagent ions and the neutral analyte 

molecules, M.

There is an electric field, E , along the length o f the PTR cell which removes the need for a 

fast moving carrier gas and therefore powerful pumps, as required for SIFT instrumentation 

(Blake et al. 2009). Changes in E  and the pressure (or temperature) determine the collisional

Reagent Gas 
Inlet

Glow discharge 
hollow cathode
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energy conditions and the population of reagent ion clusters. Both of these concepts are 

described in the following section.

,GD Anode

.Reactor Entry

.Reactor First Plate
SD

PTR

.Reactor Last Plato

.Reactor Exit

Figure 2.4: Schematic of PTR assembly 
GD = Glow discharge or hollow cathode 
SD = Source drift region 
PTR = Reaction chamber or drift tube (DT)
(Courtesy of Kore Technology Ltd. manual Z-5851-M)

2.2.2.1 Water Clusters and Collisional Energy Conditions

Protonated water clusters, (H30 +).(H20)„, n = 0, 1,2, 3, can form in the PTR drift tube if the

collision energies are sufficiently low. They break up when the clusters have a higher 

kinetic energy resulting from acceleration in high electric field, E, or a longer mean free 

path due to a reduced particle density, N, or both. This process is known as collisional 

induced dissociation (CID). The ratio E/N  is used to measure the collisional energy 

conditions. Figure 2.5a shows spectra taken in laboratory air at two different E/N  values, 

140 and 200 Td. Figure 2.4b shows the peak at m/z 21, the 180  isotope for H30 + in more 

detail. The peaks at m/z 19 are not representative of how much H30 + there is in the 

instrument as this peak has been suppressed (see §2.3.2). Figure 2.5 shows how the
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proportions of each of the water clusters, (H30 +).(H20 )M, n — 0, 1, 2, 3 is depends on this 

E/N  which has the SI units V m2 but is generally given the unit Td, Townsend, where 1 Td 

= 10' 21 V m2.

Peaks for Water Clusters in Laboratory7 Air for 
E/N  = 140 and 200 Td

35000 
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0

------140 Td m/z 37

------200 Td H30 +(H20)

m/z 55
m/z 21

H30 +(H20 ) 2
h318o +

4 .m W r Ik I

20 25 30 35 40 45 50 55
m /z

Peaks for m/z 19 and 21in Laboratory Air for E/N  
= 140 and 200 Td
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Figure 2.5: Protonated water clusters in the PTR-TOF-MS
a) shows variation in H30 + (m/z 19), H30 +.’( H20 ) (m/z 37),
H30 +.(H20 )2 (m/z 55) at E/N= 140 and 200 Td where E = electric field and N=  gas 
number density which is temperature and pressure dependent.
b) shows enlarged peaks at m/z 21, protonated 180  isotope of H30 +. The peaks at m/z 
19 are not representative of how much H30 + there is in the instrument as this peak has 
been suppressed.
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In the PTR-TOF-MS there is only ~ 30% H30 +, m/z 19, at lower E/N  values (< 110 Td), the 

most abundant ions being (H30 +).(H20), m/z 37. There is a small but significant amount of

Water Clusters in Laboratory Air PTR-TOF-MS
100

O z3 7
w

0£boc
IE

■m/z  55

c«iCO

10

230 250190 210150 170110 13090
£//V [T d]

Figure 2.6: Branching ratios for protonated water clusters in the PTR-TOF-MS 
showing variation in H30 + (m/z 19), H30 +.(H20 ) (m/z 37),
H30 +.(H20 )2 (m/z 55) and H30 +.(H20 )3 (m/z 73) with changing E/N  where E = 
electric field and N  = gas number density which is temperature and pressure 
dependent.

(H30 +).(H20 )2, m/z 55, and < 5% of (H30 +).(H20 )3, m/z 73, both of which fragment quite 

quickly with increasing collisional energy, contributing to the m/z 37 peak. As E/N  

increases, m/z 37 reduces and m/z 19 increases.

In general, the analyte, M, reacts with H30 + as follows:

H30 + + M ->• MH* + H20  [El]

Hence to ensure good sensitivity, it is recommended that optimal operating conditions exist 

when the m/z 37 to m/z 19 ratio is 10% to 15% As can be seen in Figure 2.6 this condition 

occurs in the PTR-TOF-MS at E/N  ~ 145 Td. Figure 2.7 shows the same water- 

cluster/energy dependence in the PTR-MS Quad instrument. The graphs show that the drift 

tube of this instrument has a much drier environment than that of the Kore instrument, with 

its optimal conditions occurring at E/N  ~ 115 Td, a much lower amount of m/z 55 and no 

m/z 73 at all.
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Water Clusters in Lab Air PTR-MS Quad
1 0 0
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Figure 2.7: Protonated water and protonated water clusters in the PTR-QUAD-MS 
showing variation in H30 + (m/z 19), H30 +.( H20 ) (m/z 37), and H30 +.(H20 )2 (m/z 55) 
with changing E/N.
(Courtesy of P. Brown, Dept. Mol. Physics, Birmingham University)

The analyte may also react with any water clusters in a ligand-switching reaction shown in 

equation E2:

H3 0 +. H20  + M H3 0 +.M + H20  [E2]

This channel is available when M has a proton affinity > PA (H20 ) and < PA (H2 0 ) 2 and a 

dipole moment. There are also compounds with proton affinities greater than that of (H20 )2, 

(PA = 808 kJ mol'1), which react with both H3 0 + and (H3 0 +).(H2 0 ) (de Gouw et al. 2004, 

Blake et al. 2004) in which case the presence of m/z 37 is not so critical and lower energy 

conditions can be utilised, e.g. for acetone (PA = 812 kJ mol'1) (Table 2.1). The reaction El 

can proceed as either dissociative or non-dissociative proton transfer. Reactions of the latter 

type are found to exist when the Gibbs free energy is less than -20.26 kJ/mol to -41.49 

kJ/mol (Bouchoux et al. 1996, Bohme et al 1980, House 2008).

There are other conflicting conditions that must also be considered, viz. the amount of 0 2+ 

and the impact of E/N  on the fragmentation of the analyte ions and the reaction time. A 

higher E/N, i.e. higher collisional energy, not only breaks up protonated water clusters but 

may also lead to fragmentation of the protonated parent molecules. To limit analyte 

fragmentation, the PTR-TOF-MS is generally operated at E/N  = 140-145 Td. It is also 

advisable to maintain the ratio of 0 2+ to m/z 19 to < 2% to minimise electron transfer
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reactions with the analyte by ensuring a sufficiently high pressure in the glow discharge 

region. Exceeding these conditions, a higher E/N  and more C>2+, would result in a more 

complicated mass spectrum.

2.2.2.2 Determining the Electric Field

The magnitude of the electric field, E, is:

V

Where V = operating voltage across the drift tube and L = length of the tube.

Figure 2.8 shows the positions of the three electrodes in the PTR drift tube: at the entrance 

to the drift tube (reactor entry), on plate 26 and at the drift tube exit (reactor exit). The

GD Anode

SD Accel

.....Reactor entry

C ollision
E nergy

L = d

Plate 26 

PTR lens'

Reactor exit

MS Energy

Figure 2.8: Schematic diagram of 
electrodes in the PTR Drift Tube.
(Courtesy of Kore Technology Ltd.)

original reason for having the intermediate electrode at plate 26 was to enable a higher E/N 

value in this last section of the DT which would break up protonated water clusters. 

However, this could also lead to the fragmentation of the protonated parent ions. 

Consequently, it was decided to set these three voltages so that the plate 26 voltage 

effectively becomes “invisible” to the ions in the DT, i.e. the electric field is constant 

throughout its length:
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<y2 -  Vi) _ (V3-V2) (y3-Vi )
di  d 2 ( d i + d2) L J

The key voltage that ensures that there is a constant E throughout the drift tube is:

T d.7 ^1

^  = r n \ A  p*](% + d2)

Where: Vj = Reactor entry voltage

V2 = Plate 26 voltage 

V3 = Reactor exit voltage

di = Distance from reactor entry to plate 26 (9.1 cm) 

d2 = Distance from reactor exit to plate 26 (1.1 cm)

A spread-sheet calculates the voltages to be applied to ensure that V2 has a value such that 

the electric field is constant and also calculates a specific E/N  value.

Determining Gas Number Density, N

The gas number density, N, is dependent on the temperature and pressure in the drift tube in 

accordance with:

Na x  T0 x  P2  
N = „  — „ [E5]

VoX TiX P o

Where: NA =Avogadro’s number, (6 .0 2 2 x 1 023 mol'1)

P2 = Pressure in DT as measured by the pressure meter (millibar, mbar)

Ti = DT operating temperature (K)

T0 = Standard temperature, 273.15 K

V0 = Standard molar volume, 22414 cm3 mol' 1 of an ideal gas at STP 

P0 = Standard atmospheric pressure, 1013.25 mbar 

The drift tube is heated by a single heater in the oven casing and the heat is distributed by a 

fan. A thermocouple on the drift tube itself measures and controls the temperature.
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The pressure is measured by a CTR Leybold capacitance manometer gauge, replacing the 

less accurate Pirani APGX Edwards gauge. There is generally a temperature differential 

between the DT and the gauge, the DT being at an elevated temperature and the gauge at 

room temperature (Figure 2.9). The DT maintains a constant pressure as a result of pumping 

and the introduction of air via the analyte inlet line.

PTR Chamber (DT)

Th n i

r Pressure
Gauge

T2, n2 
(room temperature)

\ ________________________ s  P2 = n2kT2
=  n ^T -i

Figure 2.9: Schematic of drift tube and pressure gauge 
T= temp. [K]; n = molecule density (no. of molecules m'3); P = 
pressure rmbaf]; k = Boltzmann’s constant

In general, the temperature, Ti, used in [E5] is the temperature in the drift tube. However, 

the system containing the DT and its pressure gauge can be regarded as being a steady state 

rather than equilibrium environment. This is because energy is being input to maintain the 

difference in temperature and, therefore, a different number of molecules in each part of this 

system. From the kinetic theory of gases, the net flux of molecules per unit area of the 

orifices connecting two chambers is zero (Gombosi, T.E 1994):

1 _ 1 _ n [E6]
- n i C i  -  - n 2c2 =  0

Where c (mean speed) oc V f, T=  temperature
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where:

Drift tube variables: Gauge variables:

ni = number of molecules (m'3) n2 = number of molecules (m‘3)

Tj = temperature (K) T2 = temperature (K)

Pi = pressure (mbar) P2 = pressure (mbar)

Calculating E /N

The calculation of E/N  is now straightforward. Table 2.2 shows a comparison of values for

E/N  using T = •N/7,1 r 2  and only the DT temperature, Th for the same pressure and voltage 

settings. The difference in E/N  is ~ 6 % with E/N  being over-estimated when only the DT 

temperature is used in the calculation.

It should be noted that when these temperatures are equal, Ti = T2=T.-yJ^T2 = T.

Table 2.2: Comparison of E/N  values using T = •x/7,1 T2 and T = 7̂ ; 
DT pressure = 1 mbar, DT temperature (Ti) = 333 K 

and room temperature (T2) = 297 K.

E/N  Td

T= J T ±T2 rHII

90 96

95 101

100 106

105 111

110 116

115 122

120 127

125 133

130 138

135 143

140 148

145 153

150 159

155 164

160 170
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E/N  Collisional Energy Equivalence in eV and Effective Ion Temperature K

The expression for the total kinetic energy of an ion in a drift tube in the laboratory frame 

was developed by Wannier (1951) and McFarland (1973) and can be written as:

v = drift velocity o f the ion (m s"1) T = drift tube temperature (K) 

kb= Boltzmann’s constant = 1.3806488 x 10' 23 m2 kg s‘2 K"1

Typically, the thermal energy in PTR-MS instruments is small compared to the total kinetic 

energy of the ion, ~ 0.25 eV (Cappellin 2010). However, in terms of energy available for a 

reaction, the centre-of-mass kinetic energy must be used which is shown in equation [E9] 

(McFarland 1973).

This Teff should be used for calculating reaction rate coefficients. Although rate coefficients 

have not been used in this thesis, the above has been included for completeness. However, 

collisional energies must be taken into consideration in the fragmentation studies in later 

chapters and values for these are provided in Table 2.3.

[E8 ]

Drift Random Thermal
energy field energy

energy

(Revercomb 1975)

where

m = mass of the ion (kg); M =  mass of the buffer gas (kg)

where mN = mass of the neutral molecule.

From this the effective temperature for ion collisions can be determined:

[E10]
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Table 2.3: Energy [eV)] and effective 
temperature [Teff] for E/N [Td]

E/N ITd Energy /eV

*
0

1-

90 0 . 1 1 0 854

1 0 0 0.136 1054

1 1 0 0.165 1275

1 2 0 0.196 1518

130 0.230 1781

140 0.267 2066

150 0.307 2372

160 0.349 2699

170 0.394 3046

180 0.441 3415

190 0.492 3805

2 0 0 0.545 4216

2 1 0 0.601 4649

2 2 0 0.659 5102

230 0.721 5576

240 0.785 6072

250 0.852 6588

2.2.3 Transfer Chamber and TOF Source

The analyte ions and fragments leave the DT through a 400 pm diameter aperture and enter

the transfer optics chamber (Figures 2.10 and 2.11). The diameter of the drift tube is 7.2 cm. 

Assuming that the whole of the DT is filled with ions, then only 0.06% of the ions move into 

the transfer optics chamber. The ion swarm is possibly more centrally concentrated so it may 

be that not such a large fraction is lost at this stage. The transfer chamber is pumped by a 255 

L/s turbo pump which produces a pressure of ~ 10' 4 mbar representing a reduction of four 

orders of magnitude compared with the reaction chamber and hence a change from viscous to 

molecular flow for the ions.

The transfer section holds an extraction electrode and two lensing regions, and determines 

how much of the ion swarm coming from the reaction chamber is transferred to the TOF-MS.
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There are two extreme conditions for this, providing either maximum sensitivity or maximum 

mass resolution. These conditions are described below.

The ion beam leaving the reaction chamber is attracted into the transfer section by the setting 

of the control called T extract (Transfer extract) and is focussed by the control called Tiens

>ptlcs

Field free reoton
t C  
t C

j Blanker Detector TOF Source

Blanking
Pulser

Figure 2.10: PTR-TOF-MS showing the transfer optics and TOF Source regions 
(Adapted from Kore Technology Ltd. Manual Z-5851-M)

Transfer back Shield T ransfer lens T ransfer extract
electrode

Differential purrpng aperture

To TOF source \

Insulating mount

From PTR source

Figure 2.11: Transfer optics chamber
(Courtesy of Kore Technology Ltd.. Manual Z-5851-M)
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(Transfer lens). The ions then move into the TOF source, where they travel orthogonally to 

the direction of the detector and are extracted at regular intervals by the TOF source extractor 

plate: they emerge at a slight angle to the horizontal and are accelerated to the full TOF-MS 

potential of ~ 2 kV.

In the source the ion beam moves between two charged plates which produce a potential 

gradient (Figure 2.12). This results in ions at different locations having different energies as

Backplate.

A

Extract

► To detector

Ion beam - ___ _

Figure 2.12: TOF source
Extract = Pulsed extraction plate, dashed line = grid 
Inter = Intermediate electrode 
FFR = Final acceleration electrode 
Adapted from Kore Technology manual Z-5851-M

they move into the TOF tube and produces a spread of energies within each m/z value, 

leading to a broadening in the mass peak. The amount of broadening depends on the width of 

the beam: the narrower the beam, the smaller this is but fewer ions are collected and the 

sensitivity is reduced.

Alternatively, the beam can be unfocussed to increase the number of ions collected and so 

increase sensitivity. It is, of course, feasible to create a compromise situation for sensitivity 

and mass resolution.

2.2.4 Flight Tube and Reflectron

Finally the pulsed ions enter the field-free region of the TOF-MS at a pressure of ~ 10' 7 mbar,

pumped with a 70 L/s turbo pump, where they separate according to their masses They are
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focused and reflected in an ion mirror (reflectron) as they move to the detector, a dual micro- 

channel plate (MCP) type electron multiplier, where their times of arrival are recorded.

The reflectron was developed by Mamyrin (1973) and focuses ions of differing kinetic 

energy. As the pulse of ions travel down the field free time of flight tube, it spreads into 

groups of ions with the same mass with an energy spread within each group. This is because 

the acceleration given to each ion depends on its position at the time of experiencing the 

impulse into the time of flight tube. So, as each mass group arrives at the reflectron, the more 

energetic ions travel

further into it, so taking a 

slightly longer path to the 

detector. The less energetic 

ions of the same mass 

travel a shorter distance 

into the reflectron, taking a

<3__ Tuneable
central

----

Figure 2.13: Reflectron schematic 
Showing the different paths taken by ions of same mass 
with differing energies through the reflectron (Fast = red; 

shorter path overall to the detector Slow = black)

(Figure 2.13).

A clear exposition of the workings of the reflectron is given at Jordan TOF Products (Jordan 

TOF2). The more energetic ions are the most difficult to control and, when included in the 

measurements, tend to result in a lower resolution with more spreading of the peak. The 

central electrode of the reflectron can be adjusted so that the most energetic ions hit the back 

of the reflectron and are lost to the signal, so the reflectron then operates as a low-pass energy 

filter, resulting in an improvement in resolution.

The time of arrival at the detector of a protonated molecule of mass m is proportional to Vm

E =  - m y 2 [E9]

2 Jordan TOF http://w w w .rmiordan.com/Resources/Tutorial.pdf (Accessed 12/03/2013)

http://www.rmiordan.com/Resources/Tutorial.pdf
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since every ion is given the same amount of energy, E :

where m  = mass and v=  velocity 

If the length of the field free tube = / and the time to traverse this = t, equation [E9] becomes:

1  9 m l 2
E =  - r m r  =  ——

2  2  t 2

[E10]

Hence: t  =
Zm1/2

(2 E )1/2

t  =  Cm1 / 2  where C =
(2F)1/2

[E ll]

Software then converts the times of arrival at the detector into masses to produce a spectrum 

of number of counts against m/z.

2.2.5 Operating Conditions

Table 2.4 shows the temperatures, ion counts and ratios for normal operating conditions used

in the studies presented in this thesis. Pressures are shown when the PTR-TOF is in use 

(under load) and when running but inactive (no load).

Table 2.4: Normal operating conditions: temperatures, pressures, voltages, 
ion counts and ratios.

Param eter Under Load No Load
PTR Temperature 333 K 333 K
PTR Pressure ~ 1 . 0 0  mbar — 0.04 mbar
GD Pressure -1 .3 0  mbar -  0.03 mbar
AIMX pressure (TOF tube) 7.0 x 10' 7 mbar -  6  x 1 0 ' 9 mbar
WRG pressure (Transfer section) 7.0 x 10' 5 mbar -  2.3 x 10‘6 mbar
Flow rate into PTR 1 0 0 ml min' 1 -

E/N -  144 Td -

VcE 354 V -

V PTR 48.9 V -

Vms 9.7 V -

Total ion counts at 60°C -  2 0 , 0 0 0  s’ 1 -

m/z 21 counts at 60°C -4 5 0 -5 6 0  s’ 1 -

Ratio m/z 37: m/z 19 <5% -

Ratio m/z 32:(m/z 19+ m/z 37) <4% -
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2.3 O ptim isation  o f  the Instrum ent

2.3.1 M odifications

The instrument required several modifications before being fit for purpose.

2.3.1.1 M easuring and  M onitoring E/N

To determine the electric field, E, in the drift tube, it is necessary to measure the voltages at

three points in the tube: at the entrance, at Plate 26, part way down the tube and at the exit 

(see §2.22.2  for further details). However, none o f the three voltages could be measured on 

the delivered instrument until a digital voltmeter (DVM) and control unit were added 

(Figure 2.14).

Pressure gauge

Pressure gauge 

controller

DVM for electrodes  

in drift tube

Drift tube electrode  

switching unit

Figure 2.14: Modifications to the PTR-TOF-MS Kore instrument.

In order to calculate and monitor E/N, it is necessary to know the pressure and temperature 

in the drift tube. A reliable thermocouple already existed but a more accurate pressure gauge 

was added. The method for calculating E/N  is given in §2.2.2.2. To alter E/N, the pressure in 

the drift tube is held constant, thus keeping N, the gas number density constant, and the 

voltages across the drift tube are varied.
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2.3.1.2 Isolating the Water Container

The original isolating tap for the water chamber had been removed by Smiths. Reinstating

this enabled venting only o f this container, and not the whole instrument, when more water 

is required (Figure 2.15).

