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ABSTRACT

Abstract

Retro-translocation from the endoplasmic reticulum (ER) to the cytosol of 

secretory and membrane proteins takes place on misfolded molecules targeted 

for proteasomal degradation, in a process called ER associated degradation 

(ERAD). Because of the difficulties in clearly discriminating the fraction of 

molecules already retro-translocated from the ones in the ER, we took 

advantage of the E. coli biotin-ligase (BirA) expressed in the cytosol of 

mammalian cells, to specifically biotin-label proteins that undergo retro

translocation. The method was validated using four different model proteins, 

known to undergo retro-translocation upon different conditions: the MHC-la 

chain, the non-secretory null-Hong Kong mutant of a1 antitrypsin, the 

immunoglobulin yH chain and calreticulin. The specific mono-biotinylation of 

only cytosolically dislocated molecules resulted in a novel quantitative method 

to determine the extent of retro-translocation.

The method was used to study dislocation of CD4 and BST-2/Tetherin, two 

membrane proteins targeted to degradation by the HIV-1 protein Vpu. It was 

found that CD4 retro-translocates with oxidised intra-chain disulphide bridges 

that only upon proteasomal inhibition accumulates in the cytosol in reduced and 

de-glycosylated form. Similarly, BST-2/Tetherin is first exposed to the cytosol as 

a dimeric-oxidised complex, which then becomes de-glycosylated and reduced 

to monomers. Experiments with the non-secreted NS1 Ig-K light chain showed 

that also this ERAD model protein is retro-translocated with oxidised cysteines. 

The role of VCP/p97-ATPase in retro-translocation was investigated. In contrast 

to what previously reported, it was found that it is not required to dislocate 

ERAD substrates from the ER lumen to the cytosol, while it is required for 

efficient de-glycosylation and proteasomal degradation of ERAD substrates. 

The results obtained indicate that complete cysteine reduction and unfolding is 

not strictly required for retro-translocation, suggesting alternative mechanisms 

of the ERAD pathway. In addition, the role of VCP/p97-ATPase was found 

associated to stages downstream of membrane crossing.
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INTRODUCTION

Introduction

1. The ER from protein synthesis to ERAD

1.1 ER general aspects

The endoplasmic reticulum (ER) is a eukaryotic organelle, spread in the cell 

cytoplasm from the nuclear membrane to the Golgi apparatus. This organelle is 

formed by an interconnected network of membrane delineated structures such 

as tubules, vesicles and cisternae.

The environment within the ER apparatus is widely different from other cell 

compartments such as the cytosol, with a high Ca2+ concentration and a more 

positive redox potential.

Many different functions are associated with the ER and those are reflected in 

the different ER subdomains like the nuclear envelope, the rough ER, the 

smooth ER and the ER-Golgi intermediate compartment (ERGIC) (Lavoie and 

Paiement, 2008). The rough ER is where secretory proteins are synthesized 

and reach their primary folding, while the smooth ER is the site of lipid and 

steroid synthesis, carbohydrate metabolism, calcium level regulation and drug 

detoxification (Lavoie and Paiement, 2008).,

The ER altogether is responsible for the synthesis, processing and trafficking of 

about one third of the proteins encoded by the human genome.

1.2 ER protein synthesis and translocation

Secretory proteins and many transmembrane proteins are synthesized on 

ribosomes bound to the ER membrane. The translation of those proteins 

initiates in the cytosol on free ribosomes involving a number of initiation and 

elongation factors (Preiss and Hentze, 2003). If the nascent polypeptide has a 

signal sequence (a short hydrophobic sequence of around 20 amino acids) the 

protein complex SRP (the Signal Recognition Particle consists of a 7S RNA 

molecule of 300 nucleotides and six protein subunits: SRP72, SRP68, SRP54, 

SRP19, SRP14 and SRP9) bind it through the methionine-rich M-domain of its 

54kDa subunit (SRP54), while the interaction with the ribosome promotes the
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loading of GTP on the G-domain of the SRP complex (Krieg t al., 1986; Lutcke 

et al., 1992; Luirink and Sinning, 2004).

The complex docks onto the translocon, a heterotrimeric protein complex called 

Sec61p, through the SRP receptor (SRa-SR(3) promoting the interaction of the 

ribosome to the translocon pore, formed by the transmembrane of its three 

Sec61a-, (3- and y-subunits (Rapoport et al., 1996; Chen et al., 2010).

After the release of SRP and SRP-receptor they are recycled and separated 

through GTP hydrolysis (Connoly and Gilmore, 1993), while the nascent protein 

is synthesized by the ribosome directly on the ER allowing a co-translational 

translocation within the ER lumen (Fig.1). In this process the GTP hydrolysis is 

believed to be required for chain elongation by the ribosome but not for the 

polypeptide movement through the channel (Connoly and Gilmore, 1986; 

Rapoport, 2007).

ribosome

GTP

I

mRNA

signal
sequence

SRP

IIP
iTP

SRP-
receptor[GTl

GOIGTl

I
translocation

Figure 1. Scheme of the SRP cycle in the first steps of the translocation process 

(Rapoport et al., 1996). When the signal sequence of a growing polypeptide chain has 

emerged from the ribosome, SRP bind both the nascent chain and the ribosome (step 1). Then 

GDP associated with SRP is replaced by GTP (step 2). This complex interacts with the ER 

membrane through the SRP receptor (which also is binding a GTP molecule) and the Sec61p
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complex (step 3). After ribosomal docking the SRP complex is released (step 4), while the 

membrane-secretory protein start to get translocated. Finally the SRP cycle terminates (step 5), 

through GTP hydrolysis in both SRP and SRP receptor, and SRP is released.

The Sec61 a-subunit, a 10 membrane-spanning domains containing protein, 

forms the aqueous pore of the channel, but, when targeting is completed, this 

pore is not open to the lumen until the nascent chain length reaches about 70 

residues (Simon and Blobel, 1991; Crowley et al., 1993, 1994.).

The structure of the Sec61 a-subunit is evolutionary conserved through the 

species and the pore, formed by a single a-subunit, has an estimated maximum 

dimension of 15 X  20 angstrom (A), according to the crystal structure of a 

bacterial SecY complex (Van den Berg et al., 2004; Breyton et al., 2002). In 

such a small channel the nascent polypeptide can only form a a-helix, but not 

tertiary structure (Kowarik et al., 2002). Despite that, fluorescence quenching 

experiments during cotraslational protein translocation have indicated that the 

pore is rather larger (40-60 A) (Hamman et al., 1997), suggesting the possibility 

that two or more Sec61/SecY complexes can be associated fusing their pore 

into a large channel. Even though experiments of disulphide-bridge cross- 

linking found that, during translocation, both the signal sequence and the 

mature region of the polypeptide are located in the same SecY molecule 

(Rapoport 2007; Osborn and Rapoport, 2007). While in the heterotrimeric 

translocon complex the Sec61y subunit, a small type two membrane protein of 

7kDa, is in tight contact with Sec61a functioning as a sort of hinge for the 

channel, clamping the two halves of alpha subunit (TM1-TM5 and TM6-TM10), 

the type two membrane protein Sec61p seems to have a more peripheral 

localization (Van den Berg et al., 2004) (Fig. 2). Indeed Sec6ip has a less 

pivotal role during translocation as is not required for cell viability in S. 

cerevisiae and in E. coli as observed for the Sec61a and y, however this subunit 

is thought to interact directly with the ribosomal protein Rpl17 in all ribosomal 

translocon complexes (Pool, 2009). Probably its function is minimally required 

to stabilize ribosomal association with ER membranes, a role predominantly 

performed by the C-terminal tail and loop 8 of Sec61a (Raden et al., 2000; 

Cheng et al., 2005). Rather, Sec61p activity is to facilitate the transfer of the 

nascent chain from SRP to the translocon, reasonably driving the signal
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sequence towards the ER lumen after release from the SRP (Kalies et al., 1998; 

Jiang et al.,2008; Pool, 2009).

Figure 2. Architecture of membrane domains in SecY complex (adapted from Van den 

Berg, 2004). (A) Lateral organization of SecY complex in the ER membrane. Protruding 

cytosolic loops of a-subunit are probably involved in ribosomal binding. Membrane is shown in 

grey in the background. (B) Top view sliced through the middle of the membrane. The image 

shows the bridge form by y transmembrane subunit between the two halves of a-subunit, and 

the peripheral localization of |3-subunit in the complex. The solid lines represented the 

connection of the transmembranes from the N to the C terminus in the two halves of a subunit; 

the dotted arrow shows the axis of internal symmetry.

Many ER resident proteins assist the entry of the polypeptides. These include 

the translocon-associated protein complex (TFRAP), a protein with still an 

unclear function (Rapoport, 2007), and the translocating-chain associating 

membrane protein (TFRAM), a multispanning membrane protein. The latter has 

been detected in proximity to short nascent polypeptide chains, in cross-linking 

experiments, after their transfer from SRP into the ER membrane. Moreover 

TRAM was found to be required for the cotranslational translocation of most 

polypeptides in vitro (Gorlich et al., 1992; Gorlich and Rapoport, 1993). In 

addition to TRAM many other proteins are associated with the translocon and 

interact with the nascent polypeptide. The tetrameric Sec62/Sec63 complex 

(Panzner et al., 1995) has been coupled with a population of proteins post- 

translationally inserted in the ER lumen or in the periplasm in bacteria. The 

post-translational translocation occurs in particular in simpler organisms, i.e. 

yeast and bacteria, but also in higher eukaryotes. This pathway is used mostly 

by soluble proteins with a signal sequence not highly hydrophobic, that allows

A

Cytoplasm

Membrane

Outside

B
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them to escape the recognition by SRP during synthesis (Ng et al., 1996; Huber 

et al., 2005a).

This class of proteins need to remain unfolded or loosely folded after their 

release from the ribosome (Huber et al., 2005b) through the binding of many 

cytosolic chaperons, which are removed when translocation begins (Plath and 

Rapoport 2000).

Sec63 has in its luminal portion the J-domain, which interacts with the ATP- 

loaded peptide-binding domain of the protein BiP, a member of the Hsp70 

family, resulting in the binding of the ER-chaperon with the translocation 

substrate through ATP hydrolysis (Misselwitz et al.,1998).

The J-domain-activated BiP has a low binding specificity, thus it can interact 

with most of the polypeptide segments emerging from the channel. In this case 

BiP promotes the translocation through a ratcheting mechanism, because, while 

the polypeptide is sliding in the translocon by Brownian motion, the binding of 

BiP prevents a movement back of the substrate, resulting in a forward 

translocation driven by a subsequent interaction of another BiP to the next 

sequence of the polypeptide (Matlack et al., 1999). This proceeds until the 

polypeptide is fully translocated, when an exchange of ADP to ATP releases BiP 

(Fig-3).

Cytosol

Sec61 ” l -H J
C o m p le x  } J-domain [ADP! ;ADP'

BiP

Figure 3. Representation of role of BiP in the post-translational translocation (Rapoport, 

2007). In the ratcheting model BiP is believed to bind the entry polypeptide through ATP 

hydrolysis stimulated by the J-domain of Sec63, preventing a reverse movement of the 

substrate back to the cytosol.

The membrane insertion of many transmembrane proteins occurs through the 

same targeting and translocation machinery used for secretory proteins; if the
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translocating polypeptide bears a hydrophobic a-helix domain this acts as an 

anchor signal and provokes the exit of the nascent membrane protein from the 

translocon to become embedded into the phospholipid bilayer.

In this process, at the early phases, the membrane anchor interacts with both 

the Sec61 and the lipid bilayer, but also in some cases with the TRAM protein 

(Martoglio et al., 1995; Heinrich et al., 2000). In particular the association of the 

hydrophobic domain with the membrane occurs through the gate formed by four 

short transmembrane segments of Sec61 linking the two halves of the 

molecule; from this joint the transmembrane domain of the new protein can 

reach the lipid phase (Van den Berg et al., 2004). In general in the absence of 

an N-terminus leader peptide, the orientation of the transmembrane domains, 

having the N terminus oriented to the luminal or cytosolic side, depends on the 

amino-acid sequences around this protein region. Indeed, when a hydrophobic 

polypeptide portion emerges from the ribosomal tunnel, if it is long and its N 

terminus is not retained in the cytosol by positive charges or by already folded 

domains it can flip across the channel and subsequently exit it laterally into the 

lipid phase, giving rise a type one membrane protein even without a classical 

leader peptide at the extreme N-terminus. In contrast, the N-terminus is usually 

retained in the cytosol if in this portion are already present folded structures or 

in close proximity to the hydrophobic domains are located positively charged 

amino acids. In this case the polypeptide chain is further elongated, inserting 

the C-terminus of the polypeptide as a loop through the channel in the ER 

lumen (Rapoport, 2007). However a membrane proteins can have several 

transmembrane domain but the exact mechanisms leading to their appropriate 

insertion in the ER membrane are still not completely understood. Usually in 

those multi-spanning membrane protein the first transmembrane domain 

dictates the orientation of the subsequent ones (Wessel, 1988), although there 

are exceptions where a transmembrane domain has its own preferred 

orientation (Rapoport 2004). For example if N-glycosylation sites are present 

and recognized these impose final luminal localization to the glycosylated 

protein domain (Goder et al., 1999).
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1.3 Protein folding in the ER

INTRODUCTION

When the nascent secretory protein reaches the ER lumen a group of proteins 

in charge of the folding dock to the new protein, catalysing the post-translational 

modifications typical of the ER compartment. First the protease signal 

peptidase, a complex of five different proteins (in mammals) with serine- 

peptidase activity (Evans et al., 1986), removes the leader peptide, generally 

cleaving at a site that has small aliphatic residues at position -1 and -3 (Paetzel 

et al., 2002). The cut secretion signal is then further degraded by the protein 

signal peptide peptidase (SPP) (Weihofen et al., 2002).

Second the oligosaccaryltransferase (OST) complex transfers an oligosaccharyl 

moiety from the dolichol intermediate to Asn of the nascent polypeptide in the 

sequence context Asn-X-Ser/Thr, where X can be any amino acid other than 

Pro (Bause and Hettkamp, 1979). N-glycosylation occurs when the site reaches 

a distance of at least twelve amino acids from the luminal side of the membrane 

(Nilsson and Heijne 1993) and when the translated NXS site is already distant 

65-75  amino acids, depending on the tendency of the nascent chain to adopt 

an a helix conformation in the ribosome-translocon channel, from the ribosomal 

P site (Mingarro et al., 2000; Deprez et al., 2005). The OST is a heteromeric, 

multisubunit complex in the ER membrane, characterized by the presence of 

many different proteins. The most characterized ones are ribophorin I, 

ribophorin II, OST48, DAD1, while the yeast homologous are respectively 

named Ostlp, Swplp, W bplp, Ost2p (Yan and Lennarz, 2005). Among them a 

pivotal role has been assigned to Ost1p/ribophorin1 which was found to be 

cross-linked to many other OST components, probably playing an important role 

in the assembly of the enzyme complex (Yan et al., 2003). It is important to 

underline that the presence of an N-glycosylation consensus sequence is 

necessary but not sufficient to determine the glycosylation of a secretory 

protein, in particular amino acid residues adjacent to the consensus sequence 

modulate the binding of the polypeptide substrate with the OST complex. This 

suggests that the substrate-binding site on the enzyme recognizes a particular 

conformation formed by several amino acids rather than just the two Asn and 

Ser/Thr residues (Petrescu et al., 2004).

The preformed oligosaccharide in the N-glycosylation is formed by 

G!c3 Man9GlcNAc2 (Khalkhall and Marshall 1975) (Fig.4).
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Figure 4. Scheme of the cotranslational N-glycosylation process. The preformed 

Glc3Man9GlcNAc2 sugar moiety is transferred by the OST complex from the dolichol to Asn 

residues of the nascent polypeptide.

After the conjugation with the protein substrate the N-glycosylation tree is 

rapidly rearranged by the removal of the two outermost glucose residues by the 

enzymes glucosidase I (Gl) and II (Gil) (Parodi, 2000). The type-ll membrane 

enzyme Gl is a Mannosyl-oligosaccharide glucosidase, which cleaves in a 

highly specific manner the distal alpha 1,2-linked glucose residue from the 

GIC3 MangGlcNAc2 oligosaccharide precursor; this enzyme is believed to be 

tightly associated to the OST complex (Caramelo and Parodi, 2008). Indeed its 

reaction occurs almost simultaneously with glycan transfer (Hubbard and 

Robbins, 1979; Deprez et al., 2005). After the first terminal glucose is trimmed 

by Gl, the Gil can remove both the two residual glucose residues. Gil is a 

soluble dimeric protein both in yeast an in mammals. The catalytic activity 

resides in the a subunit, while the p subunit bears a KDEL-like sequence at its 

C-terminus, retaining the dimeric complex in the ER (Trombetta et al., 1996; 

Caramelo and Parodi, 2008). Of note the cleavage of the final glucose requires 

the expression of the p subunit, for which a regulatory role has been proposed 

at least in yeast (Wilkinson et al., 2006). Gil cleavage of these two a1,3 

glucoses is thought to not happen, however, in the same consecutive reaction, 

probably because of the different structural orientation in the chain of glucose 

a1,3 glucose and glucose a1,3 mannose (Caramelo and Parodi, 2008). This 

separation between the Gil cleavages of the N-glycan probably allows
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recognition of the monoglucosylated protein by calnexin and calreticulin (Deprez 

et al., 2005).

Indeed once cleaved the second glucose, the Glc1 Man9GlcNAc2-protein is 

rapidly recognized by the lectin-like chaperones calnexin and calreticulin that 

intervene to favour the folding process.

Calnexin is a type-l ER resident membrane protein (Ahluwalia et al., 1992; 

Williams, 2006), while calreticulin is a soluble enzyme that has the signal KDEL 

at its C-terminus. The KDEL sequence promotes calreticulin retention in the ER 

through the binding with the multi-spanning KDEL-receptor protein (Fliegel et 

al., 1989; Wada et al., 1991; Pelham, 1990).

When the Gil removes the remaining glucose residue, if the protein is finally 

folded, it can exit from the ER through COPII vesicles that bud from the ER 

surface (Lotti et al., 1996; Barlowe, 2002). COPII-coated vesicles bud from 

specific areas of the so called transitional ER, where the ER exit sites (ERES) 

are located (Bannykh, et al., 1996; Budnik and Stephens, 2009). The assembly 

of the COPII coat initiates with the activation of the small GTPase Sari by 

Sec12 (a transmembrane protein which acts as a guanine exchange factor), 

leading to Sari attachment to the ER membrane. This process is mediated by 

the exposure of an N-terminal amphipathic helix of Sari when is loaded with 

GTP, causing per se a local deformation or the ER membrane (Bielliet al.,

2005). This membrane-linked Sari recruits the heterodimer formed by Sec23 

and Sec24 (Hughes and Stephens, 2008). Sec23 act as a linker between Sari 

and Sec24 (Yoshihisa et al., 1993), which is instead required for the majority of 

cargo enrolment through its multiple independent cargo binding sites (Miller et 

al., 2002 and 2003). At this point a pre-budding complex is formed and in the 

cytosolic side of the ER membrane are recruited a minimum of 24 

heterotetrameric complexes, composed each by two Sec13-Sec31 pairs, which 

are organised to form the outer cage of the budding COPII vesicle (Lederkremer 

et al., 2001; Hughes and Stephens, 2008). The full coat assembly drives vesicle 

scission through a not well defined mechanism involving S ari-G TP ase activity 

(Yoshihisa et al., 1993; Budnik and Stephens, 2009). The vesicles are then 

fused to the ER-Golgi intermediate compartment (ERGIC), before final protein 

sorting to the appropriate destination in the secretory pathway through the Golgi 

compartment (Appenzeller-Herzog and Hauri, 2006).

13



INTRODUCTION

The third post translational modification that occurs on proteins during folding or 

even co-translationally in the ER lumen, is performed by proteins belonging to 

the thioredoxin superfamily, as the protein disulfide isomerase (PDI). Those 

enzymes are involved in the formation of intra-molecular and inter-molecular 

disulfide bonds in almost any newly synthesized polypeptide possessing 

cysteines in a luminal compartment (Ellgaard and Ruddock, 2005). Interestingly 

most PDI family members contain both catalytic and non-catalytic thioredoxin 

like domains (Kozlov et al., 2010). The active domains contain catalytic CXXC  

motifs, which are able to react with the thiols of cysteines. The non-catalytic 

domains although structurally similar to the active ones do not present catalytic 

cysteines. Instead, they are usually responsible for substrate recruitment 

(Denisov et al., 2009)

Currently it is believed that the major route for the oxidation of reduced cysteine 

(-SH) to oxidized cysteine (S-S) is via the oxidation of PDI by members of the 

Ero1 sulfhydryl oxidase family, followed by the oxidation of the substrate 

reduced cysteine by PDI (Lappy and Ruddok, 2011).

PDI proteins are not only required to catalyse the S-S bridge formation, but they 

are also enzymes able to isomerase or reduce also already formed disulfide 

bonds (Kozlov et al., 2010). Remarkably, independently of its redox activity, 

proteins of the PDI family can also act as a chaperone both in vitro and in living 

cells (Cai et al., 1994; McLaughlin and Bulleid, 1998). Among the members of 

the PDI superfamily, ERp57 was reported to be important in the oxidative folding 

during the protein folding cycles associated with calnexin and calreticulin (Oliver 

etal., 1999).

Indeed calnexin and calreticulin, facilitating the interaction between the newly 

synthesized protein and ERp57, favour indirectly the oxidative folding of their 

substrates, preventing protein aggregation, not only acting as chaperones but 

also in this way (Williams, 2006; Russell et al., 2004; Frickel et al., 2002). Other 

than ERp57 and PDI, in the PDI family several disulfide isomerases have been 

described in mammalian cells, most of which are ubiquitously expressed 

(Kozlov et al., 2010). Each PDI protein has a peculiar binding affinity with Ero1 

and some family members have extra domains driving the disulfide isomerase 

to its specific class of substrates in the ER lumen, thus influencing the redox 

reactions in the different sub-compartments of the ER (Feige and Hendershot, 

2011). For example ERdj5 is a PDI protein with a DnaJ-like domain which
14
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favours its interaction with BiP (Ushioda et al., 2008). BiP binding, and also 

interaction with EDEM, influences the activity of ERdj5 toward misfolded 

proteins favouring their reduction before degradation.

In addition some ER-secretory proteins bear at the C-terminus a signal for the 

attachment of the glycosylphosphatidylinositol (GPI) anchor, which bind the 

mature protein to the outer layer of the membrane (Paulick and Bertozzi, 2008). 

The GPI signal peptide is sufficient to induce the GPI-anchoring when attached 

to the exposed C-terminus of a soluble secreted protein. Of the GPI anchor 

signals is known that they are usually formed by eight to twenty hydrophobic 

residues preceded by 6 -12  hydrophilic “spacer” residues, rich in charged amino 

acids and proline (Eisenhaber et al., 2001; Orlean and Menon, 2007). At the N- 

terminus of this last region is present an amino acid residue with a small side- 

chain (Gly, Ala, Ser, Asn, Asp or Cys), called x, to which, after the cleavage 

performed by the GPI-transamidase between the x and x+1 sites, the GPI- 

anchor is linked. Around this amino acid x the x+1 residue can be any amino 

acid except a Pro, and the x+2 position is usually a small amino acid such as 

Gly, Ala or Ser (White et al., 2000).

The GPI-transamidase is believed to form transient intermediates with the 

precursor before the GPI-anchor is attached to the carbossilic terminal group of 

the substrate protein (Maeda and Kinoshita, 2011). Under defective 

biosynthesis of GPIs, precursor proteins may be released from the GPI- 

transamidase, but retained by chaperone molecules, being then targeted to 

proteasomal degradation, or the processed protein may be even secreted in a 

soluble form (Ashok and Hegde, 2008; Wilbourn et al., 1998).

The GPI anchor has a complex structure conserved in most eukaryotes formed 

by an initial phosphoethanolamine, which act as a linker between the GPI and 

the protein C-terminus (Fig. 5); this phosphoethanolamine is covalently bound 

to position 6 of the first mannose. The glycan part of the GPI anchor is made of 

three mannose (linked a1 -2  and a1 -6 ) followed by a glucosamine liked a1 -4 . 

The final glucosamine is bound a1 -6  to a single myo-inositol (Maeda and 

Kinoshita, 2011). In all mammalian GPI anchors at least one additional 

phosphoethanolamine is present, in particular linked to 2-position of the 

mannose linked to the glucosamine (Orlean and Menon, 2007). Other 

modification and sugar residues can be added on this glycan core structure, as
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the addition of galactose, N-acetyl-galactose and mannose. The inositol in the 

GPI anchor is further linked in position 1 to a phospholipid which can vary in 

their saturation state and length from 14 to 28 carbons. Additional lipids such as 

palmitic acid can be present on the 2-hydroxyl group of the inositol ring; the 

presence of this extra fatty acid renders the GPI anchor resistant to cleavage by 

PI-PLC an enzyme exploited also in vitro during analysis of presumed GPI 

anchored proteins (McConville and Ferguson, 1993). Despite the structural 

complexity of the GPI anchors, up to now, their only confirmed biological 

function is the stable anchoring to membranes of the GPI-lated protein and their 

modal localization in the elusive and not well characterized lipid raft domains at 

the plasma membrane (Paulick and Bertozzi, 2008).

©

proteino-p-o    Phosphoethanolamine

o  ,inker

M
O -P -O -----------v O

H„°o-
O, P

Glycan core

15* *31
C 2 1 H 3 5

Phospholipid tail

Figure 5. Example of the GPI anchor from human erythrocyte acetylcholinesterase 

(Paulick and Bertozzi, 2008). In red is indicated the phosphoethanolamine linker with the 

protein, glycans are shown in black and phospholipid tail and extra phosphoethanolamine are 

indicated in blue.

As in the cytosol, also in the ER lumen during the folding of a protein the prolyl- 

peptide bonds are rearranged to the cis or trans isoform by peptidylprolyl cis- 

trans isomerases (PPIase), allowing a correct conformation to the nascent 

polypeptide (Bose and Freedman, 1994). This effect of PPIase on protein 

folding can be either direct or indirect, as in the case of FK506-binding protein
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23 (FKBP23), a soluble ER resident PPIase protein. Indeed FKBP23 is able to 

influence directly protein folding of BiP through its PPIase activity on 

Pro117cis/trans conformation in a calcium regulated manner (Zhang et al., 

2004). However, this conformational change of BiP suppresses the ATPase 

activity of the chaperon and thus FKBP23 PPIase activity can influence 

indirectly the folding of several BiP regulated substrates (Feng et al., 2011).

Even though is not well established how chaperones monitor protein folding, 

this process is believed to occur either through detection of exposed 

hydrophobic patches, or through excessive surface dynamics associated with 

the non-compact structure characteristic of partially folded proteins, or both 

(Malhotra and Kaufman, 2007).

Hydrophobic domains are commonly buried in folded proteins, otherwise they 

display a tendency to form insoluble aggregates that can have toxic effects. 

Chaperones such as those belonging to the family of the heat shock proteins 

primarily recognise hydrophobic amino acid side-chains exposed by non-native 

proteins and promote their folding through ATP-regulated cycles of binding- 

release (Gething 1999; Mayer and Bukau, 2005).

Among them the protein BiP is not only pivotal to post translational 

translocation, but it is also an important chaperone in the next step of protein 

folding.

Indeed BiP was originally found associated with immunoglobulins (Haas and 

Wabl, 1983) and, through ATP hydrolysis, after a different number of binding- 

release folding cycles, it can ensure the proper protein folding (Gething, 1999). 

BiP was also found to keep the substrate in a conformation that ensures PDI 

has access to the cysteines involved in a disulphide bond formation, so 

favouring the PDI activity (Mayer et al., 2000; Panter et al., 2000).

If protein folding is delayed, proteins are subjected to additional folding cycles 

or, when the protein has become irreversibly unfolded, are targeted for 

proteasomal degradation through ER-associated degradation (ERAD) 

(Lippincott-Schwartz etal., 1988).
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At the end of the folding process, if a protein has not been folded correctly, it 

can be recognized through its exposed hydrophobic patches or because it 

harbours an insufficiently compact structure.

For these proteins the so called calnexin cycle occurs. This process is 

characterized by one, or rarely more, cycles of deglucosylation-reglucosylation 

which take place in the ER lumen, mediated by activities of the glucosidase-ll 

(Gil) and of the UDP-glucose glycoprotein glucosyltransferase (UGGT or GT). 

The latter enzyme can add back a glucose residue to the N-linked glycan 

(Caramelo et al. 2003) and in humans are known two soluble forms (HUGT1 

and 2), both retained in the ER via a KDEL-like signal. Of them the most 

catalytically active, at least in vitro, seems to be the HUGT1 (Arnold et al., 

2000). In the case of glucose re-addition the protein re-enters in the calnexin- 

calreticulin cycle (Caramelo and Parodi, 2008; Ellgaard et al., 1999), while the 

removal of all the glucose by the Gil promote release from the cycle to further 

processing and maturation through the secretory pathway (Fig. 6). Calnexin and 

calreticulin bind, as lectins, glycosylated proteins substrates, but it was shown 

that they can act as chaperones preventing also aggregation of non

glycosylated proteins (Ireland et al, 2008). It is believed that, when calnexin and 

calreticulin release a protein which still exposes hydrophobic regions, those 

protein segments and the present glycan moieties can be recognized directly by 

UGGT, which through the re-glucosilation retarget them again toward the two 

lectins preventing escaping of misfolded proteins (Sousa and Parodi 1995; 

Pearse et al., 2008).
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Figure 6. Schematic representation of the calnexin cycle (Ellgaard et al., 1999). Newly 

synthesized N-glycosylated proteins are initially deglucosylated by Gl and Gil leaving a single 

glucose on the N-glycosylation sugar moiety, which is recognised by a chaperone like Calnexin 

(CNX). With assistance of other proteins, as the oxidoreductase ERp57, a fist attempt of 

substrate folding is performed. In case of success the folded substrate is released through the 

secretory pathway by the deglucosylation of the Gil, otherwise the deglucosylated protein is 

recognised by GT, re-glucosylated end retargeted to Calnexin.

1.5 Unfolded protein response

The accumulation of aberrant proteins can be fatal to a cell system, but to 

overcome this issue cells can activate a process known as unfolded protein 

response (UPR). The UPR is an ER-to-nucleus and ER-to-cytosol signalling 

pathway (Schroder and Kaufman, 2005), that result in an enhanced 

transcriptional synthesis of chaperones and enzymes required for protein 

folding, trafficking and degradation (Harding et al., 2002).