Isolating tap

Figure 2.15: Isolating tap for water chamber

2.3.2 Eliminating Reagent Ions at the Detector

After ions have been reflected by the reflectron, there is a component referred to as a blanking

pulser (see Figure 2.10) which is designed to prevent FfCF ions (m/z 19) reaching and 

damaging the detector. The blanking pulser consists o f two plates, one permanently 

connected at the field free region potential and the other pulsed such that all ions passing 

through the plates when the pulse occurs are diverted away from the path o f the detector. The 

time at which this pulse occurs is controlled by a delay potentiometer.

The graph in Figure 2.16 shows the average counts for a collection time o f  10 s for m/z 19 

and m/z 21 as the delay setting is varied as measured on the potentiometer (range 1-10). This 

clearly shows how ions at m/z 19 are prevented from reaching the detector as the delay 

potentiometer moves from 6.0 to 6.4 and that the optimal setting for these ions, i.e. the 

minimum level detected, is when the delay setting is ~  6.1 to 6.2. As the delay setting is 

increased, ions at m/z 21 are diverted from the detector, with a minimum number reaching the 

detector when the blanking pulser is set at a delay o f 6.4 to 6.6.

Water source
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Counts vs Delay Settings
1000000 

100000 

W 10000
H

1000c
3

<3 ioo 

10 

1

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2
Delay Potentiometer Setting

Figure 2.16: H30 + (m/z 19) and isotope H3180 + (m/z 21) signal change 
on varying the blanking pulser delay potentiometer setting. The points show an 
average of two sets of data.

The m/z 19 results show some unexpected data at delay settings 5.9 and 6.5: the number of 

counts increase as the delay setting moves from 5.8 to 5.9 and then the number of counts 

reduce as the delay setting moves from 6.5 to 6 .6 . When displayed on a linear scale (Figure 

2.17), the change in counts seen at these delay settings is ~ 100% and the reason for this is 

shown in the spectra in Figures 2.18a), b), c) and d): at a delay setting where there is no 

blanking for m/z 19, the detector becomes saturated due to dead-time issues and the peak has 

the shape shown in Figure 2.17a) at potentiometer delay setting = 5.8, and in Figure 2.17d), 

potentiometer delay setting 6 .6 . These spectra show the typical saturated shape of a double 

peak with many ions missing from the signal. As the delay setting is changed and blanking 

becomes effective, more of the m/z 19 ions can initially be detected, so increasing the number 

of detected counts. The peak shape assumes its more regular shape (Figure 2.17b) for 

potentiometer delay setting 5.9 and Figure 2.17c) for potentiometer delay setting 6.5.
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These changes for m/z 19 at the cusps of the blanking effects are interesting but unimportant 

as the instrument is only operated in the range 6 . 1  to 6 .2 , the actual signal being calculated 

from the 180  isotope at m/z 2 1

140000
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o.-H 80000in
c3 60000O
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m/z 19 vs Delay Settings
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Figure 2.17: m/z 19 signal as the potentiometer called delay varies. 
Points a) to d) refer to the spectra in Figure 2.18 below.
Increased (up) and decreased (down) measurements are shown.

a) b)
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50000

40000
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70000
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Figure 2.18: m/z 19 peaks at the delay settings 5.8 (a), 5.9 (b), 6.5 (c) and 6.6 (d) 
as shown in Figure 2.17.
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However, as Figure 2.19 shows, there is a similar, but smaller, increase for m/z 21 between

m/z 21 vs Delay Settings
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Figure 2.19: m/z 21 signal vs delay setting 
Shows an increase in signal from delay setting 5.9 to 6.2.
Results for increased (up) and decreased (down) delays

delay settings 5.9, counts = 589, to 6.2, counts = 751. The graph shows a linear increase in

these counts, both when measurements were taken as the delay setting was increased (up) and

then decreased (down). This increase cannot be accounted for in the same way as for m/z 19

above, as at no time is the signal , „ . , , .Table 2.5: m/z 21 counts for potentiometer delay settings 5.9

at the detector saturated for m/z to6-̂

2 1  ions.

Also, since the counts vary 

according to Poisson statistics, the 

variation at delay 5.9 for counts 

581 (down measurements) is 

expected to be V581 = ±24.1. The 

actual variation seen is ~ 54 (635-

581 Table 2.5). Consequently, the differences observed here are considered to be real as they 

fall outside of these statistical fluctuations and, taken over the delay range of 5.9 to 6.2, 

amounts to a ~ 27% difference.

This implies that for a delay setting of 6.2, which is optimal for removing H30 + ions from the 

detector, the corresponding isotope count at m/z 21 would appear to be approximately 27%

Delay
Counts

up
Nup

VnN i l u p

Counts
down
N d o w n

^ N d o w n

5.9 597 24.4 581 24.1

6 . 0 642 25.3 635 25.2

6 . 1 704 26.5 691 26.3

6 . 2 756 27.5 746 27.3
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higher than that found for a delay setting o f < 5.9. It would therefore appear that, as the 

blanking effect moves the m/z 19 ions away from the detector, the initial effect is to increase 

the number o f m/z 21 ions reaching the detector. This same effect o f optimising the m/z 21 

signal can be achieved by using the X deflector steering plates which also deflect the ion 

beam towards the detector. A query to Kore Technology regarding this issue resulted in the 

advice always to optimise m/z 21 with the X deflectors whenever the delay setting is changed. 

Points X and Y in Figures 2.17 and 2.19 respectively represent an anomaly in the workings o f 

the PTR-TOF. They have not been further investigated.

Oxygen

A short test using oxygen as the primary ion ( 0 2 ) showed that blocking o f  the m/z 32 signal 

occurs at a delay setting o f  ~  6.9 and that the m/z 34 signal was also depleted.

2.4 E xperim ental M ethods

2.4.1 P reventing  D ilution of V OCs from  Biological Sources

The headspace above a biological sample can sometimes be required not to become diluted

by a carrier gas. A method o f overcoming this dilution problem is to have a small expandable

Inlet to PTR

Connected to 
bag and open 
to laboratory 
air

Expansion
bag

Figure 2.20: Equipment with an expansion Nalophan bag 
to prevent sample VOC dilution
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‘bag’ within the sample container which is open to the laboratory air such that it can expand 

and replace the volume left by the evacuated headspace gases (Figure 2.20). The apparatus 

here consists o f a 500 mL Schott glass bottle with a four-way polytetrafluoroethylene (PTFE 

[Teflon]) bottle cap and flexible PTFE tubes and fittings. Two o f the cap openings (in red) are

permanently closed. Inside the bottle is a small Nalophan bag made from poly-(ethylene

terephthalate) film and closed with cable ties, connected to laboratory air through a PTFE

tube. The other tube is connected to the PTR. Nalophan was selected as it is frequently used

in SIFT and GC-MS VOC detection, albeit for sample storage rather than for the purpose 

described here (Turner 2013, Beghi and Guillot 2008). This apparatus was trialled during 

proof o f concept work involving the ageing o f pears.

eated and 
lated inlet line

Figure 2.21: Calibration gas canister with heating tapes

2.4.2 Heated Inlet Line

Some molecules and ions take a long time to reach a constant flow through the instrument

and are referred to as being ‘sticky’. Such conditions were encountered in the calibration gas 

(Chapter 3) and in the proof o f  concept works: detecting indole and when examining the 

ageing o f pears. One way o f overcoming this problem is to heat the inlet line into the PTR- 

MS by wrapping heating tape around the inlet line. Examples are shown in Figures 2.21 and 

2.22

Canister of calibration 
gas with heating tape

Heated 
enclosure 
with drift tube
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Pear

Heated 
enclosure 

with drift tube

Heated 
inlet line

Figure 2.22: Experimental setup with heated inlet line

2.4.3 M ethods of In troducing  Sam ples into the PTR-M S

Different apparatus was used depending on the type o f sample being investigated e.g. solid

indole, liquid hexenols, pears or a bacterial medium. The container for pears is shown in 

Figure 2.22, a motorised syringe used for the hexenols is shown in Figure 2.23 and the

Figure 2.23: Experimental setup with motorized syringe 

container used for indole and the alkyl and chloro- benzenes is shown in Figure 2.24.

Heated 
enclosure 
with drift tube

Hydrocarbon
trap

Inlet line

Filtered 
laboratory air

Syringe on
motorised
drive
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Hydrocarbon
trap

Figure 2.24: Experimental setup with glass container 
and PEEK tubing syringe

2.5 D ata C onsiderations

2.5.1 Ion Detection, C ounting and  E rro rs

The device for detecting ions used in this Kore instrument is a dual micro-channel plate

(M CP) type electron multiplying detector (Burle Long-Life™ channel plate). It is also worth 

noting that secondary electron emission at each dynode is a statistical process, and, at the 

level o f  individual ions, the output current from the detector for each incoming ion event 

follows a Poisson distribution. Hence errors in the number o f counts, N, at any m/z is ± y[N.

2.5.2 C alculating  C ounts fo r W ater C lusters H 3 0 +.( H 2 0 )M, n -  0 ,1

The reagent ions used throughout the investigations presented in this thesis was H30 + and it is

important to know its intensity (counts per second). However, this spectral peak is always 

saturated, or hardly present at all if  the delay setting has been used (§2.5.5). It is therefore 

necessary to calculate the intensity from the H318CT isotope peak at m/z 21, (abundance o f the 

,sO isotope is 0.205(14) %) (N IS T ):

[H30 +] = [H3180 +] x  487 

Similarly for the first water dimer at m/z 37, H30 +.( H20), for low E/N  values it is necessary to 

use the lsO isotope at m/z 39:

Glass
container with 
septum in 
screw-on lid
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where:

The division by 2 is a consequence of there being two oxygen atoms in this cluster.

[37] = Number of counts at m/z 37 
[39] = Number of counts at m/z 39

2.5.3 Fragments at m/z 39

Product ion fragments frequently occur at m/z 39 e.g. Chapter 3. This is the same peak at

which the 180  isotope (abundance 0.205%) of the first water dimer, H30 +.(H20 ) (m/z 37),

appears. The method used to estimate these counts is to calculate the 180  isotope counts 

expected from m/z 37 and subtract this from the actual counts at m/z 39:

Dead-time issues prevent the detector from registering all of the ions at this m/z. 

Consequently, this method is only reliable for E/N  values > 140 Td as the m/z 31 signal is 

saturated at values lower than this.

2.5.4 Normalising Ion Counts

Different investigations often require different ways of handling data. For example,

calculation of branching ratios uses values for one m/z as a percentage of the total counts for 

of all the m/z values being considered. In this case, the raw counts can be used. If, however, a 

comparison of raw counts is required, then these counts must be normalised generally to 106 

counts at m/z 19 as the analyte signal is dependent on this signal:

[Counts]prod = [Counts] 3 9  —
[Counts] 3 7  * 2

487

product ion 
counts

m/z 39 m/z 39 total 
counts

m/z 39 180
isotope
counts
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where:

[M ĵ] =  Number of normalised counts for an m/z 
[M+] =  Number of un-normalised counts for the m/z 

[H30 +] =  Number of counts at m/z 19

The denominator can change, depending on the proton affinity of the compound -  if the PA is 

close to that of the first water dimer, (H20 )2, PA = 808 kJ mol"1, then the sum of the counts at 

m/z 19 and m/z 37 is used.

2.5.5 Reproducibility of Data

A convenient method of checking for the reproducibility of data is to take measurements as

E/N  is increased and then decreased. These two sets of readings are referred as ‘up’ and 

‘down’ in the text. It was not always possible or necessary to take reading in this way e.g. for 

pears, readings were taken for one E/N  value only. Where possible, three readings at each E/N  

value were taken as a means of eliminating possible rogue values. An average of these 

readings was used.

2.6 Summary

This chapter provides a description of the hardware, some operating characteristics and 

enhancements to the Kore PTR-TOF-MS instrument. There were several faults to correct 

before being able to use it, not least of which was the ability to detect voltages in the reaction 

chamber in order to calculate the energy conditions therein. This having been done, the 

following chapters describe the areas of investigation undertaken to prove that satisfactory 

results could be achieved when compared with other such instruments.
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3.1 Background

As mentioned in Chapter 1, there are only a small number of Kore PTR-TOF-MS instruments in use 

and there are no detailed accounts for the determination of such instruments’ sensitivity - the total 

number of a protonated parent ions and fragments resulting from ion-molecule and collision-induced 

dissociation (CID) reactions per integration time per parts per billion by volume (ppbv), normalised to 

106 reagent ions. In view of this, a detailed study of the sensitivity of this PTR-TOF-MS was made 

using a standard calibration gas (Restek, Scott/Air Liquide TO-14A Aromatics Mix) chosen for its 

wide range of VOCs and molecular weights. The constituents of this calibration gas are detailed in

Table 3.1: Details of the gas used to calibrate the sensitivity of the Kore PTR-TOF-MS.

Compound Molecular
Formula

Protonated3  

Mass [amul
Proton Affinity 
(PA) kJ mol' 1

ppbVb

Benzene C6H6 79.05 750.4d 110
Toluene c 7h 8 93.07 784.0d 110
Styrene c 8h 8 105.07 839.5° 96
m-Xylene (1,3-Dimethylbenzene) c 8h 10 107.09 812.1° 110
o-Xylene (1,2-Dimethylbenzene) c 8h 10 107.09 796.00° 110
p-Xylene (1,4-Dimethylbenzene) o 00 * o 107.09 794.40d 110
Ethylbenzene O 00 o 107.09 788.00° 110
Chlorobenzene C6H5C1 113.02 753.1° 110
1,2,4-Trimethylbenzene c 9h 12 121.10 826.36' 100
1,3,5-Trimethylbenzene c 9h 12 121.10 836.2° 100
1,2-Dichlorobenzene Q H jCI, 146.98 711.3d 99
1,3-Dichlorobenzene C6H4C12 146.98 730.96° 99
1,4-Dichlorobenzene C6H4C12 146.98 701.67° 100
1,2,4-Trichlorobenzene C6H3C13 180.94 NA 100

aFor the atomic masses the major isotopes of carbon and chlorine were used, i.e. 12C and 35C1 (actual to 
2 decimal places 34.97).
bppbV supplied by manufacturers accurate to ±10%
Sources for PA:
0 = http:// http://webbook.nist.gov/chemistrv/pa-ser.html (Accessed 03/05/2012): 
d= Hunter and Lias (1998);e = Borisov and Garrett (1998); 
f = Stone, Li and Turner (1986)

Table 3.1.

It is normally assumed that proton transfer reactions are non-dissociative with fewer species being 

produced than those for electron impact spectrometry. However, other investigations (e.g. Sulzer, 2012; 

Demarcke, 2009; Shen, 2012) and this present one show that this is not always the case: higher energy 

conditions in the reaction chamber can result in ions undergoing not just dissociation as a result of
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excess energy after protonation, but also collision-induced dissociation. These mechanisms impact on a 

sensitivity investigation such as this, where a wide range of energy conditions are to be used: it is 

therefore essential to know how the individual species behave over the energy range in order to be able 

correctly to assign mass peaks to their correct VOC.

An example of fragmentation as a function of E/N is shown in Figure 3.1 which shows the % branching 

ratios (often referred to as product ion distribution PID) of species from protonated ethylbenzene. A 

significant product ion occurs at m/z 79 which, in a mixture of VOCs, could be taken to be protonated 

benzene, (also m/z 79) for E/N  values as low as 120 Td. This would result in an overestimation of the

Ethylbenzene (Protonated Ion m/z 107)
ioo p-

-  - <- m/,

m /i 51

c

co
107

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

E /N  [Td]

Figure 3.1: Fragmentation behaviour with changes in E/N  of ethylbenzene: 
the largest fragment is m/z 79 starting to appear at E/N = 110 Td.
‘m/z’ is unitless with m = molecular or atomic mass and z = number of 
charges carried by the ion. For the PTR-MS, z =1.

benzene concentration in a complex chemical environment such as the atmosphere where other VOCs 

also fragment to an ion with m/z 79. Consequently, to ensure an accurate signal for each of the 

calibration gas compounds, the fragmentation and product ion distribution of the 14 compounds were 

investigated as a function of E/N  before studying this calibration gas.

These compounds separate into two groups: aromatic hydrocarbons (alkylbenzenes) Figure 3.2 and 

chlorobenzenes Figure 3.3.
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Benzene C6H6 Styrene
C6H5CH2CH

Toluene
Methylbenzene h 
C6H5CH3

o-Xylene
1,2-Dimethylbenzene

1,2,4-Trimethylbenzene

/ \

m-Xylene
1,3-Dimethylbenzene

1,3,5-Trimethylbenzene

p-Xylene
1,4-Dimethylbenzene

Figure 3.2: Molecular structures for the alkylbenzenes:
benzene, toluene, styrene, ethylbenzene, xylenes and trimethylbenzenes

All of the alkylbenzene components of this calibration gas are found in the atmosphere of industrial 

environments (Table 3.2). These are the so-called BTEX chemicals (benzene, toluene, ethylbenzene, 

trimethylbenzenes and xylenes) which are mainly attributable to traffic and the burning of fossil fuels 

(Buczynska 2009, Lin 2011, EUGRIS): 1,3,5-trimethylbenzene has been shown to be the most active
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Table 3.2: Compounds and *fragments identified by PTR-MS in ambient air 
(Blake 2009 adapted from de Gouw and Wameke 2007)

m/z Compound
28 HCN
31 HCHO
33 Methanol
42 Acetonitrile
45 Acetaldehyde
47 Formic acid
54 Acrylonitrile
57 Butenes, methyl tert-butyl ether, butanol
59 Acetone
61 Acetic acid
63 Dimethylsulfide
69 Isoprene, furan
71 Methyl vinyl ketone, methacrolein
73 Methyl ethyl ketone
75 Hydroxy acetone
77 Peroxy acetyl nitrate (PAN)*
79 Benzene
81 Monoterpenes, hexenal
83 Hexenol, hexanal*, hexenylacetate methylfuran, 

isoprene hydroxyl carbonyls
85 Ethyl vinyl ketone
87 2-methyl-3-buten-2-ol c5 carbonyls, methacrylic 

acid
91 peroxypropionyl nitrate (PPN)
93 Toluene
95 2-vinylfuran phenol
99* Hexanal
101 Isoprene hydroperoxides
103 peroxymethacrylic nitric anhydride (MPAN)
105 Styrene, peroxyisobutyric nitric anhydride (PiBN)
107 C8 aromatics
115 Heptanal*
121 C9 aromatics
129 Octanal naphthalene
135 Cio aromatics
137 Monoterpenes
139 Nopinone
143 Nonanal
149 Cn aromatics methylchavicol
151 Pinonaldehyde
163 Cn aromatics

pollutant in the production of ozone in the atmosphere (Derwent 2000). Benzene, toluene, styrene and
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xylene are used in the manufacturing of new materials and consequently are also commonly found in 

indoor environments (Lee 2005).

The following chlorobenzene compounds were investigated here:

• Chlorobenzene, C6H5C1, (Figure 3.3a,) has one hydrogen atom replaced in benzene by a chlorine 

atom and has a molecular weight (m.w.) of 112.01 amu, with a protonated m.w. of 113.02 amu

• Dichlorobenzene, C6H4C12, (Figure 3.3 b), has two chlorine atoms which replace two of the 

hydrogen atoms on the benzene ring. There are three isomers, o-, m-, and p-dichlorobenzene, 

each denoting a different arrangement of the Cl atoms: ‘o’ denotes Cl atoms in positions 1 and 2; 

im9 denotes Cl atoms in position 1 and 3 (Fig 3.3bi) and *p9 denotes Cl atoms in positions 1 and 4 

(Fig 3.3bii).

• Trichlorobenzene, C6H3Cl3 , (Figure 3.3c), has three chlorine atoms which replace three of the 

hydrogen atoms on the carbon ring in benzene. The one used here is 1,2,4-trichlorobenzene.

»  \  

bi)

Cl

c)
Cl

Figure 3.3: Molecular structures for the chlorinated compounds:
a) chlorobenzene,
b) 1,2-dichlorobenzene (o-DCB); bi) 1,3-dichlorobenzene (w-DCB); bii) 
1,4-dichlorobenzene (p-DCB);
c) 1,2,4-trichlorobenzene

All sources of chlorobenzenes in the environment are man-made, being used, for example, as pesticide 

carriers, in air fresheners, and in the synthesis of other organic chemicals (Malcolm 2004). It follows, 

therefore, that investigation of these individual compounds is likely to be of interest to the 

environmental science community.
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This work extends the comprehensive measurements of VOCs in the atmosphere taken by de Gouw and 

Wameke, 2007, where a quadrupole PTR-MS was used.

3.2 E xp erim en ta l P rocedures

The experimental work for the sensitivity measurements is divided into two sections: study of the 

individual chemicals comprising the calibration and then an investigation of the calibration gas itself. 

Initially, the individual chemicals were studied for the reasons mentioned above, i.e. to determine each 

one’s fragmentation behaviour and product ion distribution over a wide E/N  range so that a more 

accurate measure could be made when the mixture of VOCs was subsequently examined in the 

calibration gas. Table 3.3: Purities for compounds in calibration gas

All the chemicals for this investigation 

were purchased from Sigma Aldrich with 

purities shown in Table 3.3.

Two filters were attached to the inlet tube 

through which buffer air was drawn from 

the laboratory: a hydrocarbon (HC) filter 

(Supelpure HC, Supelco, Bellefonte, PA.) 

to reduce environmental influences and a 

moisture filter (Big Moisture Trap, Supelco) to reduce moisture from the incoming airflow. The range 

of voltages that can be applied to the drift tube (DT) enables an E/N  range of 90 Td to 250 Td (Table 

3.4). E/N  was altered by varying the potentials at the entry to the drift tube (Collision Energy) and on 

the intermediate terminal (PTR Lens).

Conditions in the DT were pressure = 0.81 mbar and temperature = 333 K.

Compound Purity
Benzene > 99.9%
Toluene > 99.5%
Styrene > 99%
m-Xylene (1,3-Dimethylbenzene) 99+%
o-Xylene (1,2-Dimethylbenzene) 97%
p-Xylene (1,4-Dimethylbenzene) 99+%
Ethylbenzene > 99.5%
Chlorobenzene 99.8%
1,2,4-T rimethylbenzene 98.7%
1,3,5-Trimethylbenzene 99.3%
1,2-Dichlorobenzene 99.9%
1,3-Dichlorobenzene 99.4%
1,4-Dichlorobenzene > 99%
1,2,4-Trichlorobenzene > 99%
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Table 3.4: Drift tube voltages for E/N range used for 
individual compound investigation

E /N /Td Drift Tube Voltage /V
90 180
100 200
110 218
120 237
130 256
140 275
150 294
160 313
170 332
180 351
190 370
200 388
210 408
220 427
230 445
240 464
245 474
250 483

3.2.1 Individual Compounds

Two spectra were acquired for E/N = 90 Td to 240 Td in steps of 10 Td. A final reading was taken at 

245 Td because the 250 Td reading was not always reliable: the hollow cathode worked only 

intermittently.

E/N  was increased (up) and then decreased (down), to ensure reproducibility. The same method for 

introducing the sample into the PTR-TOF-MS was used for each liquid phase compound. Only one, 

1,4-dichlorobenzene, was a solid. The vapour pressures of these volatile aromatic compounds are very 

high and the major issue was to ensure that the reagent ion signal was not significantly reduced by the 

introduction of the sample which led to the signal being monitored before taking measurements. To 

achieve this, for the liquid compounds a 1 mL syringe was used to transfer one drop of liquid into a 

small glass vessel which was then filled with cotton wool to help reduce the flow of analyte into the 

instrument.

§3.3 describes the alkylbenzenes and §3.4 the chlorobenzenes. The following data are presented for 

each compound:
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• A mass spectrum comparing two E/N  values, 140 Td and 245 Td showing non-normalised counts. 

Mass spectra are taken from one series of data, generally as E/N was increased.

• % Branching ratios (BR %)

This describes compound fragmentation as E/N  is varied: the signals for the protonated parent ion 

and each product ion are shown as percentages of the sum of all products. Product ions with low 

percentages are expanded in a second BR. The branching ratios are an average of data taken as 

E/N  was increased and then decreased.

3.2.2 Calibration Gas

The E/N  range was 100 Td to 240 Td using steps of 20 Td. The calibration gas container was heated 

to 60 °C, DT temperature was 60 °C and the inlet line was heated to 70 °C. The gas was studied using 

two different techniques:

• Varying E/N  with the drift tube pressure held constant at 0.8 mbar.

Three sets of data were taken, i) an ‘up’ run (E/N = 100 Td to 240 Td); ii) a ‘down’ run (E/N= 

240 Td to 100 Td); iii) a second ‘up’ run. The first two sets were taken consecutively; the third 

set was started 4020 s after the ‘down’ run. Although the system had been allowed to 

equilibriate before starting to take measurements, the first two sets of data showed particularly 

low signals for trichlorobenzene at m/z 181, a seemingly very ‘sticky’ molecule which took a 

long time to detect in the instrument. Both of these sets of readings were subsequently 

discarded.

• Varying the pressure at constant E/N=  140 Td.

Two sets of data were taken, the first varying the drift tube pressure from 0.8 mbar to 1.32 

mbar, and the second reducing the drift tube pressure back to 0.8 mbar to ensure 

reproducibility of the data. E/N  was held at 140 Td for both of these sets of measurements.
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3.3 Alkylbenzenes

Results for the alkylbenzene compounds are given in §3.3.1 and a discussion of the data can be

found in §3.3.2.

3.3.1 Results

Spectra and branching ratios are show for fragments and protonated parent ions for each compound.

3.3.1.1 Benzene C6 H6

Benzene was investigated over the E/N  range 90 Td to 248 Td and mass spectra at two of

these values, 140 Td and 245 Td, are shown in Figure 3.4. The protonated parent peak at

a)
500

Benzene Protonated Parent and m/z 77
450 -

-o 400 -
Of 140 Ttl 

245 Td5 350 -
E
|  300 - 

|  250 - 

°  200  -

|  150 -
3

<3 io o  -

75 76 78 79 80 81 82
m/z

b)

.B en zene ±ro(iuct Ions m/z 50 and 51

"O01 140 Td 

245 Tdn
E

H
C
3Ou

10 -

524948 50 51 53 54
m/z

Figure 3.4: Mass spectra for benzene at E/N= 140 Td and 245 Td 
a) peaks for protonated benzene at m/z 79 and b) fragments at m/z 
50 and 51.

m/z 79 is the major signal at both of these energies. The product ion distribution or 

branching ratios describe the fragmentation of benzene over the full E/N  range (Figure 3.5).
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This shows that the protonated benzene ion C6H7+, m/z 79, starts to fragment at E/N  >180 

Td, losing H2 to form the fragment at m/z 77, C6H4 +. As the energy increases, fragmentation 

continues with m/z 79 decreasing and m/z 11 increasing. At ~ 200 Td, product ions at m/z 

39, 50 and 51 appear, C3H3+, C4H2+ and C4H3+ respectively.
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Figure 3.5: Branching ratios for benzene 
b) shows minor products in greater detail
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3.3.1.2 Toluene C6 H5 CH3

A comparison of mass spectra for toluene at E/N  = 140 Td and E/N = 250 Td are shown in

a)
3500 -| 
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u
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=  2500re
£
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1 L jl
80 85

m /z
90

— 1

95

Toluene Product Ions m/z 50 and 51

L

140 Td 
250 Td

u.
49 50 51

m/z
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Figure 3.6: Mass spectra for toluene at E/N= 140 Td and 250 Td 
a) shows peaks for protonated toluene at m/z 91 and a fragment at 
m/z 77. b) shows fragments at m/z 50 and 51.

Figure 3.6. At E/N -  250 Td the protonated toluene signal at m/z 93 (C6H5CH3FF) is less

than that of the product ion at m/z 91. It can also be seen that, even at high E/N, there is no

product ion at m/z 79, although a signal at m/z 77 is observed. The fragmentation behaviour

of toluene is shown in the branching ratio diagrams (Figure 3.7) as E/N  is varied from 90 Td

to 250 Td. Toluene starts to fragment at E/N = 150 Td, losing H2 to form the product ion at

m/z 91, C7H7+. This is a commonly found fragment ion called the tropylium cation. (See
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Figure 3.7: Branching ratios for toluene 
b) shows minor products in greater detail

§3.3.2 for further information.) At E/N ~ 170 Td, m/z 77 appears, C6H5+, with m/z 51 

(C4H3+) following at 200 Td. Product ions at m/z 39, (C3H3+), m/z 50 and m/z 65 occur as 

E/N  increases > 210 Td.
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3.3.1.3 Styrene CeHsCFhCH

A comparison of mass spectra for styrene at E/N = 140 Td and E/N  = 250 Td are shown in

Figure 3.8. Unlike toluene, styrene fragments to a product ion at m/z 79, as well as an ion at 

m/z 77. The presence of m/z 79 in this spectrum is important when considering the calibration 

gas and sensitivity calculations, as an adjustment for these counts must be made in order to 

obtain an accurate value for the benzene content of the gas.

a)
12000  -]

Styrene Protonated Parent and Product Ion
1̂0000 -
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= 1400 - 250 Td
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Figure 3.8: Mass spectra for styrene at E/N= 140 Td and 250 Td 
a) shows peaks for protonated styrene at m/z 105 and a fragment at 
m/z 103. b) shows fragments at m/z 77 and 79.
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The fragmentation behaviour of styrene is shown in the branching ratio diagrams (Figure 3.9) 

as E/N  is varied from 90 Td to 250 Td. Styrene starts to fragment at E/N = 170 Td, where the 

product ions at m/z 77, 79 and 103 appear. Product ions at m/z 51, C4H3+ and m/z 50, C4H2+, 

appear at E/N  > 220 Td.
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Figure 3.9: Branching ratios for styrene 
b) shows minor products in greater detail

Page 50



Ch a p t e r  3: Se n s it iv it y  M e a su r e m e n t s A l k y l b e n z e n e s

3.3.1.5 Xylenes C6H4(CH3)

Figure 3.12a) and b) show the mass spectra at E/N = 140 Td and 245 Td for/>-xylene, taken

to exemplify all three xylenes. (The molecular structures of the xylenes can be found in 

Figure 3.2.)
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Figure 3.12: Mass spectra for protonated /?-xylene
a) shows peaks at E/N = 140 Td and b) at 245 Td

The branching ratio graph, Figure 3.12a) shows that/?-xylene starts to fragment at E /N — 140 

Td, where m/z 105, CgH9+ appears. However, this small amount of m/z 105 cannot be seen in 

the mass spectrum for E/N  = 140 Td. Although the xylenes are isobaric with ethylbenzene,
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their fragmentation patterns are very different, with the xylenes showing few product ions 

until E/N  = 160 -  180 Td. A comparison of these compounds is developed in §3.3.2.1. At 

E/N  ~ 160 Td, the product ion m/z 91, C7H7+ appears: this is the major fragment for all the 

xylenes for E/N  values greater than 225 Td.
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Branching ratios for m- and o-xylenes are shown in Figure 3.14 and 3.15. The branching 

ratios for all three isomers are so similar that it is not possible to differentiate between them 

using this method.
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Figure 3.14: Branching ratios for /22-xylene 
b) shows minor products in greater detail
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3.3.1.6 Trimthylbenzenes C6 H3 (CH3 ) 3

Figure 3.16a) and b) show the mass spectra at E/N  = 140 Td and 245 Td for 1,3,5-

trimethylbenzene, taken to exemplify both of the trimethylbenzenes studied here. (The 

molecular structures of the trimethylbenzenes can be found in Figure 3.2) Figures 3.17 and
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Figure 3.16: Mass spectra for 1,3,5-trimethylbenzene at a) E/N= 140 Td 
and b) 245 Td

3.18 show the branching ratios for the two trimethylbenzene isomers as E/N  is varied from 

90 Td to 245 Td. It can be seen that trimethylbenzene starts to fragment at E/N = 160 Td, 

where m/z 105, C6H7+ and m/z 119 (loss of H2) appear. For 1,3,5-trimethylbenzene, m/z 119
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does not appear until E/N  = 170 Td. At 190 Td, the fragments m/z 91, C7H7+, and m/z 77, 

C6H5+, occur.
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3.3.2 Discussion

The branching ratios show that most of these compounds do not fragment significantly until 

E /N > 150 Td, the main exception being ethylbenzene which produces ~ 10% m/z 79 at E /N = 

120 Td. The m/z, proposed formula and percentage of each product ion for each compound 

are shown in Table 3.5 at 140 Td and at 245 Td, the highest value used here.

These data show that, at sufficiently high energy values, all of the alkylbenzene compounds

tested fragment to produce ions at:

• w /z51and77;

• m/z 79 except toluene;

• m/z 39 except styrene and the trimethylbenzenes.

From this it can be seen that benzene appears to be the most stable of these compounds 

retaining 50% of the parent ion at 245 Td. This is a direct result of the resonance structure of 

the electrons and bonding in the benzene ring (Cooper 1986). Ethylbenzene is the least stable 

with only 9% of the parent ion remaining at 245 Td. It is also interesting to note that none of 

the compounds fragment to a product ion at m/z 93 where protonated toluene is found. This 

may be of interest for environmental science considerations (see §3.3.2.1).

All of the compounds except toluene have a product ion at m/z 79, the same m/z value as 

protonated benzene.
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m/z 39,50,51, and 77

Product ions at m/z 39, 50, 51 and 77 normally appear in the electron impact (El) spectra of 

all alkylbenzenes (Budzikiewicz et al 1967). A product ion at m/z 51 (C4H3+) can be 

produced by m/z 79 as a result of its losing ethylene, C2H4 ; m/z 77 can lose C3H2 to form the 

simplest aromatic species, C3H3+ {m/z 39), the cyclopropenyl ion (Breslow and Groves 

1970).

m/z 91 Tropylium ion

The tropylium cation, C7H7+, is a well-recognised species in alkylbenzene El mass spectra: 

its production from ionised or protonated toluene is one of the most investigated processes 

in gas-phase ion chemistry (Chiavarino et al. 2012, Lifshitz 1994). It is not surprising, 

therefore, to see this appearing in the PTR spectra for all of the alkylbenzenes here except 

for benzene (MH+ m/z 79) which has an m/z too low to form a product ion at m/z 91, and 

styrene, where m/z 91 starts to appear only at the highest E/N  values and then reaches a 

maximum of ~ 0.2%. However, m/z 91 does not coincide with the MH* peaks of any of the 

calibration gas compounds so is of no further interest except to describe, briefly, how it is 

formed:

• From toluene C6H5CH3H+ m/z 93 

Loss of 2 amu H2:

C7H9+  ► C7H7+ + H2

m/z 92> m/z 91

From ethylbenzene and xylenes C8Hn+ m/z 107 

Loss of 16 amu CH 4 :

C 8H n +  ► C 7H 7+ +  CH 4

m/z 107 m/z 91
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• From trimethylbenzenes C9Hi3+ m/z 121 

Loss of 30 amu C2H6

c 9h 13+  ► C9H7+ + C2H6

m/z 1 2 1  m /z9\

3.3.2.1 Comparison of the Isomeric Compounds Ethylbenzene and Xylenes (C8Hio)

The E/N  investigation of individual compounds of the calibration gas demonstrates how

fragmentation behaviour over a wide range of E/N  values can be used to discriminate
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Figure 3.19: Fragmentation behaviour with changes in E/N  
a) ethylbenzene: the largest product ion is m/z 79 appearing at E /N =
110 Td; b) w-xylene: the largest product ion is m/z 91, with m/z 105 
(styrene) appearing at E/N = 140 Td
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between isomeric compounds (Figure 3.19, repeats of Figs 3.11 and 3.14). Even at ‘normal’ 

operating E/N  values {i.e. 140 Td) there are noticeable differences with ethylbenzene which 

is reduced by almost 40% to produce m/z 79. The branching ratio graphs above show that 

one of xylene’s product ions, m/z 105, appears at E /N -  140 Td. Ethylbenzene does not give 

a product ion at m/z 105, so a peak at m/z 105 from a gas mixture with a peak at m/z 107 

would indicate the presence of xylene, providing that no styrene was initially present in the 

mixture. This could be checked at E/N < 140 Td and if no peak at m/z 105 were present, then 

sampling the gas mixture at 140 Td > E/N  < 165 Td might provide data to give an estimate 

of the relative quantities of xylene and ethylbenzene. (Note: trimethylbenzene also produces 

an ion at m/z 105 at E/N>  170 Td.)

As a proof of concept, an analysis using known values from the calibration gas (described in 

§3.2.2) is shown below. Consider a sample of gas mixture tested at 120 Td and 140 Td 

which produced the data shown in Figure 3.20.
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Figure 3.20: Samples of gas mixture at E/N= 120 Td and 140 Td 

Branching ratios show that neither styrene (m/z 105) (Figure 3.9) nor xylene (m/z 107)
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(Figure 3.13) breaks up at 120 Td, so, at this E/N  there is 100% of each species with no 

contribution being made to styrene from the xylenes. At 140 Td, there is still 100% of 

styrene but the xylenes have fragmented to yield an average of 2% product ions at m/z 105 

(Table 3.6). A difference in normalised counts is therefore expected at m/z 105 at the two

Table 3.6: Percentage of compounds remaining at E/N= 120 Td and 140 Td.
E /N m/z 105 m/z 107 m/z 107

/Td Styrene Xylenes EthylB*

1 2 0 1 0 0 % 1 0 0 % 92%

140 1 0 0 % 98% 63%

*Values for ethylbenzene are given for comparison but there is no 
contribution from this to m/z 105.

E/N  values: some of this difference is due to a reduction in counts because of the decrease in 

reaction time in the drift tube and an increase from the contribution from the xylenes. The 

overall increase is 1483 non-normalised counts representing the 2% contribution from the 

xylenes.

The values for this example have been taken from those for the calibration gas where the 

actual contribution from the xylenes to m/z 105 is 680 non-normalised counts at 140 Td. The 

calculated (reverse) value results in a total xylene count of 92663, which is 41029 counts 

more than actually detected at m/z 107.

In an environment with no background peak at m/z 105, the relative amounts of 

ethylbenzene and xylenes could be found more accurately as it would be possible to work at 

just one E/N  value and so avoid the inherent problems encountered by comparing values at 

different E/Ns. However, this is generally not the case -  styrene is produced by exhaust 

fumes and so is commonly found in the atmosphere, outdoors in concentrations of 0.06-4.6 

ppb and indoors 0.07-11.5 ppb (ToxGuide for Styrene). It is therefore necessary to have a 

method of identifying the extra counts contributed from xylene and, from the foregoing 

example, this does not seem to be possible. Further work in this area is not, however, ruled 

out since at least one author (Karl et al. 2001) considers that it would be possible to 

reconstruct the original concentration providing one distinct ion can be identified.
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3.4 Chlorobenzenes and Calibration Gas

Results and discussions are set out in the following sections. Results for the calibration gas

itself are included here for completeness and in particular to enable the further discussion of 

product ions at m/z 95 and m/z 129.

3.4.1 Results

Branching ratios and spectra for fragments and protonated parent ions are given for each 

compound.

3.4.1.1 Chlorobenzene CeHsCl

Figure 3.21a) shows mass spectra for chlorobenzene and product ions at E/N = 140 Td, 210

Td and 245 Td. The peak at m/z 55 for 140 Td is the water trimer: this ceases to exist at the 

higher E/N  values. Product ions occur at m/z 39, 50, 51, 77 and 95 and the protonated parent, 

MH+, at m/z 113. The signal at m/z 39 is not included in the mass spectra as its very large 

signal at lower E/N  values would overwhelm the other peaks shown here.
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Figure 3.21b) shows a magnified mass spectrum at 245 Td. This shows more clearly how the
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Figure 3.21: Mass spectra for chlorobenzene:
a) E /N = 140 Td, 210 Td, 245 Td; b) E/N=  245 Td expanded scale

signal at m/z 77 is greater than that of the protonated parent ion at m/z 113.