Apart from that, globally the process causes the attenuation of protein synthesis 

to prevent a worse ER engulfment and to allow the clearance of the misfolded 

proteins.

Three UPR pathways are known, in all of them a pivotal role for BiP was 

proposed. In this hypothesis UPR initiate when the misfolded proteins induce 

BiP dissociation from the ER transmembrane proteins IRE1 (inositol-requiring
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enzyme-1), ATF6 (Activating transcription factor 6) and PERK (PKR-like ER 

kinase), which function as UPR transducers (Fig. 7) (Ron and Walter, 2007).

ER lumen

PERK ATF6 IRE1

(P P'sCytosol

Xbp1 
mRNA splicing

Blockage of 
translation \---

ATF6

ATF6ATF4 Xbp1

Nucleus
r-*- Transcription of UPR genes

Figure 7. Representation of the three main UPR pathways (Cyr and Hebert, 2009). In the

presence of unfolded polypeptides BiP dissociate from the UPR sensors PERK, ATF6 and IRE1. 

This is believed to cause activation of the sensors, which through phosphorylation or proteolytic 

cleavage induce the beginning of the UPR pathway, leading to phosphorylation of elF2a 

(impairing translation), splicing of Xbp1 and translocation of resulting transcription factors to the 

nucleus to boost transcription of UPR genes.

However the transmembrane ribonuclease/kinase and UPR sensor protein 

IRE1 can be activated also by direct binding to unfolded proteins, as in its 

luminal domain is present a peptide binding pocket, which upon dimerization, 

form a groove with a structure resembling the one present in the major 

histocompatibility complex molecules (Credle et al., 2005). IRE1 bounds to 

unfolded proteins could trigger its oligomerization and thus its activation (Walter 

and Ron, 2011). According to this view the BiP binding to IRE1 prevent the 

oligomerization of the UPR sensor under physiological conditions in the 

presence of low levels of misfolded proteins, thus stabilizing the appropriate 

concentration of free IRE1 monomers available (Pincus et al., 2010).

Interesting results were observed recently using mutants and deletion mutants 

of IRE1 luminal domain, which showed sensitivity, similar to wild type, towards
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depletion of the membrane lipid component inositol and deletion of genes 

involved in lipid homeostasis; therefore showing that somehow IRE1 cytosolic 

or transmembrane domains can sense also membrane aberrancy (Promlek et 

al., 2011). After its activation through oligomerization and trans-phosphorylation 

on its cytosolic domains, IRE1 performed an unusual cytosolic splicing of XBP1 

(X-box-binding protein 1) mRNA (Yoshida et al., 2001). The spliced XBP1 

mRNA generates a new longer C-terminus on the Xbp1 protein, which in this 

form behaves as a transcription activator, targeting genes encoding for 

enzymes involved in ER protein disposal and triggering growth arrest and 

apoptosis (Lee, et al. 2003; Ron and Walter, 2007).

IRE1 was also reported to cleave other mRNAs, in addition to XBP1, coding for 

ER targeted proteins and mediating their degradation (Hollien and Weissman,

2006). The observation could be explained considering the homology of IRE1 to 

ribonuclease L, an RNase with reduced specificity (Dong et al., 2001). This 

activity was interpreted as a more rapid response, compared to gene 

transcription, to decrease ER overload under stress conditions (Hollien and 

Weissman, 2006). In a similar way IRE1p, a second mammalian homolog of 

IRE1, was found able to cleave 28S ribosomal RNA and thus by ribosomal 

perturbation, it decreases the total synthesis of new proteins on the ER 

membrane (Iwawaki et al., 2001).

A second UPR cascade involves ATF6, a mammalian protein complex formed 

by the closely related type-ll transmembrane proteins ATF6a and ATF6p. The 

complex can be either homo- and hetero-dimeric, and following dissociation 

from BiP, it can be transported to the Golgi, where it is cleaved by the S1P and 

S2P proteases (Haze et al., 2001). The released cytosolic N-terminal dimeric 

fragment possesses a basic leucine zipper domain (Haze et al., 1999; Ye et al., 

2000). This fragment act as a transcriptional factor that translocates to the 

nucleus activating ER stress response genes, as for instance, several 

chaperones like BiP, PDI, and glucose-regulated protein 94 (GRP94) (Yoshida 

et al., 1998; Schroder and Kaufman, 2005; Walter and Ron, 2011). Of note a 

predominant role for ATF6a, rather than ATF6p, was reported as the 

transcription factor generated from this protein is required for transcription 

induction of major chaperons and ERAD components; in addition ATF6a 

heterodimerizes with Xbp1 again for the induction of ER-associated degradation
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components (Yamamoto et al., 2007 Adachi et al., 2008). This crosstalk 

between the two pathways generate an ATF6-XBP1 heterodimer which can 

bound to the cis-acting UPRE (Unfolding Protein Response Elements: 

consensus sequence TGACGTGG/A) with an 8-fold higher affinity than the 

XBP1 homodimer (Yamamoto et al., 2007). UPRE are located in promoters of 

several components of the ER-associated degradation system that can deal 

with unfolded proteins in the ER (Yamamoto et al., 2004).

The other cis-acting response element, present in the promoter region of 

several chaperons and ERAD components, recognized by either Xbp1 and/or 

ATF6 are the ERSE (ER stress response element, consensus sequence 

CCAAT-N9-CCACG), which control the expression of ER-localized molecular 

chaperones, such as for instance BiP, and ERSE-II (consensus sequence 

ATTGGNCCACGT), which was discovered only in the promoters of the human 

homocysteine-induced endoplasmic reticulum protein (HERP) and in the one of 

the arginine rich, mutated in early stage of tumours protein (ARMET) (Kokame 

et al., 2001; Yamamoto et al., 2004; Mizobuchi et al., 2007).

However comparing these two, ATF6 and IRE1, distinct UPR activation 

pathways in HeLa cells, it was shown that ATF6 fragment was already 

detectable 30 min after the addition of thapsigargin (a non-competitive inhibitor 

of SERCA, a class of Ca2+ ATPase), while the protein produced by the XBP1 

spliced mRNA was detected only after three hours (Yamamoto et al., 2004). 

This different temporal response and the presence of an overlapping crosstalk 

could offer mammalian cells more option for a more fine regulated tuning of the 

ER stress response.

In the third pathway, which, as the one involving ATF6, is present only in 

mammals, the type-l transmembrane protein kinase PERK is auto activated 

upon oligomerization through frans-auto-phosphorylation, when is released by 

BiP. The PERK pathway is phylogenetically related, similar in structure and 

function with IRE1 UPR. Indeed these two pathways resulted even 

experimentally interchangeable (Bertolotti et al., 2000; Ron and Walter, 2007). 

However PERK phosphorylates not only itself, but also other proteins, such as 

the a-subunit of eukaryotic translation initiation factor-2 (elF2a) at Ser51. As 

consequence of this phosphorylation, the elF2 pentameric complex gets
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inactivated. Low levels of active elF2 caused a global decreased translation, 

thus reducing also the amount of newly synthesized proteins on the ER 

associated ribosomes (Harding et al.,1999; Harding et al., 2000). Interestingly, 

some mRNAs contain short open reading frames in their 5’ UTR (untranslated 

region) which are preferentially translated when active elF2 is lacking. The best 

known one encodes the transcription factor ATF4. The leucine zippers of ATF4 

protein enhances the expression of genes containing the cAMP response 

element (CRE, consensus sequence GTGACGT[AC][AG]) present in many 

cellular promoters. Among them the overexpression of CHOP (transcription 

factor C/EBP homologous protein), a transcription factor involved in apoptosis, 

can lead stressed cells to death, if they are not able to restore rapidly their 

homeostasis. Even though PERK activity seems to acts as a trigger for 

apoptosis, this should not be considered an absolute and general rule as 

several ATF4 cellular targets are known and not every cell type respond to 

PERK activation in the same exact way (Lin et al., 2007).

For the PERK pathway a regulatory cycle is formed by expression of GADD34 

(growth arrest and DNA damage-inducible 34), which encodes a regulatory 

subunit of the protein phosphatase PP1C. PP1C can counteract PERK activity 

because dephosphorylate elF2a (Walter and Ron, 2011).

The PERK pathway was also involved in regulation of amino acid metabolism 

and resistance to oxidative stress (Harding et al., 2003). PERK high expression 

levels and its dependent signalling were also found particularly relevant in 

secretory organs. Indeed, PERK knockout mice showed severe defects in one 

of them, as they develop diabetes mellitus and exocrine pancreatic dysfunction 

after birth (Harding et al., 2001).

1.6 ERAD substrate recognition and demannosylation

Misfolded proteins and non-assembled proteins are retained in the ER lumen 

bound to chaperons such as Hsp70 family, calnexin and calreticulin or other 

lectins. These proteins have to drive the misfolded protein towards the 

degradation machinery; if glycosylated these substrates are often labelled in the 

cell through demannosylation (Lederkremer, 2009). For example in mammalian 

cells N-glycosylated ERAD substrates are processed to M6 and M5 by removal
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of almost all the mannose residues linked a1,2 to the N-glycosylation tree 

(Avezov et al., 2008). Removals of mannose prevent irreversibly the re- 

glucosilation of the N-glycosylated protein, precluding calnexin binding and thus 

taking out permanently the protein from the calnexin/calreticulin cycle 

(Lederkremer, 2009).

Demannosylation is consequence of the activity of members of the glycosyl- 

hydrolase 47 family, such as the ER a1-2 mannosidase I (ERManl), the three 

EDEM proteins (ER degradation-enhancing a mannosidase-like proteins) and 

the Golgi Manl-A, l-B and l-C (Molinari, 2007). Among them however the most 

catalytically active ERAD-associated demannosilase for the production of M6-5 

sugar moieties seems to be ERManl, which was also reported to concentrate in 

the ERQC (endoplasmic reticulum quality control) compartment where also 

ERAD substrates are prone to localize before proteasomal degradation (Avezov 

et al., 2008).

About the EDEM proteins is still under debate whether they act really as 

mannosidase or just as cofactors of ERManl for the efficient trimming of some 

of the mannose branches (Lederkremer, 2009). Nevertheless the role of the 

EDEM1 protein is particularly interesting because, through its mannosidase 

activity and interaction with calnexin can interrupt the calnexin cycle of the 

unfolded protein (Oda et al., 2003). Moreover EDEM1 regulation of ERAD 

through acceleration of protein de-mannosylation was reported to prevent the 

formation of intermolecular disulphide-bonded dimers or other kind of 

aggregates (Olivari et al., 2006). This function is carried out by EDEM1 through 

its specific association with the PDI family member Erdj5.

The three related type-l membrane proteins VIPL, VIP36 and ERGIC53 have 

luminal carbohydrate recognition domain with high affinity for deglucosylated 

high mannose N-glycosylated proteins and are involved in ER-Golgi transport of 

secretory proteins (Kamiya et al., 2008). Once in the Golgi compartment the 

Golgi Manl-A, l-B and l-C produce the same M5 structure produced in the ER 

by ERManl/EDEM1 activity. Nonetheless in this case their trimming activity is 

believed to release the glycoprotein from the ER-Golgi shuttles lectins, allowing 

further maturation of substrate proteins through the secretory pathway 

(Lederkremer, 2009). Interestingly, it is possible that this class of Golgi
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mannosidase, and in mammals also ERManl (Pan et al., 2013), can cycle 

between the ER and the Golgi compartments or that some ERAD substrates 

can arrive to the Golgi before delivery to ERQC compartment and thus to final 

ERAD steps (Haynes et al., 2002; Hosokawa, 2007; Pan et al., 2013).

At the end of ERManl/EDEM1 activity the N-glycosylation tree of misfolded 

proteins expose a terminal a 1,6 bonded mannose. This residue is recognized 

by mannose 6-phosphate receptor homology-domain (MRH-domain) proteins 

such as the OS-9 proteins (homologs of yeast Yos9) and XTP3-B (Quan et al., 

2008; Clerc et al., 2009). Of note those kind of lectins can interact also with 

non-glycosylated proteins, their linked chaperones (i.e. BiP and GRP94), and 

ERAD components; indeed, they were suggested to act as a sort of scaffold for 

the formation of a multi protein ERAD complex together with SeML and HRD1 

for the ubiquitination and degradation of their substrates (Alcock and Swanton, 

2009; Hosokawa et al., 2008; Christianson et al., 2008).

1.7 ERQC compartment.

Some years ago the existence of a perinuclear microtubule-dependent ER 

portion called ERQC (ER quality control) compartment was proposed; this 

compartment was reported to be highly enriched upon proteasomal inhibition 

and several misfolded ERAD protein substrates are known to accumulate there 

(Kamhi-Nesher et al., 2001; Spiliotis et al., 2002; Wakana et al.; 2008; 

Shenkman et al., 2013). Bap31, a multi spanning protein, cycles between the 

peripheral ER and the ERQC and was proposed to be a membrane protein 

included in the vesicular system responsible of the delivery of misfolded 

proteins to the ERQC compartment (Wang et al., 2008; Wakana et al., 2008). 

Overexpression of both Arf1 (associated to COP-I retrograde transport) and 

Sari (associated to COP-I I anterograde transport) and their mutants affected 

Bap31 cycling to the ERQC compartment (Wakana et al., 2008). Considering 

also that the COP-I I component p137 was found able to relocate to the ERQC 

compartment (Spiliotis et al., 2002) and that ERQC system seems to be mostly 

unaffected by brefeldin A (Kamhi-Nesher et al., 2001) (this molecule causes 

ER-Golgi fusion inhibiting transport of proteins from ER to Golgi), it is possible
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that during ER stress, or even at lower rates during physiological conditions, a 

subfamily of COP-I I vesicles is responsible of targeting of the substrates and of 

the appropriate protein components to this ERAD associated compartment.

Even upon ER stress, in the ERQC compartment not every ERAD involved 

component can reside, indeed while ERManl, calnexin, calreticulin and several 

UPR components localize there, other proteins such as BiP, PDI, GT or ERp57 

are excluded (Kamhi-Nesher et al., 2001; Kondratyev et al., 2007; Frenkel et al., 

2004). It is possible that several critical steps of recognition (due to the 

presence of pivotal chaperones), demannosylation (for ERManl/EDEM1 

localization) and ERAD targeting (OS-9 and XTP3-B) happen in the ERQC 

compartment (Leitman et al., 2013). Moreover the finding of numerous 

components of the UPR pathways and of proteins involved in several 

membrane associated and cytosolic ERAD steps (such as: HRD1, Derlin-1, 

Herp, Sec61p, p97, proteasome, SCFFbs2, PERK, IRE1 and elF2a-P) localized 

to the ERQC compartment (Leitman et al., 2013; Groisman et al., 2011; 

Kondratyev et al., 2007), suggests that this might be the restricted cellular 

location where actually retrotranslocation takes place (Kondratyev et al., 2007).

1.8 A channel model to ERAD

The membrane separation of the unfolded protein and the site of degradation 

requires the clustering of a large number of protein enzymes and open the 

possibility to the existence of channels responsible to misfolded protein 

dislocation. Such channels should allow the retrotranslocation of both ER 

luminal and ER membrane misfolded proteins to the cytosol where the 

proteasome resides.

Essentially many multi-spanning ER protein was nominated to be the (or one of 

the possible) ERAD channel.

A putative retrotranslocation channel was indicated in the same Sec61 

translocon (Schmitz et al., 2000), but it was also associated to proteins like 

Derlin 1, an ER resident multispanning protein, which was found to be involved 

in the retrotranslocation process (Lilley and Ploegh, 2004; Ye et al., 2004).

In the case of Sec61 it was found associated to MHC class I before its delivery 

to the proteasome when it is co-expressed with two immunoevasins, US2 and
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US11, of the human cytomegalovirus (HCMV) (Wiertz et al., 1996a and 1996b). 

Also other proteins such as Cholera toxin are able to reach the cytosol binding 

the Sec61 translocon, however in this case after a previous endocytosis and 

retrograde transport to the ER (Schmitz et al., 2000).

However data about translocation indicates the inability of the Sec61 to allow 

the movement of partially folded proteins (Rapoport et al., 1996) and some 

experimental indications (i.e. Fagioli et al., 2001) induced some authors in the 

ERAD field to postulate protein unfolding as a prerequisite to retrotranslocation. 

But even in the case of a full protein unfolding occurring before dislocation, 

usually the ER proteins are usually glycosylated and such a large structure 

should be too bulky to pass across the narrow translocon channel (Hiller et al., 

1996; Wiertz et al., 1996a and 1996b).

So adding this pivotal point to some other experimental evidence, like the 

reported efficient retrotranslocation of a recombinant MHC-I, bearing at the N- 

terminus the tightly folded dihydrofolate reductase domain (DHFR) (Tirosh et al.,

2003), the requirement of a complete unfolding is under debate and eventually 

appear to be mostly not required (Bagola et al., 2010).

This indicates that if the Sec61 is the retrotranslocation channel to some class 

of substrates, it is somehow adapted not only to function in the opposite

direction, but also to accommodate large folded proteins.

In a similar scenario, it is possible that more than a Sec61 molecule participate 

to the process and that different Sec61 binding partners realize these kinds of 

adaptations (Kalies et al., 2005)

Regarding the involvement of the Derlin proteins as possible retrotranslocation 

channels, it was found that the yeast Derip, homologue of Derlin 1, was 

necessary in misfolded protein degradation (Lilley and Ploegh, 2004; Ye et al., 

2004; Hitt and Wolf, 2004; Kirst et al., 2005).

Interestingly siRNA of Derlin-1 in C. elegans provokes ER stress (Lilley and

Ploegh, 2004), while its down-regulation prevent CFTRaF508 degradation (Sun 

etal., 2006).

Moreover Derlin-1 was described to be important also in HCMV induced MHC  

class I degradation (Lilley and Ploegh, 2004). In this case being Derlin-1 able to 

associates with peptide-N-glycanase in the cytosolic side of the ER membrane, 

it can justify the well described appearance of a deglycosylated MHC-I in the
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cytosolic fraction of HCMV infected cells (Katiyar et al., 2005).

In addition Derlin-1 interacts also with the ATPase p97, a cytosolic protein 

indicated as the major source of ATP hydrolysis during dislocation (DeLaBarre 

and Brunger, 2005), and through this binding it can associate with the ubiquitin 

ligases HRD1 and gp78 (Lilley and Ploegh, 2005; Ye et al., 2005).

In vitro experiments of retrotranslocation with the fluorescent pro-alpha factor 

and anti-derlin1 antibodies further indicates it possible function as a 

retrotranslocation channel (Wahlman et al., 2007).

Also other members of the Derlin family, Derlin2 and 3, were found to be 

regulated under UPR, to be required for degradation of misfolded glycoproteins 

and to associate with some crucial ERAD partners like p97 and EDEM1 (Oda et 

al., 2006).

However recently it was reported that Derlins are not as believed a family of 

protein with four transmembrane domains, but they are, instead, inactive 

members of the rhomboid family of intramembrane proteases (Olzmann and 

Kopito, 2011). In particular it was shown that Derlin-1 mutants within the 

rhomboid domain are able to stabilize the ERAD substrate a-1 Null Hong Kong 

antitrypsin, but only as an intermediate after retrotranslocation in the cytosolic 

face of the ER membrane. Moreover the convincing membership of Derlins to 

the rhomboid family, of which is known to lack any ability to form 

transmembrane pores, is inconsistent with a channel-like function of Derlins 

(Olzmann and Kopito, 2011).

Another putative retrotranslocation channel could be build up by Hrdlp  

oligomerization. In this case the transmembrane segments of Hrdlp have been 

demonstrated to be required for efficient protein degradation, probably due to its 

activity in dislocation of proteins from ER to cytosol (Omura et al., 2008a; 

Omura et al., 2008b).

Among the other central proteins in the ER membrane associated with the 

retrotranslocation pathway it was found that also TRAM1 and BAP31are 

involved.

The association of TRAM 1, previously characterized in translocation (Gorlich et 

al., 1992, Gorlich and Rapoport, 1993), with ERAD born by finding thatTR A M I 

is important for the disposal of membrane substrates and its absence leads to 

an increased UPR (Ng et al., 2010).
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Regarding BAP31, it is a three membrane spanning ER protein, involved in 

protein sorting (Ng et al., 1997). From the ERAD point of view BAP31 knock 

down cause an increase amount of CFTRaF508 but its lack cause a decrease 

of the interaction between CFTRaF508 and Derlin-1 (Wang et al., 2008)

1.9 Cytosolic ERAD steps

In order to reach the cytosol and be degraded, misfolded proteins that are 

substrates for degradation, have not only to be detected in the ER lumen, but 

they should also be tagged with ubiquitin molecules to be recognised by a 

series of ubiquitin binding proteins that facilitate movements of the substrates 

from the ER membrane to the proteasome (Elsasser and Finley, 2005; Raasi 

and Wolf, 2007).

The published data suggest that misfolded proteins are ubiquitinated during 

retrotranslocation, but immediately after the ubiquitin chains are removed by the 

activity of deubiquitinating enzymes (DUBs), to allow an efficient degradation by 

the proteasome.

Despite this transient presence, the ubiquitination of the ERAD substrates 

appear to be really important to link, for instance, the substrate to the ATPase 

p97 (cdc48 in yeast). This ATPase is supposed to be recruited to the ER 

membrane to supply the energy for the dislocation or for the release of 

substrates that have been already retro-translocated (Hitchcock et al., 2001).

P97 consists of six subunits each containing two ATPase domains, that are 

arranged in a ring, which undergo to wide conformational changes during ATP 

hydrolysis (DeLaBarre and Brunger, 2005; Davies et al., 2008), and where the 

central pore could accommodate the dislocating protein (DeLaBarre et al., 

2006).

Regarding p97 interactions with the ER membrane, this protein can have 

different binding partners as UFD1 (Ubiquitin fusion degradation protein 1) and 

NPL4 (Nuclear protein localization protein 4 homolog), two proteins containing 

many ubiquitin binding domains. Those ubiquitin binding domains could 

facilitate the interaction between p97, the ubiquitinated proteins and the 

proteasome (Schmidt et al., 2005; Besche et al., 2009).

Indeed the complex of p97 with those two ubiquitin binding proteins was found
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implicated in ER dislocation and degradation of misfolded protein substrates 

(Stirling and Lord, 2006, Ye et al., 2001, Rabinovich et al., 2002).

One more link between p97 and ERAD is its association with Derlin 1 and 

SEL1L, another component quality control and dislocation complex (Lilley and 

Ploegh, 2005).

Recently a small myristoylated protein named SVIP (small p97A/CP interacting 

protein), whose over-expression causes cellular vacuolation due to the dilation 

of the ER (Nagahama et al., 2003), was indicated as a p97 regulator.

Indeed, SVIP can form a complex with Derlinl and p97 and could act as an 

endogenous inhibitor of ERAD, reducing the association of ERAD substrates 

with p97 and the gp78 ubiquitin ligase (Ballar et al., 2007).

In the cytosol the activity of peptide N-glycanase (PNGase) could favour the 

proteasomal degradation by removing N-linked glycans, even though this step 

is not absolutely required and PNGase can act either before or after 

proteasomal cleavage of polypeptides (Kario et al., 2008). PNGase was 

discovered in yeast and is responsible for the deglycosylation of N-linked 

glycoproteins, but being those proteins usually in the ER lumen, only molecules 

dislocated to the cytosol become substrates of PNGase (Suzuki et al., 2002). 

For this reason its activity has been used widely in the literature as reporter of 

retrotranslocation and the percentage of ER to cytosol dislocated molecules is 

often calculated through the ratio between the deglycosylated protein and the 

total. However, de-glycosylation is a finely regulated cellular event and appears 

not to be essential for retro-translocation (Blom et al., 2004).

PNGase was identified to be an interactor of Rad23 (Suzuki et al., 2001) and 

that this interaction occurs through on the PNGase N-terminus in 1:1 ratio 

(Biswas et al., 2004). Rad23 is a protein that can bind the 26S proteasome 

through its N-terminus ubiquitin like domain (Schauber et al., 1998).

Therefore, PNGase creates another link between the dislocated protein 

substrates and the proteasome (Katiyar et al., 2004).

Rad23 can interact with the 26S proteasome through its ubiquitin-like domain 

(UBL) (Schauber et al., 1998), while its ubiquitin associated domain (UBA) 

serve to bind mono ubiquitin and poly ubiquitin chains (Hofmann and Bucher, 

1996). Due to the presence of UBL and UBA domains Rad23 act as a ubiquitin 

receptor, creating a bridge from the ubiquitinated protein substrate to the
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proteasome (Saeki, et al., 2002; Verma et al., 2004; Kaplun et al., 2005). 

Moreover the interaction of Rad23 with ataxin-3, a proteasome-associated 

factor, that associate with the almost ERAD essential p97ATPase (Doss-Pepe 

et al., 2003), highlighted the presence of a relevant network of interaction 

connecting they key players (PNGase, p97 and the proteasome) acting in the 

cytosolic steps of the ERAD pathway. It was also demonstrated a direct 

interaction of PNGase PUB (PNGase/UBA (ubiquitin-associated) or UBX 

(ubiquitin-regulatory X)) domain with the last 10 amino acid residues of the C 

terminus of p97, which is both necessary and sufficient for the binding, only if 

Tyr805 (in mouse p97) is not phosphorylated (Zhao et al., 2007). The formation 

of a ternary complex of PNGase PUB domain with p97 and simultaneously with 

HR23 UBL (ubiquitin-like) domain was reported (Kamiya, et al., 2012). However 

this ternary interaction might occurs mainly after engaging of p97 in the 

retrotranslocation complexes escorting ERAD substrates to the cytoplasm as it 

has been proposed that the p97 substrates are first recognized by substrate- 

recruiting cofactors and then processed by substrate-processing cofactors 

(Rumpf and Jentsch, 2006) as indeed is the PNGase.

1.10 Ubiquitination and proteasomal degradation

The proteasomal system is believed to be one of the major degradation routes 

in cells (Hochstrasser 1996; Pickart and Cohen 2004). A protein targeted for 

proteasomal degradation has to be labeled by the appropriate conjugation to 

ubiquitin molecules, which are attached by proteins of the ubiquitin ligase (E3) 

family in a cytosolic environment (Tsai et al., 2002; Hirsch et al., 2009). Through 

ubiquitination, proteins committed for proteasomal degradation are targeted to 

this multiprotein complex, in a highly specific and regulated way. The 

proteasomal pathway has been exploited by cells to tune indirectly several 

cellular processes as for instance: cell cycle, development, DNA repair, 

tumorigenesis, metabolism, signal transduction, cell death, protein quality 

control, viral infections and antigen cross presentation (Voges et al., 1999; 

Varshavsky, 2005; Ciechanover, 2006; Kobayashi et al., 2013; Tu et al., 2012; 

Choi et al., 2013; Contin et al., 2011).

The process of ubiquitin mediated proteasomal degradation requires the energy
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released by ATP hydrolysis, both for protein substrate unfolding and for 

movements that allow its access to the active proteasomal proteolytic core 

(Pickart and Cohen, 2004).

1.10.1 Ubiquitin structure and conjugation

In eukaryotic cells there is a class of small proteins with a remarkable similar 

structure, all included in the ubiquitin-related protein family. Those proteins are 

involved in several cellular processes and have the peculiar feature to be 

covalently attached to other proteins through a C-terminal di-glycine motif, 

which is conjugated to amino group of the target protein (Pickart and Eddins,

2004). In addition to ubiquitin several other members of the ubiquitin protein 

family have already been identified, such as SUMO proteins 1, 2 and 3, Nedd8, 

ISG15, Atg8, Atg12, FUBI, FAT10, Urm1, Hub1 and UFM1 (Hochstrasser, 

2009). Some of these proteins have, as ubiquitin, a broad number and diversity 

of substrates, but several others have a much more limited range of known 

substrates (Kerscher et al., 2006). All those ubiquitin like proteins have 

functions in many cellular pathways like cell cycle control, transcription, splicing, 

signal transduction, DNA repair, nutrient sensing and autophagy (Kerscher et 

al., 2006). So far Fat10 seems to be the only ubiquitin like protein involved in 

ubiquitin-independent proteasomal degradation (Hipp et al., 2005).

Among these kinds of proteins, ubiquitin, the prototype founder of the family, is 

certainly the most studied and characterized. Ubiquitin is a small protein (76 

amino acids) with a major role in several cellular processes, either related to 

degradation or not, caused by its covalent conjugation to proteins (Schreiber 

and Peter, 2013; Pinder et al., 2013; Tanno and Komada, 2013). Ubiquitin is 

encoded by four different genes (Archibald et al., 2003). UBB and UBC genes 

express each a polyubiquitin precursors formed by several exact repetition of 

the single ubiquitin subunit. While RPS27A and UBA52 genes code for a single 

copy of ubiquitin fused to the ribosomal proteins S27a and L40, respectively. 

Single free ubiquitin subunits are generated by post-translational cleavage of 

polyubiquitin and ubiquitin fusion proteins by the catalytic activity of specific 

proteases (Jonnalagadda et al., 1989; Baker et al., 1992; Ha and Kim, 2008). 

The process of covalent linkage single ubiquitin molecules, to proteins is called 

ubiquitination; ubiquitination takes place mainly on the amino groups of Lys and
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on the free amino group the protein N-terminus, but it can also involve the thiol 

group of Cys and the hydroxyl group of Ser, Thr and probably Tyr (Pickart, 

2001; Ciechanover and Ben-Saadon, 2004; Cadwell and Coscoy, 2005; Wang 

et al., 2007; McDowell and Philpott, 2013). Upon single ubiquitination the 

protein substrate can often be further modified by addition of other ubiquitin 

molecules, either on other free ubiquitination sites on the target protein or on 

the available Lys of the first conjugated ubiquitin, leading to the formation of 

polyubiquitin chains. Formation of polyubiquitin chains occurs only on the seven 

Lys residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) or the N- 

terminus of Met1 of ubiquitin (Komander and Rape, 2012). Of note, each Met 

and Lys residue involved in formation of polyubiquitin chains is exposed in the 

surface of the ubiquitin and in the three dimensional structure points to different 

direction (Fig. 8).

Figure 8. Ubiquitin structure . Adaptation of an ubiquitin molecular structure (a single ubiquitin 

subunit from polyubiquitin-C polyprotein) from pdb 2k39 (Lange et al., 2008), colours represent 

accessibility of the amino acid residues (yellow highly accessible, dark blue hidden amino acid 

side chain). Figure shows the Lys and Met amino acid involved in the formation of polyubiquitin 

chains.

Modification of proteins with ubiquitin monomers is connected to cellular non- 

proteolytic processes (Hicke, 2001), while the presence of polyubiquitin chains 

(even more than ten moieties) could lead both to a proteolytic and to a non- 

proteolytic pathways. This depend on the particular Lys (or Met1), used for the
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development of the polyubiquitin chains; obviously different linkage lead to 

diverse structures. Moreover in the same polyubiquitin chain more than one Lys 

residue of the several ubiquitin was reported to be involved in the formation of 

the poly-conjugated protein (Komander and Rape, 2012). This results in the 

various different topologies of ubiquitin chain: homogenous, branched or mixed 

. topology. In addition, preformed polyubiquitin chains not conjugated to protein 

substrates are present in cells with relevant biological function in some cellular 

pathways (Strachan et al., 2012). Among the several polyubiquitin 

conformations the canonical Lys48-linked chain adopts a compact 

conformation, similarly to Lys6 and Lys11-linked chains; whereas the Lys63 and 

Met1 linkage form a more extended conformation with higher levels of freedom 

(Komander and Rape, 2012). The features of the chain determine the fate and 

the biological function of the modified protein substrate.

Ubiquitination through Lys11, Lys29, Lys48 and Lys63 have roles in 

proteasomal degradation. In this pathway however the K48 linkage, in particular 

if in long chains, seems to be the most prevalent.

In addition K48 is the only essential K of ubiquitin in yeast, and gp78, one of the 

major ERAD involved ubiquitin ligase, also trigger this kind of polyubiquitination 

(Chau et al., 1989; Li et al., 2007). K11 linked chains are involved in 

proteasomal degradation of proteins essential to the proceeding of the cell cycle 

(Matsumoto 2010). The role of the other Lys (K63 and K29) was reported to 

lead to proteasomal degradation only in few peculiar cases (Saeki et al., 2009; 

Koegl et al., 1999).

Ubiquitination can be also the signal that trigger endocytosis and might also 

target the protein towards lysosomes. In this case a monoubiquitination on a 

cytosolic tail of a protein substrate drives its relocalization from the plasma 

membrane to an endosomal compartment by recognition of different ESCRT 

(Endosomal Sorting Complexes Required for Transport) complexes 

(Mukhopadhyay and Riezman, 2007). K63 polyubiquitin linked chains are 

prevalently known to facilitate endocytosis (Galan and Haguenauer-Tsapis, 

1997; Mukhopadhyay and Riezman, 2007) but they were also involved in the 

transport toward lysosomes and autophagosomes (Komada and Kitamura, 

2005; Kirkin et al., 2009). Moreover K63 linkage seems to play relevant roles in 

DNA damage tolerance, inflammatory response, and ribosomal protein 

synthesis (Friedberg et al., 2005, Pickart and Fushman, 2004; Mukhopadhyay
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and Riezman, 2007).

In the literature a detailed analysis of function of other K-linked ubiquitin chains 

and on the probable presence of complex mixed K-conjugation chains is still 

missing.

The ubiquitination process is mediated by the activity of three main type of 

enzymes, namely E1, E2 and E3 (Pickart and Eddins, 2004). In some cases an 

E4 protein was also reported to be involved.

The E1 enzyme activates ubiquitin by binding it and MgATP. Through ATP 

hydrolysis E1 catalyses the C-terminal acyl-adenylation of ubiquitin. This initial 

ubiquitin-adenylate intermediate reacts with a cysteine residue of an E1 protein 

(Fig. 9), forming an E1 -Ubiquitin thiol ester (“~” represents a high-energy 

covalent complex) (Schulman and Harper 2009).

E1-SH E2-SCUbATP + UbCO substrate

E1-SCUb

Figure 9. The main ubiquitination steps (adapted from Pickart and Eddins 2004). Through 

ATP hydrolysis ubiquitin is activated by the E1 enzyme, and then loaded by the E2, which in 

collaboration with the E3 conjugate ubiquitin to substrate protein.

In general, each ubiquitin like protein has a single dedicated E1 enzyme, which

forms the thioester bridge between the cysteine in the active centre of E1 and

the terminal Gly76 of ubiquitin (Pickart and Eddins, 2004). In humans, eight E1

proteins are known to initiate the conjugation of ubiquitin like proteins.

Interestingly not all of these E1 enzymes share the same subcellular

localization, but, up to now, the precise functions of the different isoforms are

still not fully elucidated (Grenfell et al., 1994; Schulman and Harper, 2009).

Several (35 in humans) E2 ubiquitin conjugating enzymes are available in the

cell for receiving the activated ubiquitin from the E1 enzyme forming a similar

thioester bond (van Wijk and Timmers, 2010). The E2 enzymes can influence

the specificity of the ubiquitination, as individual E2 enzymes interact with

specific E3 enzymes. Moreover the E2 proteins are the main determinants for

selection of the lysine on which to construct the polyubiquitin chains, thus
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controlling the cellular fate of the substrate (van Wijk and Timmers, 2010). 

Eventually, E3 enzymes promote the ligation of ubiquitin (or ubiquitin-like 

proteins) to the substrates. In eukaryotic cells a large number of E3-ligase are 

present (more than a thousand). Initially, E3 ligases were proposed to be the 

bridging factors that group together the E2 and the substrate (Hershko et al., 

1983). However, it is now known that E3-ligases can work either as catalytic 

intermediates in the ubiquitination pathway (similarly to E1 and E2) or they can 

mediate direct transfer of ubiquitin from the E2~Ub complex to the substrate 

(Metzgeret al., 2013). Based on their structure and activity E3 enzymes can be 

assigned into two major groups: the HECT (homology to E6AP C-terminus) E3 

ligases, which form a trans-thiol bond with ubiquitin before conjugation to the 

substrate, and the RING (Really Interesting New Gene) E3 ligases, which 

instead link the substrate to the E2~Ub, which directly conjugate ubiquitin to the 

protein target (Metzgeret al., 2013). RING finger E3 ligases are the most 

abundant in mammalian cells, and are further subdivided in two subfamilies 

named RING-type E3, if they can coordinate two Zn2+ ions through cysteines 

and histidines to create the appropriate binding site for the E2 protein, and 

RING-like U-box E3, if they create a related structure for the binding of E2s 

without coordinating Zn2+ ions (Metzgeret al., 2013; Hatakeyama and 

Nakayama, 2003). After ubiquitin conjugation the substrate is released by the 

E3 ligase or the ubiquitination steps can be repeated for further ubiquitin chain 

elongation. Polyubiquitination can be catalysed not only by the same E3 

enzyme that performed the first conjugation, but also by specific ubiquitin 

elongating factors called generally E4 enzymes, which, apparently, are either 

other E3 ligases or cofactors needed for efficient ubiquitin chain elongation 

(Koeglet al., 1999; Metzger et al., 2010). RING E3 ligases can also promote 

their own auto-ubiquitination and thus degradation (Carroll and Hampton, 2010). 

Interestingly some RING-type E3 were reported to be able to dimerize or to 

form oligomers through domains separated from the RING. For this reason 

some of them involved in ERAD were proposed to be or to be associated to a 

hypothetical retrotranslocation channel during ER to cytosol dislocation (Hirsch 

et al., 2009; Nakatsukasa and Brodsky, 2008).

In the proteasomal degradative pathway it was reported that the minimal signal 

for an efficient proteasomal targeting and degradation is a tetraubiquitin chain 

(Thrower et al., 2000). Once recognised by the 26S proteasome complex the
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polyubiquitinated protein is inserted into the catalytic portion of the degradation 

machinery, where a series of proteases can rapidly degrade it into peptides 

(Voges et al., 1999).

Ubiquitin conjugation is certainly essential for the degradation of ERAD 

substrates and it was proposed to be also essential for the ER to cytosol 

retrotranslocation step. This conclusion was drawn because disruption of the 

ubiquitination machinery causes inhibition of the complete cytosolic 

solubilization of ER resident protein substrates (Kikkert et al., 2001; Shamu et 

al., 2001; Jarosch et al., 2002).

Among the RING-type E3 the SCF (Skp, Cullin, F-box containing) E3 ligase 

complex is particularly interesting. In the SCF complex cullin 1 forms the scaffold 

for the simultaneous interactions with the adaptor subunit Skp1, the RING-finger 

protein Roc1/Rbx1 and a specific E2 (Cardozo and Pagano, 2004). Skp1 can 

bind one of the F-box proteins (69 in humans) through their F-box domain 

(Yoshida and Tanaka, 2010). Some years ago Fbs1/Fbx2 and Fbs2 were 

identified as a glycoprotein-specific F-box protein; these lectins recognize high 

mannose and complex-type glycans of misfolded glycoproteins, probably 

interacting with the innermost chitobiose (a dimer of p1,4-linked N-acetyl- 

glucosamine) located at the base of the N-glycosylation moiety, a portion 

usually masked in the folded polypeptides (Yoshida et al., 2002; Yoshida et al.,

2005). A role of these E3-ligase-associated-lectins in ERAD was proposed as 

they can prevent premature deglycosylation of the substrates by peptide:N- 

glycosidase, promoting also substrate ubiquitination (Yoshida et al., 2002; 

Groisman etal., 2011; Shenkman et al., 2013).

1.10.2 Deubiquitination

Deubiquitinating enzymes (DUBs) and ubiquitin-like specific protease (ULP) are 

proteases responsible for the production of ubiquitin and ubiquitin-like 

monomers from their precursors and from proteins conjugated with ubiquitin or 

ubiquitin-like proteins (Ha and Kim, 2008). This activity cleaves at the at the C- 

terminal glycine residue of ubiquitin subunits, which are involved in the 

isopeptide bond linkage to the Lys of the substrate protein. Several dozens of 

human DUB acting on ubiquitin, classified into two main classes of cysteine
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proteases and metalloproteases, have already been identified. The cysteine 

protease class can be further subdivided into four distinct subfamilies (Ha and 

Kim, 2008).

The largest and most diverse class of these DUBs is the USP (ubiquitin-specific 

protease). Their catalytic domain is sized around 40 kDa with conserved 

cysteine and histidine boxes (Ha and Kim, 2008).

Second members of the cysteine protease group are UCH (ubiquitin C-terminal 

hydrolase); these DUBs possess a catalytic site resembling the papain cysteine 

protease (Johnston et al., 1997). They are generally smaller in size than USP 

and target mainly short polypeptides, small adducts of ubiquitin and some 

ubiquitin proproteins, but not large ubiquitin-protein conjugates or long 

polyubiquitin chains (Larsen, et al., 1998).

Belonging to the ovarian tumour proteins superfamily, the otubain (OTU-domain 

Uba-binding) proteases (OTUs) are proteins containing a deubiquitinating 

domain of approximately 130 amino acids in size, also related to the papain 

proteases family (Messick et al., 2008). This OTU domain is highly conserved 

from yeast to mammals and is also present in viral proteins (Messick et al., 

2008; Frias-Staheli et al., 2007). Members of the OTU family like Otu1 and A20 

can bind preferentially polyubiquitin chain analogues, hydrolysing longer 

polyubiquitin chains with K48 and K 63 linkages (Messick et al., 2008; Wertz et 

al., 2004). Among viral OTUs it is worth mentioning the 169 amino acids long 

OTU domain from the N-terminus of Crimean Congo haemorrhagic fever virus-L 

protein (CCHFV-L) and related viral OTU proteins, which can directly de

conjugates ubiquitin and the ubiquitin-like-protein ISG15 from protein substrates 

(Frias-Staheli et al., 2007). The CCHFV-L OTU and some other viral OTUs are 

able to inhibit NF-kB activation affecting immune pathways regulated by 

ubiquitination (Capodagli et al., 2011). The CCHFV-L OTU can cleave both K48- 

and K63- linked poly-ubiquitin chains into monomers but probably is not be able 

to cleave K6- K11- or K27- linked poly-ubiquitin conjugates (Frias-Staheli et al., 

2007; Capodagli et al., 2011).

The last members of the cysteine protease DUBs, called MJD (Machado- 

Joseph disease protease) are also related to the papain protease superfamily 

(Ha and Kim, 2008). The best characterized of them is ataxin-3 and is pivotal in 

the Machado-Joseph neurodegenerative disease, a cerebella ataxia (Doss- 

Pepe et al., 2003).
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Differently from other DUBs, the ubiquitin-specific JAMM/MPN domain 

containing metalloproteases family has the peculiar feature to bind Zn2+ ions 

(Ha and Kim, 2008). To this DUB family belong Rpn11 (described below), a 

subunit of the lid of the 19S proteasome, COP9 signalosome (CSN), a 

conserved multiprotein complex regulating the activity of SCF and other cullin- 

RING ligase families of ubiquitin E3 complexes (Wei et al., 2008), and the 

translation initiation factor 3 (elF3) complexes, which is the largest of the 

eukaryotic translation initiation factors (Querol-Audi et al., 2013). Despite elF3, 

proteasome lid, and CSN complexes share a common spatial organization no 

DUB activity is expected from the elF3 MPN domains as they cannot coordinate 

metal ions (Sanches et al., 2007).

Considering the essential roles of ubiquitin and ubiquitin-like modifiers in 

several essential pathways in eukaryotic cells, from proteasomal degradation to 

regulation-signalling activities, it is obvious that DUBs are key functional 

regulators of them.

1.10.3 Proteasome function, structure and location

The proteasomal complex 26S is the cellular machinery responsible for a large 

fraction of protein degradation within cells. Its catabolic activity is crucial for the 

efficient generation of the antigenic peptides loaded on MHC-I molecules 

(Goldberg et al., 2002).

The proteasome degrades substrate proteins that are labeled through the 

addition of polyubiquitin chains and requires energy consumption. The 

proteasome consist of two major subunits, the 19S regulatory particle of about 

700kDa, which recognize and unfold, through ATP hydrolysis, ubiquitinated 

proteins before transferring them forward into the second 20S subunit 

(Baumeister et al., 1998). This larger multiprotein complex of around 750kDa is 

the proteolytic core of the proteasome, where the active sites of protein 

degradation are located. Interestingly the 20S subunit can bind more than a 

single 19S regulatory particle, one at each side, forming a so called 30S 

proteasomal complex with a cylindrical caterpillar-like structure (Yoshimura et 

al., 1993). Each 19S complex can be further divided in an external lid and a 

base in contact with the major proteasomal subunit (Fig. 10).
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20S

19S

Base

Lid

Figure 10. Subunit composition of the 19S and 20S complexes of Saccharomyces 

cerevisiae (adapted from Pickart and Cohen 2004). Several proteins, constituting the lid and

the base portion of 19S regulatory particle, are shown. The a- and 3-rings of the 20S 

proteasome are also included. Rpn are regulatory particle non-ATPase proteins, while are 

named Rpt the regulatory particle ATPases.

The 20S complex is constituted by several related a and p subunits. The a 

subunits form the two outer heptameric rings, while other two heptameric rings 

organized by the p subunits constitute the innerpart of the 20S particle with the 

proteolytic active sites (Fig. 10 and 11). Protein substrates can access the 20S 

cylinder through axial pores, with a diameter of up to 2 nM and too narrow to 

allow the entry of fully folded polypeptides; pores can be regulated from an 

open to a completely closed form by the N-terminal domain of the a subunits 

(Groll et al., 1997; Whitby et al., 2000; Groll et al., 2000). From the pores three 

main separate chambers are axially opened in the central part of the 20S 

complex (Pickart and Cohen, 2004) (Fig. 11).
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Figure 11. Cristal structure of yeast 20S subunit (adapted from Kunjappu and 

Hochstrasser 2013). Left panel: the yeast proteolytic core structure is shown with each single 

protein subunit differently colored. Right panel: internal view of the catalytic particle illustrating 

the linked chambers containing the proteolytic active sites.

The two lateral chambers (59 nm3) are believed to have the function to hold a 

considerable mass of substrate or (partial) digestion products and to regulate 

their entry to the central proteolytic chamber.

Faced to the central chamber (84 nm3) are located the protease catalytic sites. 

The proteases subunits (B1, 02 and p5 of eukaryotic proteasome cleave 

preferentially after acid, basic and hydrophobic residues (Kunjappu and 

Hochstrasser, 2013). It is clear that the presence of a similar array of proteases 

with caspase-like, trypsin-like and chymotrypsin-like activities guarantees the 

ability of the proteasomal complex to efficiently degrade a broad range of 

polypeptides, producing a heterogeneous mixture of peptides rather than single 

amino acids (Kisselev et al., 1999).

The binding of the 19S regulatory particle to the core particle induces the 

opening of the channel in the 20S (Smith et al., 2005). Indeed, in the isolated 

20S proteasomal subunit negligible protease activity and very limited peptidase 

activity was reported. The transformation of these latent enzymes into efficient 

proteases requires the presence of the 19S regulatory complexes and its active 

ATPase subunits (Pickart and Cohen, 2004).

Between the base and the lid in the 19S complex are contained at least
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seventeen different subunits. In the base are present six ATPases (Rpt1, Rpt2, 

Rpt3, Rpt4, Rpt5 and Rpt6), belonging to the AAA protein family (ATPases- 

associated-with-different-cellular-activities) plus two non-ATPase (Rpn1 and 

Rpn2) subunits with scaffold functions (Fig. 10). These non-ATPase subunits of 

the base and the entire lid of the 19S complex are not present in bacterial 

proteasomes (Kunjappu and Hochstrasser, 2013). Two ubiquitin receptors 

Rpn10 and Rpn13 are associated with the base (Finley, 2009). However several 

other proteins, containing UBL (ubiquitin-like) and UBA (ubiquitin-associated) 

domains, can mediate ubiquitin recognition to the proteasome (i.e. Rad23) 

(Elsasser et al., 2004; Finley, 2009).

In general Rpn10 is considered already a subunit of the lid as it can associate 

with both the two parts of the 19S regulatory complex, connecting the distal lid 

with the proximal base (Glickmanet al., 1998).

The lid is essential for the degradation of ubiquitinated proteins and, other than 

Rpn10, it is formed by nine subunits. Among them the best characterized one is 

Rpn11 (Poh1 in humans), a Zn2+-dependent deubiquitinating (DUB) enzyme 

pivotal for the proteasomal function in eukaryotes (Yao and Cohen, 2002). In 

fact proteasome substrates to be degraded need to be cleaved from the 

targeting polyubiquitin chains and apparently the early steps of proteasomal 

associated deubiquitination are mediated almost entirely by Rpn11. This DUB 

was reported to be able of releasing K48- and K63-linked polyubiquitin chains 

from substrates targeted to the proteasome for degradation (Yao and Cohen, 

2002; Cooper et al., 2009). As Rpn11 require ATP in its proteasomal-associated 

activity it is possible that other 19S subunits serve to activate, position, or 

regulate the specificity of Rpn11 (Yao and Cohen, 2002). Little is known about 

the other lid subunits: Rpn11 and Rpn8 contain an MPN domain (Mpr1, Pad1 N- 

terminus) of unknown function (Finley, 2009). Of note in this MPN is located the 

catalytic site of Rpn11, but the related Rpn8 lacks DUB activities.

Notably in addition to Rpn11/Poh1 other DUBs such as the ubiquitin C-terminal 

hydrolase, Uch2/Uch37 and Doa4, and the ubiquitin specific protease 

Ubp6/Usp14 can be recruited and associated to the proteasome (Stone et al., 

2004). These DUBs can either favour proteasomal degradation or rescue from 

it. In the latter case it is believed that DUBs activity provoke the release from the 

proteasome of proteins with too short polyubiquitin tails (D'Arcy and Linder, 

2012).
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The subunits Rpn3, Rpn5, Rpn6, Rpn7, Rpn9, and Rpn12 contain a common so 

called PCI module (Proteasome, COP9, Initiation factor 3), that has been 

observed also in subunits of the COP9 signalosome and the translation initiation 

factor elF3. In general protein containing this PCI subunits are highly connected 

(Forster et al., 2010).

The localization of the proteasome in eukaryotic cells is nuclear and cytosolic 

(Wilkinson et al., 1998; Reits et al., 1997). Among the cytosolic proteasomal 

population a fraction that can interact with the ER membranes directly binding 

the Sec61 complex was proposed to be involved in ERAD (Kalies et al., 2005; 

Ng et al., 2007).

Apparently, despite proteasomes rapidly diffuse both in the cytoplasm and in the 

nucleus, there is little exchange between the nuclear and cytoplasmic pools, 

except in mitosis (Reits et al., 1997; Kunjappu and Hochstrasser, 2013).

1.11 Specific ERAD pathways for different ERAD substrates

Both in yeast and mammalian cells several ERAD pathways, sometimes

overlapping (Bernasconi et al., 2010; Shenkman et al, 2013), have been

described (mainly in yeast) and are also emerging in mammals, depending on

the localization of the misfolded moiety, on the type of protein substrate (i.e.

soluble or membrane anchored) and on the eventual presence of N-linked

glycans (Vembar and Brodsky, 2008; Taxis et al., 2003; Vashist and Ng, 2004;

Bernasconi et al., 2010; Christianson et al., 2012; Ninagawa et al., 2011).

In yeast depending on where the protein lesion is located, cytoplasmic, luminal

or membrane-spanning domains, three different pathways were envisaged:

ERAD-C, ERAD-L and ERAD-M, respectively (Vembar and Brodsky, 2008). For

example, in yeast ERAD-L requires the activity of the E3 ubiquitin ligase Hrdlp

(homologous of HRD1) and the adaptor protein Hrd3p (homologous of SeHL)

(Bordallo et al., 1998). In the complex with Hrdlp was reported to be present

also Usalp, a double-spanning membrane protein, which seems to bridge

Hrdlp to Derip (homologous of Derlinl) (Carvalho et al., 2006). Apparently also

ERAD-M involved Hrdlp, even though is independent from U salp and Deri

(Vashist and Ng 2004). Instead, ERAD-C substrates are reported to involve a

complex that contains the ubiquitin ligase Doa10 and is independent from
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Usalp and Der1p (Carvalho et al., 2006).

In mammals the ERAD-L, ERAD-M and ERAD-C pathways are not as clearly 

defined as in yeast. In higher eukaryotes several more ERAD players than in 

yeast are present and a global picture of the different pathways is still missing 

(Vembar and Brodsky, 2008), despite the fact that with the some model 

substrates a defined ERAD network was mapped. (Christianson et al., 2012).

Of note almost all ERAD pathways seems to converge to the cdc48/p97 ATPase 

consistently with its pivotal role in ERAD (Vembar and Brodsky, 2008; 

Christianson et al., 2012), even though must be addressed that not every kind 

ER to cytosol retrotranslocation requires its activity. For instance, in the case of 

cholera toxin (Lencer et al., 2003; Kothe et al., 2005; McConnell et al., 2007) its 

retro-translocation does not lead to degradation, a feature apparently shared 

also by calreticulin, which despite being synthesized and transported to the 

lumen of the ER, entail other functions in the nuclear/cytosolic compartments 

after retrotranslocation, without a relevant rapid degradation of the dislocated 

fraction (Afshar et al., 2005).

Considering the existence of different retrotranslocation pathways and the 

several differences among the retrotranslocation/ERAD substrates, it is 

mandatory to consider several models to draw a comprehensive picture of the 

process and to validate new methods that enable to determine substrate 

localisation during the crossing of the ER membrane, one of the most unclear 

step of ERAD.
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2. HCMV induced degradation of MHC class I

2.1 MHC class I structure and function

Under the name MHC class I (Major histocompatibility complex class I protein) 

there is a family of type-l membrane glycoproteins responsible of transplant 

rejection and involved in immunodetection of virally infected cells or transformed 

cells.

MHC-I proteins are able to load a broad variety of peptides, originated both from 

intracellular and extracellular protein portions (even the same processed leader 

peptide of the MHC-I molecule), but mainly derived from proteasomal produced 

proteolytic fragments (Hewitt 2003). The bound peptides are then displayed by 

the mature MHC-I molecules (formed by the polymorphic class I a chain and the 

monomorphic p2-microglobulin) at the cell surface to be recognised by antigen 

specific receptor complexes located in the plasma membrane of cytotoxic T 

cells (Germain, 1994).

In humans, the MHC-la chains are encoded in chromosome 6 in three different 

loci (HLA-A, HLA-B and HLA-C; HLA: human leukocyte antigen). They are 

among the most polymorphic genes in the whole genome. Indeed, according to 

the IMGT-HLA database, a large number of variant alleles are known at each of 

the three class I loci.

More in detail MHC class I molecules are formed by an a chain, a 

transmembrane glycoprotein of about 44-47 kDa formed by three main 

immunoglobulin domain (a1, a2, a3, Fig. 12) associated non-covalently with the 

p2 microglobulin, a non-polymorphic protein with a weight of about 12 KDa. The 

association between a chain and P2 microglobulin is required to membrane 

expression of MHC-I molecules.

The association between a chain and p2 microglobulin is required for 

membrane expression of MHC-I molecules.

The MHC-I a chain can bear, through a binding-pocket of around 25k  x10A 

x 11A, a broad array of peptides of 8-11 amino acids long in an extended 

conformation.
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Figure 12. Scheme of MHC class I molecule. MHC-I a chain is shown, with indicated its three 

extracellular immunoglobulin domains a1, a2 and a3, in association with £2 microglobulin. The 

a chain creates a pocket for the binding of the peptide.

These peptide-presenting molecules are expressed in every cell and usually 

they display peptides originating from cytosolic proteins. However in 

professional antigen-presenting cell (APC) like dendritic cells, MHC-I can 

display also peptides that derive from exogenous and secretory antigens 

exploiting the cross-presentation pathway.

In cross-presentation exogenous antigens are internalised in endosomes and 

processed in a lysosomal/phagosomal compartment, containing some ER 

resident proteins and probably also ER lipids, or retrotranslocated to the cytosol 

for proteasomal degradation before loading onto MHC-I molecules (Joffre et al., 

2012). In the latter case the EfRAD machinery was found to be involved with a 

pivotal role for p97 ATPase (Ackerman et al., 2006). Links between antigens, 

internalising receptor and the EFRAD machinery are known, as in the case of 

cross presentation of model antigen ovalbumin through binding to the mannose 

receptor, which is polyubiquitinated to induce recruitment of p97 towards the 

phagosomal membrane and retrotranslocation to the cytosol for proteasomal 

degradation (Zehner and Burgdorf, 2013).
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The binding to a peptide increases the stability and the surface expression of 

the MHC-I molecules, where they display peptides to the Cytotoxic T 

lymphocytes (CTLs) (Momburg and Tan, 2002; Garbi et al. 2005).

CTLs are CD8+ T cells restricted to the recognition of a defined peptide bound 

to a defined MHC-I allele through the membrane TCR (T-Cell Receptor) 

complex, formed by either a TCR alpha/beta or TCR gamma/delta heterodimer 

coexpressed with the invariant subunits of CD3 (named y, 6, £, £, and n). Upon 

recognition of the peptide peptide-MHC-l complex on membrane of APC, naive 

T CELLS proliferate and differentiate into competent CTLs. Once activated, 

CTLs interacting with the same peptide-MHC-l complex on target cells, perform 

their cytotoxic activity by secreting a number of toxic granules containing 

molecules, such as perforin and granzymes, which kill the target cell. Most 

viruses are potent inducers of CTL responses, directed to viral proteins 

produced in the infected cells, which following degradation by the proteasome 

end up displayed on the cell surface bound to MHC-I complexes. The capability 

of CTLs to recognize and destroy virally infected cells is, in some cases, 

counteracted by viruses through the development of mechanisms that allow 

escape to recognition by the immune system. This is achieved, for instance, by 

directly interfering with the antigen presentation pathway (Lorenzo et al., 2001; 

Hewitt, 2003).

2.2 Folding of MHC-I molecules

During translation MHC-I molecules are N-glycosylated at the end of the a1 

domain and are bound by calnexin and its associated protein ERp57, a member 

of the protein disulphide isomerase family, which arranges the appropriate 

disulphide bridges (Ellgaard and Ruddock, 2005; Peaper et al., 2005).

Then the MHC-I a chain associates with p2 microglobulin and to the chaperon 

calreticulin (Momburg and Tan, 2002; Garbi et al. 2005, Peaper and Cresswell, 

2008a).

At this point MHC-I form the peptide loading complex (PLC), with p2 

microglobulin, ERp57, calreticulin, tapasin, TAP (antigen peptide transporter) 

and Bap31.

In the PLC tapasin is linked to ERp57 through a disulphide bond and it is pivotal
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to connect MHC-I to TAP and to the other components of the PLC (Peaper and 

Cresswell, 2008b; Garbi et al., 2003; Leonhardt et al., 2005).

Peptides presented on MHC class I usually derived from immuno-proteasomal 

degradation, thus with a prevalence of intracellular peptides.

Only some class of peptides can be accommodated in the groove of MHC-I, 

usually of 8-11 amino acids, which are trimmed to this dimension by the activity 

of some ER associated peptidases, because TAP transports often longer 

peptides. In humans two ER amino peptidase have been described:: ERAP1 

cleaves peptides with hydrophobic residues, while ERAP2 cleaves peptide with 

basic residues (Saric et al., 2002; Saveanu et al., 2005; Chang et al., 2005). 

Once assembled, the peptide /  MHC-I a chain /  (32 microglobulin complex is a 

mature and stable molecule, which can traffic from the ER to the cell membrane 

through a process that involves Bap31 and possibly other export receptors 

(Paquet, Cohen-Doyle et al. 2004).

2.3 Immuno evasion: HCMV and MHC class I down regulation

Human cytomegalovirus (HCMV) is a widely spread virus that affects around 

50-70% of the human population with usually no serious pathological 

consequences.

Nevertheless, HCMV can cause serious diseases in immunosuppressed or 

immunodeficient patients.

The tropism of HCMV is towards many cell types including: epithelial cells, glial 

fibroblasts, endothelial cells, monocytes and macrophages, where it replicates 

slowly and establishes a latent state with periodic reactivation.

HCMV is so diffused because is well adapted in escaping from the immune 

system, in particular down-regulating MHC-I display on the membrane of 

infected cells (Ploegh, 1998).

In the HCMV genome there is the unique short region S component (US), which 

encodes for eight membrane glycoproteins involved in immunoevasion (Jones 

et al.,1995), termed immunoevasins.