Branching ratio curves in Fig 3.22 show the behaviour of the product ions over the whole E/N

range.
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Figure 3.22: Branching ratios for chlorobenzene

None of the fragments at m/z < 113, viz. m/z 39, 50 and 51 contain a Cl atom and can, in fact, 

be compared with the fragments from benzene itself (Table 3.5). This seems to suggest that 

fragmentation occurs by the loss of the Cl atom. One might expect to see the chlorine atom in 

a product ion but this has not been found, not even at m/z 49, CH2C1+ (Figure 3.23).
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a)

b)

Figure 3.23: Spectra of chlorobenzene at E/N= 130 Td and 245 Td 
showing no signal at m/z 49.

Peaks for the protonated ion and isotopes of chlorobenzene, C6H5C1, are shown in Figure 

3.24: they occur at m/z 113 (C6U5C \lt) , m/z 114 (13CC5H5C1H+), m/z 115 (C6H53 7C1H+), and 

m/z 116 (13CC5H53 7C1H+). The peaks at m/z 113 and m/z 115 represent the 3 7C1 bearing ions. 

The separation of 2 amu arises because the two isotopes of chlorine have atomic masses of 35 

amu and 37 amu, The relative abundance of these isotopes is approximately 3:1 (3 5C1:3 7C1)
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Figure 3.24: Peaks for protonated chlorobenzene.
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and these proportions can be seen in the relative heights of the peaks at m/z 113 (-700 counts) 

and m/z 115 (-210 counts) which gives a proportion of 100:30. The integrated counts under 

the peak is, in fact, a more appropriate basis for the ratio, giving 13416:4149 = 100:31. 

Further discussion of the product ions from chlorobenzene is given in §3.4.2.

3.4.1.2 Dichlorobenzenes C6 H4 CI2

Figures 3.25a) and b) show the mass spectra at E/N  = 140 Td and 245 Td for m-

dichlorobenzene, taken to exemplify the three dichlorobenzenes. (Structures for the isomers 

can be found in Figure 3.3b, bi and bii.)
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Figures 3.26, 3.27 and 3.28 show the branching ratios for the three dichlorobenzene isomers 

as E/N  is varied from 90 Td to 245 Td. It can be seen that m/z 111, CeRiCl* is the first 

fragment to appear at E/N = 170 Td for all three isomers. Peaks at m/z 50, 51, 53 and 99 

contribute 2 % or less to the branching ratios and, since they have no bearing on the 

calibration gas constituents, have not been given any further consideration.
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Figure 3.26: Branching ratios for m-dichlorobenzene
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Figure 3.27: Branching ratios for o-dichlorobenzene
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Figure 3.28: Branching ratios for />-dichlorobenzene
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Protonated /7-Dichlorobenzene at m/z 147 (1,4-C6H4C12H+)

Figure 3.29 shows an expanded spectrum for the protonated parent ion in 1,4-C6H5C12+, (p- 

dichlorobenzene) with the MH4  peak at m/z 147. The series of peaks shows the characteristic

14000

12000
"O0
=  10000 
E

<= 8000 C © z
5  5000

v>
1  4000 - 
8

2000  - 

0

j3 -Dichlorobenzene 190 Td

I

y j v J J L
144 145 146 147 148 149 150 151 152 153 154

m / 2

Figure 3.29: Spectrum of protonated parent ion at m/z 147 
showing isotope peaks in p-dichlorobenzene.

pattern of a chlorine compound containing two chlorine atoms: three peaks relating to the 

chlorine isotopes: MH4, MH4 + 2 and MH4  + 4. These arise because of the three possible 

combinations of the isotopes occurring on each of the two chlorine atoms where the 

probability of finding a 3 5C1 atom is 0.75 and the probability of finding a 3 7C1 is 0.25 (Table 

3.7). The ratio of the three possible combinations is 9 : 6  : 1, very close to the ratio for the 

peaks seen at MH+, MH4  + 2 and MH4  + 4 in Figure 3.29 above.

Table 3.7: Possible ways of combining isotopes for two Cl atoms

Isotope Combination
Probability 
0.75 for 35C1 
0.25 for 37C1

Ratio Peak
Counts

Peak
Counts
Ratio

C 6H 4 35C 1 35C 1 3/ 4 x  3/4 = 9/16 9 233909 8.8

C 6H 4 35C 1 3/ C 1

C 6H 4 37C 1 35C 1
( 3/ 4 x  1/4) x  2 = 6/16 6 155032 5.8

C 6H 4 37C 1 37C 1 0 /4  X 1/4) =1/16 1 26595 1

Further discussion of product ions found in the dichlorobenzenes can be found in §3.4.2.
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3.4.1.3 1,2,4-Trichlorobenzene C6 H3 CI3

Figure 3.30a) and b) show the mass spectra at E/N  = 140 Td and 245 Td for 1,2,4-

a)
1,2,4-Trichlorobenzene 140 Td

3000 -1

2500 -

1  2 000  -  "nE
o
|  1500 -OZ
o
C 1 00 0 - m/z

C
3Oo 500 -

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

b)
m /z

600 1,2,4-Trichlorobenzene 245 Td 181
146

500

400

300

£ 2 00 109
129

100

jIH
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

m/z

Figure 3.30: Mass spectra for 1,2,4-trichlorobenzene:
At a) E/N = 140 Td with the peak at m/z 147 enlarged and b) at E/N = 245 Td

trichlorobenzene. (See Figure 3.3 for the molecular structure.)

The spectrum in Figure 3.30a) at E /N = 140 Td shows a peak at m/z 147. This is, in fact, due 

to the presence of a dichlorobenzene impurity shown in the enlargement in this figure. 

However, the peaks in Figure 3.30b at m/z 146, 148 and 150 at E/N = 245 Td are the result 

of MH* losing a Cl atom.
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Figure 3.31 shows the branching ratios for 1,2,4-trichlorobenzene as E/N  is varied from 90 

Td to 245 Td. Here it is clearly shown that 1,2,4-trichlorobenzene starts to fragment at 170 

Td, losing Cl to produce Ce^C^F!* at m/z 146.
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Figure 3.31: Branching ratios for 1,2,4-trichlorobenzene

Protonated 1,2,4-Trichlorobenzene at m /z  181 ( 1 ,2 ,4 -C6 H3 C1 3 )

Figure 3.32 shows a spectrum of the protonated parent peaks for 1,2,4-trichlorobenzene with 

the MH+’ peak at m/z 181. These peaks show the characteristic pattern of a compound 

containing three chlorine atoms. There are now four peaks relating to the chlorine isotopes: 

M Fr (m/z 181), MET + 2 (m/z 183), MF1* + 4 {m/z 185) and M Fr + 6  {m/z 187). These arise 

because of the possible combinations of the two isotopes.
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The abundance of 3 7C1:3 5C1 is 33%, i.e. the number of counts for 3 7C1 is one third of that of 

the counts for 3 5C1 (see Figure 3.24). Consequently the probability of finding a 3 7C1 is one in 

four, i.e. 25%. However this probability is not exactly 25%, but is 24.24% (Hitzfield et a l 

2011). If the ratio were exactly 25%, then the first and second peaks in this spectrum would 

have identical heights, but this is not the case, as can be seen in Figure 3.28. Ratios for both 

25% and 24.24% probabilities are shown in Table 3.8.

3500

1,2,4-Trichlorobenzene200 Td m/z 181
3000

== 2500

<= 2000

1500

|  1000

500

- -in— J  W  y y

178 179 180 181 182 183 184 186 187185 188 190189
m /z

Figure 3.32: Spectrum of MH+ at m/z 
181 in 1,2,4-trichlorobenzene

Further discussion of product ions found in 1,2,4-trichlorobenzene can be found in §3.4.2.1
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3.4.1.4 Calibration Gas

Figure 3.33 shows the spectrum for the calibration gas, at E/N = 200 Td. The integration

time was 60 s. The protonated parent ions decreased at higher E/N, whilst m/z 51, 75, 77, 

91, 95, 103, 111 and 129 all appear as predicted by the previous study of fragmentation of 

the compounds. (The peak at m/z 169 is 1,3-dinitrobenzene, (m.w. = 168.017 amu, 

protonated m.w. = 169.024 amu), still resident in the reaction chamber nine days after 

colleagues had been investigating this.)

1600 -I

1400 - 

1200 

1000 -  

800 - 

600 - 

400 - 

200 -

0  - F  
50

Calibration Gas 200 Td

11 ifhi
60

P ro to n a te d  
B enzene  

79

77

70 80

P ro to n a ted  
E thy lb en zen e  anc 

X ylenes 
107

P ro to n a ted  
S ty ren e  

105

91

P ro to n a ted  
T o luene  

93

95

Mil JU

P ro to n a ted  
T rim ethyl b e n z e n e s  

1 2 1

P ro to n a ted  
CB 
1,13

P ro to n a te d
D ich lo ro b en zen es

147

90 100 110 1 2 0

m /z
130

1“ ‘ T

140 150

P ro to n a te d
T rich lo ro b en zen e

181

 ̂ 1----
160 170 180 190

Figure 3.33: Calibration gas spectrum at E/N= 200 Td
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3.4.2 Discussion

Table 3.9 shows the percentage of MH* and product ions assigned to the five chlorobenzene 

compounds at E/N  =140 Td and 245 Td. Trichlorobenzene appears to be the most stable, 

having 61% of M ff  remaining at E/N  = 245 Td. As can be seen from the branching ratios, 

the percentage of a species at intermediate E/N  values can be more, or less, than that found at 

E/N = 245 Td.

Table 3.9: Percentage product ions of chlorobenzenes at E/N = 140 Td and 245 Td.
Shaded rows are the MET m/z values: 113 = chlorobenzene (CB) 147 = dichlorobenzenes 
(DCB) and 181 = 1,2,4-trichlorobenzene (TCB)

CB o-DCB m -DCB P-■DCB 1,2,4-TCB
m /z Proposed CeHsCI 1,2-C6H4CI2 1,3-C6H4CI2 1,4-C6H4CI2 1,2,4-

Formula Td Td Td Td C6H3CI3
Td

140 245 140 245 140 245 140 245 140 245

39 c 3h 3+ - 4 - 9 - 9 - 9 - -

50 c 4h 2+ - 1 0 - - - - - - - -

51 c 4h 3+ - 15 - - - - - - - -

65 c 5h 5+ - - - 4 - 4 - 4 - -

73 c 6h 3+ - - - - - - - - - 8

75 c 6h 3+ - - - 26 - 27 - 27 - -

77 c 6h 5+ - 42 - - - '- - - - -

94 - 2 - 2 - 2 - -

95 1 1 - - - - - - - -

99 - - - - - - - 7

109 c 6h 2c i+ - - - - - - - - - 5

1 1 1 C6H4 C1+ - - - 17 - 17 - 17 - -

113 c 6h 6c i+ 1 0 0 28 - 4 - 4 - 4 - -

128 - - - - - - - 5

129 - 2 - 2 - 2 - -

146 c 6B4C\2+ - 15

147 c 6 h 5c i2+ 1 0 0 40 1 0 0 40 1 0 0 39

181 c 6h 4 c i3+ 1 0 0 61

The spectra of chlorine-containing compounds are generally easy to identify as they always 

display at least two peaks separated by 2  amu in height ratios that relate to the relative 

abundance of the isotopes and the number of chlorine atoms in the compound. However,
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peaks in these mono- di- and tri-chlorobenzene spectra proved to be much more difficult to 

assign than those of the alkylbenzenes. The next section analyses the product ions and 

fragmentation behaviour of these compounds and explains how some unlikely peaks at m/z 

94/95 and m/z 128/129 were identified.

3.4.2.1 Product Ion Analysis

m/z 129 in Dichlorobenzenes

An unexpected peak appeared in the dichlorobenzenes at m/z 129 which is 18 amu less than 

the MH* peak at m/z 147. The isotope peaks of the species at m/z 129 have the 

characteristics of a single chlorinated ion, with two peaks separated by 2  amu in the ratio of 

3:1 (Figure 3.34). However, m/z 129 cannot be a product ion of M Ff at m/z 147, a loss of
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Figure 3.34: /?-Dichlorobenzene spectrum with m/z\29 peak magnified 

18 amu representing a loss of one carbon and six hydrogen atoms. Since the protonated

molecule only has four hydrogen atoms, this is clearly an impossible fragmentation

pathway.
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Figure 3.35: Branching ratios for/>-dichlorobenzene including m/z 129 and m/z 94.
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The branching ratios for/>-dichlorobenzene, including m/z 129, are shown in Figure 3.35. 

The peak seen in the PTR-MS was at m/z 129.00: a NIST molecular weight search 

suggested protonated monochlorophenol, (C6H6C1 0 +), as the most likely compound, m.w.

129.01 amu (neutral m.w.128.00 amu). Monochlorophenol is a common pollutant in the 

environment, being widely used in manufacturing processes (El-Sayed et al. 2009). The 

peak at m/z 94 is included in Figure 3.35 as this may have the same origin as m/z 95 in 

chlorobenzene (see Figure 3.42).

It was not possible to identify this fragment initially. A conclusion was reached but only 

after extensive work which is described in §3.4.2.1. 

m/z 128 and m/z 163 in 1,2,4-TrichIorobenzene

This compound displayed a species at m/z 128, with peaks similar to the dichlorobenzenes’ 

m/z 129 peak, and a new compound at m/z 163 (Figure 3.36), possibly a protonated 

dichlorophenol (DCP), C6H5Cl2 0 +, m.w. 162.97 amu (neutral QFLjCbO m.w. 161.96 amu).
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Figure 3.36: 1,2,4-Trichlorobenzene (TCB) at E/N= 210 Td 
with magnifications of m/z 128 and m/z 163.
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TCB Branching Ratios Productions

o 20
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Figure 3.37: Branching ratios for trichlorobenzene (TCB) 
showing m/z 128 and m/z 163.

The isotope peaks at m/z 163 are characteristic of a compound with two Cl atoms and those at

m/z 128 show one Cl atom. The behaviour of the m/z 128 branching ratio (Figure 3.37) is

similar to that of m/z 129 in dichlorobenzene (Figure 3.35) and m/z 95 in chlorobenzene

(Figure 3.42), although it does not show an actual maximum but appears to be levelling out at

E /N ~245 Td.
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Fragments in the Calibration Gas: m/z 129 and m/z 94

The ‘unexpected’ peak at m/z 129 appears in the calibration gas spectrum (Figure 3.38) along 

with evidence of a contribution to m/z 94, the 13C peak for toluene (see §3.4.1).
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Figure 3.38: Calibration gas at E/7V= 200 Td 
with an enlargement of m/z 129
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m/z 111 C6H3C1+

This product ion only occurs in the dichlorobenzenes and a spectrum demonstrates that it 

has one chlorine atom (Figure 3.39) where the counts for m/z 111 and m/z 113 are 39807

2500

/?-Dichlorobenzene245 Td m/z 111
■a 2000 ■V
75E
° 1500 -
c
0
z
2 i o o o  ■ -**
V)
c
3
0u 500 -

108 109 111 112110 113 114 115 117116 118

Figure 3.39: Spectrum of m/z 111 showing isotope peaks 
of an ion containing Cl

and 13041 respectively, giving a ratio of 3.05:1. This ion is therefore the result of the loss 

of HC1 from the parent ion at m/z 147:

C6H4C12H +  ► C6H4C1+ + HC1

m/z 147 m/z 111

m/z 109 C A C f

This product ion occurs in trichlorobenzene (Figure 3.40). It has only one chlorine atom 

although the size of the peak at m/z 111 is rather large. This is probably due to the loss of 

HC1 from the dichlorobenzene impurity at m/z 147.

140 n 1,2,4-TCB 245 Td
•n 1 2 0  -

100 -
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Figure 3.40: Spectrum of m/z 109 showing isotope peaks 
of an ion containing Cl
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The m/z 109 product ion is the result of the loss of H2C1 from the product ion at m/z 146:

Q H 4 C I/ 

m/z 146

>  C6H2C f  + H2C1 

m/z 109

m/z 95 in Chlorobenzene

The protonated parent ion, MlC, for chlorobenzene (C6H5C1H+) occurs at m/z 113. The 

peak at m/z 95.05 is 18 amu less than the MH+ peak (Figure 3.41) representing a loss of one
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Figure 3.41: Chlorobenzene spectrum at 180 Td 
with m/z 95 peak magnified in b)

carbon and six hydrogen atoms. This would leave a product ion of C5C1+. However, it is 

clear from the peak pattern (Figure 3.41b) that this fragment does not contain any chlorine 

atoms as there is no peak at m/z 97 representing the 3 7C1 isotope. It is therefore very 

unlikely that this product ion originated from the fragmentation of m/z 113.

A NIST molecular weight search suggests that m/z 95.06 is most likely to be protonated 

phenol, C6H60FT, molecular weight = 95.049 amu (94.042 amu neutral). The 13C isotope
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counts at m/z 96 are 6% of the counts at m/z 95 which accords well with six carbon atoms 

(expected 6 .6 %) and the peak amu is at 95.05 amu. The peak at m/z 97 is much more than 

would be expected for the 180  isotope, being 5% of the m/z 95 counts, where only 0.4% is

Chlorobenzene with m/z 95
100 A-

3?0
1te.
to
c

- -X - m/z 39
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Figure 3.42: Branching ratios for chlorobenzene including m/z 95. 

expected so an accurate identification for phenol cannot be made using this isotope. Figure 

3.42 shows the branching ratios for chlorobenzene where m/z 95 is included: this is similar 

in shape to that found for m/z 129 in the dichlorobenzenes (Figure 3.35).

m/z 75 C6H3+

This product ion is found in the dichlorobenzene spectrum and has no chlorine atoms 

(Figure 3.43).

5000 p  -DCB 245 Td m/z 75
4500 -

■? 4000 -

« 3500 -

2 3000 -

5  2500 -

S  2000 -

|  1500 -
3

u  1000 -

500 -

71 72 74 7570 73 76 77 7978 80
m/z

Figure 3.43: Spectrum of m/z 75

It appears to be the result of the loss of HC1 from the fragment ion at m/z 111:
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C 6H 4 C 1 +  

m/z 1 1 1

"► C6H3+ + 

m/z 75

H C 1

m/z 73

Figure 3.44 shows spectra of m/z 73 in 1,2,4-trichlorobenzene for a) E/N  = 210 Td, b) E/N 

= 230 Td and c) E/N  = 245 Td. It is not clear what the composition of this ion is: in Figure

a)
90 l,2,4-TCB210Td m/^73
80 -

60 -

40 -

30 -

20 -

10 -

77 7875 7672 73 7471

m /z

350 l,2,4-TCB230Td m/z 73
•o 300 -

250 -

|  200

150 -

»  100

7876 7773 7572 7471

m/z

400 -i 1,2,4-TCB 245 Td m/z 73
350 -

300 -

°  200  -

150 -

50 -

7875 76 7773 747271

m /z

Figure 3.44: Spectra for m/z 73 in 1,2,4-trichlorobenzene 
at a) E/N= 210 Td, b) E/N =230 Td and c) £//V= 245 Td

3.44a) and b), there appears to be one Cl atom. However, the single Cl isotope pattern has 

disappeared at E/N  = 245 Td (Figure 3.44c). This suggests a possible composition of 

C3H2C1+, molecular weight 72.984 amu produced as a result of m/z 146, C6H4 Cl2+, splitting 

into two ions of C3H2C1+:

Q H 4C V   ►  C 3H 2C 1 +  +  C 3H 2 C r

m/z 146 m/z 73 m/z 73
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However, this does not explain the pattern seen at E/N  = 245 Td. 

m/z  65

This product ion appears in the dichlorobenzenes as shown in Figure 3.45 for p- 

dichlorobenzene. It is most likely to be produced from m/z 94. Possible formulae are C ^ tT

3000 

-  2500 -jTJV

i  2000 -
oc
|  1500 -
©
r l  ̂1000 

5  500 

0

p  -D C B210 Td m/z 65

b)

60 61 62 63 64 65 66 67
m /z

68 69 70

Figure 3.45: Spectrum of m/z 65 

(m.w. = 65.003 amu) or C5H5+ (m.w. = 65.04 amu). The maximum m/z values for this peak

are shown in Table 3.10 and the 13C isotope peak at m/z 6 6  in Figure 3.53 is 6 % of the peak

counts at m/z 65 (expected ratio of 5.5% for 5 carbon atoms).