Expression of those immunoevasins is fine-tuned during the viral life cycle and 

together they strongly affect the cell surface expression of MHC-I. After 

infection, US3 is the first one expressed and prevents the trafficking of newly
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synthesized MHC-I molecules to the cell surface (Jones et al., 1996).

US6, instead, blocks TAP enzymatic activity, preventing the peptide loading on 

MHC-I (Hengel et al. 1996). Another immunoevasin, US10 was found to delay 

MHC class I trafficking towards the cell membrane (Lin et al., 2007).

Instead, proteins US2 and US11 are both able to induce specific proteasomal 

degradation of MHC-I either associated or not with the |B2 microglobulin (Jones 

et al., 1995; Wiertz et al., 1996a and 1996b).

US2 and US11 degrade MHC-I promoting its dislocation from the ER lumen to 

the cytosol, exploiting some components of the ERAD pathway used to degrade 

misfolded proteins (Meusser et al., 2005; Sayeed and Ng, 2005) (Fig.13)

When the MHC-I reaches the cytosol the N-glycanase can remove the N-glycan 

favouring the molecule to be degraded by the proteasome (Suzuki et al., 2000; 

Hirsch et al., 2003; Sayeed and Ng, 2005).

Figure 13. Scheme of MHC-I degradation induce by US2 and US11 activity. The process 

involves a dislocation step followed by deglycosylation and proteasomal degradation.

2.4 US11 and US2 activity

US 11 is a type I glycoprotein of about 25 kDa with an N-terminal glycosylated 

ER luminal domain, a transmembrane and a short cytoplasmic tail.

US11 induces down regulation of MHC-I molecules, interacting with the a1 and 

a2 luminal domains of MHC-I, being particularly specific for HLA-A2 and HLA-C

MHC4
M K C 4

U S11

proteasome
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alleles (Huard and Fruh, 2000; Barel et al., 2003).

US11 seems to target MHC-I molecules independently of its folding structure 

(Blom et al. 2004) and to promote its polyubiquitination of MHC-I (Shamu et al., 

2001; Furman et al., 2003).

Through a Gin residue at position 192 in its transmembrane domain, US11 is 

able to interact with Derlin-1 exploiting its role in an ERAD pathway that 

involves also HRD1 and SEL1L (Lilley and Ploegh, 2004; Mueller et al., 2006). 

Expressed in a cell, US11 was found to induce UPR, but this happened only 

through the interaction of US11 and Derlin-1 transmembrane domains (Tirosh et 

al., 2005).

US2 (23 kDa) shares a common topology with US11, but it suffers of an 

inefficient ER translocation, due to the presence of a non-cleavable signal 

peptide that causes the formation of a non-glycosylated cytosolic form of the 

protein (Wiertz et al., 1996a; Gewurz et al., 2002)

US2 recognises MHC-I molecules binding its a2 and a3 domains, without 

interacting with the 02 microglobulin or the peptide (Fig. 14), and is able to 

down-regulate HLA-A2, HLA-B27 and HLA-G alleles (Barel et al., 2003).

Figure 14. 3D folding of MHC-I and US2. Cristal structure MHC-I a luminal domain associated 

with the p2 microglobulin, the peptide and US2 (Gewurz et al., 2001)

Following interaction with US2, MHC-I molecules are dislocated to the cytosol, 

where also in this case steps of deglycosylation and proteasomal degradation 

take place (Jones et al., 1996; Wiertz et al., 1996a).

A critical portion of US2 resides in its cytoplasmic tail, where some amino acids
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(Cys 187, Ser 190, Trp 193 and Phe 196) have been indicated as involved in 

the interaction with the host retrotranslocation machinery.

Thus, upon the tight interaction between US2 and MHC-I, the cytoplasmic tail of 

US2 engages the cellular retrotranslocation machinery (Oresic et al., 2006) 

Indeed it was previously found that creating a chimeric protein with the 

cytoplasmic tail of US2 and US3, enables US3 to degrade MHC-I. In this 

process it was found that the cytosolic tail of US2 was involved in the 

recruitment of the p97 ATPase, which is considered the main power supply of 

ERAD (Chevalier et al., 2002; Chevalier and Johnson, 2003).

The US2 pathway requires also the activity of the signal peptide peptidase 

(SPP) (Loureiro et al. 2006) and of a functional ubiquitin system, (not required in 

the case of US11 (Hassink et al., 2006)), in particular with the presence of the 

TRC8 E3 ligase (Stagg et al., 2009).

US2 promote the degradation preferentially of properly folded MHC-I molecules 

(Blom et al., 2004), which upon US2 contact are modified with 3-5 ubiquitins 

(Shamu et al., 2001; Furman et al., 2003).
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3 The ERAD model Null Hong Kong a1 antitrypsin (NHK-a1AT)

The serine protease inhibitor alphal-antitrypsin (a1AT) is a cellular secreted 

glycoprotein factor belonging from the serpin protein family (Kroeger et al., 

2009). Serpins are suicide inhibitors of several intracellular and extracellular 

proteases (Lomas and Mahadeva, 2002). In the case of a1AT its major 

physiological role of is to protect elastic fibers in the lung from excessive 

hydrolysis by neutrophil elastase, as genetic deficiency of this enzyme lead 

mainly to the development of emphysema; but a1AT can also irreversibly 

inhibits several other proteases such as trypsin, chymotrypsin and plasminogen 

activator (Sifers et al., 1988). The protein is also abundantly secreted by 

hepatocytes and by interacting one to one with substrates is responsible for 

90% of the protease inhibitory capacity in the serum (Sifers et al., 1988). 

Several different mutations of oc1 AT have been reported in the literature. One of 

these mutants called Null Hong Kong alphal antitrypsin (NHK-a1AT), 

characterized from a patient lacking completely the protein in the serum, has 

been widely used as an ERAD model. The relevant alteration on NHK-a1 AT is a 

frame-shift mutation, because of a dinucleotide deletion in the codon for 

Leu318, which causes a premature termination at residue 334, producing a 

truncated protein of 45 kDa containing three well recognized N-glycosylation 

sites (Sifers et al., 1988). As the inhibitory site of oc1AT is located in Ser359 

(Johnson and Travis, 1978) NHK-a1AT lacks protease inhibitory activity; 

moreover the mutant protein is retained within the endoplasmic reticulum and 

degraded through the proteasomal pathway (Liu et al., 1999). This ERAD 

model, because of the presence of the three glycan moieties, was useful in 

understanding the role of rearrangement of the distal N-glycan sugar residues 

and the activity of mannosidases in the selection and recognition of ERAD 

substrates. Indeed it was initially discovered that the plant alkaloid kifunensine, 

an inhibitor of ERManl was able to arrest turnover of the misfolded glycoprotein. 

Instead, inhibition of glucosidase II, by castanospermine, favoured NHK-a1AT 

interaction with calnexin, causing an increased degradation of the glycoprotein 

by the proteasome (Liu et al., 1999). A type-ll ER membrane lectin, called 

EDEM1 (ER degradation enhancing a-mannosidase-like protein), was reported 

to participate, most likely indirectly, in mannose trimming of NHK-a1 AT.
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EDEM1 is a protein reported to do not have enzymatic mannosidase activity in 

vitro (although evidence for its trimming of alphal ,2-linked mannose on the C 

branch of N-glycans was reported in living cells: Hosokawa et al., 2010), but 

whose overexpression accelerates NHK-a1AT degradation in the absence of 

kifunensine (Hosokawa at al., 2001). Moreover a synergic effect of EDEM1 and 

ERManl was shown to promote degradation of NHK-a1AT (Hosokawa et al., 

2003). Interestingly EDEM1 was reported to favour release of misfolded 

glycoproteins from calnexin cycle (Molinari et al., 2003). Through its binding 

activity EDEM1 is believed to inhibit the formation of a spurious NHK-a1AT 

homo-dimer through the single Cys present in the mature protein at position 

256; of note wild type a1AT does not from a related dimer (Hosokawa et al.,

2006).

In addition to ERManl and EDEM1 also the Golgi a1,2-mannosidase IA, IB, and 

IC and y-COP (a subunit of COP-I retrieval vesicles) seam to accelerate 

turnover of NHK-a1 AT, suggesting the involvement of early Golgi compartments 

(ERGIC) in mannose trimming and retention of NHK-a1AT (Hosokawa et al., 

2007; Pan et al., 2013).

Even though it was a bit debated (Hosokawa, et al., 2008; Christianson et al., 

2008), it seems that among the ERAD components involved in NHK-a1AT 

degradation, is present a complex formed by at least one of the ER-resident 

lectins OS-9 and XTP3-B, which contain the mannose 6-phosphate receptor 

homology domain (MRH) believed to be required not for substrate recruitment, 

but for binding to the ER type-l transmembrane protein SEL1L (also this protein 

bear a MRH domain). SEL1L further interacts with the ubiquitin ligase Hrd1 and 

in the complex probably joins also the ER chaperone GRP94. This protein 

chaperon, together with Hrd1 and SEL1L were reported to favour the 

degradation of NHK-a1 AT (Christianson et al., 2008).

Also a role for BiP in such complex was described, but only for the artificial 

NHK-QQQ mutant (with all the glycosylated Asn residues mutated to Gin) as 

differences in ERAD of the two isoforms, with or without sugars, were reported 

(Hosokawa, et al., 2008).

Recently, a protein called Herp was found in the Hrd1 complex involved in 

ERAD of NHK-a1AT. This protein contains a UBL (ubiquitin-like) domain 

required for its association with Hrd1, which promotes a more efficient
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ubiquitination and degradation of NHK-a1AT (Kny et al., 2011).

A role for the TRAP (translocon-associated protein) complex in the late stages 

of NHK-a1 AT degradation was reported, as RNA interference of single subunits 

(a, (B or y) apparently causes a delayed degradation of misfolded proteins 

(Nagasawa et al., 2007).

Recently it was reported the participation of malectin in regulating negatively 

protein export from the ER for glycoproteins such as NHK-a1AT under stress 

conditions (Galli et al., 2011). It was proposed that malectin might act upstream 

or concomitantly to the calnexin cycle as this lectin can bind only G2M9 sugar 

chains (Chen et al., 2011).
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4 Folding and ERAD of Immunoglobulin heavy and light chains

Immunoglobulin (Ig) molecules are the key components of the humoral immune 

system, which relies on both the membrane and secretory forms for B cells 

activation and antigen targeting in the effector phage, respectively. 

Immunoglobulins are in general multimeric protein complexes and their folding 

requires the presence of several molecular chaperones (Lee et al., 1999). 

Excluding the peculiar case of homo-heavy chain immunoglobulins expressed 

mainly in camelids and sharks (Wesolowski et al., 2009), immunoglobulins are 

formed by at least two identical pairs of heavy (HC) and light chains (LC) 

stabilized by interchain and intrachain disulphide bridges (Fig. 15) (Lee et al., 

1999). In some cases, as for secretory IgA and IgM a complex of higher order 

can be formed which is stabilized through disulphide bonds by the cysteine-rich 

J-chain protein (Horton and Vidarsson 2013).

HCDRs
HCDRs

LCDRsLCDRs

Figure 15. Organization of an immunoglobulin (adapted from Lee et al., 2013). Scheme of 

an antibody molecule and its immunoglobulin subunits in the light and heavy chain. Black lines 

represent the hinge region and the interchain disulphide bonds (S-S) present on it between the 

first (CH1) and the second (CH2) constant domain of the heavy chain and also the interchain S-S 

bonds between constant domain of the light chain (CL) and CH1. In the variable regions of the 

heavy chain (VH) and light chain (VL) the complementarity-determining regions (respectively 

HCDRs in blue and LCDRs in red) are highlighted and shown as are positioned in the crystal 

structure of Herceptin mAb antigen-binding domains (pdb 1N8Z, Cho et al., 2003).

Each immunoglobulin chain is formed by two to five Ig domains independently 

folded and stabilized by a single disulphide bond into a compact structure (Lilie 

et al., 1995; Amzel and Poljak, 1979). In all Igs at the N-terminus is present an 

Ig domain called variable region. Within this region are present three
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complementarity-determining regions (CDR) with an amino acid sequence 

extremely variable and long between three and twenty-five amino acids (Kabat 

and Wu, 1991; Hofle et al., 2000). The CDRs of the LC and HC are exposed on 

the 3D structure of immunoglobulins forming together the surface for antigen 

binding (figure 16) (Kabat and Wu, 1991).

When expressed in the absence of the LCs, as in the B lymphocyte stage of 

pre-B cells, the HCs do not traffic to the cell membrane and get retained in the 

ER because of their association with the ER resident chaperone grp78/BiP, 

which binds to the first constant domain (C h1) (Bole et al., 1986; Lee et al., 

1999). In the absence of LC the Ch1 domain is not able to fold correctly, 

remaining also reduced, because of its binding to BiP. LCs provoke the release 

from BiP allowing Ch1 folding, which therefore binds to the Cl domain, thus 

allowing secretion of the whole immunoglobulin (Lee et al., 1999). Forcing the 

release of BiP from isolated heavy chains resulted in oxidation of the Ch1 

domain, but this was not properly folded (Vanhove et al., 2001). Instead the 

presence of folded LCs interacting with HCs Ch1 provoke oxidation, probably by 

an inducing a proline isomerization in the Ch1, and correct secretion (Feige et 

al., 2009). The unassembled ER-retained Ig HCs were reported to be degraded 

by cytosolic proteasomes through the ERAD pathway (Mancini et al., 2000; Ho 

eta l.,2000).

LCs are usually able to fold readily and to be secreted independently as 

monomers or dimers (Dul et al., 1996; Leitzgen et al., 1997). However, there are 

LCs unable to be secreted in the absence of HCs, probably because of 

defective folding of only the VL domain (Skowronek et al., 1998). In fact it was 

proposed that those V lS require the assistance of an already folded V h domain 

to reach the appropriate conformation (Feige et al., 2009). Among this class of 

non-secreted LCs, NS1 expressed by a HC loss variant of the mouse 

plasmacytoma cell line MOPC 21 (Cowan et al., 1974) is one of the most 

studied models (Skowronek et al., 1998; Shimizu et al., 2010). The non- 

secretory phenotype of NS1 is the consequence of a replacement of the 

conserved Phe/Tyr in position 87 with His (Dul et al., 1992).

Interestingly, also on the retention of these partially folded LCs, which are 

reported to become ERAD substrates and degraded by the proteasome, the 

protein responsible is BiP. It was proposed that degradation takes place while 

exiting from the ER lumen (Chillaro'n and Haas 2000). This conclusion was

56



INTRODUCTION

drawn because in murine plasmacytoma cells, NS1 was not completely reduced 

upon proteasomal inhibition. In particular, at least the Cl domain was already 

folded. Moreover, during cell fractionation experiments, in conditions of impaired 

proteasomal degradation, NS1 remained mainly bound to the microsomal 

fraction, not displaying cytosolic exposure, since it was not sensitive to trypsin 

digestion and remaining apparently completely bound to BiP (Chillaro'n and 

Haas 2000). However, this might not be true in other cells. For instance, in 

NIH/3T3 cells it was recently observed that upon proteasomal inhibition the NS1 

protein is released from BiP and relocated by the activity of the lectin XTP3-B 

and of EDEM1 in the ERQC compartment (Shenkman et al., 2013), an area of 

the ER where probably takes place the dislocation step. Ubiquitinated NS1 was 

found to be formed mainly by a partially reduced form (with the Cl domain still 

oxidized). In addition, ubiquitination occurs mainly in the reduced V l domain 

and can interest several amino acid residues, mainly Ser and Thr, other than 

the classical Lys (Shimizu et al., 2010). Moreover, it was shown that at least part 

of this ubiquitination was performed by the E3 RING type ubiquitin ligase Hrd1 

(Shimizu et al., 2010). Derlinl was found associated to NS1 as well as Herp (a 

multi-spanning membrane protein with a cytosolic N-terminal ubiquitin-like 

domain) following proteasomal inhibition (Okuda-Shimizu and Hendershot,

2007). This protein is known to interact with the ATPase p97 and the ubiquitin 

ligase Hrd1 (Schulze et al., 2005). Moreover, Herp was reported in a complex 

also with ubiquitinated proteins and with the 26S proteasome (Okuda-Shimizu 

and Hendershot 2007). A remarkable stabilization of NS1 was shown when co

expressed with the p97 ATPase incompetent dominant negative mutant (Okuda- 

Shimizu and Hendershot, 2007).
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5 Vpu induced degradation of CD4 and Tetherin

5.1 Vpu

The HIV-1 (human immunodeficiency virus type 1) accessory protein Vpu is a 

small (around 80 amino acids, depending from the viral strain) oligomeric type-l 

membrane phosphoprotein (Strebel 2013). The protein is structurally formed by 

a very short luminal domain (3-12 amino acids), followed by a transmembrane 

domain that functions also as a signal peptide, and a cytoplasmic tail of about 

47-59 amino acids (Maldarelli et al., 1993). Apparently through the 

transmembrane domain Vpu can cluster into pentamers in particulary in the 

Golgi or in intracellular vesicles, but not in the ER, and these oligomers can 

functionally form a channel for monovalent cations such as Na+ and K+ (Ewart 

et al., 1996; Hussain et.al., 2007; Mehnert et al., 2007). Nevertheless a clear 

functional significance for this Vpu property is still missing (Strebel, 2013).

In the cytoplasmic tail of Vpu contains motifs influencing its membrane 

localization through all the secretory pathway, but the protein resides mainly in 

the ER, trans Golgi network and endosomal compartments (Hussain et.al., 

2007; Dube et al., 2010; Iwabu et al., 2009). Indeed in the cytosolic portion of 

the protein are present an YXXO tyrosine motif (where O is a hydrophobic 

amino acid) and a dileucine motif (D/EXXXLL/IA/) both involved in 

endocytic/lysosomal targeting (McCormick-Davis et al., 2000; Bonifacino and 

Traub 2003).

Regarding the cytoplasmic domain it has been predicted that contains two main 

a-helix interconnected by a flexible loop, encoding for a conserved 

DSGNESEGE sequence, which is phosphorylated on both Ser52 and Ser56 

residues by the casein kinase II (OKU, consensus S/TXXD/E) (Schubert et al., 

1994). The constitutive phosphorylation of these two Ser, in the context 

DSpGOXSp (Dube et al., 2010), provoke the continuous binding of Vpu with a p- 

TrCP-containing SKP1, Cullin, F-box protein (SCF) E3 ubiquitin ligase complex 

(SCFTrCP) (Margottin et al., 1998). Interestingly while usually a contact between 

the E3-ligase and the phosphorylated protein causes the degradation of the 

latter, but this is not the case for Vpu, which is not ubiquitinated in the process 

(Schubert et al., 1994; Strebel, 2013). The Vpu interaction with SCFTrCP is 

responsible, at least in part, of several of the Vpu mediated functions such as
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the selective induction of proteolysis of newly synthesized membrane proteins, 

the favouring of virus release from the cell surface (i.e. CD4 and Tetherin/BST-2 

degradation) (Margottin et al., 1998, Mangeat et al., 2009) and the inhibition of 

NFkB activation (because of its interference with SCFTrCP mediated degradation 

of IkB) (Bour et al., 2001; Strebel, 2013).

5.2 ER associated degradation of CD4

CD4 is a type-l membrane protein expressed by thymocytes, helper T 

lymphocytes, cells of the macrophages/monocytes lineage, and hematopoietic 

progenitor cells, playing a crucial role during antigenic stimulation by antigen 

presenting cells exposing MHC-II and function as receptor for IL-16 (Bowers et 

al., 1997; Wilson et al., 2004). CD4 contains two N-glycosylation moieties and 

four extracellular immunoglobulin-like domains, three of which are stabilized by 

an intrachain disulphide bridge, and a 40 amino acids long cytosolic tail, where 

five Cys residues are present. Some of them (Cys420 and Cys422) are involved 

in the formation of membrane proximal disulphide bonds mainly in a 

tetraspanin-enriched plasma membrane fraction of the protein (Fournier et al.,

2010), while others Cys in the juxtamembrane domain (Cys394 and Cys397) 

are known to be palmitoylated (Crise and Rose, 1992). CD4 is the major 

component of the receptor complex exploited by HIV for infection. At the same 

time the virus promotes also CD4 down regulation in at least two different ways: 

i) by internalization from the plasma membrane mediated by HIV Nef protein 

and ii) by ER retention and degradation mediated by the expression of gp160 

and Vpu (Bowers et al., 1997). It was shown that the coexpression of Vpu and 

gp160 resulted in increased degradation of CD4 (Willey et al., 1992), probably 

because of the synergic effect on ER retention which favours the ERAD 

promoted by Vpu.

Vpu induced degradation of CD4 requires the interaction of their respective

transmembrane domains and of its two cytoplasmic a-helices to some

cytoplasmic sequences of CD4 (Magadan et al., 2010; Margottin et al., 1996),

comprised mainly between amino acids 414 and 419 in the sequence LSEKKT

(Bour et al., 1995; Vincent et al., 1993; Lenburg et al., 1993). Of note the

association of Vpu to CD4 in not sufficient to trigger its degradation, because
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the phosphorylation of Vpu Ser52 and Ser56 is required for efficient recruitment 

of p-TrcP-1 and p-TrcP-2, which through their F-box domain are able to 

mediated CD4 ubiquitination by the SCFTrCP complex (Dube et al., 2010). 

Interestingly, ubiquitination of CD4 can occur on multiple types of amino acids: 

Lys, Ser and Thr (Magadan et al., 2010). The mechanism of CD4 ERAD 

induced by Vpu is apparently atypical as the SCFTrCP complex was previously 

reported to act on non-ERAD substrates such as IkB (Bour et al., 2001) and p- 

catenin (Latres et al., 1999). Nevertheless several proteins usually involved in 

ERAD such as the p97 ATPase and its associated cofactors UFD1L and NPL4 

were reported to be pivotal in Vpu-mediated CD4 degradation (Fig. 16) 

(Magadan et al., 2010).

Stepl: ER retention

Anterograde
trafficking

Step2: ERAD-dependent dislocation 
and degradation

Proteasomal
degradation

CD4 
dislocation

Cytoso

ER umen

(1-TrCPEnvelope CD4 p97 NPL4 UFD1L Proteasome

Figure 16. Model of Vpu induce ERAD of CD4 (adapted from Magadan et al., 2010). The

scheme pictures the two major steps of CD4 associated degradation during HIV infection: the 

protein is first retain in the ER by the synergic effect of gp160 and Vpu on the membrane and 

cytosolic domains, then the polyubiquitination of CD4 cytosolic tail, triggered by the 

phosphorylated Vpu recruitment of SCFTrGP complex via the F-box domain of (3-TrCP, results in a 

dislocation and proteasomal degradation mediate by the p97-UFD1L-NPL4.
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5.3 Vpu induced Tetherin degradation.

INTRODUCTION

One of the most relevant Vpu effect is promoting a more efficient release of viral 

particles from several HIV infected cells (Dube et al., 2010). Indeed in the 

absence of Vpu release of HIV-1 was highly impaired in HeLa cells, in 

macrophages, and in primary T helper cells, but an efficient release of viral 

particles was reported in COS, CV-1, HEK293T, and Vero cells (Schubert et 

al.,1995; Sakai et al., 1995; Geraghty et al., 1994).

Interestingly Vpu was found able to enhance release also of other retrovirus like

MLV (murine leukemia virus) and Visna virus (Gottlinger et al., 1993), but even

viral-like particles from the unrelated Ebola virus and several other enveloped

viruses (Neil et al., 2007; Douglas et al., 2010). It was also observed that

viruses were not released because tethered to the plasma membrane and that

could be released by protease treatment (Neil et al., 2006). Moreover the

proteinaceous tethering factor was found to be inducible by type 1 interferon

treatment (Neil et al., 2007) and was identified in the BST-2/Tetherin protein

(Van Damme et al., 2008). Tetherin is a peculiar type-ll transmembrane

glycoprotein with two glycosylation sites, a short cytosolic N-terminal domain,

an ectodomain of around 120 amino acids, forming a rod-like a helical structure

long 16-17 nm, and a C-terminal GPI anchor (Strebel 2013; Swiecki et al.,

2011). Tetherin efficiently forms parallel homodimers, which can be stabilized by

at least one of the three available disulphide bonds located in the ectodomain

(Perez-caballero et al., 2010). Tetherin dimerization through Cys is essential for

efficient tethering of viral particles on the plasma membrane, where Tetherin

seem to localize in the same cholesterol-enriched lipid domains home of

budding for several enveloped viruses (Perez-caballero et al., 2010; Strebel,

2013). Among the several possible models, virus retention is apparently

performed through the localization of one membrane anchored domain,

probably mainly the N-terminus (Lehmann et al., 2011), of each Tetherin dimer

in the budding viral particle, while the other is embedded in the plasma

membrane; apparently Tetherin can even form small chains of viral particles

bound one to the other to the plasma membrane (Fig. 17). This mechanism of

viral retention is probably mainly due to the structure of Tetherin rather than a

really specific amino acid sequence, as a structurally related protein chimera

with totally different amino acids composition was capable of inhibit release of
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viral particles from the plasma membrane (Perez-caballero et al., 2010).

Model 1

Model 2  Model 3 Model 4

Figure 17. Possible models for Tetherin mediate viral particles retention (Perez-caballero 

et al., 2010). In model 1 the transmembrane domain of tetherin localizes to the site of formation 

of the viral particles, being thus incorporated into the envelope and tethering it to the plasma 

membrane through the GPI anchor. Model 2 illustrate a reverse possible viral anchoration. 

Model 3 picture a retention mechanism where only one tetherin molecule in the dimer has both 

membrane anchors incorporated into the budding envelope. In model 4 a multimeric hypothesis 

for Tetherin action is shown.

How exactly Vpu mediates down regulation of cell surface Tetherin promoting

virions release is still debated and it was suggested that both relocalization of

Tetherin in the plasma membrane and decrease display of the protein at the cell

surface could be sufficient to circumvent its antiviral activity (Strebel, 2013).

It is quite clear that Vpu physically interacts with Tetherin through their

respective transmembrane domains (Iwabu et al., 2009). However various

contradictory evidences are showing that Vpu can affect the supply of newly

synthesized Tetherin, but also its resupply by recycle, to the plasma membrane.

Published data claim that Vpu acts on Tetherin either retaining it in the ER,

degrading the protein through the proteasome (Goffinet et al., 2009; Mangeat et

al., 2009), or relocalising it to a trans-Golgi perinuclear compartment (as judge
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for instance by colocalization with the TGN46 marker protein: Dube et al., 2010) 

before endo-lysosomal degradation (Andrew et al., 2011; Mitchell et al., 2009). 

Similarly to Vpu mediated ERAD of CD4, in Vpu induced Tetherin degradation a 

role for the ubiquitin ligase SCFTrCP complex was found but, surprisingly, it 

seems to interest both the lysosomal and the ERAD pathway (Mitchell et al., 

2009; Mangeat et al., 2009). Probably these discrepancies are due to the 

several different cell lines used and to the different ways of Tetherin and Vpu 

expression (i.e. endogenous/viral or overexpressed) (Douglas et al., 2010). 

Nevertheless, probably the preferential degradative pathway of Tetherin trigger 

by Vpu during HIV infection involve mainly the lysosomes, but proteasomal 

degradation cannot be fully excluded (Dube et al., 2010). However, for Tetherin 

degradation it has been clearly established that the ERAD pathway is pivotal 

when this protein is overexpressed. As in the case of CD4, Vpu induced ERAD 

of Tetherin requires phosphorylation of Vpu residues (Ser52 and Ser56), 

exploits the ubiquitin ligase SCFTrCP'2 complex and ubiquitination of Tetherin 

cytosolic tail interest several Cys, Ser and Thr residues other than Lys (Mangeat 

et al., 2009; Tokarev et al., 2011). Also for Tetherin ERAD a pivotal role of p97 

ATPase was reported (Mangeat et al., 2009).
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6 Calreticulin: ER and non-ER functions

INTRODUCTION

Calreticulin is a highly expressed soluble protein of about 46 kDa, present in 

every cell of higher eukaryotes, excluding erythrocytes (Krause and Michalak, 

1997). There is no calreticulin gene in yeast and prokaryotes, yet this protein is 

essential in mammals, as calreticulin knockout mice are not viable because of 

embryonic lethality for cardiovascular defects (Mesaeli et al., 1999). This 

observation was not surprising considering calreticulin involvement in a number 

of diverse and important functions, the best known of which are its roles as a 

pivotal ER chaperone and as the major Ca2+-binding protein within the ER 

lumen (Michalak et al., 1999). The protein is inserted in the ER through a leader 

peptide, has a KDEL retention signal at the C-terminus and can be divided into 

three main distinct functional and structural domains (Fig. 18) (Michalak et al.,

2009). The N-domain of calreticulin is similar to the chaperone-lectin domain 

present also in calnexin, thus contain polypeptide and sugar binding sites 

(Michalak et al., 2009). Moreover in the N-domain is present a disulphide bridge 

and a Zn2+ binding site (Baksh et al., 1995). The folding of calreticulin is highly 

influence by Ca2+ concentration, for example the N-domain is resistant to 

proteolysis in the presence of Ca2 (Corbett et al., 2000).

The second calreticulin domain is called P-domain (proline-rich) and it is 

probably involved together with N-domain in chaperone-lectin functions 

(Michalak et al., 2009). As the N-domain, also the P-domain of Calreticulin 

shares a common structure with the homologous domain of calnexin and both 

the proteins can boost their chaperone functions using it to interacts with the 

oxidoreductase ERp57 (Martin, et al., 2006).

This P-region of calreticulin binds Ca2+ with a relatively high affinity (Kd 1pM), 

but low capacity (1mol of calcium/1 mol of protein) (Baksh and Michalak, 1991).

In the highly acid C-domain of calreticulin are located several Ca2+ binding sites 

with a global high capacity (18-25 mol of calcium/1 mol of protein), but low 

affinity (Kd 2 mM) (Baksh and Michalak 1991). Of note, calreticulin with its Ca2+ 

binding sites is the major responsible of Ca2+ storage in the ER lumen (Michalak 

et al., 2009).

64



INTRODUCTION

P-domain

N-domain

C-domain

ERp57 binding 
A region

Chaperone J  
(foldingunit) "i

Calcium buffering 
domain

KDEL-COO-

Figure 18. Structural model of calreticulin N- and P-domains and schematic 

representation of the C-domain (adapted from Michalak et al., 2009). In blue is depicted the 

globular N-domain (Cys residues involved in S-S bridge are highlighted in yellow), in red the 

central P-domain with indicated the ERp57 binding area. The N- and P-domains are responsible 

of the chaperone-lectin properties (Asp135, His153, Trp244, Trp302 and Asp317 the most 

critical residues for those functions are indicated). In orange is represented the highly acid 

calcium buffering C-domain.