Table 3.10: Peak maximum for m/z 65
(wet) relates to the humid conditions described in
the Clusters with H20  section

c 6h 6o

m/z 94

t. Compound ^ P e a k  m/z E /N /T d
/ 7-DBC (wet)

^  C5H5 - 
65.01

- COH 
190

p  -DBC (wet)
m/z 65 

65.02 220/245

m-DCB 65.04 190/220/245

o-DCB 65.07 190/220/245

p  -DBC (dry) 65.03 170/190

p  -DBC (dry) 65.04 220/245

From these data, it can be inferred that this peak represents the C5H5+ ion, resulting from the 

following reaction:
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m/z 39 C3H3+

This product ion appears in the spectra of the chloro- and dichlorobenzenes. The peak at 

m/z 39 in the PTR spectrum is generally larger than that expected solely as a result of 

fragmentation ofM Ff since it is always present as the isotope of the first water dimer at m/z 

37, H30 +.(H20).

Figure 3.46 shows the m/z 39 peak to be bigger than that expected for the m/z 37 peak: the

5000

450) ■

■3 4000 ■ v
(A
15 3500 
E
2 3000 4

S  2000 -

I  1500
3

u  1000 ■ 

500 

0

p  -Dicklorobenzene 245 Td m/z 39

35 35 38

m/z

40 41

Figure 3.46: Spectrum of m/z 39 in /7-dichlorobenzene 

presence of m/z 37 has been compensated for as explained in §2.4.3. In chlorobenzene, it

seems most likely that m/z 39 is produced by the loss of C3H2 from m/z 77 to form C3H3+

(m/z 39), the cyclopropenyl ion.

c 6h 5 4

m/z 77

-► c 3h 3+ + c 3h 2

m/z 39

In the dichlorobenzenes it is possible that this is formed by fragmentation of m/z 111 which 

loses C3HC1:

c6H4cr
m/z 1 1 1

>  C3H3+ + 

m/z 39

C3HC1

3.4.2.1 Identifying Product Ion Fragments m/z 95 and 128/9

The procedure adopted to identify the origins and structures of fragments at m/z 95, 128 and

129 beyond all reasonable doubt was firstly, to consider if they were impurities: the purity of
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all of the chlorobenzene chemicals was specified as > 99% (Table 3.3). However, the PTR- 

TOF-MS is able to detect impurities in the sample (~ 1%), especially if the vapour pressure of 

such an impurity is 100 times that of the compound under investigation. In these 

circumstances, they would have the same concentration in the drift tube, sufficient to present 

uncertainties when examining the fragmentation patterns of each of these compounds. Then, 

if found not to be impurities, to investigate if they could result from secondary reactions and 

finally if they might be clusters of recognised fragments with water. These lines of enquiry 

are described below.

Impurities

If these peaks actually represent impurities, there should be a signal at lower E/N  values 

which would reduce with increasing E/N  instead of increasing, as found here. Normalised 

counts for m/z 95 in chlorobenzene and m/z 129 in />-dichlorobenzene are shown in Figures 

3.47 and 3.48.

Chlorobenzene m/z 95
800

O 700

■g 500
|  400

300

200

100

110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
E/N [Td]

Figure 3.47: m/z 95 counts normalized to 106 H30 +counts
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p-D ich lorob enzene m/z 129 N orm alised  to  1 0 6 (19+37)
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Figure 3.48: m/z 129 counts normalised to 106 (H30 + + H30 +.(H20))

The shape of the curve warranted further investigation -  if this were an impurity, there 

would have been more of it present at lower E/N  values and it was necessary to check how 

phenol itself behaved in a changing E/N  scenario. The curve in Figure 3.49 was obtained for 

normalised counts of phenol at m/z 95: the M Fr counts decreased as E/N  was increased. So 

it seems unlikely that the species at m/z 95 is an impurity in chlorobenzene and the 

calibration gas.

Phenol m/z 95
35

30

Nornvali' ,ed to 19
25 Mormali' ed to (19+37)

2 0

15

1 0

5

0

170 190 210 230 25090 110 130 150
E/N [Td]

Figure 3.49: Graph of normalized counts for phenol.

Also, for completeness, the vapour pressures for each of the monochlorophenol isomers are 

given in Table 3.11. The vapour pressure of/?-DCB is 234.7 Pa @ 275 K ((ATSDR) 1998) 

which is of the same order of magnitude as two of the monochlorophenols, indicating that if
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Table 3.11: Vapour pressures of the three monochlorophenol isomers

2-MCP ortho 3-MCP meta 4-MCP para

Vapour
pressure 139 Pa at 25 °C 125hPa at 25 °C 51 Pa at 25 °C

these peaks represent the phenols, then it would be possible for them to be detected in the 

PTR-TOF.

By way of comparison with the behaviour of m/z 95, the peak at m/z 46 was similarly 

investigated. With only C, H and Cl atoms available, it is difficult to find a composition for 

this ion, as well as being problematical to see how it could be formed from any of the major 

species. A branching ratio graph including this ion is shown in Fig 3.50 and displays the 

behaviour of an impurity, appearing as it does at all E/N  values. It is not clear why there is a 

sudden increase in both this ion and m/z 50 after E/N = 230 Td.

C hlorobenzene w ith m/Z 4 6
100

90

80

70£o
a .u£
.c
c

60

40
CO

10

90 ISO 150110 170 190 250210 230

E /N  [Td]

Figure 3.50: Branching ratios for 
chlorobenzene with m/z 46

The main piece of evidence leading to the conclusion that these fragments are not 

impurities is the appearance of both m/z 94 and m/z 128 in the calibration gas as mentioned 

above.

Secondary Reactions

Having ascertained that a possible compound for m/z 95 in chlorobenzene could be phenol, 

and that for m/z 129 in dichlorobenzene could be chlorophenol, the possibility presented 

itself of a pattern emerging whereby one chlorine atom was being replaced by an OH group. 

These may be regarded as secondary reactions:
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CeHsCllT + H20  

Chlorobenzene

-> C6H5OHH+ + HC1 

Phenol

Cfi^ClzHT + H20  

Dichlorobenzene

■> CeHtClOHH4̂ + HC1 

Chlorophenol

However, calculations of the enthalpy, AH, for these reactions show that both have positive 

AHs: for the chlorobenzene reaction, AH = 62.8 kJ/mol (0.65 eV) and for the 

dichlorobenzene reaction AH = 692.54 kJ/mol (7.2 eV) (see Appendix 1). These results 

confirm that neither of these reactions can occur spontaneously.

Clusters with H20

“When you have eliminated the impossible, whatever remains, however 
improbable, must be the tru th .”

Sherlock Holmes: The Sign o f Four (1890) Arthur Conan Doyle 

The branching ratios graph for /(-dichlorobenzene including m/z 129 and m/z 94 is shown in 

Figure 3.35 and is repeated here as Figure 3.51.

p-Dichlorobenzene with m /z 94 and m /z 129
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Figure 3.51: Branching ratios for />-DCB 
highlighting m/z 94 and m/z 129

Considering just the m/z 129 signal in / 7-dichlorobenzene, a further investigation examined 

/(-dichlorobenzene in more humid conditions (see Figure 3.52), passing the buffer gas 

(laboratory air) through water at room temperature. This revealed a moisture dependence,
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with the m/z 129 peak yield value being ~ 20% higher in these more humid conditions. 

There was also a shift in the peak towards a higher E/N  value from 200 to ~ 210 Td.

Branching ratios of m/z 129 in p-DCB
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/  " —

150 160 170 180 190 200 210 220 230 240 250
E/N [Td]

Figure 3.52: Comparison of m/z 129 
branching ratios in wet and dry 
conditions

Using 0 2+ as reagent gas

By way of further confirmation regarding humidity, an E/N  investigation of p- 

dichlorobenzene was carried out using oxygen as the reagent ion (0 2+) to reduce humidity 

effects. The parent ion resulting from non-dissociative electron charge transfer with oxygen 

(0 2+) appears at m/z 146 as can be seen in Figure 3.53. Peaks for the other product ions, m/z 

111, m/z 75 and m/z 50, all appear at the same values as in the samples using H3 0 +. In these 

conditions, m/z 111 is the result of the loss of a Cl atom. There is no product ion at m/z 129
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7000
ViO 6000 -
Vi 5000 -c
5 4000

3000 -

2000 -

1000 -

p-Dichlorobenzene in Oxygen 245 Td

i l
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r i r H t - l r H r i r i r H r i r i r i r H r i r i
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Figure 3.53: Spectrum of/?-dichlorobenzene in oxygen
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but there are peaks at m/z 99 and m/z 85 as can be seen in Figure 3.54.

p-Dichlorobenzene in Oxygen 245 Td
70 -

u  30 -

10 -

94 100 102 10482 84 86 88 90 9280
m/z

Figure 3.54: Spectrum ofp-dichlorobenzene 
product ions m/z 85 and m/z 99

Branching ratios for p-Dichlorobenzene in 0 2+ are shown in Figure 3.55.

p-Dichlorobenzene in Oxygen

£o
%zc
c
IE<jcroa-

-■a- n /z l l l
n /z  146

CQ 30

250170 190 210 230110 130 15090
E/N [Td]

Figure 3.55: Branching ratios ofp-dichlorobenzene in oxygen (02+)

Conclusion

Having concluded that m/z 129 could neither have come from the dissociation of m/z 147 

nor from a secondary reaction and that it has one chlorine atom, as can be seen in Figure 

3.56, it would appear that the only explanation remaining is that it is a cluster of m/z 1 1 1  

(C6H3C1+) with an H20  molecule. This structure (C6H3C1+).H20  is surprising as such a 

construct would seem to be most unlikely to form at such high E/N  values. Further 

investigation is warranted here.
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3.5 Sensitivity Results

The calibration gas was studied using two different procedures as described in §3.2.2: varying 

E/N  holding the DT pressure constant, and holding E/N  constant and varying the DT pressure. 

The data from the foregoing work was used to apply fragmentation coefficients where 

compounds fragment, producing an ion at an m/z value of another compound’s MH+. This is 

described in more detail in the following section.

3.5.1 Fragmentation Correction

Product ions from fragmentation processes contribute signal to other compounds’ Mrf" peaks.

For example, styrene, m/z 105, ethylbenzene and the xylenes, m/z 107, and trimethylbenzene, 

m/z 121, all yield product ions at m/z 79, the m/z where the protonated benzene parent ion is 

found (Table 3.12).

Table 3.12: Compounds that contribute signal to other peaks:

C on trib u tio n  from :

m / z 105 107
X ylenes

107
Ethylb. 121 147 181

79 X X X X

105 X X

107 X

113 X

147 X

m/z 105, 107 and 121 contribute to m/z 79; 
m/z 107 (xylenes) and m/z 121 contribute to m/z 105; 
m/z 147 contributes to m/z 113; 
m/z 181 contributes to m/z 147.

In order to account for these contributions the following formula was applied at each E/N:

n

[ c C o r r ]  =  [ c M H + ]  -  V  F i  x  q
i= l

Where

CCorr = number of counts for MkT corrected for product ion contributions;

Cw//+ = actual number of counts for MH+;

Ci = corrected number of counts for the contributing compound;
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Ft -  fragmentation coefficient of the contributing compound.

A series of such calculations were executed working from the highest to lowest m/z values.

The fragmentation coefficient is the ratio of the percentages of product ion to its remaining

Table 3.13: Branching ratio data extract for ethylbenzene 
Showing % ions at m/z 79, 91 and 107 at E/N = 140,150 and 160 Td

m/z
E/NTd 79 91 107

140 37% 63%
150 52% 48%
160 63% 1 % 36%

Table 3.14: Non-normalised counts from calibration gas at E/N=140 Td 
Isotopes and the M+ peaks are included.

E/N
Td m/z 79 m/z 93 m/z 106

m/z 107 
(Xylenes)

m/z107
(EB)

m/z
113 m/z 121 m/z 147 m/z 181

140 15374 11905 13424 42547 9087 13834 27372 34382 9972

MH+ at a given E/N. These percentages are taken from the data used to plot the branching 

ratio curves. An extract of this data is shown in Table 3.13 for ethylbenzene. From this and 

Table 3.14 it can be seen that the adjusted counts for m/z 79 at E/N = 140 Td are:

CCorr = 15374- — * 9087 = 10053 
63

Ci is described as being ‘corrected’ as it may itself have received a contribution from another 

compound’s product ion. For example, at E/N= 200 Td, styrene (m/z 105) fragments to yield a 

product ion at m/z 79 but has itself gained contributions from the di- and trimethylbenzenes 

(m/z 107 and m/z 121). All isotopes were included in these calculations as well as any signal at 

M+ appearing as a result of non-dissociative charge transfer from the oxygen present in the 

system.

Initially, m/z 93 produced an unfeasibly high result at high E/N  values. As can be seen in the 

foregoing, the dichlorobenzenes (m/z 147) fragment to yield a product ion at m/z 94 which had 

to be excluded from the calculations. This was resolved by calculating the isotope counts at 

m/z 94 directly from the counts at m/z 93, considered to be purely attributable to protonated 

toluene:
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[Counts at m/z 94] = [Counts at m/z 93] x 0.077

Ethylbenzene and the xylenes at m/z 107 are isobaric: the known ppbv ratio for these 

compounds was used to assign the counts at m/z 107 to each of these compounds.

Having found the counts for each m/z at a specific E/N  value, these counts were then 

normalised to 106 H30 + or 106 (H30 + + H30 +. H2 O), depending on the compound’s proton 

affinity and previously established information regarding the specific behaviour of, for 

example, benzene and toluene (Hayward 2002). It was riot possible to ascertain the proton 

affinity for trichlorobenzene, so it was assumed that it would have a PA similar to that of the 

other chlorobenzenes and so was normalised only to m/z 19.

3.5.1.1 Varying E/N at Constant Pressure

Figure 3.56 shows two spectra for the calibration gas, the red line E/N  = 140 Td and the

black line is the spectrum for E/N -  240 Td. The integration time was 60 s in both cases. In 

all cases, the protonated parent ion decreased at higher E/N, whilst m/z 50, 51, 75, 77, 91, 

103, and 111 all appear as predicted by the previous study of fragmentation of the 

compounds, along with a peak at m/z 169, 1,3-dinitrobenzene, (m.w. = 168.017 amu, 

protonated m.w. = 169.024 amu), still resident in the reaction chamber nine days after 

colleagues had been investigating this.
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Sensitivities for the calibration gas compounds over a range of E/N  values are shown in 

Figure 3.57 and the data are given in Table 3.15. Figure 3.57a shows the sensitivity without 

accounting for fragmentation, and Figure 3.57b includes the fragmentation. These show that 

ignoring the fragmentation of compounds and their contribution to other peaks distorts the 

results by exaggerating sensitivities, primarily in the compounds most susceptible to 

fragmentation e.g. ethylbenzene/xylenes, and compounds that receive product ions from 

several other species.

Table 3.15: Data for sensitivity with fragmentation in Figure 3.56b 
Values are normalised counts per second

E/N [Td]
m/z
79

m/z
93

m/z
105

m/z
107

m/z
113

m/z
121

m/z
147

m/z
181 H30+ (counts/s) H2 0 .H30 + (counts/s)

100 28 41 7 20 35 8 18 18 1,198,507 3,951,201
120 8 10 6 7 10 6 7 3 8,507,890 4,125,601
140 5 6 5 6 7 6 5 2 20,194,916 3,193,754
160 5 5 5 5 6 5 4 1 29,649,534 2,025,131
180 4 5 4 5 5 4 3 1 36,912,652 1,178,849
200 3 5 2 4 4 4 2 1 42,464,939 697,470
220 3 4 2 4 3 4 2 1 47,707,494 426,523
240 2 3 1 3 3 2 1 1 52,084,163 297,105
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S en sitiv ity  N o  F ra g m en ta tio n  C orrection  (U p)
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Figure 3.57: Sensitivity for calibration gas, E/N=120-240 Td at constant
pressure = 0.8 mbar where ‘Up’ refers to results as E/N was increased.
a) no fragmentation correction coefficients applied; b) fragmentation correction coefficients
applied.
(19) = counts normalised to 106 H30 +
(19+37) = counts normalised to 106 (H30 + H30 +. (H20))

The results for benzene and ethylbenzene/xylenes are shown separately in Figures 3.58a) 

and b). For benzene, the graph shows the over-estimation in the sensitivity results if 

fragmentation is not taken into account in this type of complex chemical mixture. This is to 

be expected for most compounds at high E/N  values, but for benzene it can be seen that even 

at 140 Td there is a 50% over-estimation resulting from the fragmentation of ethylbenzene 

contributing a product ion at m/z 79.
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m/z 107 (Ethylbenzene/Xylenes)m/z 79 (Benzene) / •0- With F
• -ffcrfrs
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Figure 3.58: Sensitivity a) with and b) without fragments 
for a) benzene and b) ethylbenzene/xylenes

Figure 3.58b shows that there is an under-estimation in sensitivity.

It can be seen that the general trend is for the sensitivity to reduce as E/N  increases. This 

increases the velocity of H30 + ions as they traverse the reaction chamber resulting in a 

reduction in reaction time: reaction time is inversely proportional to E/N.

3.5.1.2 Varying Pressure with Constant E/N
Figures 3.59a) and b) show the sensitivity behaviour with and without fragment correction

as the drift tube pressure is varied from 0.8 mbar to 1.32 mbar, and E/N  is held at a constant 

140 Td by adjusting the relevant voltages. This value of E/N  was chosen as this is the most 

frequently used value in work undertaken here. The only compound to vary as a result of 

these changes is benzene (m/z 79). This displays a sensitivity where fragmentation is not 

accounted for (~7—12 ncps ppbv'1) higher than with fragmentation (~ 4-7 ncps ppbv'1) both 

values normalised to 106 H30 +. This is the result of ethylbenzene fragmenting at E/N  =140 

Td to yield product ions at m/z 19. The effect on ethylbenzene sensitivity results is masked 

because it is included with the xylenes at m/z 107.
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Figure 3.59: Sensitivity for calibration gas, pressure 0.8 -  1.32 mbar at constant E/N= 140 Td.
a) has no fragmentation correction; b) applies fragmentation correction. Note that benzene (m/z 79) moves
from second lowest position with fragments to almost the highest position without fragments
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3.5.2 Toluene:Benzene Sensitivity Ratio -  Comparison with Theory

In order to check the ‘validity’ of the data, the sensitivity ratio for benzene and toluene was

calculated. The expected ratio of sensitivity for toluene:benzene = 1.2 ± 0.3 (Wameke et al. 

2001). This is calculated from the rate coefficients in H30 + for benzene (1.9 ± 0.4 x 10' 9  

cm3/mol/s) and toluene (2.2 ± 0.4 x 10'9 cm3/mol/s)

Figure 3.60 shows the results for this sensitivity ratio over the E/N  range 100 Td -  240 Td: it 

falls within the expected values for E/N = 120 Td to 220 Td. The upper curve is corrected for 

fragmentation; the lower curve has no fragmentation correction. It is not surprising that these 

graphs are so different, as benzene is particularly affected by contributions from other 

compounds.

Sensitivity Ratio Toluene:Benzene1.8

1.4

1.2

Fragment correctiono l.O
-  X -  No fragment correction

0 .6

0.2

0 .0

100 200120 140 160 180 220 240
E/N [Td]

Figure 3.60: Graph showing the ratio of sensitivities for 
tolueneibenzene
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3.6

3.6.1

Further Discussion

Variation in Spectra in /^-Dichlorobenzene as E/N  Increases

An unexpected pattern of spectra was observed for the protonated parent ion during an E/N  

investigation of deuterated//-dichlorobenzene, (m/z 151) (Figure 3.61). At E/N = 90 Td, the
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Figure 3.61: Deuterated p- 
dichlorobenzene spectra with changing
E/N
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Figure 3.62: p-Dichlorobenzene spectra 
with changing E/N
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mass spectrum looks very similar to non-deuterated /^-dichlorobenzene (Figure 3.62a). As 

E/N  increases, however, the deuterated species becomes much more complex with MET and 

isotope peaks appearing at varying m/z values.

The series of spectra for non-deuterated /?-dichlorobenzene as E/N  varies shows the normal 

behaviour for isotope ratios (Figure 3.62). However, inspection of the 13C isotope peak at m/z 

148 shows a much higher signal than expected. This is related to the peak at m/z 146 

produced by non-dissociative charge transfer with oxygen in the system. Not all peaks display 

this non-dissociative charge transfer peak as can be seen in Figure 3.63 where m/z 94 displays

/?-Dichlorobenzene 245 Td200

180

160

E  1 4 0  - 
o
C 120 - c
2  ioo -

80

60

4 0

20

0
90 9 2 94 96 98 100 102 104

m /z

Figure 3.63: Peaks with and without a non- 
dissociative charge transfer peak.

a peak at m/z 93, but m/z 99 has no peak at m/z 98. Where such peaks appear, the signal has 

been included in the counts for the MFT peak.