Within the lumen of the ER, calreticulin is well known to play several roles in 

folding of proteins in with other ER-resident chaperones and lectins, preventing 

also protein aggregation and participating to the protein quality control system 

which mediates degradation of target proteins. Moreover from the ER 

calreticulin is pivotal regulator of calcium homeostasis, which influences a large 

variety of cellular functions (Michalak et al., 2009).

Unpredictably calreticulin was found ectopically in the cell, outside of its putative 

ER localization (Gold et al., 2009). If the localization of this protein at the 

plasma membrane might be explain by a leakage of the KDEL receptors 

system, this surface population of calreticulin has been indicated to have 

several serious functions in antigen complement activation, presentation, 

clearance of apoptotic and cancer cells and wound healing, to quote only few of 

its believed extracellular roles (Gold et al., 2009).

Interestingly it was also reported that following retro-translocation or partial 

insertion, calreticulin has regulatory functions both in the cytosolic and nuclear 

compartments (Holaska et al., 2001, Shaffer et al., 2005, Afshar et al., 2005).
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For example, calreticulin was described to bind the cytoplasmic tail of a- 

integrins (Reilly et al., 2004), to be a component of the nuclear matrix in 

hepatocellular carcinomas (Yoon et al., 2000), to have a role in nuclear export of 

the glucocorticoid receptor, influencing thus transcription (Holaska et al., 2001; 

Shaffer et al., 2005) and to bind histones in mitotic chromosomes (Kobayashi et 

al., 2006). More surprisingly, calreticulin was believed to be able to influence 

translation by RNA binding activities on both viral (Atreya et al., 1995; 

Yocupicio-Monroy et al., 2003) and cellular mRNAs (Timchenko et al., 2002; 

lakova et al., 2004).

These ectopic functions of calreticulin are believed to depend on physical 

interactions with substrates and hence cannot be explained only by indirect 

effects. These interpretations were confirmed, for instance, by the effects of 

increasing insertion efficiency in the ER lumen influenced glucocorticoid 

receptor-mediated gene activation (Shaffer et al., 2005) and by rescue cell 

adhesion in calreticulin knock out cells by the expression of a cytosolic version 

of calreticulin (Afshar et al., 2005). To support a retrotranslocation mechanism 

from the ER as the source of calreticulin, it was found that the C-terminal 

domain of calreticulin is both necessary and sufficient for the retrotranslocation 

(Afshar et al., 2005). In trypanosome this retrotranslocation was reported to be 

triggered by ER calcium depletion, but not by increasing of cytosolic calcium 

levels, and that the effect of calcium was strictly dependent on presence of the 

C-terminal domain, even in fused proteins (Afshar et al., 2005; Labriola et al.,

2010). Only a fraction of dislocated calreticulin is known to be targeted to rapid 

proteasomal degradation (Afshar et al., 2005; Labriola et al., 2010). A clear 

direct evidence of calreticulin cytosolic localization is the posttranslational N- 

terminal arginylation of a calreticulin cellular fraction (Decca et al., 2007). This 

modification is performed by arginyl-tRNA protein transferase, an enzyme, 

present also in yeast and expressed in two isoforms (ATE1 and ATE2) in mice 

and humans, with a cytosolic and nuclear localization. ATE proteins can attach 

an Arg to the N-terminal Glu, Asp or Cys residue of protein substrates (Kwon et 

al., 1999). This calreticulin arginylation was found dependent from ATE1, 

increased in condition of calcium sequestration and decreased in the of the ion; 

of note in the presence only of cellular stress (combined EGTA and thapsigargin 

treatment) that lead to a reduction of intracellular Ca2+ levels the arginylated 

cytosolic calreticulin was localized in cytoplasmic stress granules (Decca et al.,
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2007; Carpio et al., 2010). Interestingly, a recent report described a function for 

the arginylated calreticulin in response to stress at the plasma membrane, 

where it seems to act as a preapoptotic signals (Sambrooks et al., 2012).
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7 Protein biotinylation as a tool to label cytosolically exposed 
proteins

Detection of retro-translocated molecules relies usually on the separation of the 

cytosolic soluble fraction or identification of the fraction deglycosylated by the 

cytosolic PNGase and accumulated in the cytosol upon proteasome inhibition 

(Hassink et al., 2006; Wiertz et al., 1996b).

A limitation of this technique could be represented by a low efficiency in the 

detection of retro-translocated substrates, because of incomplete proteasome 

inhibition or the inability to identify possible glycosylated, yet retro-translocated 

molecules.

In an attempt to improve the detection of retro-translocated substrates, we 

developed a method of specific in living cells labelling of retro-translocated 

proteins, by selective biotinylation in the cytosolic compartment (Petris et al., 

2011, Vecchi et al., 2012). This in living cells biotinylation approach has also 

been recently used to study cytosolic/luminal localization of prion protein 

isoforms (Emerman et al., 2010).

Biotinylation of proteins in cells can be easily achieved by co-expression of the 

E. coli derived biotin-ligase BirA and the protein of interest tagged with a 15 

amino acid (GLNDIFEAQKIEWHE) biotin-acceptor-peptide (BAP) (Barker and 

Campbell, 1981; Beckett et al., 1999).

BirA enzyme catalyses the biotinylation reaction through two ATP-dependent 

steps that allow the formation of a covalent linkage between the amidic group of 

the lysine residue in the BAP sequence, and the carboxylic group of biotin. 

During the biotinylation reaction, ATP hydrolysis causes the formation of the 

intermediate biotinyl-AMP which is hydrolysed in order to transfer the biotin to 

the lysine residue of the substrate (Fig. 19) (Abbott and Becket, 1993; Beckett 

et al., 1999).
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Figure 19. Illustration of the biotinylation reaction. During biotinylation BirA enzyme 

catalyses the biotinylation of the substrate through two ATP-dependent steps (modified from 

Chapman-Smith and Cronan, 1999).

It was previously shown that, because of its cytosolic localization, BirA needs to 

be engineered with a signal leader peptide, in order to translocate to the ER 

lumen and to achieve efficient biotinylation of proteins within this restricted 

compartment (Predonzani et al., 2008).

Thus exploiting the strong affinity of streptavidin, from Streptomyces avidinii, or 

avidin, a glycoprotein present in eggs, the biotinylated molecules can be easily 

detected.

The binding between avidin or streptavidin and biotin, despite the high affinity, is 

a non-covalent interaction and a single streptavidin or avidin molecule, being a 

homotetramers, can bind until four biotins one to each monomeric subunit 

(Livnah et al., 1993).

For these reasons the streptavidin-biotin interaction is widely exploited in 

protein science.
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8 Tobacco Etch Virus protease (TEVp) as biotechnological tool

Tobacco Etch Virus (TEV) is a non-envelope positive-sense, single-stranded 

RNA virus, which belongs from the Potyviridae family and can infect several 

plant species.

Its genome codifies for a single polyprotein of 346 kDa (Allison et al, 1986). 

From the N-terminal portion of the polyprotein are generated by auto-catalysis 

the proteases P1 and HC-pro, while the viral protease Nla {Nuclear inclusion A) 

releases all the other proteins. After these maturation cleavages a minimal (27 

kDa) active form of the Nla protease (Nla-pro), called also TEVp, is released 

(Dougherty and Parks, 1991).

TEVp is homologous to serine-proteases, but unlike these it has a cysteine 

residue in its catalytic site, indeed the single point mutation C151A completely 

abolish the protease activity (Parks et al., 1995).

The minimal TEVp substrate specificity is encoded in a small seven amino acid 

long sequence E-X-X-Y-X-Q-S/G (TEVp cleavage site or TS), where X  can be 

any amino acid (Carrington and Dougherty, 1988). However up to now, despite 

this apparent low specificity and the variety of peptides which could be included 

as TS, the best recognized and cleaved TEVp epitope is identical to the 

protease’s natural substrate peptide (ENLYFQ/G) (Kostallas et al., 2011). The 

proteolytic cleavage occurs between the Q and the short aliphatic G residue 

(Parks et al., 1994). A TS  is also present in TEVp itself. Indeed in the C-terminal 

portion of the molecule a GHKVFM/S sequence is intramolecularly recognised 

and cleaved (Parks et al., 1995; Kapust et al., 2001). The generated protein 

fragments are almost proteolytically inactive and resemble a general 

inactivation mechanism common among several proteases. To overcome the 

problem of auto cleavage several mutants of TEVp were characterized, of them 

the S219V seems to have the best ration between catalytic activity and auto

cleavage (Kapust et al., 2001).

Due to its remarkable specificity, stability and activity in several buffer conditions 

TEVp is widely used in the biotechnology industry as a reagent for 

endoproteolytic removal of affinity tags (Melker, 2000; Sun et al., 2012),

While in viral infection TEVp accumulates mainly in the nucleus of plant cells 

before being released from the full length Nla, if expressed alone it localise 

largely in the cytoplasm (Ceriani et al., 1998). In addition the expression of
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TEVp, not only in plant cells, but also in bacteria and yeast was found to be safe 

(Henrichs et al., 2005; Taxis et al., 2009). Even in Drosophila, the ubiquitous or 

tissue specific expression of TEVp has no notable phenotypes (Pauli et al., 

2008). In HeLa cells micro-injection of the TEVp had no discernible effect on 

viability or cell proliferation (Satoh and Warren, 2008). Because of these 

features TEVp is suitable to be used, in place of BirA, as a new tool to label, 

through its proteolytic activity, the fraction of retrotranslocated ERAD substrates.
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MATERIALS AND METHODS

Constructs

MHC-loc

The human MHC-la allele A2 cDNA (accession number U02935) was PCR  

amplified from RNA extracted from anonymous healthy donors lymphocytes and 

inserted into pcDNA3 expression vectors (Invitrogen) containing the coding 

sequences for a secretion signal, the SV5 tag (GKPIPNPLLGLD) and the biotin 

acceptor peptide BAP (GLNDIFEAQKIEWHE, Beckett et al., 1999). Two 

plasmids were generated, one containing the SV5 and BAP sequences at the 

amino terminal side of MHC-la (pcDNA-BAP-MHC-la) and one with BAP and 

SV5 sequences fused to the carboxyterminal side of MHC-la (pcDNA-MHC-la- 

BAP). US2 and US11 plasmids were kindly provided by Domenico Tortorella.

g1-antitrypsin

The cDNAfor the human a1-antitrypsin (a1AT, accession number K01396) was 

similarly PCR amplified and inserted in a vector that adds the SV5 and BAP 

sequences at the carboxyterminal end (pcDNA-a1AT-BAP). The vector 

expressing the NHK mutant of a1AT (Sifers et al., 1988) was generated by 

substituting the wild type a1 AT sequence in the pcDNA-a1 AT-BAP vector with a 

sequence containing a two-base deletion after codon 318 of the mature protein 

resulting in the insertion of 14 frame-shifted codons (pcDNA-NHK-a1 AT-BAP).

y heavy chain

The plasmid expressing the mouse y heavy chain was obtained by inserting the 

coding sequence in the pcDNA vector with the SV5 and BAP sequences at the 

carboxyterminal end (pcDNA-HC-BAP).

Calreticulin

The vectors expressing the full-length and truncated calreticulin were generated 

by inserting the PCR amplified cDNAs of human calreticulin (accession number 

NM_004343) or the calreticulin truncated after codon 285 of the mature protein 

in the vector with the SV5 and BAP sequences at the amino terminus (pcDNA-
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BAP-Crt and pcDNA-BAP-Crt-AC).

MATERIALS AND METHODS

CD4

CD4 cDNA was modified by inserting at the N-terminus the coding sequences 

for a secretion signal, the SV5-tag and the Biotin Acceptor Peptide and cloned 

into pcDNA3 vector (Invitrogen), yielding BAP-CD4. To obtain a CD4 with 

membrane-proximal BAP (18 amino acids from transmembrane domain, CD4- 

BAP), the BAP-tag was introduced immediately after Ser382. A codon optimized 

version of gp160 was cloned into pcDNA3 and used in all experiments with 

CD4.

Tetherin

Human Tetherin was tagged with SV5 and BAP immediately upstream of the 

GPI-anchor signal (Tetherin-BAP) and cloned into pcDNA3. Tetherin 

ectodomain, including amino acids 45-160 of wild type human Tetherin (Swiecki 

et al., 2011) and containing the added SV5 and BAP tags, was amplified and 

cloned into pcDNA3. Tetherin cyt-ecto cDNA was modified by inserting at its N- 

terminus the coding sequence for a secretion signal to obtain a secreted version 

of Tetherin ectodomain (sec-ecto).

Tetherin with the membrane proximal BAP (12 amino acids from 

transmembrane domain, BAP-Tetherin) was obtained by inserting the BAP-tag 

after Ala48. Vpu from viral clone NL4-3, was expressed from a pcDNA3 vector 

containing an N-terminal leader peptide followed by SV5-tag.

NS1

NS1 SV5-BAP tagged plasmids were generated amplifying wild type, NS1C and 

NS1STK- sequences (kindly provided by Linda Hendershot, as the p97 and 

p97QQ plasmids) cloning them in pcDNA3 vectors, codifying an 

immunoglobulin leader peptide, upstream the coding sequence for the BAP and 

SV5 tag or in between the two tags. No additional Ser, Thr or Lys (excluding the 

K site of biotinylation) were introduced at the N-terminus during cloning and 

tagging of NS1STK-. OTU plasmid was kindly provided by Adolfo Garcfa- 

Sastre.

TEV protease and TS tagged plasmids
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Nla TEV protease (TEVp) coding sequence was codon optimized for expression 

in eukaryotic cells and cloned into pcDNA3. A C-terminal SV5 tagged TEVp in 

pcDNA3 was also produced.

TEVp C151A mutant was obtained by PCR using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene). For experiment with TEVp were realised pcDNA3 

SV5-BAP-MHC-la-TS-RT and pcDNA SV5-TS-MHC-la-RT. These two vectors 

codify for a MHC-la C-terminally tagged with the roTag epitope: SISSSIFKNEG  

(RT) and contain the seven amino acids (ENLYFQ/G) TEVp cleavage site (TS) 

at the N-terminus downstream the SV5 tag (pcDNA SV5-TS-MHC-la-RT) or at 

the C-terminus upstream the RT tag (SV5-BAP-MHC-la-TS-RT).

A doubled TS and BAP tagged pcDNA3-SV5-BAP-TS-MHCIa-RT was obtained 

inserting a RT at the C-terminus of SV5-BAP-MHCIa and a TS between BAP 

and MHCIa.

Starting from pcDNA-NS1(STK)-BAP-SV5 it was obtained a vector (pcDNA- 

NS1(STK-)-BAP-SV5-TS-RT) expressing NSISTK-mutant tagged at the C- 

terminus with the BAP, a GGSGS linker followed by the SV5, TS and RT tags.

Cell culture and transfection

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 10% fetal calf serum (FCS).

Cells were co-transfected in 6-well plates (about 5x105 cells/well) by standard 

calcium phosphate technique (Sambrook et al., 1989). When indicated, US2 or 

US11 plasmids (kindly provided by D. Tortorella) were co-transfected. In 

transfection experiments involving mouse yHC, a vector expressing a mouse 

kLC was co-transfected, where required. 18 h after transfection, medium was 

discarded and replaced by 2 ml of serum free medium supplemented with 0.1 

mM biotin and further incubated for at least 8 h. When required, after 4 h 

incubation with biotin, the proteasome inhibitors MG 132 (Sigma) or Bortezomib 

(Selleck Chemicals) were added at a concentration of 50 pM for 4 h, or at 10 

pM for 16 h (MG132).

In experiments with CD4 and Tetherin, when indicated, the Vpu-expressing 

plasmid was co-transfected. pEGFP-N1 plasmid was co-transfected as a 

loading control. In all experiments shown with CD4 was cotransfected gp160.
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Approximately 18 hours after transfection, medium was discarded and replaced 

with 2 ml of medium supplemented with 0.1 mM biotin and cells were further 

incubated for at least 7-8 hours. When indicated, with CD4, Tetherin and NS1 

after 4 hours of incubation with biotin, the proteasome inhibitor MG 132 (Sigma) 

was added in serum free medium at a concentration of 10 pM for 4 hours, or at 

5 pM for 12 hours or overnight. Chloroquine (Sigma) was used at 50 pM for 4 

hours. The PNGase inhibitor Z-VAD(OMe)-fmk (IMGENEX) was used for 4 

hours at 100 pM.

Cell extracts, gel retardation assays and Western blotting

HEK293 transfected cells were lysed directly in the transfection plates, after 

collecting medium and washing with PBS to remove free biotin with 100 pl/well 

of SDS-lysis buffer (100 mM Tris-HCI, pH 6.8, 6% SDS) and subsequently 

sonicated to disrupt nuclear DNA; for analysis of the presence of disulphide 

bridges cells were washed with 20 mM N-ethylmaleimide (NEM) (Fluka) in PBS 

pH 6.8 and lysed in SDS buffer containing 20 mM NEM. For experiments with 

TEVp SDS-lyses buffer was supplemented with protease inhibitor mixture 

(Sigma). Proteins were separated by standard SDS-PAGE in reducing (25 mM 

Tris-HCI, pH 6.8, 1% SDS, 10% glycerol and 175 mM b-mercaptoethanol or 

0.1 mM dithiothreitol (DTT) or non-reducing loading buffer (25 mM Tris-HCI, pH 

6.8, 1% SDS, 10% glycerol) before to be transferred to PVDF membranes.

Bi-dimensional SDS-PAGE

For 2D gel analysis, samples were first run on a non-reducing SDS-PAGE gel. 

The lane of interest was then cut and incubated with reducing loading buffer for 

15 minutes at room temperature, before being run in a second gel under 

reducing condition.

Gel retardation assays

For gel retardation assays, samples denatured in SDS-gel-loading buffer (25 

mM Tris-HCI, pH 6.8, 1% SDS, 10% glycerol, 175 mM p-mercaptoethanol) were 

boiled for 10 min, cooled to RT and incubated with 1 pg of StrAv (Sigma) for 15- 

30 min before separation on SDS-PAGE and transferred to PVDF membranes.
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Immunoblottinq and immunoprecipitation

Gels were transferred to PVDF membranes for immunodetection with anti-SV5 

mAb followed by incubation with HRP-labeled anti-mouse whole IgG (Jackson) 

and ECL reaction. Where indicated, WB of rabbit anti-EGFP (Life Technologies) 

was used as loading and transfection control. WB of mouse anti-p97 was used 

to verify overexpression of p97 (BD Bioscience). In WB of cell fractionation 

experiments rabbit anti-actin (Sigma), mouse anti-calnexin (BD Bioscience) and 

rabbit anti-Derlin1 (Sigma) were used according to manufacturer instructions. 

Quantification of bands was performed with the image processing software 

Image-J 1.43u (National Institutes of Health, USA) or using UVItec Alliance 

detection system. Purification of biotinylated material was carried out by 

incubating the lysates in SDS-PAGE loading buffer with StrAv-coated magnetic 

beads (Dynabeads, Invitrogen) and eluting by boiling for 10 min. Where 

indicated, eluted material was treated with Peptide-N-Glycosidase-F (PNGase- 

F, New England Biolabs) according to manufacturer indications. 

Immunoprecipitations were carried out by incubating lysates, diluted 3 times in 

TNN buffer (100 mM Tris-HCI pH 8.0, 250 mM NaCI, 0.5% NP40, 20mM N- 

ethylmaleimide, 1% protease inhibitors cocktail (Sigma)) with anti-SV5 and 

Protein A-agarose (Repligen) for 2 hours at 4°C. Immunoprecipitated proteins 

were eluted from agarose beads by boiling in SDS buffer. For 

immunoprecipitation of plasma membrane fractions, intact cells were first 

incubated with anti-SV5 for 1 hour on ice, then washed with cold PBS, and 

lysed in TNN buffer. Post-nuclear supernatants, were incubated with Protein A- 

agarose (Repligen) for 30 minutes and, after washing, bound proteins were 

eluted by boiling in SDS buffer. Biotinylated material in the purified fraction was 

detected in Western Blot with streptavidin-HRP (Jackson). Where indicated, 

cellular lysates or eluted material were treated with Peptide-N-Glycosidase-F 

(PNGase-F) or Endoglycosidase Hf (Hf) (New England Biolabs) according to 

manufacturer instructions. Where indicated, WB of anti-EGFP was used as 

loading and transfection control.
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Cytofluorimetric analysis

MATERIALS AND METHODS

Cells were, 24 h after transfection, incubated either with the anti-SV5 mAb 

followed by fluorescein-conjugated anti-mouse IgG (KPL), or with 

QuantumDot655-Streptavidin (Invitrogen) and analysed in a FACSCalibur 

(Becton Dickinson).

Trypsin sensitivity assay and cell fractionation

Microsome-containing lysates were obtained by resuspending cells in buffer 50 

mM Tris-HCI pH 8.0, 250 mM sucrose and 10 mM N-ethyl-maleimide (for cells 

transfected with MHC-la and NHK-a1AT), or in buffer 20 mM Tris-HCI pH 7.4, 

250 mM sucrose and 30 mM N-ethyl-maleimide (for cells transfected with CD4 

and Tetherin), freezed and thawed once (MHC-la and NHK-a1AT) or lysed by 

12 passages through a 23Gx1” needle (CD4 and Tetherin). After low speed 

centrifugation (500-5000xg for 5 min at 4°C) to discard nuclei and cell debris. 

Supernatants (microsome-containing lysates) for trypsin sensitivity assays were 

incubated with 1 pg trypsin (Sigma) for 1 h at 37°C and when indicated NP40 

was added at 0.5% final concentration. While for cell fractionation, 1000xg 

supernatants were further centrifuged at 100.000xg for 1 hour at 4°C. 

Supernatants represented cytosolic material and pellets the microsomal-ER 

fraction. After a delicate wash in fractionation buffer, pellets were resuspended 

in the same buffer enriched with 1.2% SDS.

Quantification of retro-translocation by ELISA

Samples in SDS-lysis buffer were treated with 0.15 M p-mercaptoethanol and 

boiled for 10 min. Free p-mercaptoethanol was then quenched by diluting with 

an equal volume of iodoacetamide 0.15 M in buffer Tris-HCI 0.1 M, pH 8.0. 

Serial dilutions of these lysates in buffer TNN (50 mM Tris-HCI, pH 8.0, 250 mM 

NaCI, 0.5% NP-40), starting from 10 pl/well, were applied to polystyrene 

microplates (Nunc Maxisorp C96) coated with 0.2 pg/ml of anti-SV5 mAb in 

buffer NaHC0 3 -Na2 C0 3  50 mM, pH 9.5 (100 pl/well). Proteins were bound to
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the plates for 1 h at RT and then reacted with either HRP-labeled StrAv 

(Jackson Immunoresearch) or anti-roTag (scFv in SIPss2 format [40]) followed 

by HRP-labeled anti-human IgE (KPL), and developed with TMB reagent 

(Sigma). After blocking with H2 SO4 , the O.D. at 450 nm was read on a BioRad 

microplate reader 550. To calculate the proportion of retro-translocated 

molecules, the ratio between the slopes derived from the linear region of the 

serial dilutions curves developed with StrAv and anti-roTag was first determined 

for the 100% biotinylated sample (MHC-la co-expressed with sec-BirA), and 

termed reference factor, F-mo- The same factor was then determined for each 

sample (Fx). The biotinylated fraction was thus calculated as (Fx/Fioo) x 100.

[35S]-Methionine labelling

Cells were first starved for 30 minutes in Methionine/Cysteine free medium, 

supplemented with 10% dialyzed FCS and 0.1 mM biotin, then labeled for 10 or 

15 minutes, as indicated, with 200 pCi/ml of [35S]-Methionine/Cysteine (Perkin 

Elmer), and chased for the indicated times in biotin-containing fresh medium. 

Cells were lysed in 100 pi of SDS-lysis buffer, diluted with 400 pi of TNN and 

digested with DNasel (Promega) for 1 hour at 37°C. SV5 tagged proteins were 

immunoprecipitated with anti-SV5 and Protein A-agarose (Repligen), eluted by 

boiling in SDS-lysis buffer and samples were resolved on a non-reducing or 

reducing 10% SDS-PAGE. Purification of biotinylated material was performed 

with StrAv-coated magnetic beads (Dynabeads, Invitrogen) and the elution 

obtained by boiling. Gels were fixed in 10% acetic acid, 10% methanol, 

incubated for 20 minutes in Amplify fluorographic enhancer (GE Healthcare), 

dried and exposed for autoradiography on Kodak BioMax XAR films.
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Results

1. BirA localization in eukaryotic cells

Determining the localization of proteins within eukaryotic cells is often 

challenging, in particular when the polypeptide studied could be present in more 

than one cellular compartment. In investigating Endoplasmic Reticulum 

Associated Degradation (ERAD), a process where secretory and membrane 

proteins are targeted to proteasomal degradation, the essential requirement 

needed is to know precisely their localization discriminating between the 

Endoplasmic Reticulum (ER) lumen and the cytosolic compartment, where the 

final clearance of the dislocated polypeptides occurs (Zhong and Fang, 2012; 

Hampton and Sommer, 2012).

In the literature are described biochemical and physical methods to discriminate 

whether an ERAD substrate is on the luminal or cytosolic side of the ER 

membrane, evaluating the presence or absence of characteristic post- 

translational modifications typical of one of the two compartments (i.e. N- 

glycosylation or ubiquitination), performing cell fractionation by differential 

centrifugation or protease sensitivity assays (Zhong and Fang, 2012). However, 

even if all those techniques are certainly powerful methods to localize proteins, 

many of them require extensive sample manipulation and, as a consequence, 

are difficult to execute. Despite the few interesting recently developed 

techniques based on fluorescence reconstitution of split GFP to analyse ERAD 

in fluorescence experiments in intact cells (Zhong and Fang, 2012; Grotzke et 

al., 2013), there is still a need for user friendly and reliable methods to 

biochemically label in living cells, proteins retrotranslocated from the ER to the 

cytosol. In this thesis are described, analysed and validated two new methods 

to localize proteins during ERAD, both of them based on the expression of 

reporter enzymes in the cytosol of eukaryotic cells, which can modify a specific 

short target sequence added on a luminal domain of model ERAD protein 

substrates. The two enzymes used in living cells to label retrotranslocated 

proteins are the E. coli biotin ligase BirA (biotinylation) and the Tobacco Etch 

Virus protease Nla (TEVp) (cleavage). As many aspects of the ERAD pathway 

are still unclear or controversial for both membrane and soluble proteins, the 

two new methods were used to investigate unexplored aspects in this field.
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The E. coli biotin ligase BirA is a 35 kDa well characterized protein. In bacteria 

its major function is to activate biotin to form biotinyl-5-adenylate and transfer 

the biotin moiety to biotin-accepting proteins, involved in several metabolic 

pathways, that must contain a biotin carboxyl carrier protein (BCCP) subunit 

(Bekett et al., 1999). To exploit BirA enzymatic biotinylation for biotechnological 

purposes it was developed a small 15 amino acid long (GLNDIFEAQKIEWHE) 

Biotin Acceptor Peptide (BAP) (Bekett et al., 1999). This mono-biotinylation is 

highly specific and almost irreversible, as the only known de-biotinylating 

activity in cells takes place on short peptides derived from degraded proteins 

and in particular by the activity of biotinidases, a class of enzymes that remove 

biotin preferentially from biocytin (Biotinyl-L-lysine) (Wolf, 2005).

BirA is not secreted by bacterial cells, does not contain any hydrophobic leader 

peptide and, if transfected in eukaryotic cells, has a cytosolic localization. 

Indeed already from a simple experiment of co-transfection of the 12 amino 

acids SV5 (GKPIPNPLLGLD) C-terminal tagged version of BirA with the ER 

marker Derlin1-EGFP (Lilley and Ploegh, 2004), analysed by 

immunofluorescence, showed a diffuse cellular distribution and generally does 

not overlap with the ER resident protein (Fig. 20).

BirA Derlin1-EGFP Merge

293T

Figure 20. BirA has a diffuse pattern and generally does not overlap with the ER marker 

Derlin1-EGFP. 293T cells were co-transfected with plasmids expressing BirA-SV5 (red) and 

Derlin1-EGFP (green); BirA expression was observed by the mAb a-SV5.
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This assumption on BirA localization was also confirmed by analysis of its 

enzymatic activity on a few secreted and membrane proteins (Predonzani et al,

2008). While the presence of the BAP tag in a cytosolic domain of model 

proteins was found completely biotinylated in the presence of BirA, the 

localization of BAP in a luminal domain of secreted or membrane proteins 

results in no biotinylation. However, after expression of an engineered version 

of BirA, containing an N-terminal leader signal peptide (sec-BirA), such proteins 

can get fully biotinylated (Predonzani et al, 2008). To discriminate between the 

biotinylated and the non-biotinylated isoforms of the protein tagged with the 

BAP a technique based on a Western blotting retardation assay (Wb-ra) was 

developed. In this assay denatured samples are incubated with streptavidin 

(StrAv); this protein is resistant to SDS-PAGE conditions and forms a molecular 

complex with biotinylated molecules that is retarded in relation to the non- 

biotinylated ones that do not bind StrAv.

Evidence of compartmental restriction of BirA catalytic activity were confirmed 

also on MHC-la, a well characterized molecule, which is an ERAD model 

substrate in the presence of different viral immunoevasins (Hansen and 

Bouvier, 2009; Lilley and Ploegh, 2005). In figure 21A is shown an analysis by 

WB-ra of total cellular extracts from HEK293T cells co-transfected with BirA and 

either the N- or C-terminus BAP tagged MHC-la. As expected, while BAP-MHC- 

la  was essentially not biotinylated, C-tagged BAP MHC-la (MHC-la-BAP) 

yielded complete biotinylation (Fig. 21 A). Likewise, BAP-MHC-la was almost 

completely biotinylated by sec-BirA (Fig. 21B). Thus, the catalytic activity of BirA 

expressed in the cytoplasm of mammalian cells can be used to discriminate 

localization of protein domains bearing the BAP between the ER lumen and the 

cytosol.
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Figure 21. Compartment restricted activity of cytosolic BirA. On the left schemes of the 

experiments of biotinylation in living cells, for the evaluation of compartment specific BirA 

activity, and on the right WB-ra of cellular extracts of HEK293 cells transfected with: (A) BAP- 

MHC-la and MHC-la-BAP, co-expressed with cyt-BirA; (B) BAP-MHC-la co-expressed with sec- 

BirA, as indicated.
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2. Retrotranslocation of MHC-la.

RESULTS

In experiments where BAP MHC-la was co-expressed with BirA and either of 

the two immunoevasins US2 or US11 to induce retro-translocation and 

degradation, we observed a significant increase in the amount of biotinylated 

BAP-MHC-la, as compared to co-expression with an irrelevant protein (Fig. 

22A). This was clearly evident despite a reduction in the total amount of BAP- 

MHC-la, suggesting that molecules biotinylated by BirA corresponded to the 

retro-translocated ones. Co-expressing BAP-MHC-la with three different retro

translocation incompetent mutants, namely, US11-Q192L (Lilley and Ploegh 

2004), US2-C133S (Lee et al., 2010) and US2-AC (lacking the cytosolic domain 

amino acids 186-199: Chevalier 2002), did not affect MHC-la levels and 

showed much lower biotinylation levels than wild type immunoevasins (Fig. 

22A). This evidence represents a clear indication that, indeed, the biotinylated 

material represents molecules exposed to the cytosol that become substrate of 

BirA. This conclusion was further supported by cytofluorimetric analysis (FACS) 

of the mature, cell-surface exposed MHC-la co-expressed with cyt-BirA (and 

US2 or US11) or sec-BirA (Fig. 22B). Levels of MHC-la on the cell membrane 

were reduced, as expected, when co-expressed with either US2 or US11, but 

were not affected by co-expression of BirA or sec-BirA, as revealed by detection 

with anti-SV5 mAb (Fig. 22B, left panel). When the same set of transfected cells 

was instead analyzed with streptavidin-QuantumDot to exclusively detect biotin- 

labeled MHC-la, positive staining was observed only when co-expressed with 

sec-BirA and not with cyt-BirA (Fig. 22B, right panel). Thus, in cells expressing 

BirA all the MHC-la exposed on the cell surface (regardless whether expressed 

alone or with US2 or US11) was not biotinylated, further demonstrating the 

intracellular localization of the biotinylated molecules. Furthermore, when a 

negative control secretory BAP-bearing protein (scFv-BAP, Predonzani et al., 

2008 BMC), which does not interact with US2 or US11 was co-expressed with 

BAP-MHC-la, BirA and US2 or US11 the secreted material was found not 

biotinylated, although somehow reduced with US11 (Fig. 22C), thus confirming 

the specificity of biotinylation in the cytosolic compartment. Similarly, a truncated 

version of human membrane IgE (t-BAP-mlgE), irrelevant to US2 or US11, that 

is otherwise fully biotinylated by sec-BirA Predonzani et al., 2008, was also
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essentially not biotinylated by BirA (Fig. 22D). The small amount of biotinylated 

molecules found with US2 was likely due to the immunoevasin induced cellular 

stress.

These results demonstrated that molecules within the ER lumen, either 

membrane bound or secretory, are protected from the biotinylating activity of 

cytosolic BirA. A small fraction of biotinylated BAP-MHC-la, when expressed 

either alone or with an irrelevant protein was frequently detected, most likely 

representing the fraction of misfolded molecules that have spontaneously 

entered the ERAD pathway. This was not due to post-lysis biotinylation since 

cellular extracts were prepared by directly resuspending cells in SDS-containing 

lysis buffer to immediately denature proteins and block BirA’s activity. In addition 

when cells expressing BirA, BAP-MHC-la and US11 were co-transfected with 

Derlin1-EGFP, we observed a decreased level of biotinylation and an increased 

abundance of MHC-la, in agreement with the reported dominant negative 

activity of this form of Derlinl on the US11 induced MHC-la dislocation (Lilley 

and Ploegh, 2004). Thus, from these experiments, where MHC-la was co

transfected with functional and non-functional immunoevasins or with the 

repressor of the US11 induced MHC-la ERAD (Delin1-EGFP) we obtained 

levels of biotinylation consistent with the expected retrotranslocation.

84



BAP-MHC-la

Ctrl. US2 US2 US2 
AC C133S Ctrl. US11 US11

Q192L

StrAv: + + + + + ++

WB-ra
(MHC-la)

tubulin

RESULTS

US2 

US2Ac 

US2 C13JS

US11TM

QYTLMMVAVIQVFWGLYVK

no MHC-I no BirA

US11 +cyt-BirA

no BirAI
cyt-BirA

sec-BirA

anti-SV5

US11 + cyt-BirA

cyt-BirA
I8o

to'

StrAv-Qdots

scFv-BAP

_  US2 US11

WB-ra

StrAv: -  + -  + -  + 
supernatants

t-BAP-mlgE

US2 US11

WB-ra

StrAv: _ + _ + _  + 
tubulin —'■» •«

EGFP Derlin-EGFP

Ctrl. US11 Ctrl. US11
kDa

-  75

WB-ra
(MHC-la)

-  so

StrAv

Derlin-EGFP

EGFP

Figure 22. Retro-translocation of MHC-la. (A) WB-ra of cellular extracts of HEK293 cells 

transfected with BAP-MHC-la, BirA and US2 or the US2 mutants US2-AC and US2-C133S (left 

panel), or US11 or US11 mutant US11-Q192L (right panel), as indicated. Lower panel show a 

scheme of the immunoevasin mutants. (B) Cytofluorimetry of HEK293 cells co-transfected with 

BAP-MHC-la and either cyt-BirA (alone or with US2 and US11), or sec-BirA, and stained with 

anti-SV5 mAb (left panel) or Streptavidin-QuantumDot (right panel). (C) WB-ra of supernatants 

of HEK293 cells co-transfected with a secretory BAP-tagged scFv control protein and cyt-BirA, 

BAP-MHC-la and US2 or US11. (D) WB-ra of cellular extracts of HEK293 cells co-transfected 

with t-BAP-mlgE, cyt-BirA and US2 or US11, as indicated. (E) WB-ra of cellular extracts of 

HEK293 cells transfected with BAP-MHC-la, BirA with or without US11 in the presence of either 

EGFP or DerlinlEGFP, as indicated. All blots were developed with anti-SV5 mAb, and anti

tubulin or anti-GFP where indicated.

85



RESULTS

Similar experiments to evaluate MHC-la induced retrotranslocation by 

biotinylation in living cells were also performed in additional cell lines. In HeLa 

cells, as shown in figure 23A and B, we observed an induced ERAD of MHC-la  

comparable to HEK293T cells, where US2 appear to be more efficient than 

US11. Whereas in the non-human cell line CHO, US11 was much more 

effective to promote MHC-la degradation and in this cell extract the residual 

amount of MHC-la is fully biotinylated, thus already exposed to the cytosolic 

environment (23C). As US2 and US 11 proteins are derived from human CMV 

their activity in non-human cell lines could be different as we observed.

Retrotranslocation of 
MHC-la in HeLa cells

StrAv -  +

WB-ra
(MHC-la)

BAP MHC-la 

Ctrl. US2 US11

WB-ra
(MHC-la)

StrAv

-  50

Figure 23. Retro-translocation of MHC-la in HeLa and CHO cells. (A) WB-ra of cellular 

extracts of HeLa cells transfected with BAP-MHC-la, BirA and US2 or US11. (B) Quantification 

of the experiment shown in A. (C) WB-ra of cellular extracts of CHO cells transfected with BAP- 

MHC-la, BirA and US2 or US11.

Results similar to the ones shown above with WB-ra were also obtained by 

performing [35S]-Methionine pulse-chase labelling experiments, followed by 

analysis of immunoprecipitated MHC-la in a gel retardation assay. While total 

cell lysates display accumulated protein material, pulse-chase labelling 

approaches allow to detect proteins immediately after synthesis and to follow 

their fate during time. As shown in Fig. 24, while in cells expressing US2 30% of 

the [35S]-Methionine-labeled MHC-la was biotinylated after the 30 min pulse 

labelling period, the proportion of biotinylated molecules increased to around 

55% after the 2 h chase, despite a decrease in total MHC-la. These results are 

consistent with the progressive retrotranslocation and degradation of M HC-la in 

the presence of US2.
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35S-ra (MHC-la) 
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strAv: + -  + + -  + pulsechase

Figure 24. Pulse-chase labelling of retro-translocated MHC-la. Left panel, [35S]- 

Methionine/Cysteine PAGE retardation assay of anti-SV5 immunoprecipitated cellular extracts of 

HEK293T cells co-transfected with BAP-MHC-la and BirA and, where indicated, with US2. Right 

panel, quantification of the BAP-MHC-la biotinylated band, expressed as percentage of the total 

immunoprecipitated BAP-MHC-la (biotinylated + non-biotinylated). Histograms show the results 

of three independent experiments; error bars indicate one standard deviation.

2.1 Proteasome inhibition increases biotinylation of MHC-la

According to our results the biotinylated MHC-la corresponds to the fraction 

dislocated to the cytosol and not yet degraded by the proteasome. To further 

support this interpretation we tested the effect of proteasome inhibitors MG132 

(50jxM for 4h) and Bortezomib (50p,M for 4h). As shown in figure 25 upon 

proteasome inhibition an increased amount of around 5-6 folds of biotinylated 

molecules was detected, both in the absence and presence of US2 and US11 

(Fig. 25A). In addition, although the total amount of BAP-MHC-la was reduced 

when either US2 or US 11 were present, the proportion of biotinylated molecules 

accumulated upon proteasome inhibition was much increased. Quantification of 

the relative intensities between retarded (biotinylated) and non-retarded bands 

of Fig. 25A (displayed in Fig. 25B) showed in fact that, while less than 1% of 

BAP-MHC-la expressed alone was found biotinylated in non-treated cells, upon 

proteasome inhibition this proportion increased to 3-4% with MG132 or 

Bortezomib; when co-expressed with US2 or US 11 the proportion of 

biotinylation raised from 13% (US2) - 27% (US11) up to 43-52% following 

proteasome inhibition (Fig. 25B).

In the presence or absence of proteasomal inhibitor the BirA levels in the total
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cell extracts were found minimally changed (Fig. 25C), thus indicating that the 

increased amount of biotinylation is not due to a relevant increase in the 

abundance of the enzyme. The effect of proteasomal inhibition appeared slightly 

stronger in rescuing total amount of MHC-la probably due to the higher 

proportion of retrotranslocating molecules in the presence of US11.

For MHC-la, it has been shown that, after dislocation in U373 cells, de- 

glycosylation by the cytosolically localized cellular PNGase takes place just 

before engagement by the proteasome, although de-glycosylation appears not 

to be essential for retro-translocation (Bloom et al., 2004). In HEK293T cells de

glycosylated MHC-la was less apparent, particularly with US11. In the presence 

of proteasome inhibitors (Fig. 25A), a band corresponding to de-glycosylated 

material was more evident and found to be, as expected, completely 

biotinylated. This de-glycosylated from of MHC-la could not be a non

glycosylated isoform due to an inefficient ER insertion of the molecule, as de- 

glycosylated MHC-la was not present when it was expressed in the absence of 

the immunoevasins, but cells were treated with proteasome inhibitors, and to 

our knowledge was never reported a misinsertion in the ER lumen of MHC-la or 

other molecules caused by these CMV immunoevasins.

However, within the glycosylated fraction, a consistent amount was also 

biotinylated. Indeed, figure. 25D shows the composition of biotinylated MHC-la, 

after affinity-purification with StrAv-coated beads from extracts of cells co

expressing US2, incubated with or without MG132. In MG132-treated samples 

the presence of de-glycosylated material, in addition to a relevant amount of 

glycosylated one, was clearly observed (right panel), while in the absence of 

MG132 MHC-la was mostly glycosylated. In vitro PNGaseF treatment in both 

cases was used to confirm the state of glycosylation of the purified material. 

Similar results were obtained for US11. This demonstrates that a significant 

number of molecules already retro-translocated to the cytosol and not yet de- 

glycosylated (also evident in figure 22) have already become biotinylated. 

These results also indicate that in these cells retro-translocation occurs more 

rapidly than de-glycosylation, consistently with a regulated post dislocation 

activity of cytosolic PNGase in late ERAD steps.
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Figure 25. Proteasome inhibition effect on biotinylation of MHC-la. (A) WB-ra of cellular 

extracts of HEK293T cells co-transfected with BAP-MHC-la and BirA (control) and, where 

indicated, with US2 or US11 in the absence (-) or presence of MG132 (MG; 50pM for 4h) or 

Bortezomib (Bort.; 50|iM for 4h). (B) Quantification of the relative levels of biotinylated MHC-la 

shown in (A) calculated as the ratio between biotinylated vs. non-biotinylated form in a given 

lane. (C) Analysis by WB of cells transfected with BirA-SV5 and treated or not with MG 132. (D) 

WB-ra of PNGaseF (PNG) treated, affinity-purified biotinylated BAP-MHC-la, derived from 

MG132-treated and untreated cells co-expressing US2. All blots were developed with anti-SV5 

mAb and where indicated with anti-tubulin. Open arrowheads indicate de-glycosylated BAP- 

MHC-la.
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2.2 Determination of MHC-la retrotranslocation by ELISA

Biotinylation also allows detection and quantification by ELISA of the level of 

retro-translocation as well as the proportion of dislocated molecules, making 

therefore possible to determine the level of retro-translocation with a technique 

more suitable for large screenings and in general more quantitative than a WB- 

ra. The assay was set up by coating plates with anti-SV5 to capture all MHC-la 

molecules regardless of their state of biotinylation, and then revealed: i) with 

HRP-conjugated StrAv to determine the level of biotinylation, or ii) with HRP- 

conjugated StrAv (for the biotinylated fraction) and in parallel, with a second 

antibody (for the total amount of protein) to determine the proportion of retro

translocated molecules (Fig. 26A). In our case we used a BAP-MHC-la 

construct that contained, in addition to the SV5 at the N-terminus, a second tag 

(roTag) at the C-terminus (BAP-MHC-la-roTag). To normalize the assay, we 

used an extract of cells co-transfected with the same BAP-MHC-la-roTag 

construct and sec-BirA (SEC), since in that case all molecules are biotinylated 

(Fig.26D). A rough estimation of retro-translocation was therefore determined as 

the fraction of biotinylated molecules (revealed with StrAv) relative to the total 

amount of MHC-la in the sample (revealed with anti-roTag). Figure 26B shows 

the levels of biotinylation of MHC-la expressed with US2 or US11 in the 

absence and presence of MG132, while figure 26C shows a plot of the 

percentage of dislocated MHC-la in cells co-expressing US2 or US11. The 

values in figure 26C are quite consistent with those obtained, for the same 

samples, with the WB-ra (% biotinylated MHC-la: 1% (-), 30% US2, 26% US11) 

(Fig. 26D).
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Figure 26. Determination of retro-translocation by ELISA. (A) Scheme of the ELISA used to 

monitor biotinylation of the retro-translocated fraction. Anti-SV5 mAb coating ensures capture of 

both, biotinylated and not-biotinylated BAP-MHC-la, which are then revealed with HRP- 

conjugated StrAv (only biotinylated MHC-la) and with anti-roTag (total MHC-la). (B) Retro

translocation levels (developed with HRP-conjugated StrAv) of BAP-MHC-la in HEK293 cells 

transfected alone or with US2 or US11, in the presence or absence of MG132 (50p.M for 4h), as 

indicated. (C) Proportion of retro-translocated BAP-MHC-la (developed in parallel with HRP- 

conjugated StrAv and anti-roTag) in HEK293 cells transfected alone or with US2 or US11, 

expressed as the fraction of biotinylated BAP-MHC-la relative to the total amount of BAP-MHC- 

la. Histograms show the results of three independent experiments; error bars indicate one 

standard deviation. (D) WB-ra of samples used in (C), developed with anti-SV5 mAb or anti

tubulin. SEC indicates cotransfection with sec-BirA. The arrow indicates the position of the non- 

biotinylated MHC-la.

2.3 Trypsin sensitivity of biotinylated MHC-la

To further demonstrate the specificity of biotinylation occurring only on 

molecules that have been exposed to the cytosolic side, trypsin-sensitivity 

experiments were performed on microsomes-containing cell lysates. Cells co

expressing MHC-la, BirA and US2 or US11 were gently lysed in an appropriate 

buffer to preserve the ER structure and then treated with trypsin. As shown in 

figure 27, the non-biotinylated material obtained with both US2 (Fig. 27A) or 

US11 (Fig. 27B) was trypsin-resistant (except for the removal of the cytosolic C-
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terminal tail, that results in a faster migrating band), as expected for molecules 

protected because of their localisation in the luminal side of the ER. The 

biotinylated material, however, was degraded by trypsin, thus demonstrating 

that the biotinylated MHC-la molecules are exposed to the cytosolic side.
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biotinylation °  biotin
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Figure 27. Trypsin sensitivity of biotinylated MHC-la. (A) Scheme of BAP-MHC-la 

dislocation, in the presence of BirA and US2 or US11, before and after a trypsin sensitivity 

assay. (B) WB-ra of microsomes-containing cell lysates (microsomes) derived from cells 

expressing BAP-MHC-la, BirA and US2 or US11 and treated or not with trypsin, as indicated. As 

a control, an aliquot of cells was directly lysed in SDS sample buffer (total). Before lyses cells 

were treated with 10pM MG132 for 16h. Open arrowheads indicate de-glycosylated molecules, 

while arrows indicate MHC-la with the cytosolic C-terminal tail digested by trypsin. All blots were 

developed with anti-SV5 mAb.

92



2.4 Cell fractionation of biotinylated MHC-la.

RESULTS

According to trypsin sensitivity assays the biotinylated fraction of MHC-la 

represents the retrotranslocated cytosolically exposed population. To know 

whether those isoforms are still associated with the ER membranes or fully 

solubilized and dislocated in the cytosolic milieu, cell fractionation experiments 

were performed. For such experiments cells co-expressing MHC-la, BirA and 

US2 or US11, treated with the proteasome inhibitor were gently lysed in an 

appropriate buffer to preserve the ER structure (as for the trypsin sensitivity 

assays) and ultracentrifuged to separate the microsomal-ER (pellet) from the 

cytosolic (supernatant) fraction (Gewurzet al., 2002). As shown in figure 28A, 

while the non-biotinylated material was present only in the microsomal fraction 

(as expected), the biotinylated one was localized both in the pellet and in the 

supernatant. In the soluble fraction, however, only a part of the deglycosylated 

and fully biotinylated MHC-la fraction could be detected, whereas the vast 

majority of biotinylated material appear to be still associated to the 

microsomal/ER fraction. This was true for all the glycosylated-biotinylated forms 

of MHC-la but also for part of the already deglycosylated-biotinylated 

molecules. The finding that part of the completely deglycosylated molecules 

were present both in the cytosol and still associated to the microsomal fraction 

has been previously reported by some authors for MHC-la (Wiertz et al., 1996b, 

Kikkert et al., 2001) and for other type-l membrane proteins such as TCRa 

chain and US11 (Tortorella et al., 1998; Baker and Tortorella, 2007); in this view 

it is not surprising that the glycosylated-biotinylated precursor was found totally 

associated to the ER pellet and not extracted to the cytosolic fraction.
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Figure 28. Cell fractionation of MHC-la. (A) WB-ra of SDS total cell extracts and ijsomes 

(pellets) and cytosol (supernatants) obtained from mechanical cell lysates derived from 

100.000xg fractions of cells expressing BAP-MHC-la, BirA and US2 or US11 and treated with 

10jiM MG132 for 16h, as indicated. All blots were developed with anti-SV5 mAb and where 

indicated, as a control of effective fractionation, with anti-derlin1 (ER-microsomal marker) or 

anti-actin (soluble-cytosolic marker) Open arrowheads indicate de-glycosylated molecules. (B) 

Possible representations of BAP-MHC-la dislocation, in the presence of BirA and US2 or US11, 

according to cell fractionation data. MHC-la is represented in light blue, BAP and SV5 

sequences are symbolized respectively in red and green; biotin is indicated in violet.

To investigate the features of retrotranslocated-biotinylated MHC-la interactions

with ER membranes present in the microsomal fraction we performed cell

fractionation in a buffer enriched with 4.5 M urea. The use of denaturing buffers

has an advantage to the use of 0.1 M Na2 C0 3 , since protein-protein interactions

which can resist to Na2 C0 3  treatment are destroyed in 4.5 M urea (Gewurz et

al., 2002; Soriano et al., 1997). Several authors reported that incubation of cell-

derived microsomes with urea causes the release of non-integral peripheral

proteins from the membrane bilayer, while polypeptides imbedded within the

bilayer are insensitive to such denaturant hypertonic conditions (Chen et al.,
94



RESULTS

1998; Gewurz et al., 2002; Baker and Tortorella, 2007). This was actually the 

case for the biotinylated MHC-la. Indeed, while even soluble ER proteins were 

fully extracted by the urea buffer (Fig. 29B), biotinylated MHC-la from the 

microsomal fraction was almost unaffected by this treatment (Fig. 29A), 

indicating that this retrotranslocated isoforms are still strongly embedded in the 

ER membrane or only partially dislocated, conceivably as indicated in figure 

28B. Similar models for type-l membrane protein dislocation intermediates were 

already reported in the literature (i.e. Baker and Tortorella, 2007). However, it 

cannot be completely excluded that these forms of biotinylated MHC-la are 

pelleted in the microsomal fraction because are part or a heavy cytosolic 

complex resistant to urea and not due to association with membranes.

MG 132
Control US2 US11

ysomes cytosol |Jsomes cytosol (jsomes cytosol

WB-ra
(MHC-la)

derlinl
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StrAv - + . +
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ms cyt MS cyt

NHKcdAT pm — m
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Figure 29. Cell fractionation of MHC-la in urea buffer. (A) WB-ra of SDS total cell extracts 

and |Jsomes (pellets) and cytosol (supernatants) obtained from mechanical cell lysates, in buffer 

containing 4.5M urea, derived from 100.000xg fractions of cells expressing BAP-MHC-la, BirA 

and US2 or US11 and treated with 10pM MG132 for 16h, as indicated. (B) WB of cells 

transfected with NHK-a1AT treated with MG132, lysed in control buffer or in urea buffer, as in 

(A), and fractionated by high speed centrifugation. All blots were developed with anti-SV5 mAb 

and where indicated, as a control of effective fractionation, with anti-derlin1 (ER-microsomal 

marker) or anti-tubulin (soluble-cytosolic marker).

2.5 The extracellular domain of biotinylated-glycosylated MHC-la is 
fully exposed to the cytosol.

In light of these results with fractionations and of the partially dislocated models

proposed in the literature (i.e. Baker and Tortorella, 2007; Ye et al., 2005), we

were interested in evaluating if only the N-terminus or all the MHC-I extracellular
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portion is exposed to the cytosolic environment in the retrotranslocation 

intermediates detectable through our biotinylation assay. Thus we next used 

three version of MHC-la tagged with SV5 at the extreme C-terminus and with 

the BAP sequence located in different positions: i) immediately after the leader 

peptide (BAP-a1a2a3 MHC-la); ii) between domains a2 and a3 (a1a2-BAP-a3  

MHC-la); iii) downstream of domain a3 and upstream of the a3-TM connecting 

peptide (a1a2a3-BAP-MHC-la) (Fig. 30A upper panel). In the second and third 

case the BAP sequence was inserted after the N-glycosylation site located in 

domain a1 (N110) and in the latter it was positioned just 13 amino acids 

upstream from the transmembrane domain. Such distance of around 30-40 A in 

an extended coil conformation, should be enough to guarantee docking of BirA 

(i.e. other enzymes like oligosaccharyltransferase complex can recognize and 

glycosylate Asn located at least 12 amino acid from the transmembrane domain 

(Bause and Hettkamp, 1979) and biotinylation. The availability for biotinylation 

of all the new BAP-tagged molecules was verified in a control experiment 

expressing them together with sec-BirA (Fig. 30A).

After this preliminary test, the three different BAP-tagged MHC-la were co

expressed together with BirA, in the absence or presence of US2 or US11. As 

shown in figure 30A (lower panels) all these versions of MHC-la were degraded 

by the CMV immunoevasins (an higher decrease of a1a2a3-BAP-MHC-la was 

obtained with US2, as if the BAP tag in the middle of the molecule could favour 

US2 induced degradation) and all of them were likewise biotinylated by BirA. 

Taken together these results indicate a complete exposure of the MHC-la  

ectodomain to the cytosolic environment in the glycosylated ERAD 

intermediate. A possible interpretation of the glycosylated-biotinylated 

intermediates recovered in the absence of proteasomal inhibition is represented 

in figure 30B: partially dislocated MHC-la could have its ectodomain fully 

exposed to the cytosol but still somehow tethered to the ER membrane through 

the transmembrane domain in an “embedded conformation”. The alternative 

possibility that in a fully stretched conformation the 13 amino acids between 

BAP and the transmembrane domain are sufficient to cross the ER membrane 

through a dislocation channel, leaving the MHC-la transmembrane correctly 

placed in a “bent conformation”, is quite unlikely considering the 35 -50  A 
thickness of the membrane lipid bilayer (Khramtsov et al., 2008). In any case
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our data do not exclude the possibility that MHC-la is retrotranslocated by 

means of small lipid droplets vesicles, a model already proposed few years ago 

where membrane proteins were suggested to be exposed to the cytosol 

maintaining their transmembrane domain into a single layer membrane, 

resembling classical lipid droplets (Ploegh, 2007).
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Figure 30. Biotinylated-glycosylated MHC-la ectodomain is fully dislocated to the 

cytosol. (A) Upper panel: organization of the three differently tagged MHC-la molecules. Lower
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panel: WB-ra of extracts from cell expressing BirA together with the indicated BAP tagged form 

of MHC-la, co-transfected or not with US2 or US11. SEC indicates expression of sec-BirA. All 

blots were developed with anti-SV5 mAb (B) Schematic representation of MHC-la dislocation 

intermediates, according to results obtained with of a1a2a3-BAP-MHC-la through a channel 

dislocation model.
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3. Retrotranslocation of secretory proteins

RESULTS

We next performed experiments with two different secretory model proteins, 

NHK-a1AT and Ig HC, which led to essentially equivalent conclusions to those 

with MHC-la. In figure 31A the secretion-incompetent mutant NHK-a1AT-BAP, 

tagged with SV5 and BAP at the C-terminus, was compared to the wild type 

protein. Compromised secretion of NHK-a1AT resulted in intracellular 

accumulation with a clear fraction of biotinylated molecules. In contrast, only a 

small fraction of intracellular a1AT-BAP was biotinylated, while the secreted 

material was, as expected, totally non-biotinylated. A smaller band of a1AT was 

also observed, and resulted to be biotinylated, likely representing a cytosolic 

fragment. In the presence of the proteasome inhibitor MG 132 a band 

corresponding to de-glycosylated NHK-a1AT (confirmed by PNGaseF 

treatment, Fig. 31B) was detected, that was obviously fully biotinylated. 

However, as in the case of MHC-la, a fraction of glycosylated NHK-a1AT was 

also biotinylated. In addition, a smaller de-glycosylated band (because 

insensitive to PNGaseF) of NHK-a1AT mutant, which most likely corresponds to 

the same N-terminal deletion of a1AT shown in figure 31 A, was fully 

biotinylated, consistent with cytosolic localization.

Also for NHK-a1AT the biotinylated fraction corresponded to cytosolically 

exposed molecules, as shown in figure 31C. When microsomes-containing 

lysates prepared from cells co-expressing NHK-a1AT and BirA were treated 

with trypsin, the non-biotinylated material was trypsin-resistant, as it 

corresponds to ER protected molecules, while the whole fraction of biotinylated 

molecules was trypsin-sensitive.

In contrast, when microsomal membranes were solubilized by detergent 

treatment (NP40), both biotinylated and non-biotinylated molecules became 

trypsin-sensitive. The biotinylated proteolytic fragments (containing SV5-BAP) 

generated by trypsin bound to StrAv and migrated as a smear roughly in the 

same position of NHK-a1AT (Fig. 31C left panel, lanes 4, 6). As shown in figure 

31C right panel, following ultracentrifugation of microsomes-containing cell 

lysates only biotinylated NHK-a1AT localized to the cytosolic fraction, while in 

the microsomal pellet fraction (microsomes) both biotinylated and non- 

biotinylated molecules were found. Thus, together with the trypsin sensitivity
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assay we concluded that the soluble NHK-a1AT ERAD model in part remains 

associated to the cytosolic face of ER membrane during ER to cytosol 

dislocation.

It has been demonstrated that for NHK disposal mannose trimming by ER 

mannosidases plays an important role (Hosokawa et al., 2001 and 2003). 

Indeed, when the mannosidase-l inhibitor Kifunensine was used in combination 

with the proteasomal inhibitor MG132 a reduced retrotranslocation was 

observed as compared to MG132 treatment alone (Fig. 31D). This was true 

considering both the biotinylation levels and the amount of deglycosylated 

material. This result further confirms the importance of mannose trimming for 

NHK exposure to the cytosolic environment and its degradation.

Expression of the second secretory model protein, Ig yHC-BAP (tagged similarly 

to NHK-a1AT at the C-terminus), in the absence of LC resulted in no secretion 

and in the appearance of a significant amount of intracellular biotinylated 

molecules. In contrast, co-expression with LC promoted, as expected, active 

secretion of non-biotinylated HC and a much reduced level of the intracellular 

biotinylated fraction, confirming that the presence of LC rescues HC from 

ERAD, reducing the extent of retro-translocation (Fig. 31E).

100



RESULTS
A NHK- NHK-

kDa

Q1AT a1AT
kDa

100-j

a1AT a1AT

150- — • •
100- 75-

75-
»*# m dP dfc

5 0 -
dRP50-

NHK-alAT + MG132

Ctrl, PNGase

blot.

WB-ra

blot.