The m/z 146 M+ peak has a 3 7C1 isotope peak at m/z 148. Consequently, the peak at m/z 148 

consists of the sum of the 13C isotope for MET plus the 3 7C1 isotope peak for IVT. It should be 

noted that M+ has a 13C isotope at m/z 147 which also must be removed from the MET signal 

(Table 3.16). This shows that the ratio of the actual counts for the peaks at m/z 147 and m/z

Table 3.16: Actual and adjusted counts in p-dichlorobenzene 
at 230 Td for peaks at m/z 146 to m/z 148

m/z 146 m/z 147 m/z 148 148:147
Actual counts 2 0 1 1 2 105983 20482 19.32%
13C isotope from m/z 146 1327
Adjusted counts 104656

Cl isotope from m/z 146 13408
Adjusted counts 7074
Adjusted ratio 6 .8 %
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148 before any adjustments are made is 19.32%. After removing the 13C isotope counts for 

the peak at M+ from the counts at m/z 147, and also removing the 3 7C1 isotope counts at m/z 

148 for M+, the ratio of the adjusted peaks m/z 147 and m/z 148 becomes 6 .8 %, very close to 

the expected 6 .6 % for the six carbon atoms in C6H5Cl2+.

3.6.2 Anomalies for m/z 85 and m/z 87

These product ions appear in the dichlorobenzenes and their spectra change as E/N  changes

(see Figure 3.64). If the spectrum is examined at E/N = 240 Td there appears to be an ion at

a)
300
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Figure 3.64: Spectra of m/z 85 and m/z 87 
at E/N= a) 190 Td, b) 210 Td and c) 240 Td

m/z 85 with two chlorine atoms; if inspected at E/N=  190 Td, there seems to be an ion at m/z 

87 with one chlorine atom. These product ions make only a very small contribution to the 

whole branching ratio picture and so have been excluded from the BR graph.
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3.6.3 PTR-M S vs. Electron Impact Mass Spectra

Results for the highest E/N  values become similar to those found in electron impact (El)

spectra: a comparison of both mass spectra shows that many product ions occur at the same 

m/z, apart from M+ which appears, as expected, at (m+l)/z in the PTR spectrum (Figure 3.65). 

This result is surprising considering the very different energy conditions in the two processes:

a)
Benzene, chloro- 
MASS SPECTRUM

100

80-

60-

c
4 0 -

20 -

0.0
20 40 60 80 100 120

m /z
NIST Chemistry WebBook (http://webbook.nist.gov/chem istry)

b) Chlorobenzene 245 Td

.2 40

Figure 3.65: Spectra for chlorobenzene
for a) electron impact and b) PTR showing relative intensities

El takes place at ~70 eV and proton transfer at energies of ~ 2eV.

The two different types of reactions can be described in the following way.

For E l ionisation the following reaction takes place:

e' + M >  (M )* +2e

where M = analyte, e' = electron and * represents an excited species.

Page 109

http://webbook.nist.gov/chemistry


CirAPTER3:SENSITIVrTYMEASl/REi\iENTS

(M+)* may then fragment, either sequentially or in parallel, into (A+)*, B+, C+, etc.:

(M4)* (A+)*

The parent peak and fragments appear at m/z, where m = molecular weight and 2  = charge.

For proton transfer reactions, the following reaction occurs:

H30 + + M

In this case, the parent peak appears at {m+\)lz. If sufficient energy is available after 

protonation, (M tf  )* can fragment further:

The surplus collisional energy can then result in A+ fragmenting in the same way as that 

observed in El, resulting in fragments appearing at m/z, rather than the protonated (m+l)/z 

normally seen in PTR-MS.

3.7 Conclusion

Sensitivity measurements for E/N=  90 Td to 245 Td and m/z = 79 to 181 found a value of 4-6 

ncps ppbv’ 1 normalised to 106 H30 +. Each of the 14 compounds in the calibration gas used 

here was separately investigated over the same E/N  range to establish fragmentation behaviour 

and possible interfering contributions. Several were found to have product ions occurring at 

m/z 79, mostly occurring at higher energy levels (E/N > 160 to 170 Td). Ethylbenzene was a 

notable exception: it is reduced by ~ 40% at E/N = 140 Td producing m/z 79. Other effects 

became apparent on closer inspection of these data: an unlikely cluster formed in the di- 

chlorobenzenes at m/z 129 appears to be formed by a product ion at m/z 111 (C6H4 C1+) 

associating with a molecule of water, H20 . This is especially puzzling as it only appears at 

higher E/N  values, reaching a peak at ~ 200 Td. The isomeric compounds ethyl benzene and 

xylenes produce very different fragmentation patterns in a wide energy range, so enabling

*  A+ + B (e.g. H2),
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their possible differentiation, although the individual xylene isomers cannot be distinguished 

using this method
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Chapter 4 -  Hexenols

“[The] structural theory is o f  extreme simplicity.... this theory has always proved 
capable ofproviding a different structure for every different compound ... there are 
never more isomeric forms than the theory permits

Nevil Vincent Sidgwick 

Presidential Address to the Chemical Society (16 Apr 1936),

Journal o f  the Chemical Society (1936),
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Ch a p t e r  4: H ex e n o l s

4.1 In troduction

The C(, unsaturated alcohols (hexenols) form part of the hexenal family, a series of volatile 

compounds whose characteristic odour is that of cut grass. This work examines the effect of 

energy changes in the PTR-TOF-MS on all four of the hexen-l-ol isomers, cw-2-hexen-l-ol, 

rra/w-2 -hexen-l-ol, cis-3-hexen-l-ol (‘leaf alcohol’) and trans-3-hexen-l-ol (hereafter referred 

to as cw-2, trans-2, cis-3 and trans-3).

These species are found in the atmosphere, being produced by the leaves of many plants during 

the course of wounding, drying and pathogen attack. In this latter case, cis-3 is found as a 

signalling chemical to trigger defence responses (Heiden 2003, Hatanaka 1993, Farag 2005 and 

Laothawomkitkul 2009). Investigations in the 1950s and ‘60s showed that the presence in the 

atmosphere of small amounts of these and other biogenic VOCs contribute to ozone formation 

(Fall 1999a). These examples illustrate the interdisciplinary nature of investigations involving 

these VOCs and are of interest to atmospheric chemists with respect to modelling regional and 

global VOC emisions (e.g. Guenther 1999), botanists regarding VOC roles in plant biology and 

ecology, and entomologists are concerned with VOCs as signalling agents (reviewed by 

Laothawomkitkul 2009).

Studies of hexenols also appear in other application areas involving complex chemical 

environments, such as flavour analysis (Aharoni 2000, Buhr 2002) and fragrance synthesis 

(Froissard 2011 and Ibdah 2011). It is particularly important to be able to identify the full 

range of active components in flavour analysis where efforts have been made to relate 

molecular structure to aroma since at least 1971 (Bedoukian 1971, Blake 2009).

Various techniques have been used to examine these compounds, viz. GC-MS for cis-3 

(Heiden et al. 2003), selected ion flow tube-MS (SIFT-MS) studies of cis-2 and the 3-hexen- 

1-ols (Schoon et al. 2007), FA-SIFT-MS experiments with cis-3 and trans-2 (Dhooghe et al. 

2009) and all four isomers (Dhooghe et al. 2012), and, most pertinently for this study, proton 

transfer reaction mass spectrometry: Demarcke 2010 (cis-2 and trans-3), Buhr 2002 (cis-3) 

and Fall et al. 1999b (trans-2 and 3-hexen-l-ols).
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There has been much interest of late in studying how changing the collisional energy 

conditions within the reaction chamber of a PTR-MS influences the product ion branching 

ratios (Brown et a l  2010, Demarcke 2010, Ennis et a l  2005). This work advances that of 

previous researchers (Fall et a l 1999b, Demarcke et a l 2010) by studying all four of the 

hexenol isomers over a wider E/N range on a PTR time of flight instrument. Fall et a l 

examined the fragmentation patterns of the cis-3, trans-3 and trans- 2  isomers in a quadrupole 

PTR-MS instrument. The E/N  at which this was carried out was not specified but is considered 

most likely to be 120 Td. These results are summarised in Table 4.1. Demarcke et al.’s work 

also used a quad PTR-MS and covers the E/N  range of 80 Td to 140 Td for cis-3 and trans-2. 

Details of this work are also given in § 4.4.

Table 4.1: Research to date for hexen-1 -ols
Analysed by author, instrument and buffer gas for SIFTs, the product ions detected (m/z) and which 
isomers were inspected. Not all of the product ions were found for all of the isomers listed for an 
author.

Work Done By Instrument 
(Buffer gas)

m/z Hexenol(s)

Fall eta l.(1999b) PTR-MS quad ■55 (C4H7+),
69 (C5H9+)*
83 (C6H„+)
1 0 1  (CfiH^OlT)

Cis-2, trans-3 and 
trans- 2

Buhr et a l  (2002) PTR-MS quad 55, 83 
84 (C5H9+)a

Cis-3

Demarcke et a l  (2010) PTR-MS quad 39 (C3H3+)
41 (C3H5+)
55, 83, 101, 119

Cis-3 and trans-2

Custer et a l  (2003) FA-SIFT (He) 67 (C6H„+)*
69 (C5H9+)*
81 (C6H9+)*
83
99 (C6H9OH+ or C7H15+) 
1 0 1

Cis-2, trans-3 and 
trans- 2

Schoon et al (2007) 
Noted that no MH+ for 2- 
hexen-l-ols

SIFT (He) 83, 99, 101 Cis-2, cis-3, trans-2 
and trans-3

Dhooghe et a l  (2009) FA-SIFT (Ar) 83, 101,
119 (C6H120H+(H20)) 
137 (C6H120H+(H20 )2) 
155 (C6H12OH+(H20 ) 3)*

Cis-3 and trans-2

Dhooghe et a l  (2012) FA-TMS (Ar) 29 (C3H5+)f*
31 (C3H7+)t*, 
41f
43 (C3H7+)t 
53 (C4H5+), 55, 83

Cis-2, cis-3, trans-2 
and trans-3. (Data 
from CID of m/z 83)

*= Product ions not seen in this work
f = Product ions only seen at energies > 2eV
a=  Could be the isotope for m/z 8 3 -----------------------------------

Page 114



Ch a p t e r  4: H e x e n o l s

4.2 Experimental

4.2.1 The Hexenol Isomers CgHnOH

Hexenol has the molecular formula C6HnOH. The structures of the four isomers investigated .

in this PTR-MS study are shown in Figures 4.1a) to d).

a) b ) H C  ^  O H

H ^  ^  CH2OH ^  C2H4 OH

c = c C=C
/ /  \ /  \

C3H7 c 2H5 h

C2H4 OH

Figure 4.1: Schematic structures of the four hexen-l-ol isomers:
a) 7 >a«5 -2 -hexen-l-ol (F-2 -hexen-l-ol); b) Trans-3-hexen-1 -ol (£-3-hexen-l-ol); c) Cis-2- 
hexen-l-ol (Z-2-hexen-l-ol); d) C/s-3-hexen-l-ol (Z-3-hexen-l-ol)

The frvms-hexenols have the substituent groups on differing sides of the carbon chain, whereas 

in the cw-hexenols, these groups are on the same side of the C chain.

Chemicals were obtained from Sigma-Aldrich (purities > 99%) and used with no further 

purification.
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4.2.2 Set-up

A syringe and syringe drive were used to introduce each sample into the reaction chamber of 

the PTR-TOF-MS which was held at a temperature of 303±1 K and a pressure of 1.0 mbar. 1 

mL of sample was deposited onto cotton wool inside the syringe (Figure 4.2). This was then

S y r in g e  H

iyrin

Filtered Laboratory 
Air (Buffer Gas) Cotton Wool 

and Sample

Figure 4.2: Experimental set-up for hexenols 

filled with filtered lab air (Agilent HC trap HT200-4) and the syringe needle was inserted into 

a septum connected to a % in Teflon tube through which filtered laboratory air was flowing. 

The Teflon tube was connected to the PTR-TOF-MS inlet needle valve using Swagelok 

connectors. No further changes were made, for example to reduce humidity, in an attempt to 

replicate normal operational conditions when field analysis for such chemicals is performed. 

Fifteen E/N  settings were used, from 100 Td to 170 Td in steps of 5 Td. Three spectra were 

taken at each E/N  value both without (background) and with the analyte. A separate set of 

identical equipment was used for each chemical.

4.2.3 D ata Analysis

4.2.3.1 Background Measurement Correction

Measurements with filtered laboratory air were taken over the same E/N  range before each

isomer was studied. The data for each background m/z were subtracted from the analyte m/z 

values.
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4.2.3.2 Product Ions Investigated

The product ions investigated here are primarily taken from the work of various authors on

the hexenols (Table 4.1). This work sees m/z 117 which is not mentioned in any of the 

foregoing research. As it is always seen in conjunction with m/z 99 it is presumed to be its 

hydrate, C6H90H +(H20).

4.2.3.3 Product Ions at m/z 39 and m/z 55

Issues arise when determining product ions at m/z 39 (C3H3+ mass 39.0229 amu) and m/z 55

(C4 H7+ mass 55.0542 amu): with pure water vapour alone in the drift tube, the protonated 

water dimer’s lsO isotope is always present at m/z 39 (39.0327 amu) and the protonated 

water trimer itself is found at m/z 55 (55.039 amu) (see §2.2.2.1). The resolution of the 

instrument is insufficient to distinguish such small differences in mass (0.0107 amu for the 

m/z 37 product ions and 0.0152 amu for those at m/z 55). Methods for dealing with these 

difficulties are explained below.

• m/z 39 Product ion C3H3+

The method used to estimate the product ion counts at m/z 39 is the same as that used in 

Chapter 3 for the alkyl benzenes: the 180  isotope counts expected from the water dimer, 

H30 +.(H2 0 ) at m/z 37 are calculated and subtracted from the actual counts at m/z 39. This 

is satisfactory for E/N  values > 140 Td and accounts for the m/z 39 branching ratios 

starting at E/N> 140 Td.
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• m/z 55 Product ion C4H7+

This m/z is slightly easier to deal with than counts at m/z 39, since the water trimer signal 

at m/z 55 completely disappears as E/N  becomes greater than ~ 120 Td, based on 

investigations using only purified air in the drift tube (see §2 .2 .2 .1 ).

The signal at m/z 56, the 13C isotope of C4H7+ was used to determine the signal at m/z 55 

for this product ion, representing 4.4% of the product ion’s signal at m/z 55. With no 

analyte (i.e. background counts for just air), the protonated water trimer produces a signal 

at m/z 56 of 0.2% of the signal at m/z 55, representing the 2H isotope. These counts were 

subtracted from the analyte counts at m/z 56 and the result was divided by 0.044 to 

calculate the total expected counts resulting from the fragment C4H7+.

4.3 Results

4.3.1 2-Hexen-l-ols

4.3.1.1 Trans-2-hexen-l-ol

Figure 4.3 shows spectra for trans-2 at (a) E/N = 115 Td and (b) 170 Td. The (M -TyFr

product ion at m/z 99 and its hydrate at m/z 117 can be seen in Figure 4.3a). There is a very 

small signal at m/z 101, a t l l 5 T d  which may be the protonated parent. The peak at m/z 55 

for E/N = 115 Td contains a significant amount of the protonated water trimer, 

H30 +.(H20 )2. However, at 170 Td, the contribution from this has almost completely 

disappeared, based on investigations using only purified air in the drift tube, leaving only 

the signal from the product ion C4H7+. This applies to all of the isomers.
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Figure 4.3: Spectra for trans-2 at a) 115 Td and b) 170 Td 
The product ion at m/z 99 is seen in a) with its hydrate at m/z 117 and 
is much reduced at E/N 170 Td in b). The product ion at m/z 117 has 
completely disappeared. Product ion at m/z 41 is absent at lower E/N 
values. There is a very small peak for MFf at 115 Td. (Note the 
different counts scales for the two graphs.)

Figures 4.4a) and b) illustrate the product ion ratio percentages (branching ratios) for trans - 

2 over the full range of E/N  values from 100 Td to 170 Td. Figure 4.4a) shows the major 

product ions; Figure 4.4b) displays minor product ions at the lower branching ratio 

percentages of < 1 2 %.
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Figure 4.4: Branching ratios for trans-2. 
b) has an expanded BR % scale.

Demarcke et al. 2010 and Fall et al. 1999b) investigated trans-2 on a PTR-MS (quad), with 

Demarcke varying E/N  from 80 Td to 140 Td. Percentage fragmentations for Fall and 

Demarcke’s results for trans-2 at E/N  120 Td are given in Table 4.2 along with those from 

this work. The Demarcke values are estimated from the product ion distribution graphs in 

their paper.

In order to enable a comparison of results from this work with those of the above two 

authors, values are given for E/N = 140 Td, the setting regularly used on this PTR-TOF-MS 

instrument as the standard where the ratio of m/z 19:m/z 37 < 10%. (For further 

information, see Chapter 2.)
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These results are largely in agreement with those found by Demarcke et al. 2010. The main

Table 4.2: Comparison of branching ratios (BR%) for trans-2 
by Fall et al. (1999b), Demarcke et al. (2010) and this work. 
Demarcke’s data estimated from their product ion distributions.

T r a n s - 2
m/z 39 41 55 69 83 99 101 117

Demarcke et al* - < 1 % 18% - 79% - - -

Fall et al? - - 23% 0 .8 % 76% - . 0 .2 % -

This work+ 1 % < 1 % 28% - 63% 7% - < 1 %

*E/N= 120 Td has been used to enable comparison with Fall 1999b. 
* No E/N value reported 
+ E/N = 140 Td for comparative moisture levels

difference is the product ion at m/z 99 which is found in this work but is not mentioned at 

all by Demarcke.

Trans-2 has also been investigated in FA-SIFT instruments by Dhooghe et al. 2009 and 

Custer et al. 2003. The latter study finds major product ions at m/z 83 and 55, and minor 

ions at m/z 101, 99 and 95. No further details are given, except that the minor product ions 

are present at less than half the intensity of the major product ions. Dhooghe et al. 2009 

react trans-2 with H30 +.(H20 )w for n = 0 to 3. Their results are given in Table 4.3. O f the

Table 4.3: Summary of FA-SIFT results for trans-2 from Dhooghe et al. (2009)
Reactions with trans-2 showing % yield of product ions and the mechanisms by which they form.

R eaction P ro d u c t 
ion m/z % M echan ism

h 3o + 83 99 Proton transfer with loss of H20: M + H30 +-» C6H„+ + 2H20
H 30 +.(H 20 ) 83 - 1 0 0 Dissociative proton transfer: M + H30 +.(H20) C6H„+ + 3H20

H 30 +.(H 20 ) 2 1 0 1 4 Non-dissociative proton transfer: M + H30 +.(H20 ) 2 MH+ + 3H20

119 N Ligand switching with loss of 
H20: M + H30 +.(H20 ) 2 -> MH+.(H20) + 2H20

137 N Ligand switching: M + H30 +.(H20 ) 2 ->MH+.(H20 ) 2 + h 2o

M = Parent molecule C6HnOH 
N = No data given

ions described by Dhooghe, this work only finds m/z 83 and Dhooghe does not find m/z 99.
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4.3.1.2 Cis-2-hexen-l-ol

Figure 4.5 shows spectra for cis-2 at a) E/N = 115 Td and b) 170 Td. As found for the trans-

a)

b)

30

3500 i  
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2500 -
V i

°  2000  
*2
g  1500oo

1000 

500 H 

0

30

Cis-2-hexen-l-ol 115 Td
4000 i

3500 -

3000 -

2500 -

2000 -

1500 -

1000 - C3 H3

500 - 39
1

0 -- A -

55
C4H7+

40
—r“ 
50

83
(M-H20 )H +

d.i.l

(M-H2)H+

99

lL .- ,

(M-H2).(H20)H +

117

60 70 80
m / z

90 1 0 0 1 1 0 1 2 0

Cf5-2-hexen-l-ol 170 Td
55

39
C3H5+
41
rI.I.L-

83

J L x .
,99

40 50 60 70 80
m / z

90 1 0 0 110 120

F igu re 4.5: Spectra for cis-2 at a) 115 Td and b) 170 Td.
The product ion at m/z 99 is seen in a) w ith its hydrate at m/z 
117 but these have m ostly disappeared at E /N  170 Td in b); m/z 
41 is absent at low er E/N  values.