StrAv: — +  -  + —  + —  +

supernatants cell extracts

C NHK-a1AT + MG132 NHK-a1AT + MG132

Trypsin: — + micros, cytosol
100-
75-

raQ
50-

% ■'//
-  +

WB-ra
(aSV5)

mm %mm

derlini rnmmm
37-

StrAv: -  + -  +
tubulin

StrAv: _  +■ _

Ctrl. kit

kDa

■75

-50

WB-ra
(aSV5}

Kif +
MG132 MG132

kDa

-75

-50WB-ra
(aSV5)

-37

+StrAv: +++

cell lysates NP40 

LC

HC

WB-ra
(aSV5)

| M  r*****

-  LC + LC

tubulin

- L C  +LC

*»m # w * mm

- lotr

««*> mm

LC -

StrAv: — + —

H C -

StrAv: -  +  -  +
cell extracts

Normalization to equal 
HC levels

supernatants
tubulin f

Figure 31. Retro-translocation of secretory proteins. (A) WB-ra of supernatants and/or 

cellular extracts of HEK293 cells co-transfected with a1AT-BAP or the mutant NHK-a1AT-BAP 

and cyt-BirA; (B), NHK-a1AT-BAP and cyt-BirA in the presence of MG132 (10pM for 16hours) 

and digested or not (mock) with PNGaseF. Open arrow and arrowheads indicate deglycosylated 

full-length NHK-a1AT-BAP and NHK-a1AT-BAP fragment, respectively, while filled arrow and 

arrowheads indicate the corresponding biotinylated bands. (C) WB-ra of microsomes-containing 

cell lysates derived from cells expressing NHK-a1AT-BAP and BirA and treated with MG132 

(10pM for 16h) and, where indicated (left panel), digested with trypsin. NP40 indicates the same 

microsomes-containing lysates treated with detergent to solubilise ER membranes, thus making 

also luminal proteins accessible to trypsin. In the right panel is shown a high speed fractionation 

into microsomes (pellet) and cytosol (supernatant) of mechanical cells extract used for trypsin 

experiments. (D) Cell extracts from cells transfected with NHK-a1AT-BAP and BirA, treated as 

indicated with Kifunensine 100pM or MG132 10pM for 4 hours, and analyzed by WB-ra. (E) 

WB-ra of supernatants and cellular extracts from cells expressing HC-BAP (HC) and cyt-BirA 

with (+) or without (-) LC. All blots were developed with anti-SV5 or anti-tubulin; the LC in (D), 

left panel, was visualized because of the secondary anti-mouse IgG antibody used.
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4. Retrotranslocation of calreticulin

RESULTS

Finally, we determined the level of biotinylation associated to the spontaneous 

retro-translocation of calreticulin (Crt) and compared to the dislocation- 

incompetent mutant (Crt-AC), which lacks the 115 residues long C-terminal 

portion. As shown in two different representative experiments in figure 32A, up 

to 30% of Crt was biotinylated, in agreement with active dislocation activity and 

with the relative abundance of dislocated Crt reported (Afshar et al., 2005). In 

contrast, less than 5% dislocation was observed for Crt-AC. As expected, 

however, both of them were almost fully biotinylated by sec-BirA (Fig. 32B. In 

addition, a number of smaller fragments (representing deletions from the C- 

terminus since the tag was at the N-terminus) was sometimes detected (Fig 

32A, experiment 1) for Crt, but not for the Crt-AC mutant. These fragments 

appeared not to be generated by cytosolic proteases, since they were not 

biotinylated when co-expressed with cyt-BirA (the proximity of SV5 and BAP 

tags exclude that all this fragments had lost the BAP).
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Figure 32. Retro-translocation of calreticulin. (A) WB-ra of cellular extracts (developed with 

anti-SV5 mAb) of HEK293 cells co-transfected with Crt or the mutant Crt-AC and cyt-BirA. Two 

representative different experiments are shown. (B) Quantification of the relative levels of 

biotinylation of Crt and Crt-AC (obtained from the WB-ra) when co-expressed with cyt-BirA or 

sec-BirA. Histograms show the results of three independent experiments; error bars indicate 

one standard deviation.
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Taken together the data obtained with these different models demonstrated that 

BirA biotinylation of proteins within the secretory pathway (properly BAP-tagged 

on the ER luminal side) is highly specific for molecules that have been retro- 

translocated from the ER to the cytosol, thus representing a fast and reliable 

way to determine the extent of ER-to-cytosol retro-translocation.
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5. Analysis of protein folding during dislocation

The availability of a sensitive method to clearly localize proteins during retro- 

translocation offers the opportunity to investigate some controversial aspect of 

this pathway. One of them is certainly the requirement for unfolding during 

dislocation (Bagola et al., 2010). Despite several reports stating the requirement 

of unfolding before retrotranslocation of protein substrates (Tsai et al., 2001; 

Ushioda et al., 2008; Tortorella et al., 1998; Fagioli et al., 2001), there are few 

examples of artificial substrates that seem to be dislocated as folded molecules 

(Fiebiger et al., 2002; Tirosh et al., 2003). These evidences seem to suggest, 

indirectly, that unfolding is not a prerequisite for retro-translocation.

During MHC-la dislocation induced by immunoevasins the protein is object of 

disulfide bonds reduction prior to deglycosylation, thus suggesting an unfolding 

step before engagement by the dislocation channel and the proteasomal 

degradation (Tortorella et al., 1998). However, since deglycosylation is a 

cytosolic event is also possible that the reduction takes place in the cytosol on 

already exposed but still glycosylated molecules. Indeed, when under 

proteasomal inhibition, we tested BAP tagged MHC-la in the presence of US2 

we observed that the reduced isoforms of MHC-la consisted on both 

glycosylated and de-glycosylated molecules; moreover even the non- 

biotinylated and biotinylated material were reduced in the presence of the 

immunoevasin (Fig. 33, similar migration comparing MHC-la in US2 expressing 

cells in left (reducing) and right (non-reducing) panels). While comparing 

reducing and non-reducing conditions, a faster migrating band was present 

when MHC-la was expressed alone. This band corresponds to oxidized 

molecules, as is expected that oxidized globular Ig domains migrates faster 

than when they are reduced. As judge by decrease of this oxidized band 

between lane 1 and 2 of figure 33 right panel, it seems that MHC-la in control 

condition can be dislocated with folded disulphide bridges. This indication was 

recently confirmed in a recent paper (Wang et al., 2013), where, using our BirA 

method to study spontaneous MHC-la ERAD, they also report the presence of 

disulphide bonds in the biotinylated glycosylated fraction.
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Figure 33. Disulphide bridges analysis of MHC-la. WB-ra of cell extracts from cells 

expressing BAP-MHC-la, BirA and US2 where indicated. Before lyses cell were treated 4 hours 

with 50jiM MG132. Samples were lysed in the presence of 20mM NEM and separated by SDS- 

PAGE under reducing (sample buffer containing 0.1 M DTT, left panel) or non-reducing 

conditions (sample buffer not containing DTT). All blots were developed with anti-SV5. Arrows 

indicate the position of reduced-deglycosylated MHC-la. Positions of reduced and non-reduced 

glycosylated isoform are also indicated.

5.1 Biotinylation of dislocated CD4 and Tetherin

For most of the models used before it is assumed that they are reduced before 

dislocation. To investigate the folding status during ERAD, we moved to two 

other proteins, CD4 and Tetherin uncharacterized about their redox status 

during retrotranslocation. While CD4 is a type I transmembrane protein (mostly 

monomeric), Tetherin is a homodimeric type II protein with a TM domain close to 

the N-terminus and a GPI anchor at the C-terminus.

Both CD4 and Tetherin can be induced to proteasomal degradation by the HIV-1 

protein Vpu. The BAP tag was fused to ER luminal positions in both proteins, 

namely at the N-terminus for CD4 and in the C-terminal part, just upstream of 

the GPI anchor signal, for Tetherin (Fig. 34). A second tag SV5 was also 

included next to BAP to favour recognition. Vpu was also SV5-tagged at its N- 

terminus by fusing a leader peptide followed by the SV5-tag sequence.
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Figure 34. Scheme CD4 and Tetherin. CD4 and Tetherin were tagged with BAP in an ER- 

luminal position. The 11 amino acids-long SV5 tag is also shown. Only retrotranslocated BAP- 

tagged molecules are expected to be biotinylated by BirA.

The two proteins were independently co-expressed in HEK293T cells with BirA, 

both in the presence and absence of Vpu and, in the case of CD4, also with 

HIV-1 gp160 in order to obtain a stronger degradation effect (Willey et al., 

1992). The degree of retro-translocation was determined again by monitoring 

the proportion of biotinylated molecules in a WB-ra.

5.1.1 Retro-translocation ofCD4

In the case of CD4s some biotinylated-CD4 (b-CD4) (around 5%) was detected 

in the absence of Vpu, corresponding to spontaneous retro-translocation, as 

shown in a representative experiment in figure 35A. In contrast, when co

expressed with Vpu a substantial fraction of b-CD4 was evident (around 30%) 

only after proteasome inhibition with MG132, indicating accumulation of retro

translocated molecules directed to proteasomal degradation. A band of de

glycosylated CD4, a consequence of the cytosolic cellular PNGase, was also 

detected and, as expected, it was totally biotinylated. In addition, the b-CD4 

fraction was composed of both de-glycosylated and EndoH-sensitive (ER-like) 

glycosylated molecules, consistent with the fact that ERAD substrates retro-
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translocate from the ER (Fig. 35B).

Biotinylated CD4 corresponded to intracellular cytosolically localised molecules. 

In fact, immunoprecipitation of the mature membrane-exposed CD4 from cells 

first incubated with anti-SV5 and then washed and lysed was found essentially 

not biotinylated (Fig. 35C). When compared with a total cell extract under non

reducing conditions (Fig. 35C right panel), this membrane fraction was highly 

enriched in the minority homo-dimeric population of CD4, formed by interchain 

disulphide bridges between two of its cytosolic cysteines. These dimers have 

been recently shown to associate with tetraspanin-enriched microdomains in 

the plasma membrane (Fournier et al., 2010).

Trypsin-sensitivity assays performed on microsomes-containing cell lysates 

showed that b-CD4 was sensitive to trypsin, while the non-biotinylated material 

was trypsin-resistant, except for the predicted cleavage of the cytosolic C- 

terminal tail that produces a band of higher mobility (Fig. 35D).

As in the case of MHC-la, also for CD4 most of the biotinylated material, both 

glycosylated and deglycosylated, was found in the ER fraction (Fig. 35E). 

Complete dislocation to the cytosolic fraction was observed only for the 

deglycosylated-biotinylated fraction in the presence of proteasomal inhibition.

As a control, the amount of de-glycosylated CD4 accumulated in the presence 

of Vpu following MG132 treatment was not affected by the presence of BirA, 

ruling out interference of the BirA enzyme on retro-translocation (Fig. 35F).
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Figure 35: Biotinylation of BAP-tagged CD4. (A) WB-ra of BAP-tagged CD4. Extracts from 

HEK 293T cells co-transfected with BAP-CD4 and, where indicated, Vpu in the absence or 

presence of MG132 (5 pM for 12 hours) were run, blotted and developed with anti-SV5. 

Biotinylated molecules appear as retarded bands when run with StrAv. (B) Biotinylation of de

glycosylated and glycosylated CD4. CD4 from extracts of cells co-expressing Vpu in the 

presence of MG132 (5 pM for 12 hours) was immunoprecipitated with anti-SV5 and treated with 

Endoglycosidase H or PNGase. WB was developed with HRP-conjugated StrAv. (C) Plasma 

membrane displayed CD4 was not biotinylated. Membrane displayed CD4 in the presence of 

MG132 was immunoprecipitated with anti-SV5, and analysed in a WB-ra developed with anti- 

SV5 in a eSIP form under reducing and non-reducing conditions. (D) Trypsin-sensitivity assay. 

WB-ra of microsome containing cell lysates (microsomes) derived from cells expressing BAP- 

CD4 and Vpu and treated with MG132 (5 pM) for 12 hours before lysis. Where indicated, 

samples were incubated with trypsin. Arrow indicates CD4 with trypsin digested cytosolic C- 

terminal tail. (E) Cell fractionation through high speed centrifugation of mechanical cell lysates. 

Calnexin and actin were analyzed as ER and cytosolic markers respectively. (F) BirA does not 

interfere with CD4 retro-translocation. WB with anti-SV5 of BAP-CD4 from cells co-expressing 

Vpu, treated with MG132 (10 pM) for 4 hours in the presence or absence of BirA. Unless 

indicated, all samples were derived from cells co-transfected with BirA. WB of anti-EGFP was 

used as loading and transfection control. Arrowheads indicate deglycosylated CD4 isoforms.

Retrotranslocation of CD4 was also studied in pulse-chase [35S]-Methionine 

labelling experiments, which showed the expected higher CD4 degradation and 

a progressive more extended biotinylation in the presence of Vpu in comparison 

to control samples (Fig. 36A). Moreover, only when Vpu was present a pattern
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compatible with the reported ubiquitination in the CD4 cytosolic tail was clearly 

visible (Magadan et al., 2010). This material was detectable regardless of the 

presence of proteasomal inhibitors and only during short chase periods (Fig. 

36A and B); in addition, in MG132 cells, where both glycosylated and 

deglycosylated isoforms of biotinylated-retrotranslocated material were present, 

the pattern of ubiquitin-like bands was mainly formed by the non-biotinylated 

CD4. This fraction likely represents molecules ubiquitinated in the cytosolic tail, 

targeted for retrotranslocation (because of the presence of Vpu), but still located 

in the ER lumen (because they are not biotinylated). Using image of figure 36A 

it was obtained the graph of figure 36C, where was calculated that the pattern of 

high molecular weight CD4 isoforms are retarded from unmodified CD4 and 

from each other of about 8.3-10 kDa, consistently with repeated addition of 

ubiquitin (the theoretical molecular weight of a ubiquitin monomer is 8.54 kDa). 

These data suggest a possible scenario in which CD4 molecules targeted to 

ERAD undergo a first round of ubiquitination on the cytosolic tail, followed by 

de-ubiquitination and then retrotranslocated to the cytosol, where can be 

deglycosylated and degraded.
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Figure 36. Pulse-chase labelling of CD4. (A) [35S]-Methionine/Cysteine PAGE retardation 
assay of pulsed (15 minutes) and chased anti-SV5 immunoprecipitated cellular extracts of 
HEK293T cells co-transfected with BAP-CD4 and BirA and, where indicated, with vpu. 

Biotinylation percentage was calculated considering the difference between total CD4 and 
residual non-retarded material in the presence of StrAv. (B) Sample treated as in (A) from cells 
treated with MG132 10pM from starvation to lyses. Black arrowheads indicate deglycosylated 
CD4, pink ones are indicating ubiquitinated CD4 isoforms. (C) Standard curve of the distance 
travelled by each molecular marker protein in SDS-PAGE against log of molecular weight to 
estimate apparent mass of CD4 isoforms from data in (A). Linear relationship (R2) and equation 

of the best-fit line from the markers standard data points are shown.

As discussed above for MHC-la, it has been previously proposed that for some 

EFRAD substrates dislocation involves a step in which luminal domains are only 

partially exposed to the cytosolic side (Shamu et al., 2001; Okuda-Shimizu and 

Hendershot, 2007). However, using the BirA biotinylation system, we showed 

complete cytosolic exposure of the MHC-la ectodomain (Fig. 30). Using a 

similar approach to a protein with a related topology like CD4, we found that 

also in this case upon retro-translocation the whole luminal domain was 

completely exposed to the cytosolic side. An additional construct was used in 

which the BAP-tag was moved down to a position distant only 18 amino acids 

from the CD4 transmembrane domain on the luminal side. No differences in the 

relative retro-translocation levels were observed comparing membrane-proximal 

and membrane-distal BAP-tagged molecules (Fig. 37).
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Figure 37. Cytosolic exposure of CD4 luminal domains. (A) Scheme of CD4 with the BAP 
tag positioned, proximal or distant from the transmembrane domain. (B) WB-ra of membrane 
proximal BAP-tagged CD4. Cell lysates were obtained from cells co-expressing Vpu, as 
indicated, and in absence or presence of MG 132 (5 pM for 12 hours). (C) Quantification of retro- 
translocated fractions. Comparison of the relative levels of retro-translocated CD4 for molecules 
with the BAP tag in membrane-distal or membrane-proximal position, co-expressed with or 
without Vpu (in all cases in the presence of MG 132 10 pM for 4 hours), expressed as 
percentage of total protein. The two different colours represent two independent experiments.
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5.1.2 CD4 retrotranslocates with intrachain oxidised disulphide bonds

As all the CD4 ectodomain was exposed in the retrotranslocation intermediates 

detected, we next investigated the folding state of CD4 retro-translocated 

fractions by analysing the presence of disulphide bonds. To this end, total 

cellular extracts from cells co-expressing BirA, Vpu and CD4 were prepared in 

the presence of N-ethylmaleimide (NEM), to avoid possible post-lysis oxidation 

of reduced cysteines, and analysed in reducing and non-reducing WB-ra. In 

cells treated with MG 132 both glycosylated and de-glycosylated b-CD4 

accumulated and NEM alkylation was effective as caused a clear retardation of 

CD4 molecules. But this diverse migration was different between glycosylated 

and deglycosylated isoforms (Fig. 38A). Indeed, while both species are 

expected to be labeled by NEM because of the presence of cytosolic reduced 

cysteines, the observation that deglycosylated CD4 was bound by more NEM 

molecules than the glycosylated one suggested a different oxidation status for 

the two populations. This result was confirmed by analysis of samples in non

reducing and reducing conditions. Under non-reducing conditions most of the 

glycosylated CD4 showed a higher mobility than under reducing ones, because 

of the presence of oxidized intra-chain S-S bridges within the luminal domains. 

Interestingly, part of this fraction was biotinylated indicating that the retro- 

translocated glycosylated b-CD4 still contained oxidized disulphide bridges. In 

contrast, the biotinylated de-glycosylated fraction did not show mobility 

differences in reducing and non-reducing conditions, indicating that disulphide 

bonds were already reduced (Fig. 38B). To further confirm the presence of 

retro-translocated molecules with oxidized disulphide bonds, CD4 was 

immunoprecipitated with anti-SV5 and directly analysed in reducing and non

reducing WBs with HRP-conjugated StrAv to reveal only biotinylated molecules. 

As shown in figure 38C, the glycosylated b-CD4 (previously identified in figure 

35B) clearly migrated with a lower mobility in reducing conditions, thus 

demonstrating that glycosylated CD4 was retro-translocated with disulphide 

bonds still formed. Therefore, dislocated CD4 molecules become reduced and 

de-glycosylated after reaching the cytosolic side. The same result was obtained 

after 2 hours of [35S]-Methionine pulse labelling performed in the presence of 

MG132 (Fig. 38D).
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Figure 38. Retro-translocation of CD4 with oxidized disulphide bonds. (A) Wb of cell co
transfected with BAP-CD4 and Vpu. After MG132 treatment (5 pM for 12 hours), where 
indicated, to alkylate reduced cysteines, cells were incubated 5 minutes on ice with 30 mM NEM 
in PBS, before lyses in sample buffer enriched with 30 mM NEM. (B) Non-reducing WB-ra of 
BAP-tagged CD4. Cell lysates from cells co-transfected with Vpu, in the presence of MG132 (5 
pM for 12 hours) were run in non-reducing (left) and reducing (right) conditions, blotted and 
developed with anti-SV5. Biotinylated and non-biotinylated fractions of glycosylated and de- 
glycosylated CD4 and their oxidation status are indicated with corresponding open and filled 
arrowheads and arrows. (C) WB of BAP-tagged CD4. CD4 was immunoprecipitated with anti- 
SV5 from cells expressing BirA and Vpu in the presence of MG 132 and analysed in non
reducing (left) and reducing (right) conditions, blotted and developed with HRP-conjugated 
StrAv. (D) [35S]-Methionine/Cysteine PAGE of 2hours pulse anti-SV5 immunoprecipitated cellular 
extracts of cells co-transfected as in (C) and treated with 10 pM MG132 during pulse. 
Biotinylated, glycosylated and de-glycosylated CD4 fractions and their oxidation status are 

indicated.
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5.1.3 Retrotranslocation of Tetherin

In the case of Tetherin, spontaneous retro-translocation (i.e. in the absence of 

Vpu) was already apparent both in control cells and, with increased amounts, in 

MG132-treated cells (Fig. 39A). When co-expressed with Vpu, the relative level 

of biotinylated Tetherin compared with total Tetherin significantly increased (from 

around 10% to 35%). A more complex pattern of bands was observed for 

Tetherin, as it is a protein that undergoes several post-translational 

modifications, including two N-glycosylations (Asn65 and Asn92), the addition of 

a GPI anchor at the C-terminus with the corresponding cleavage of the 

hydrophobic terminal sequence, and the formation of homo-dimers covalently 

stabilised by three disulphide bonds (Cys53, Cys63 and Cys91). In the WBs, 

the upper set of bands (Fig. 39A, labelled as Golgi/membrane) corresponds 

mostly to cell surface-exposed molecules. This fraction immunoprecipitated 

from the membrane was not biotinylated, resistant to Endo-H and sensitive to 

PNGase (Fig. 39B). The set of bands showing an intermediate mobility (labeled 

ER-glyc in Fig. 39A) represents a relevant fraction that, because of its sensitivity 

to Endo-H (Figure 39C), corresponds to glycosylated molecules that have not 

yet trafficked through the Golgi. As for CD4, a significant part of this fraction was 

biotinylated (more than 70%). Only upon MG 132 treatment, however, a lower 

set of bands corresponding to fully biotinylated de-glycosylated material 

(labeled de-glyc) became apparent. In microsomes-containing lysates 

biotinylated Tetherin, was trypsin-sensitive while non-biotinylated Tetherin was 

trypsin-resistant (Fig. 39D), while upon solubilisation with NP40 all Tetherin 

became sensitive to trypsin. In experiments of cell fractionation cell lysates were 

analysed by ultracentrifugation. Of note, part of the ER-glyc isoform of Tetherin 

was lost in the pellet of the first low speed centrifugation that removes non-lysed 

cells, nuclei and cellular debris (Fig. 39D and 39E). As shown in figure 39E, 

similarly to CD4 and MHC-la, most of retro-translocated Tetherin was 

associated with ER fraction, while only part of the deglycosylated material was 

fully soluble in the cytosolic fraction. A control experiment of no post-lysis 

biotinylation was performed. Cells transfected with only BirA or only Tetherin 

were mixed and lysed together. The BirA expressing cells contained also the 

MHC-la construct with a BAP on its cytosolic tail, as an internal control of BirA
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activity. As shown in figure 39F, no biotinylation of Tetherin was observed, 

neither during lysis with sample buffer (SDS), nor during gentle mechanical lysis 

as in the case of cellular fractionation experiments. As expected, the control 

MHC-la was fully biotinylated in living cells. Thus, all the biotin-labelled material 

during cell fractionation experiments comes from the activity of BirA in living 

cells.

Controversial observations have been reported in relation to the degradation 

pathway followed by Tetherin and a role has been proposed also for the 

lysosomal/autophagy pathway (Douglas et al., 2009; Iwabu et al., 2009; Mitchell 

et al., 2009). To address this point, we analysed lysates derived from cells co

expressing Tetherin and Vpu that were treated either with MG 132 or with 

chloroquine (CQ), an inhibitor of autophagy and lysosomal degradation (Yoon et 

al., 2010). CQ produced only a modest rescue of the total amount of 

intracellular protein (Fig. 39G). The fraction that increased upon CQ treatment 

was not biotinylated and not de-glycosylated. This was expected since 

molecules degraded by autophagy do not retro-translocate and remain in 

vesicular structures not accessible to cytosolic biotinylation and de-glycosylation 

before degradation within lysosomes. In contrast, a strong increase was 

observed when the proteasome was inhibited, with the appearance of 

biotinylated and de-glycosylated Tetherin. These results indicate that Tetherin is 

preferentially targeted to the proteasome, and only in part degraded through the 

lysosomal/autophagy pathway. A further control to demonstrate that biotinylated 

Tetherin represents the respective fraction of retro-translocated molecules was 

obtained co-transfecting a well secreted BAP-tagged scFv together with 

Tetherin and BirA. As shown in figure 39H after MG 132 treatment, while Tetherin 

was highly biotinylated, the coexpressed scFv was not as a consequence of its 

localization within the secretory pathway.
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Figure 39. Biotinylation of BAP-tagged Tetherin. (A) Left panels: WB-ra of BAP-tagged 

Tetherin. Extracts from HEK 293T cells co-transfected with Tetherin-BAP and, where indicated, 

Vpu in the absence or presence of MG132 (5 pM for 12 hours) were run, blotted and developed 

with anti-SV5. Open and filled arrowheads indicate glycosylated and de-glycosylated Tetherin 

respectively, while open and filled arrows indicate the corresponding biotinylated (retarded) 

fractions. Right panel: cells were treated as in the left panels, but were cotransfected with BirA 

only where indicated. (B) Plasma membrane displayed Tetherin was not biotinylated.
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Membrane displayed Tetherin was immunoprecipitated with anti-SV5, and the 

immunoprecipitates were digested with Endoglycosidase H or PNGase and analysed in a WB- 

ra developed with anti-SV5. Cells were co-transfected with Vpu. (C) Biotinylation of de- 

glycosylated and glycosylated Tetherin. WB-ra of cell lysates from cells co-expressing Tetherin 

and, where indicated, Vpu treated with MG 132 (5 pM for 12 hours). Lysates were treated with 

Endoglycosidase H or PNGase, and the blot developed with anti-SV5. Open and filled 

arrowheads and arrows as in A. (D) Trypsin-sensitivity assay. WB-ra of microsome containing 

cell lysates (microsomes) derived from cells expressing Tetherin-BAP and Vpu and treated with 

MG132 for 3 hours before lysis. Where indicated, samples were incubated with trypsin. (E) WB- 

ra of cell fractionation through high speed centrifugation of mechanical cell lysates. Derlinl and 

actin were analyzed as ER and cytosolic markers respectively. (F) Analysis of cell fractionation 

as in (E), performed after mixing of cells transfected with Tetherin or BirA and MHC-la tagged 

with the BAP in a cytosolic position. (G) WB-ra of Tetherin derived from cells treated with 

MG132 (10 pM) or CQ (50 pM) for 4 hours, as indicated. WB of anti-EGFP was used as loading 

and transfection control. (H) WB-ra of cell extracts from cells treated with MG 132 after 

cotransfection with BirA, Tetherin and a BAP-tagged scFv. Tetherin expression was revealed by 

anti-SV5 mAb, while the scFv was detected by anti-roTag mAb.
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5.1.4 Tetherin retrotranslocates with oxidised disulphide bonds

Tetherin is a type-ll membrane protein with a peculiar topology, very different 

from the two other type I membrane proteins analyzed. To investigate whether 

also Tetherin presented its ectodomain completely exposed to the cytosolic side 

the BAP-tag was moved from the C-terminus close the GPI signal to a position 

12 amino acids downstream of the transmembrane domain. Again no difference 

in the relative retro-translocation levels was observed when comparing 

transmembrane-proximal and transmembrane-distal BAP-tagged molecules 

(Fig. 40).
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Figure 40. Cytosolic exposure of Tetherin luminal domains. (A) Scheme of Tetherin with the 

BAP tag positioned, proximal or distant from the transmembrane domain. (B) WB-ra of 

transmembrane proximal BAP-tagged Tetherin. Cell lysates were obtained from cells co

expressing Vpu, as indicated, and in absence or presence of MG132 (5 pM for 12 hours). (C) 

Quantification of retro-translocated fractions. Comparison of the relative levels of retro- 

translocated Tetherin for molecules with the BAP tag in membrane-distal or membrane-proximal 

position, co-expressed with or without Vpu (in all cases in the presence of MG132, 10 pM for 4 

hours), expressed as percentage of total protein. The two different colours represent two 

independent experiments.

118



RESULTS

The results obtained suggested a complete exposure of dislocated Tetherin to 

the cytosolic milieu; thus, as Tetherin is known to form homo-dimers through 

cysteines oxidation, total cellular extracts from cells co-expressing BirA, Vpu 

and Tetherin were prepared in the presence of NEM, and analyzed for the 

presence of disulphide bonds in reducing and non-reducing WB-ra. In cells not 

treated with MG132 the biotinylated fraction under non-reducing conditions 

corresponded only to disulphide stabilised dimers (Fig. 41A left panel). This was 

independent of the presence or absence of Vpu, indicating that overexpressed 

Tetherin has an intrinsic tendency to spontaneous retro-translocation. Following 

proteasome inhibition, the level of biotinylated dimers increased and, in 

addition, totally biotinylated monomers accumulated. Accumulation of Tetherin 

monomers was observed only when the proteasome was inhibited but not in the 

presence of CQ (Fig. 41A middle panel). Thus reductions of Tetherin dimers into 

monomers appear to be a characteristic step of its cytosolic proteasomal 

degradation.

De-glycosylated material was evident in both dimeric and monomeric fractions. 

For comparison, the same samples analyzed in reducing conditions are also 

shown (Fig. 41A left panel). The presence of biotinylated dimers indicates that 

Tetherin retro-translocates with oxidized inter-chain S-S bridges. To further 

confirm this observation, cellular extracts from cells treated with MG132 in the 

presence and absence of Vpu were immunoprecipitated with anti-SV5 and 

analyzed in reducing and non-reducing WBs with StrAv-HRP (Fig. 41A right 

panel). To confirm the efficiency of alkylation of Tetherin cysteines (Fig. 41B left 

panel), sample treated with or without NEM were run in WB under non-reducing 

conditions; the presence of NEM caused a different migration of monomeric 

alkylated Tetherin isoforms and also prevented the formation of spurious hetero

dimers visible in the upper part of the gel. In addition, even when the 

ectodomain of this protein was expressed directly in the cytoplasm it did not 

form spontaneous homo-dimers (Fig. 41B middle panel). In contrast, as shown 

in figure 41B (right panel), when the same ectodomain was localised in the 

oxidizing environment of the ER lumen (by adding a leader signal peptide) only 

dimers were present. Furthermore, as for the full length Tetherin, monomeric 

material accumulated only after proteasomal inhibition. According to these 

results it is quite unlikely that the recovered biotinylated homo-dimeric Tetherin 

was formed by re-oxidation on the cytosolic side after retrotranslocation or
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during sample preparation. An additional evidence to this point was obtained 

from [35S]Methionine pulse-chase labelling experiments (Fig. 41C). After a 15 

minutes pulse, all labeled Tetherin already appeared as a dimer with ER-like 

glycosylation (ruling out any mislocalization of the protein in the cytosol because 

of an unlikely inefficient ER targeting) and with a very small biotinylated fraction. 