2 fragmentation, there is a very small protonated parent signal, m/z 101a t l l 5Td .  The (M- 

H)H+ product ion at m/z 99 can be seen in Figure 4.5a) and the hydrate signal at m/z 117 is 

also discernible but has disappeared completely at E/N  = 170 Td.
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The product ions found over the full energy range for cis-2 are m/z 99, 83, 55, 41 and 39 

and the branching ratios for the major product ions are shown in Figure 4.6a). Figure 4.6b) 

shows the minor product ions with branching ratios < 1 0 %.

a) C/s-2-hexen-l-oI Major Product Ions
100 y-

90 qj-

 1 >oly. (m/z 55)
 1 >o/y. (m /z 83)

or

1 0 0 1 1 0 1 2 0 130 140 150 160 170
E/N [Td]

b) C/s-2-hexen-l-ol Minor Product Ions <10%
- X — m /z  35 
-© —  m /z  4I
A  m /z  9 5  

- B — m /z 117
—  Poly, (m /z 99)

. „  - A  i  
A

1

3 B ----- E 1------S ----- i CD— S ^ - E

r  -  - A ----- A

3- .... a  m
100 110 120 130 140 150 160 170

E/N [Td]

F igu re  4.6: Branching ratios for cis-2.
Product ions in a) and b) are shown at different scales o f  BR  
percentages. No protonated parent ion (m/z 101) appears.

There is very little work reported in the literature concerning cis-2. Two groups report on 

all four isomers: a FA-TMS study (Dhooghe et al. 2012) which looks only at the CID of the 

m/z 83 product ion and the SIFT work of Schoon et al. 2007. This is the only group to 

report m/z 99 as a product ion for either of the 2-hexen-l-ols and consider it to be (M-H)+ 

being a product of the reaction with H30 + with a 3% reaction channel. The current work 

finds ~ 5% branching ratio at the lowest energy, 100 Td, which compares favourably with
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that result, bearing in mind that the SIFT work is at thermal energies (~ 300 K) and so ions 

are less likely to fragment in that system. (Table 2.3, Chapter 2 shows that 100 Td in this 

PTR-TOF-MS is equivalent to 1054 K, approximately three times greater than in the SIFT.)

4.3.2 3-Hexen-l-ols

4.3.2.1 Trans-3-hexen-l-ol

Figure 4.7a) and b) show spectra for trans-3 at E/N  = 115 Td and 170 Td. Peaks at m/z 83

a)

b)

11000 
1 0 0 0 0  - 

9000 - 
8000

T/Yms-3-hexen-l-ol 115 Td 
83

(M-H20 )H +
52 7000

6000
5000 -
4000
3000
2000  -

1000

3000 -

111

59
(Impurity) MH+

1 0 1 MH+.(H20 )
119

70 80
m /z

90 1 0 0 1 1 0 1 2 0

7>fl/Js-3-hexen-l-ol 170 Td

59
(Impurity)

8 3

70 80

1 0 1

90 100 110 1 2 0

m / z

F igu re 4.7: Spectra for trans-3 at a) 115 Td and b) 170 Td 
M H+ at m/z 101 is clearly seen in a) w ith its hydrate at m/z 119. The large peak at 
m/z 59 in both a) and b) can be seen to be o f  a similar magnitude, ~  4000  counts, 
and is therefore considered to be an impurity.

and m/z 55 occur in differing ratios at the two E/N  values. The protonated parent signal at 

m/z 101 is easily visible at E/N=  115 Td but has almost disappeared at E/N = 170 Td. The 

large peaks at m/z 59 are most likely to be protonated acetone (CH3COCH3 H+), an impurity,
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as the signal at this peak value remains fairly constant throughout the collisional energy 

range. Fall et al. 1999b report a large percentage of m/z 59 (20%) for this compound, (Table 

4.3), commented on by Dhooghe et al. 2012 who also consider this to be an acetone 

impurity.

The branching ratios for trans-3 over the full range of E/N  values are shown for the major 

product ions in Figure 4.8a) and enhanced for the minor product ions at branching ratios < 

12% in Figure 4.8b).

7>Y//is-3-hexen-l-oI ior Product Ions90

80

70 m /z  55
m /z. 83_______
Poly, (m /z  5  ?) 
Poly, (m /z  8  I f

60

30

2 0

1 0

1 0 0 1 1 0 1 2 0 130 140 150 160 170
E /N  [Td]

b) Trans-3-hexen -l-o l M inor Product Ions < 16%
18

16 

14 

1 2

££ 8  CO o

6  
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2  

0

100 110 120 130 140 150 160 170
E/N [Td]

Figure 4.8: Branching ratios for trans-3.
Product ions in a) and b) are shown at different scales of BR percentages. The 
protonated parent is seen at m/z 1 0 1  and the first water monomer at m/z 119.

The protonated parent ion, m/z 101, is clearly visible (-18% at E/N = 100 Td) along with its 

associated water monomer, C6H120H +.(H20 ) at m/z 119. In their SIFT work on trans-3

m/z 39 
m/z 41

—e — m/z 101
--X— m/z 119

11

y \
\ %V

#
>

' 'V

' 1 >— ©— e>— ©— ©
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reactions with H3 0 +, Schoon et al. 2007 find a reaction channel of < 6 % for m/z 101 and 

93% for m/z 83. We find -  60% at the lowest energy for m/z 83.

4.3.2.2 C7s-3-hexen-l-ol

Figure 4.9 shows spectra for cis-3 at E/N = 115 Td (a) and E/N  = 170 Td (b). The

protonated parent ion at m/z 101 and its hydrate at m/z 119 can be seen for E/N = 115 Td 

but it has virtually disappeared at E/N = 170 Td and, as expected, no m/z 119 is observed. A 

small but significant peak for m/z 41 can be seen in Figure 4.9b) and Figure 4.9b) confirms 

this.

a) 8000

7000

6000
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« 4000C3
6  3000 - 
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i o o o  h 

0

30
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2500

2 0 0 0  -
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Czs-3-hexen-l-ol 115 Td
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(M-H20 )H +

55
C4H7+
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_ J ___
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40 50 60 70 80 90 100
m /z

C is -3 -h exen -l-o l 170 Td
55

C4H7+
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C3H3+

5341 +
C3H5| i 
fi » - ^ 1

83
(M-H20)H +

L_L
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m /z
90 1 0 0

119
MH+.(H20 )

110 120

1 1 0 1 2 0

F igu re 4.9: Spectra for cis-3 at a) 115 Td and b) 170 Td.

The product ion distribution for the whole E/N  range is shown in Figures 4.10a) and b):

Figure 4.10a) shows the major product ions and Figure 4.10b) amplifies the scale for the

product ions with BRs < 14% where the protonated parent’s hydrates can be seen.
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a)
C/s-3-hexen-l-ol Major Product Ions

90
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m/ 7  55
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Poly, (m /z 55) 

Poly, (m /z 83)40
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C7s-3-hexen-l-oI Minor Product Ions <14%
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Figure 4.10: Branching ratios for a) cis-3 major and b) 
minor (<14%) product ions.
The protonated parent is seen at m/z 101, the water 
monomer at m/z 119 and dimer at m/z 137.

Demarcke et al. 2010 and Fall et al. 1999b investigated cis-3 on a PTR-QUAD-MS, with 

Demarcke varying E/N  from 80 Td to 140 Td. Their results for cis-3 percentage 

fragmentations at E/N  120 Td are shown in Table 4.4 along with those from this work at 

E/N=  140 Td for the same reasons as stated for trans-2 in §4.3.2.1.. The Demarcke values 

are estimated from product ion distributions in their paper (2 0 1 0 ).
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T ab le  4.4: Comparison o f  branching ratios (BR% ) for cis-3 
by Fall et al. (1999b) and Demarcke et al. (2010) and this work. 
D em arcke’s data estimated from their product ion distributions.

Cis-3
m/z 39 41 55 59 83 101

Demarcke et 
al* < 1 % - 18% - 75% 2 %

Fall et al} - - 2 2 % 5% 74% 1 %

This work+ < 1 % < 1 % 28% - 70% 2 %
*E/N= 120 Td data to enable comparison w ith Fall 1999b. 
t N o  E/N  value reported 

+E/N  =  140 Td for comparative moisture levels

These results are largely in agreement with those found by Demarcke et al. 2010. The main 

difference is the product ion at m/z 59 in Fall’s work which is not found in this work and is 

again, as mentioned in §4.3.2.3 Trans-3, an acetone impurity.

Cis-3 has also been investigated in a SIFT instrument by Dhooghe et al. 2009 and in a FA- 

SIFT by Custer et al. 2003. The latter study was primarily interested in negative ion (OH') 

reactions, but presents data from reactions with H30 + for comparison. For cis-3 they find 

only one major product ion at m/z 83 and the three minor ions m/z 101, 99 and 67. No 

further details are given, except that the minor product ions are present at less than half the 

intensity of the major product ions.

Reactions in the SIFT with cis-3 and H30 +.(H20)„ for n = 0 to 3 carried out by Dhooghe et

T ab le  4.5: Cis-3 reactions w ith protonated water clusters (SIFT) 
producing ions at m/z 8 3 ,1 0 1 ,1 1 9 ,1 3 7  and 155. % channel where available 
(D hooghe et al. 2009)

m/z 83 101 119 137 155
H 30 + (m/z 19) 95% 4% - - -

H 30 +.(H20 )  (m/z 37) 1 2 % 33% 55% - -

H 30 +.(H20 ) 2 (m/z 55) - - Y* Y* -

H 30 +.(H20 ) ? (m/z 73) - - - Y* Y*

Y* = presence of ion, no % given

al. 2009 are presented in Table 4.5. This shows how cis-3 fragments when reacted with 

each reagent ion, H30 +, H30 +.(H20), H30 +.(H20 ) 2 and H30 +.(H20 )3. Taking m/z 83 as an 

example, the table shows that 95% of the parent molecule reacts with H30 + {m/z 19) in a
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non-dissociative proton transfer and the loss of H20  to form m/z 83. The parent ion also 

reacts with H3 0 +.(H20 ) {m/z 37) but with only a 12% yield of m/z 83.

The inference from this is that, in the PTR-TOF-MS at low E/N, where there is more 

H3 0 +.(H2 0 )  than H30 +, less m/z 83 will be seen than at higher energy values. Figure 4.11 

shows the branching ratios for water dimers in the cis-3 data as E/N  is increased and is 

introduced to demonstrate how the water dimer ratios have affected the product ion 

percentages and behaviour vis a vis the values in Table 4.5. In Figure 4.11 it can be seen 

that the proportion of H30 + increases from a very low level (~ 8 %) at low E/N  to become 

the dominant species at E/N > 120 Td. It also shows that the water trimer, H30 +.(H2 0 )2> m/z 

55, is present for E/N -  100 Td to 130 Td and that H30 +.(H20 )3, m/z 73, is only just

Cis-3 Water Cluster Branching Ratios %
100

m /z 19 Mo lomer

Eo
£ccboc

m /z 37 Dimer

-  m /z 55 Trir i er

--K- m /z 73
JCO
cn

CD

 A .

120 130100 110 140 150 160 170
E/N [Td]

Figure 4.11: Water clusters from cis-3 data.
At low E/N there is very little m/z 19 (H30 +), the dominant 
species being m/z 37 (H30 +. H20) with a small but significant 
amount of m/z 55 and a very small amount of m/z 73

discernible for the two lowest E/N  values. Note that the contribution from the cis-3 product 

ion at m/z 55 has been deducted to give the values shown here.

To demonstrate how product ions m/z 83, 101, 119 and 137 are affected by these levels of 

water cluster ions, their branching ratios are superimposed on the water clusters graph in 

Figure 4.12. Equations for the reactions described below can be found in Table 4.3.
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Looking at each product ion in turn and starting with m/z 83, it can be seen from Table 4.5 

that this is mostly produced by a reaction of m/z 101 with H30 + (95%) by dissociative

Cis-3 Water Clusters and Product Ions

o 60

O m /z 19 

□  m /z 37

m /z  (19+37)

—is— m /z  55

-  -X- m /z 73

•  m /z 83

e  m /z 101

+  m /z 119

e m /z 137

1 0 0 1 1 0 1 2 0 130 140
E/N [Td]

150 160 170

Figure 4.12: Branching ratios for Cis-3 product ions m/z 83,101,119 and 137 
and water cluster ions H30 + (m/z 19), H30 +.(H20) (m/z 37), H30 +.(H20 ) 2 (m/z 55), 
and H30 +.(H20 ) 3 (m/z 73). The contribution from the cis-3 product ion to m/z 55 has 
been subtracted. Markers for product ions are not connected by lines. 
m/z (19+37) = Total BR% for water dimers at m/z 19 and 37.

proton transfer. However, at E/N < 115 Td there is very little H30 + but the significant 

amount of H30 +.(H20 ) gives rise to most of the m/z 83 and this latter continues to rise as 

E/N  is increased and the proportions of H30 + and H30 +.(H2 0 ) change with an overall 

increase in their sum total. This increase in m/z 83 appears to follow (H30 + + H30 +.(H20)) 

until E/N = 125 Td when the collisional energy is sufficient to fragment m/z 83 quite 

significantly to produce m/z 55 as can be seen in Figure 4.10a.

The signal at m/z 101 is a result of non-dissociative protonation of the parent molecule with 

H3 0 + (4%) and H30 +.(H2 0 ) (33%) (Table 4.5). As so much more of the protonated parent 

molecule is produced by reacting with H30 +.(H20), it is not surprising to see the branching 

ratio for m/z 1 0 1  follow this as it reduces.

The product ion at m/z 119 results from ligand switching of M with H30 +.(H20 ) and 

H30 +.(H20 )2. In the SIFT the percentages of m/z 83, 101 and 119 are 12%, 33%, 55%. In 

the PTR-MS instrument used here, there is much less m/z 119 than either of the other two 

product ions for all E/N  values. This is most likely because the higher collision energies in
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the PTR cause fragmentation of this hydrated protonated parent ion. It can also be seen that 

the ratio of m/z 119 follows the line of the water trimer: Dhooghe et al. indicate that m/z 

119 is seen as a result of a ligand switching reaction with H3 0 +.(H2 0 ) 2  and the subsequent 

elimination of H20  but no data are available for their percentage yield.

Finally, m/z 137, the protonated parent water dimer, is the product of reactions with both 

H3 0 +.(H2 0 ) 2 and H3 0 +.(H2 0 )3 . However the contributions from each reagent ion are not 

provided (Table 4.5). It would appear from Figure 4.12 that all of the signal for m/z 137 is a 

result of a ligand switching reaction and a loss of H20  with H30 +.(H20 )3.

No signal was observed at m/z 155 in this work.

4.4 Summary and Discussion

The graphs in Figure 4.13 and 4.14 summarise the fragmentation behaviour described above by

showing the branching ratios for the isomers analysed by product ion. Figures 4.13a) to d) show 

graphs for m/z 39, 41, 55 and 83. All isomers produce these ions over the E/N  range used here

a) m/z 39: C3H3+ b) m/z 4 l.-CjHg*
14

12
Cls2 

C4i3—  

Trans2

10

Trans3
a.to 6

4

2

0
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cl

E/N [Td]

m/z 55: C4H7"

■O- Cls2
Us3
Irnm2

X TransS 
PotyT(

E/N  [Td]

d) m/z 83: Dehydrated Protonated Parent
100

go 6—

ClsZ.
Oil

150 170110 120 130 140 160100 100 110 120 140 160 170130 150
F/W[Td] E/N [Td]

Figure 4.13: Branching ratios for isomers grouped by product ions 
a) m/z 39, b) m/z 41, c) m/z 55 and d) m/z 83. Fragmentation behaviour 
appears to be related to the position of the C=C bond for all product ions 
except for m/z 41.
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and there is some evidence that the branching ratios depend on the position of the C=C bond 

(also see Schoon et ah 2007). For example, in Figures 4.14a) to d), m/z 99 and 117 are only 

seen for the 2-hexen-l-ols, and m/z 101 and 119 for the 3-hexen-l-ols. Several hydrated ions 

are observed, m/z 117, m/z 119, and m/z 137 which can be seen in the low percentage branching 

ratio graph for cis-3 (Figure 4.1 Ob).
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Figure 4.14: Branching ratios for a) m/z 99, b) m/z 117, c) m/z 101 and d) m/z 119 
These graphs further demonstrate the effect of the C=C position in the molecule.

Dhooghe et ah 2012 have further investigated all four isomers in a flowing afterglow tandem 

MS (FA-TMS) using argon as the carrier gas, examining the m/z 83 product ion resulting from 

their reaction with H30 +. As that instrument operates at higher energies than the PTR-MS, only 

the results for the lowest energy, below 1.8 eV, are quoted in this work. At these energies, 

identical fragmentation patterns were found for all four isomers, producing ions at m/z 55 

(C4H7+, ~ 90%) and m/z 41 (C3H5+, ~ 10%) (Figure 4.15):
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C6H „+ + Ar -------► (C6H „+)* + Ar

90% ^  TT +
----------- C4H7 + neutrals

C3H5+ + neutrals
10%

Figure 4.15: Reactions for m/z 83 with H30 +in a FA-TMS 
to form ions at m/z 55 (C4H7+), 90%, and m/z 83 (C3H5+), 10%.
(Dhooghe et al. (2101))

The FA-TMS study found other product ions at higher collision energies, viz. m/z 29 (C2H5+), 

31 (C3H7+), 41 (C3H7+) and 43 (C3Hp+). Only m/z 41 is seen in this work.

A table of energies in eV and corresponding E/N  values used on the PTR-TOF-MS can be 

found in Table 2.3, §2.2.2.2. The maximum energy used in this work is 0.394 eV.

Table 4.6 illustrates how all four isomers fragment in the PTR-TOF-MS. A pattern is 

immediately apparent here: all four isomers produce ions at m/z 39, 41, 55 and 83 but

Table 4.6: Product ions > 1% by isomer seen at any E/N

39 41 55 83 99 1 0 1 117 119
Trans-3 Y Y Y Y - Y - Y

Trans -2 Y Y Y Y Y - Y -

Cis-3 Y Y Y Y - Y - Y

C is-2 Y Y Y Y Y - Y -

differences become apparent at m/z values > 83. As noted earlier, the protonated parent ion at 

m/z 101 is absent for the 2-hexenols but present for both of the 3-hexenols. The 2-hexenols 

produce m/z 99; this is also found by Schoon 2007 where it is described as a result of a minor 

3% reaction channel when cis-2 reacts with H30 + in their SIFT instrument, having the structure 

(M-H)+.

The difference regarding the absence of the protonated parent in the 2-hexenols is in agreement 

with the work by Demarcke 2010 and Schoon 2007. Because Demarcke only examined one 

each of the (2) and (3) isomers, there is no reference with which to compare the relative BRs 

within each of the m/z 99 and 101 product ions. A summary of this work is given in Table 4.7.
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Table 4.7: Summary of branching ratios (BR%) for E/N = 80-140 Td. 
(Demarcke et al. 2010)

m/z 39 41 55 83 1 0 1 119 137
Trans-2 Y Y Y Y - Y+ Y+

Cis-3 Y - Y Y Y Y+ Y+

+ =SIFT experiments (Schoon et al. 2007)

Figure 4.16a, (repeat of Figure 4.14c), and Table 4.8 show that there is more cis-3 MPT (m/z 

101) at a specific E/N  value than appears in the trans-3 species for E/N < 140 Td, e.g. Table 4.8

a)
Table 4.8: Comparison of BR %s for m/z 101 
for cis-3 and trans-3, E/N = 100Td-140Td

m/z 101: ProtonatedParent

„  15
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Figure 4.16: Branching ratios for a) m/z 101 and b) 
m/z 119 for cis-3 and trans-3.

demonstrates that at E/N~  110 Td there is a 21% yield for cis-3 and a 15% yield for trans-3. 

Figure 4.14a) shows that there is more m/z 99 from the trans-2 isomer at all E/N  values than for 

cis-2. This leads to the conclusion that whichever product ions are present at m/z > 83 depends 

on the position of the C=C bond: the 2-hexen-l-ols fragment to m/z 99 but no MET is seen. The 

3-hexen-l-ols produce the protonated parent at m/z 101 but no m/z 99. This would then seem to 

be related to the positioning of the proton within the molecule and the subsequent 

fragmentation of the excited protonated molecule. It would be helpful to have the proton 

affinities for these individual configurations but, at present, they are not available.
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The existence of fragmentation differences may help to identify these isomers in a mixture 

where other interfering compounds are absent. Examples of such compounds are given in Table 

4.9 with a breakdown of their reported product ions and % values on reaction with H30 + in both 

the SIFT and PTR-MS (extracted from Dhooghe 2012).

Table 4.9: Interfering compounds for detection of hexenols
at m/z values where > 5% is likely to be seen (Dhooghe et al. 2012)

M ass Com pound H30 + Product 
Ion

SIFT1
%

PTR-MS2
%

1 0 0 Hexanal 1 0 1 50 5
83 50 73
55 - 73

142 CA-3-hexenyl acetate 83 85 61

142 Trans-2-hexenyl 
acetate - 6 6

1 = Spanel et al. 1997,2 = Fall et al. 1999b

A possible method is presented as a flow chart in Figure 4.17 where the identification of a C6 

alcohol is determined initially by detecting peaks at m/z 39, 41, 55 and 83 at E/N > 160 Td. It 

would then be necessary to reduce E/N  to less than 115 Td to detect either m/z 101 or m/z 99. If 

m/z 101 is detected at this E/N  value then either the cis-3 or trans-3 isomers are present with the 

percentage yield giving an indication of which configuration it is. Similarly, if m/z 99 is 

detected this would indicate the presence of the 2 -hexen-l-ol configurations, the percentage 

yield again enabling identification.
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Figure 4.17: Flow chart for hexenol isomer 
identification.
Following an E/N study and calculation of BRs, it may 
be possible to identify a hexenol isomer from a 
mixture, depending on the absence of other species 
which could contribute to the peaks found here.
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4.5 Conclusion

This work has shown that the same four product ions are seen for all of the hexenol isomers, 

m/z 83, 55, 41 and 39 when reacted with H3 0 + in a PTR-TOF-MS. These results compare 

favourably with those of other groups working on both SIFT-MS and PTR-MS. However, this 

work finds that where the protonated parent ion, m/z 101 is absent, m/z 99 becomes apparent 

but this is not mentioned in any other study. It is this aspect of the hexenols’ behaviour that has 

led to the possibility of discriminating between the 2-hexenols and the 3-hexenols. It may also 

be possible to identify the cis- and trans- isomers. However, both product ions involved in this 

procedure are minor contributors to the branching ratios, and so the instrument’s sensitivity will 

limit the success of this method.

Page 137



Ch a p t e r  4 HHe x e n o es

Page 138



Ch a p t e r  5: D is c u s sio n

Chapter 5 - Discussion



C h a p t e r  5 : B is c u s sk >n



Ch a p t e r  5: D is c u s sio n

5.1 Introduction

This chapter discusses the major findings and practical developments described in the 

foregoing chapters. Practical innovations, both hardware and methodology, are discussed in 

the light of their necessity for improving measurements and how they have led to permanent 

instrument development.

The results of experimentation are discussed with regard to their importance in the light of 

their contribution to advances in the field of Proton Transfer Reaction Mass Spectrometry and 

possible further applications in specific areas.

5.2 Instrument Development

A primary requirement for analytical use of the PTR-TOF-MS instrument is knowledge and 

control of the reduced electric field, which is the ratio of the electric field strength (E) to the 

buffer gas number density (TV), E/N, that characterises the collisional energy of reagent ions 

with neutrals and the product ions with the buffer gas, and hence the degree of fragmentation. 

This ratio can be determined from the temperature and pressure of the drift tube and the 

voltage drop across the drift tube. The only accurately measureable parameter on the original 

‘as received’ instrument was the temperature (§2.3 Optimisation o f the Instrument): there was 

no readily available method for measuring the voltage drop and the pressure gauge was not 

sufficiently sensitive. Thus it was necessary to install real-time accurate monitoring of the 

voltage applied across the reaction chamber and the absolute pressure of the reactant gas 

inside it.

The manufacturers (Kore) had suggested a method for measuring these voltages without 

actually attaching a permanent voltmeter. This involved measuring the voltages and 

calibrating the relevant potentiometers accordingly. This assumes a linear relationship 

between the potentiometer scale and the change in voltage -  an assumption found to be 

invalid. Instead a digital voltmeter was added for the measurement of the voltages at the 

relevant electrodes: at the entrance and exit of the chamber and on a plate, 9 cm from the 

entrance of the chamber. The original reason for this inner electrode (plate 26) was to create a
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short region of much higher energy, {E/N), referred to as a collision-induced dissociation 

(CID) region (Blake et al. 2009) as the ions left the reaction chamber in order to break up any 

water clusters and so simplify the mass spectrum. The main disadvantage of using this 

method is that the VOC concentrations were underestimated as humidity increased: it was 

found that an elevated E/N  in the CID region relative to the rest of the drift tube led to an 

overestimate of the amount of H30 +, which included contributions from fragmented 

H30 +(H20)„ ions (Wameke et al. 2005). It is also not clear if and how an E/N  measurement 

could have been established, so making any results difficult to compare with those of other 

groups. It was for these reasons that, having the capability to set voltages on all three 

electrodes, they were deployed such that the inner electrode was invisible to the ions in the 

reaction chamber.

A Pirani pressure gauge was originally used to measure the pressure in the reaction chamber 

using the principle that the heat conduction of a gas depends on its pressure. The sensitivity of 

this type of gauge is dependent on the surface condition of the filament and inaccurate 

readings can be caused by the presence of organic vapours. (Harris 1997). A Pirani gauge is 

not absolute and in operation it was insufficiently sensitive. It was therefore replaced by a 

capacitance gauge which measures absolute pressure by sensing the deflection of a diaphragm 

between the sample volume and a sealed reference volume. The deflection is caused by forces 

due to a pressure differential which changes the capacitance between an electrode on the 

diaphragm and a rigid reference (Harris 1997). This gauge performed much better, both in 

response time, sensitivity and level of accuracy.

Both of these innovative, yet simple enhancements have had a direct benefit for other users in 

the field by improving the operational control of PTR-TOF-MS instruments now being 

offered by the manufacturer (Kore).

5.3 Calibration and Benchmarking

Characterising the instrument was essential for future studies relating to sensitivity and mass 

transmission dependencies, both of which are important for concentration determinations and
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comparison of results with those of other instruments. In this study, a calibration gas 

comprising of 14 aromatic compounds was used to obtain the sensitivity measurements for a 

wide range of m/z values (79 to 181) and produced a value of 4-6 ncps ppbv'1 normalised to 

106 H30 + (Chapter 3). Each of the constituents of the calibration gas (§3.2.2 Calibration Gas) 

was separately investigated over a wide E/N  range in order to determine the behaviour of the 

reactions with H30 +. Significantly, results showed that product ions other than the protonated 

parent must be accounted for when a complex chemical mixture is subjected to analysis, 

otherwise the concentrations will be incorrectly determined. For example, if a fragment ion 

contributes to an m/z corresponding to a protonated parent of interest, then the concentration 

for the corresponding neutral will be overestimated if that contribution is not taken into 

account. Conversely, suppose the reaction of H30 + with a molecule, M, were to lead to the 

protonated parent and a fragment channel, with no contribution from other ions at the 

corresponding m/z. Then, if the product ion corresponding to that channel is not taken into 

account, [M] will be underestimated. Thus the calculation of concentrations using PTR-MS is 

not as easy as proposed in some review articles e.g. Blake et al. 2009. This problem has been 

highlighted in the book by Ellis and Mayhew (Ellis 2014), but as yet few studies have been 

undertaken. The investigations in this thesis have illustrated how this issue can be addressed. 

Hence, the aromatic VOCs study has enhanced our knowledge of not only how E/N  can be 

used to change fragmentation patterns in order to improve selectivity but also how these 

patterns can be used to aid in the determination of neutral concentrations. The determination 

of absolute concentrations is crucial for many environments including in particular the 

environmental and food sciences (Ellis 2014).

5.4 Techniques and Methodologies

During the course of pilot studies for pears and bacterial samples not reported in this thesis, it 

was recognised that it would be advantageous if the headspace for these types of samples 

could remain undiluted, not only whilst the VOCs were being introduced into the PTR-TOF- 

MS but also for the duration of the whole investigation, in one case being over 27 days. A
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simple technique was devised whereby a small Nalophan expansion bag was included inside

the sample container (§2.4.1 Preventing Dilution o f VOCs from Biological Sources). This was 

arranged such that the bag could expand and replace the extracted headspace VOCs without 

diluting the volatiles. It should be noted that Nalophan produces its own background VOCs:

isopropanol (protonated at m/z 61), ethyl acetate (protonated at m/z 89) and toluene 

(protonated at m/z 93) (Fortune 2012). These VOCs can be mostly removed by placing the 

bags in an odour free environment for a period of time (Miller 2008). However, the 

Nalophan used for the indole trials retained indole for some considerable time, long after the

investigations ended. This suggests that new bags should be used for each separate trial. 

Another issue to consider is the permeability of the material of the expansion chamber and its 

connections in order to limit the leakage of VOCs and air. The concept is viable as the 

technique can be used for any system to maintain constant sample concentrations. Further 

work is required to establish a reliable container of this type, investigating the use of different 

materials and types of closures.

5.5 Application to Non-aromatic Organic Compounds

Results of the study of the four hexen-l-ol isomers, c/s-2-hexen-l-ol, ds-3-hexen-l-ol, trans-

2-hexen-l-ol and trans-l-hexen-1 -ol, compared favourably with the findings of other groups 

working on both SIFT-MS and PTR-MS: the same four product ions were found for all of the 

isomers, viz. those at m/z 83, 55,41 and 39 when reacted with H30 + in a PTR-TOF-MS. None 

of these represent the protonated parent ion, m/z 101, which is only detected in the cis-3- and 

/r<ms'-3-hexen-l -ols. This work finds that either the protonated parent ion, m/z 101, (from the

3-hexen-l-ols) or the fragment at m/z 99 (from the 2-hexen-l-ols) is present in the spectrum. 

It should be noted that m/z 99 is a product ion which is not mentioned in any other study. The 

conclusion drawn from this is that the fragmentation of the excited, protonated molecule 

depends on the position of the C=C bond and is related to the positioning of the proton. These 

observations lead to a possible method for discriminating between the 2- and 3-hexenols with
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a smaller likelihood of differentiating between the cis- and trans- isomers themselves. Both of 

these are dependent on the instrument’s sensitivity as the ions at m/z 99 and 101 form minor 

contributions to the fragmentation patterns observed (m/z 99 occurs at 7 % ± 3 % at E/N < 

140 Td and m/z 101 occurs at 15 % ± 5 % at E/N  < 130 Td). The approach of varying E/N  

adds to work already done in this field and provides a possible way forward for further work 

as mentioned above.

5.6 Application to Aromatic Compounds

Trichlorobenzene (Chapter 3) and pilot studies with indole revealed issues with certain 

molecules which took tens of minutes to reach a constant concentration in the reaction 

chamber of the instrument. Such compounds are often referred to as ‘sticky’ and, if not 

corrected for, this will lead to lowered sensitivities, increase reaction times and result in traces 

of the compounds remaining in the instrument for extended periods of time. The traditional 

method for dealing with this was used, viz. to heat the inlet lines and reaction chamber to 

avoid condensation (Mikoviny 2010).

The E/N  investigations of individual alkylbenzenes and chlorobenzenes (Chapter 3) and 

hexen-l-ols, (Chapter 4), provided a possible method of discriminating between isobaric 

compounds, i.e. those with the same molecular mass, by examining fragmentation patterns of 

VOCs to determine if they vary in a systematic manner within the operating parameters of the 

PTR-MS system. The fragmentation patterns are represented on branching ratio diagrams 

which show the relative percentages of product ion channels vs E/N  values. In particular, 

branching ratios for ethylbenzene and the xylenes show very different fragmentation patterns 

when examined by changing the energy conditions in the reaction chamber: ethylbenzene 

starts to fragment at significantly lower E/N  values than the xylenes (§3.3.2.1 Comparison o f  

the Isomeric Compounds Ethylbenzene and Xylenes). This illustrates how the selectivity of 

PTR-MS can be significantly enhanced, changing what is essentially a one-dimensional 

instrument into a multidimensional one.
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The application of this method to a real, complex sample was explored by examining results 

for ethylbenzene and xylene using the calibration gas as if nothing were known about its 

contents (§3.2.2 Calibration Gas). Some progress was made to this end by looking at the 

difference in counts as E/N  was varied and this difference used to estimate the amount of 

xylene present (§3.3.2.1 Comparison o f the Isomeric Compounds Ethylbenzene and Xylenes). 

The counts resulting from this method were found to be a factor of 2 too high when compared 

with the known counts of xylene in the calibration gas. Further work in this area is desirable 

as these VOCs are important environmental compounds and it is important to be able to 

distinguish them in real situations (Karl et al. 2001).

The study of chlorobenzenes (Chapter 3) revealed some unanticipated effects: an unlikely 

cluster in the dichlorobenzenes at m/z 129 formed as E/N  was varied. Extensive investigation 

of the m/z 129 peak revealed that its sole provenance could only have been as a result of an 

association of the product ion at m/z 111 (C6H3C1+) with an H20  molecule (§3.4.2.1 Product 

Ion Analysis)

Unexpected patterns were observed in spectra for several of the chlorobenzene compounds as 

E/N  was increased: specifically for />-dichlorobenzene (m/z 147), all spectra displayed a much 

higher signal than expected at m/z 148, the 13C isotope peak. It is considered that this is 

related to the peak at m/z 146 produced by non-dissociative charge transfer with the 0 2 

impurity in the system (§3.6.1 Variation in Spectra in p-Dichlorobenzene as E/N Increases). 

Not all peaks display this non-dissociative charge transfer peak: m/z 94 displays a peak at m/z 

93, but m/z 99 has no peak at m/z 98. These non-dissociative peaks are not mentioned 

elsewhere in the literature but should be taken into acount when quantitive measurements are 

required.

Product ions at m/z 85 and m/z 87 appear in the dichlorobenzenes and their relative intensities 

change as E/N  changes (§3.6.2 Anomalies for m/z 85 and m/z 87): at E/N = 240 Td there is an 

ion at m/z 85 which appears to have two chlorine atoms; at E/N  = 190 Td, the ion at m/z 87 

appears to have one chlorine atom based on the intensities of m/z 87 and 89,. It is not clear
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why these apparent anomalies occurred and they warrant further investigation, perhaps being 

examined with 0 2+ as the analyte gas.

5.7 Summary

The investigations here examined known VOCs and their behaviours under differing energy 

conditions. This was found to be helpful when discriminating between isobaric and isomeric 

compounds. It has presented a new, cogent exposition of the problems to avoid when 

investigating a complex environment a) for calibrating the instrument and b) in a real world 

situation such as is found in the environmental sciences.
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6.1 Conclusion

After making the necessary modifications to the PTR-TOF MS (Kore Technologies Ltd. Ely) 

it proved to be a sensitive and reliable instrument. Sensitivity measurements produced a value 

of 4-6 ncps ppbv'1 normalised to 106 H30 + with results showing that it was essential to 

account for fragmentation in a complex chemical mixture. It has been shown here that failure 

to take this into account leads to an erroneous sensitivity, the'true value being less.

Varying E/N  was used as a technique to examine the fragmentation behaviours of VOCs and, 

in so doing, revealed a method for discriminating isobaric (ethylbenzene and xylenes) and 

isomeric (hexen-l-ols) compounds, all important constituents in the environmental sciences. 

This work gives further weight to those few studies already performed and requires further 

investigation to refine the experimental and analytical processes. A peak at m/z 99, a product 

ion which is not mentioned in any other study, was seen only in the absence of the protonated 

parent ion, m/z 101. This suggests that the presence of one or other peaks {m/z 99 or 101) 

depends on the position of the C=C bond and may be related to the positioning of the proton 

within the molecule and its subsequent fragmentation. This suggests a likely avenue for 

identification of the individual isomers within the hexen-l-ols. Results for fragmentation 

channels with m/z values < 99 compared favourably with those of other groups that had used 

both SIFT-MS and PTR-MS to study these VOCs.

6.2 Further Work

Likely areas for future work are in the analysis of food stuffs (e.g. fruit ripening) and other 

bio-matter (e.g. bacteria, especially in the pressing and topical arena of antibiotic resistance 

and plasmids).
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A p p e n d ix  1 - Th e r m o d y n a m ic s  f o r  r e a c t io n  in  C h a p t e r  3

A l I Thermodynamic Considerations for Reactions 

Formation of m/z 95, protonated phenol

Table A l.l:  Gas phase thermochemistry constants: 
a= NIST;

Compound/species Proton Affinity 
kJ/mol

Heat of formation 
AfH°pas kJ/mol

Chlorobenzene (CB) C6H5C1 753.l a 54.42a
Chlorobenzene prot (CBH+) 
C6H6C1+

- 1258.95 (calc)

Water H20 691a -241.833
Phenol C6H5OH 817.33 -96.443
Phenol prot (PhenolH+) 
C6H6OH+

- 1172.33 (calc)

HC1 - -92.313

To calculate the enthalpy, AH, for the reaction:

Q H s C l lT  +  H 20 --------------------------->  C6H 5O H H + +  HC1

AH = E(Heat of formation products) -  E(Heat of formation reactants)

AH = AHf(PhenolH+) + AHf (HC1) -  AHf (CBH+) -  AHf (H20 ) (1)

Unknowns are AHf(PhenolH+) and AHf (CBH+):

AHf(PhenolH+) is formed in the protonation reaction:

C6H5OH + H+ ----------- >  C6H5OHH+

where the proton affinity of phenol, PA(Phenol):

PA(Phenol) = AHf(PhenolH+) -  AHf(Phenol) -  AH^H*)

AH^PhenolH*) = PA(Phenol) + AHf(Phenol) + AH^fT)

Similarly, for AH^CBfT):

AHf(CBH+)=  PA(CB) + AHf (CB) + AHf (H+)

Substituting for both of these unknowns into (1):

AH = PA(Phenol) + AHf(Phenol) + AHf(H+) + AHf (HC1) -  (PA(CB) + AHf(CB)

+  AHf(H+)) -  AHf (H 20 )

*  AH = (PA(Phenol) -  PA(CB)) + (AHf(Phenol) -  AHf(CB)) + AHf (HC1) -  AHf (H20 )
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Substituting values from the above table:

AH = 62.8 kJ/mol

Formation of m/z 129, protonated dichlorophenol

Table A1.2: Gas phase thermochemistry constants: 
a= NIST; b=Basheer (2006); c=Zhu (2003)

Compound/species Proton Affinity 
kJ/mol

Heat of formation 
AfH°pas kJ/mol

1,4-Dichlorobenzene 
(DCB) C6H4C12

701.673 24.6a

Water H20 691a -241.83a (-469)b
Chlorophenol C6H5C10H 1422.59b -131.9 (2-chlorophen) 0 

-153.3 (3-chlorophen)c 
-145.8 (4-chlorophen)c

HC1 - -92.3 la

CelUChYt + H 20   >  C g^C lO H lf +HC1

To calculate the enthalpy, AH, for the above reaction:

AH = E(Heat of formation products) -  £(Heat of formation reactants)

AH = AH^ChlPhenHT) + AHf (HC1) -  AHf (DCBH+) -  AHf (H20 )  (2)

By comparison with the phenol calculation, this can be seen to be equivalent to:

AH = (PA(ChlPhenol) -  PA(DCB)) + (AHf(ChlPhenol) -  AHf(DCB)) + AHf (HC1)

-  AHf (H20)

Substituting values from the above table, using AfH° for 2-chlorophenol:

AH = 713.94 kJ/mol

Substituting values from the above table, using AfH° for 4-chlorophenol:

*  AH = 700.04 kJ/mol

Substituting values from the above table, using AfH° for 3-chlorophenol:

AH = 692.54 kJ/mol
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