After two hours chase, instead, part of the non biotinylated dimeric material was 

converted to the more mature Golgi/membrane isoforms (slower mobility) while 

an increased level of retro-translocated (biotinylated) dimers was apparent 

(from 11% after the pulse to around 30-35% after the chase). As expected, the 

biotinylated band was derived from the ER-like glycosylation isoform. The small 

amount of monomer, which appeared only during the chase, was also 

completely biotinylated. In addition, during the chase period the protein migrates 

faster than the ER-like glycosylation isoforms, suggesting, as in figure 41 A, is 

that these isoforms are deglycosylated dimers. When samples from a stable cell 

line, co-expressing Tetherin and BirA, were tested in WB-ra the results obtained 

in transient transfection were confirmed. Indeed, despite an overall decreased 

biotinylation in the stable transfectants (a different ratio between mature and 

ER-like glycosylation forms) the biotin-labeled isoforms were all dimeric in the 

absence of proteasomal inhibitors, while with MG 132 treatment the 

deglycosylated and biotinylated dimers and monomers were evident (Fig. 41D 

lane 3).

Taken together these results indicate that Tetherin retro-translocation initiates 

dislocating disulphide-bond stabilized dimers, which at a later stage become de- 

glycosylated, reduced to monomers, and finally degraded.
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Figure 41. Retro-translocation of dimeric Tetherin. (A) Left panels: cell lysates from cells co

transfected with Vpu (where indicated), in the absence and presence of MG 132 (5 pM for 12 

hours) were run WB-ra in non-reducing and reducing conditions and developed with anti-SV5. 

Middle panel: WB of Tetherin derived from cells treated with MG132 (10 pM) or CQ (50 pM) for 

4 hours, as indicated. WB of anti-EGFP was used as loading and transfection control. Right
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panel: Tetherin was immunoprecipitated with anti-SV5 from cells co-expressing Vpu where 

indicated, in the presence of MG 132 (5 pM for 12 hours) and analysed in non-reducing (left) and 

reducing (right) conditions, blotted and developed with HRP-conjugated StrAv. (B) Left panel: 

WB of cells transfected with Tetherin and treated with MG132 (5 pM for 12 hours). Where 

indicated cells were incubated 5 minutes on ice with 30 mM NEM in PBS before the lyses in 

sample buffer enriched with 30 mM NEM to alkylate reduced cysteines. Middle panel: Tetherin 

ectodomain was expressed in the cytosol of transfected cells. After NEM treatment cell lysates 

were analyzed in reducing and non-reducing condition. Full length Tetherin is shown as control 

of dimerization. Right panel: WB of non-reducing SDS-Page of cells extracts from cells treated 

or not with MG 132, transfected with Tetherin ectodomain inserted in the ER lumen by means of 

a leader peptide. (C) [35S]-methionine pulse-chase labelling. Cells co-transfected with Tetherin 

were labeled for a 15 minutes pulse and then chased for 2 hours. MG132 (10 pM) was present 

from the beginning of the pulse. Tetherin was then immunoprecipitated with anti-SV5, run in a 

non-reducing PAGE retardation assay and developed by autoradiography. (D) Stable cell line 

expressing Tetherin and BirA was treated MG132 for 12hours where indicated. Samples were 

analyzed by WB-ra and run in reducing and non-reducing conditions.

The presence of deglycosylated dimeric Tetherin represents an independent 

proof, (from biotinylation) of the retrotranslocation of folded molecules. These 

deglycosylated dimeric isoforms were observed only in the presence of 

proteasomal inhibitors both in the WBs (Fig. 41A and D) and in the [35S]- 

Methionine labelling experiments (Fig. 41C). Since the recombinant bacterial 

PNGase used in previous experiments does not work in non-reducing 

conditions, we took advantage of an inhibitor of the endogenous PNGase to 

confirm the identity of the supposed deglycosylated dimeric material. As shown 

in figure 42A, a 4 hour treatment with PNGase inhibitor, from one hour before 

addition of MG 132 (3h), prevented the formation of the dimeric Tetherin 

isoforms (highlighted in the red square). Also the monomeric material in the 

presence of both chemicals was clearly retarded to more glycosylated isoforms 

compared to samples from cells treated with MG 132 alone. The retardation of 

the supposed monomeric and dimeric deglycosylated isoforms in the presence 

of PNGase inhibitor is a strong evidence to confirm our interpretations.

In addition, preforming bi-dimensional non-reducing/reducing WBs in the 

absence of MG132 we observed two main isoform of Tetherin dimers (Fig. 42B 

upper left panel), and the only biotinylated was the one, which in the second 

reducing dimension co-migrated with the reduced ER-glycosylated Tetherin
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reference (figure 42B lower left panel). In the presence of MG 132 in addition to 

those two protein populations, which were again biotinylated only in the ER- 

glycosylated like fraction, several other isoform, all of them recognized also by 

StrAv-HRP, were present as monomers and dimers. In the second reducing 

dimension, those isoforms of different glycosylation showed a consistent 

mobility between monomeric and dimeric material (Figure 42B right panels). In 

fact, most of the species in the central part of the dimers, indicated as ER- 

glycosylated form, migrate to the same position of the glycosylated monomer. 

While faster dimeric isoforms, which in figure 42A were shown to be sensitive to 

PNGase inhibitor, after the reducing dimension showed a migration equivalent 

to the isoforms of de-glycosylated monomers. Altogether these data confirm the 

presence of de-glycosylated dimers, which represent a second independent 

criteria (in addition to biotinylation) supporting dislocation of Tetherin in a 

dimeric form.
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Figure 42. De-glycosylated Tetherin dimers. (A) WB of lysates from cells co-expressing 

Tetherin and BirA. Before lyses and where indicated, cells were treated for 4 hours with the 

PNGase inhibitor (Z-VAD-FMK 100pM) or with MG132 10pM for the last 3 hours, or after one 

hour with PNGase inhibitor cells were simultaneously treated for the last 3 hours with the 

proteasome inhibitor. Left panels showed different exposure times for Tetherin monomers and 

dimers. The red square highlights the isoforms sensible to the presence of PNGase inhibitor. (B) 

Bidimensional (non-reducing/reducing) analysis of Tetherin. Cellular lysates from cells 

cotransfected with Tetherin and BirA were treated (right panels) or not (left panels) with MG 132 

(5 pM for 12 hours), and analysed in a 2-D (non-reducing/reducing) WB and developed with 

anti-SV5 (upper panels) or HRP-conjugated StrAv (lower panels). The top panels show the 

same sample after the first non-reducing dimension. Our interpretation of the different Tetherin 

glycosylation species of monomers and dimers are indicated.
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5.2 The non-secreted immunoglobulin k  light chain NS1

The immunoglobulin k light chain (Ig-LC) NS1 is a soluble and non-glycosylated 

protein isolated from the NS1 plasmacytoma cell line and characterized as an 

ERAD model substrate when expressed in the absence of the Ig heavy chain 

(Ig-HC) (Leitzgen et al., 1997). However, this LC can completely fold, and be 

secreted when co-expressed with an H chain, assembling into a mature 

antibody molecule (Leitzgen et al., 1997). In the absence of Ig-HC it has been 

reported that the NS1 LC is bound to BiP in an almost 1:1 complex (Knittler and 

Haas, 1992).

The BiP binding site has been mapped to the N-terminal variable domain (VL) of 

the protein. Interaction with BiP however occurs preferentially with the partially 

folded NS1 LC, an isoform in which the V l domain is unfolded in a reduced 

form, while the C-terminal constant domain (C l) is apparently still folded and not 

bound to BiP (Skowronek et al., 1998). Upon proteasomal inhibition a larger 

accumulation of this partially oxidised isoform was reported. The intra-chain 

disulphide bond (in the C l domain) remains oxidized, while the one in the V l 

domain is already reduced (Okuda-Shimizu and Hendershot, 2007). Based on 

this, and on the assumption that proteins need to be reduced in order to be 

retrotranslocated, a model of partial dislocation was proposed in which the 

reduced domain is exposed to the cytosolic side while the oxidised one is still in 

the ER lumen, until a tightly coupled final extraction and degradation. This 

model was further supported by the predominant ubiquitination of NS1 LC on 

the V l domain (Okuda-Shimizu and Hendershot, 2007). However, on the light of 

our results with Tetherin and CD4, an alternative model compatible with 

complete dislocation of both domains can be envisaged. It has recently been 

shown that upon proteasomal inhibition the NS1 LC is released from the 

chaperone during the late ERAD steps and redirected into an ER quality control 

compartment (ERQC) from which BiP is excluded (Shenkman et al., 2013).

To explore the hypothesis of full NS1 retrotranslocation before proteasomal 

degradation the NS1 LC was tested with the BirA biotinylation system. A 

mutated NS1 LC, with the two Cys residues forming the intra-chain disulphide 

bridge in the Cl domain mutated to Ser (NS1C) was also analysed, as the 

stable folding of this domain might limit dislocation. In both proteins, wt NS1 and 

NS1C, the BAP tag was fused either at the N-terminus or at the C-terminus,
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while the SV5 tag was always fused at the extreme carboxyterminal end (Fig. 

43A). After co-transfection with BirA, we found biotinylation of NS1 LC bearing 

the BAP tag both at the N- and the C-terminus, with the latter form being even 

more biotinylated (Fig. 43B). Regarding the NS1C mutant we observed a 

biotinylation level similar to the wt, also for the N- and C-terminus tagged 

proteins. This means that the folding of the Cl domain does not impair 

retrotranslocation and that the dislocated molecules are completely exposed to 

the cytosol, in contrast to what was previously hypothesized (Okuda-Shimizu 

and Hendershot, 2007).

A second NS1 LC mutant, with all the Ser, Thr and Lys of the V l were mutated 

to Ala (for S and T) or Arg (for K) and termed NS1STK- was also tested. 

NS1STK- was reported to be poorly ubiquitinated, much more stable than the wt 

and probably not retrotranslocated (Shimizu et al., 2010). We tested the effect 

of proteasomal inhibition on the wt and mutants with the BAP tag at the N- and 

C terminus (Fig. 43C and D). We observed, in all cases, a consistent increase 

in the amount of biotinylated material after MG 132 treatment, with the non- 

biotinylated levels that remained almost the same as in the DMSO control; thus, 

in the presence of the proteasomal inhibitor, the rescued material was already 

retrotranslocated and corresponded to the amount that should have been 

degraded.

The NS1STK- mutant was found actually more expressed than the wild type 

and, in agreement with its reported stability, it was also less biotinylated 

considering the proportion of biotinylated material with respect to the total LC. 

Despite this, a relevant fraction of biotinylated NS1STK- molecules accumulated 

during the MG132 treatment indicating that also the more stable NS1STK- 

mutant can undergo retrotranslocation, although reduced, and be degraded by 

the proteasome.

When NS1 LC was run in non-reducing conditions two bands appeared. The 

main one was the faster migrating, corresponding to the fully oxidized form (ox- 

2). The slower migrating form that migrates close to the fully reduced NS1 LC 

and according to reported evidences (Chillaron and Haas, 2000; Okuda- 

Shimizu and Hendershot, 2007) represents the ox-1 form (with the S-S bridge in 

the Cl domain oxidised and the one in V l reduced) was barely detected Fig. 

43E). In the presence of MG132 both ox-1 and ox-2 isoforms accumulate. 

However, as previously reported (Chillaro and Haas 2000; Okuda-Shimizu and
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Hendershot, 2007), the ox-1 form is highly stabilized during proteasomal 

inhibition indicating that it is degraded faster than ox-2. However, according to 

the BirA biotinylation assay, all the rescued material (ox1 and ox-2) was not 

located in the ER lumen, but in the cytosol as it was biotinylated. Thus NS1 LC 

is the third case of an oxidized-folded ERAD substrate completely exposed to 

the cytosolic environment before degradation. In the gel shown in figure 43E in 

samples from cells treated with MG 132 high molecular weight material was 

observed in non-reducing conditions despite the presence of NEM during lysis 

and sample preparation. As a control, we co-transfected NS1 LC with the 

efficiently secreted BAP-tagged scFv (shown also in Fig. 43), a molecule 

structurally related to the LC. Despite the fact that both proteins are located 

within the secretory pathway, we observed retrotranslocation only of NS1 LC, 

also upon MG132 treatment, further demonstrating the specificity of the 

biotinylation assay (figure 43F).

Further demonstration that after retrotranslocation NS1 LC accumulates on the 

cytosol was obtained upon coexpression with the de-ubiquitinating enzyme 

OTU (a 169 amino acid long fragment of the polyprotein L of the Crimean 

Haemorrhagic Fever Virus (CHFV)) (Frias-Staheli et al., 2007; Ashour et al., 

2009). As shown in figure 43G, strong stabilization of NS1 LC was observed. 

The rescued material was almost all biotinylated, as expected if the OTU 

enzyme removes ubiquitin molecules from the fully dislocated LC preventing 

proteasomal degradation. The NS1STK- mutant consistent with its higher 

stability and lower availability of ubiquitination sites was much less sensitive to 

the presence of OTU, yet a clear fraction was retrotranslocated confirming that, 

even if less efficiently than the wild type, also this mutant can be dislocated to 

the cytosol and, at least in part, to be a proteasomal substrate.
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Figure 43. Retrotranslocation of NS1-LC. (A) Scheme of the four NS1 proteins tested. (B) 

WB-ra of cell extracts from cell cotransfected with BirA and, as indicated, one of the BAP- 

tagged NS1 illustrated in (A). (C) and (D) WB-ra of cell extracts from cells treated before lysis 

with MG 132 10pM for 4hours, or DMSO as control. Cells were cotransfected with BirA and the 

indicated NS1 version. NS1STK' is a NS1 mutant where all the Ser, Thr and Lys of the VL were
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mutated to Ala or Arg. (E) WB-ra of cell extracts from cell transfected with NS1-BAP, treated or 

not with MG 132 and run in non-reducing/reducing SDS-PAGE. Ox-O indicates the fully reduced 

LC, ox-1 the LC oxidated only in the CL domain, while ox-2 shows the fully folded LC. (F) WB-ra 

of supernatants and cell extracts from cells co-transfected with BAP-NS1 and a BAP-tagged 

scFv and treated before lysis with MG132 10pM for 4 hours, or DMSO as control. Both proteins 

were detected by means of the SV5 antibody. (G) Cell extracts from cells co-transfected with 

BirA, NS1-BAP (wt or STK') and OTU or control vector as indicated. Asterisk shows a non

specific band revealed by this batch of anti-SV5 antibody. In every panel NS1 was detected by 

means of a SV5 tag fused to the C-terminus of all the NS1 versions tested.
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6. The role of p97 ATPase activity in ERAD

RESULTS

The validated method to detect retrotranslocated molecules through 

biotinylation in living cells offered us the possibility to investigate the role of 

pivotal ERAD molecules during dislocation, such as the AAA-ATPase p97. It is 

generally thought that the p97 ATPase activity is required for retrotranslocation 

and proteasomal degradation (Ye et al., 2001). It is globally assumed that loss 

of p97 ATPase activity blocks ERAD by retaining substrates in the ER lumen or 

at least in partially dislocated forms not completely exposed to the cytosol. In 

this context, the ATPase activity of p97 is considered to be essential for 

extraction of proteins from the ER membranes. Also in the case of NS1, p97 

activity was reported to be required for its degradation (Okuda-Shimizu and 

Hendershot, 2007). Thus, we initially investigated NS1 and other ERAD model 

substrates, co-transfecting them with BirA and either the wild type or the 

dominant negative ATPase incompetent mutant p97QQ which has the Glu 305 

and 578 mutated into Gin (Ye et al., 2003). As shown in figure 44A, when NS1- 

BAP was co-expressed with p97QQ a large increase in the amount of NS1 was 

recovered from the cell extracts, in agreement with impaired degradation due to 

defective targeting of the substrate to the proteasome. This increased amount of 

protein, though, has always been generally interpreted as representing 

molecules accumulated in the ER lumen and unable to retrotranslocate to the 

cytosol. Surprisingly, however, most of NS1 was biotinylated (around 70-75%), 

indicating that it corresponded to molecules accumulated in the cytosol after 

retrotranslocation and not in the ER lumen. Remarkably, the amount of non- 

biotinylated material was almost the same as the one in cells without the mutant 

(empty control vector, indicated in figure 44 as -). Similar findings were obtained 

also for the NS1STK mutant, although in this case, as observed before upon 

proteasomal inhibition or induced de-ubiquitination, the p97QQ had a lower 

effect. Of note, although overexpression of wild type p97 caused a higher 

expression of NS1, the accumulated material was not biotinylated.

Furthermore, accumulation of retrotranslocated NS1 can also be clearly 

observed co-transfecting the deubiquitinase like CHFV OTU fragment, which 

deubiquitinates polyubiquitinated proteins (including ERAD substrates) making 

them unable to be engaged by the proteasome for degradation. As shown in 

figure 44B, accumulation of biotinylated NS1 and NS1STK- induced by OTU
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was not impaired by the concomitant co-expression of p97QQ, strongly 

suggested that p97 activity is not required for effective retrotranslocation of 

NS1.

However, since these results were somehow surprising, the effect of p97QQ 

was also tested on NHK-a1 A, a different model of a soluble ERAD substrate.

As shown in figure 44C, the results obtained are consistent with the ones with 

NS1. Indeed, in the presence of p97QQ, NHK-a1A showed impaired 

degradation and a large amount of biotinylated material (around 52%). As for 

NS1, no biotinylated NHK accumulated with wt-p97 despite the increased 

amounts of protein. In the presence of MG132, de-glycosylated NHK-a1A was 

detected in the control and p97-wt samples, which was totally biotinylated. Also 

a fraction of glycosylated molecules were biotinylated (a ratio of around 1:1 

between glycosylated and de-glycosylated). In contrast, when co-expressed 

with p97QQ the large proportion of the biotinylated molecules (95%) 

corresponded to glycosylated material and very low amounts of de-glycosylated 

molecules were present. This is consistent with the well-known interaction p97 

and the cytosolic PNGase (Li et al., 2006), and suggests that the p97 ATPase 

activity is required for efficient recruitment of PNGase towards the dislocated 

ERAD substrates.
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Figure 44. Effect of p97QQ on soluble ERAD model proteins. (A and B) WB-ra of cell 

extracts from cell cotransfected with BirA, the indicated BAP-tagged NS1, and empty control 

vector (-) or either wild type or ATPase incompetent p97 mutant (QQ); in (B) the effect of 

overexpression of OTU was evaluate. (C) WB-ra of cell extracts treated with MG132 10pM for 4 

hours, or DMSO as control, before lysis. Cells were cotransfected with BirA, NHK-a1AT and as 

indicate with empty vector, wild type or mutant p97. Arrow heads indicate deglycosylated NHK- 

a1AT isoforms. In all blots NS1 and NHK-a1AT were detected by means of the SV5 tag fused to 

the C-terminus of them. Lower panels in (A), (B) and (C) visualize actin and p97 as control of 

loading and p97 overexpression.

Further confirmation that retrotranslocation does not require p97 activity was 

obtained with Tetherin, a membrane-bound EfRAD model, which is efficiently 

targeted to proteasomal degradation either in the presence or absence of Vpu. 

Figure 45 shows the results of the effect of p97QQ on Tetherin 

retrotranslocation coexpressed with or without Vpu. The conclusion were similar 

to the soluble substrates, as the ATPase incompetent p97QQ caused strong 

protein stabilization, with almost all the accumulated material exposed to 

cytosolic biotinylation (Fig. 45A upper-left panel). Again, a reduced proportion of 

deglycosylated material was recovered in comparison with MG 132 treatment
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(figure 45A upper-right panel). Moreover, in non-reducing WB-ra (figure 45A 

lower panels) monomeric Tetherin was observed only when co-expressed with 

p97QQ in the absence of MG132, while upon proteasomal inhibition with 

MG132 monomers were found in all samples. As expected, all monomers were 

totally biotinylated and the ratio of glycosylated/deglycosylated was much higher 

when p97QQ was present, consistent with impaired PNGase recruitment.

As for NS1, also accumulation of biotinylated Tetherin promoted by OTU was 

not impaired by p97QQ as shown in reducing and non-reducing WB-ra (Fig. 

45C), further confirming on-going retrotranslocation.

Collectively the data presented indicate that p97 ATPase activity is required for 

an efficient degradation and for an effective recruitment of PNGase, but not for 

the cytosolic exposure of ERAD substrates.
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and p97QQ (QQ). Actin is used as loading control.
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7. TEVp as second reporter of ER to cytosol retrotranslocation

To further support the findings obtained using the BirA-mediated biotinylation 

and to have more available tools in the field, we also investigated the possibility 

to use a different cytosolic enzyme to label retro-translocated proteins.

We focused on TEVp, the Nuclear Inclusion proteinase a (Nla-Pro) from 

Tobacco Etch Virus (TEV) (Phan et al., 2002), which is a 27kDa cysteine 

protease with a stringent specificity to the seven amino acid cleavage site 

(ENLYFQ/G), named here TS (TEV sequence), that led to the widespread use 

among the biotechnology industry as a reagent for endoproteolytic removal of 

affinity tags (Melker, 2000). While in viral infection full length Nla accumulates 

mainly in the nucleus of plant cells, the Nla-pro can be efficiently targeted to the 

cytoplasm (Ceriani et al., 1998).

The approach to exploit TEVp on ERAD was essentially the same adopted for 

BirA. TEVp was expressed in the cytoplasm to label by cleavage 

retrotranslocated molecules. For example, it was tested with an MHC-la tagged 

with the TS in the luminal domain and analysed its dislocation in the presence of 

the CMV immunoevasins (figure 46A). Preliminary experiments showed the 

need of a codon-optimized version of TEVp, due to the very low expression of 

the original viral protein. After 293T transfection no obvious toxicity or off target 

activity by the overexpressed protease was observed (Fig. 46B), also because 

its abundance in the cell is limited by its known self-cleavage activity (Parks et 

al., 1995 and Fig. 46C).

To evaluate compartment specificity of TEVp activity we created two MHC-la 

constructs with the SV5 and the roTag tags added respectively, at the N- 

terminus and the C-terminus to easily detect both, the full length and cleaved 

proteins. The TS was in one case positioned in the ER lumen downstream of 

the SV5 tag, while in the second it was located upstream of roTag in the MHC-la 

cytosolic tail.

As shown in figure 46C, when the TS was at the N-terminus no cleavage of the 

substrate protein was observed, indicating that the protease cannot enter in the 

lumen of the secretory pathway. In contrast, when the TS was positioned in the 

cytosolic tail, complete and efficient removal of the C-terminal roTag sequence 

took place in the presence of TEVp (Fig. 46C). This was confirmed taking 

advantage of the N-terminal SV5 tag that showed the expected faster migrating
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MHC-la product (Fig. 46). Despite the high TEVp activity observed, the wild 

type protease was barely detected in cell extracts (Fig. 46C lower panel). As a 

control we expressed the C151A TEVp mutant, a completely inactive enzyme 

with the catalytic Cys mutated (Parks et al., 1995), which was totally unable to 

cleave both itself (as it was easily detected) and MHC-la (Fig. 46C lower panel).

7.1 TEVp in the analysis of MHC-la ERAD

Since the TEVp proteolytic activity compartment was restricted to the cytosol, 

we tested the enzyme as a reporter of ER to cytosol retrotranslocation.

The approach was analogue to what was previously done to evaluate BirA 

activity. An MHC-la construct with the SV5 and TS at the N-terminus and a 

roTag at the C-terminus was expressed in eukaryotic cells in the presence or 

absence of US2 and TEVp, treated with or without MG 132 (4 hours) and then 

lysed with PAGE sample buffer in the presence of protease inhibitor cocktail, to 

avoid any post-lysis activity of the TEV protease.

As shown in figure 46D we observed the expected degradation of MHC-la in the 

presence of the immunoevasin and the stabilization of glycosylated and non

glycosylated molecules after proteasomal inhibition. In samples from cells 

expressing TEVp the amount of full length MHC-la was decreased. As 

expected, however, the cleaved forms could be revealed with anti-roTag. In 

figure 46D those species are shown highlighted in blue boxes and arrows, in 

cells treated with MG132 (glycosylated, cut MHC-la) and in cells coexpressing 

also US2 in the absence (glycosylated, cut MHC-la) and presence of MG132 

(glycosylated, cut MHC-la and de-glycosylated cut MHC-la). These bands were 

absent both in the absence of TEV or in the WB developed with anti-SV5, as 

expected, since the SV5 tag is lost after TEVp cleavage. Thus, the data 

indicates that the efficiency of TEV resulted very similar to the one of BirA in 

recognizing retrotranslocated MHC-la molecules.

A direct challenge between the two reporter systems, based on BirA 

biotinylation and on TEVp proteolytic cleavage, was performed using an MHC- 

la tagged at the N-terminus with SV5, BAP and TS, and roTag at the C-terminus 

(Fig. 46E). This model molecule, when coexpressed with US2 and BirA raised 

the expected biotinylation levels (Fig. 46F left panel), while in the presence of
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both the biotin ligase and TEVp all the biotinylated material disappeared (in this 

exposure the cleaved fragment was below the detection limit). When cells 

expressing US2 and MHC-la were treated with MG132 the typical pattern of 

glycosylated and deglycosylated MHC-la was observed. In the presence of BirA 

all the deglycosylated material and part of the glycosylated one were, as 

expected, retarded in the gel in the presence of StrAv. Instead, in the presence 

of TEVp complete cleavage of all the deglycosylated and part of the 

glycosylated MHC-la isoforms was observed (labelled in figure 46F in red, full 

length; blue, cut forms).

Of note, all the biotinylated material was cytosolically exposed and cleaved by 

TEVp resulting in faster migrating cleaved bands (Fig. 46F right panel).
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Figure 46. TEVp as ERAD reporter. (A) Schematic representation of TS/TEVp system applied 

to ERAD. (B) Comassie-blue staining of whole cell extracts from control (-) or TEVp transfected 

cells (+). Lane 1 (M) MW markers. (C) Scheme and WB analysis of MHC-la tagged with TS in 

ER luminal (left panel) or cytosolic locations (right panel). MHC-la was cotransfected as 

indicated with TEVp wild type (wt) or the C151A inactive mutant. (D) WB of cell extracts from 

cells expressing luminal TS tagged MHC-la cotransfected as indicated with US2 and TEVp. 

MG132 (25pM) was applied for four hours before cell lysis. (E) Schematic representation of the 

experiment shown in (F). (F) WB-ra of cell extracts from cells coexpressing MHC-la and US2. 

Where indicated cells were transfected with control empty vector (ctrl), TEVp or BirA. 

Proteasomal inhibition with MG132 (5pM) was performed for the last 16 hours.
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7.2 TEVp and NS1 retrotranslocation

RESULTS

As the results of NS1STK- retrotranslocation measured by BirA biotinylation, 

were not in complete agreement with what has previously been published 

(inability to reach the cytosol) (Okuda-Shimizu and Hendershot, 2007), we 

decided to test it also with TEV/TS system. As shown in figure 47B NS1STK 

was C-terminally tagged with BAP, SV5, TS and roTag. This molecule 

expressed alone or together with BirA was present in a single band in WB 

analysis. After proteasomal inhibition a clear fraction was biotinylated, in 

agreement with the experiments described before (Fig. 47A). The co-expression 

with TEVp produced a faster migrating band, not detectable with the C-terminal 

roTag. This fraction actually corresponds to retrotranslocated material cleaved 

by TEVp, as when the two enzymes BirA and TEVp, were coexpressed, the 

cleaved NS1STK- was fully biotinylated. Moreover, the biotinylated retarded 

material in the presence of TEVp was detectable only with anti-SV5 and 

migrated faster than in the control with only BirA (absence of TEVp). This 

additional evidence demonstrates that BirA and TEVp recognized the same 

retrotranslocated molecules, as all the biotinylated material was also cleaved by 

TEVp and, likewise, all the non-cleaved material was not biotinylated.
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Figure 47. NS1STK- retrotranslocation. (A) WB-ra of cell extract from cells expressing NS1- 

STK. Where indicated cells were transfected with control empty vector (Ctrl), TEVp or BirA. 

Proteasomal inhibition with MG 132 (5pM) was performed for the last 16 hours. (B) Schematic 

representation of the dislocated NS1STK- isoforms from the experiment shown in (A).
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Taken together the results obtained demonstrate that the TS/TEV protease 

system represents an alternative to the BirA/BAP strategy for the efficient 

detection of ER to cytosol retrotranslocated proteins, strengthening our idea of 

using cytosolically localized enzymes with well-defined activities to monitor the 

localization of ERAD substrates during dislocation in living cells.
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DISCUSSION

Labelling of retrotranslocated proteins by biotinylation in living 

cells

Biotinylation of proteins, either chemical or enzymatic, is a widely used 

technology with a variety of applications in biological research. Enzymatic 

biotinylation offers the possibility to be implemented in living cells to achieve 

specific labelling of proteins that have been properly tagged with the 15 amino 

acid long biotin acceptor peptide BAP (Beckett et al., 1999), which contains a 

single lysine as biotin acceptor residue. The biotinylation in mammalian cells by 

the E. coli derived BirA is efficient, specific for the BAP peptide and results in a 

mono-biotinylated product. When BirA is coexpressed with a cytosolically 

localised protein, catalyses efficiently the complete biotinylation of the target 

(Predonzani et al., 2008). The same was observed in the case of the MHC-la- 

BAP, with the BAP tag localised to the cytosolic side of the ER membrane, 

which was completely biotinylated by BirA. Biotinylation is extremely stable, 

because the only de-biotinylating activity in cells takes place on short peptides 

derived from degraded proteins. De-biotinylation is the result of the activity of 

biotinidase, a class of enzymes that removes biotin from biocytin (Biotinyl-L- 

lysine (Wolf 2005)). Consistently, we did not observe a decrease in the amount 

of biotinylated proteins after incubation of lysates for several hours. Exploiting 

all these BirA’s features and its cytosolic localization, we developed a method to 

specifically label molecules retrotranslocated from the ER to the cytosol in living 

cells.

Using four protein models (MHC-la, NHK-a1AT, HC, calreticulin), which are 

well-known examples of ER to cytosol dislocation substrates, we showed that 

BirA biotinylation identifies retro-translocated molecules for different proteins 

types (type-l membrane, soluble secretory and ER proteins). Taken together the 

data presented clearly demonstrate that only molecules exposed to the 

cytosolic environment, either soluble or still associated to the cytosolic side of 

the ER membrane, become BirA substrates and are consequently biotinylated. 

Biotin labelling allows precise quantification of the fraction of biotinylated 

molecules by diverse detection techniques (i.e. WB-ra, WB-StrAv-HRP and
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ELISA), simplifying the determination of the level of retrotranslocation of a 

protein substrate in different conditions. Moreover, by this enzymatic 

biotinylation is possible to easily compare the relative folding and degradation 

efficiency of mutant proteins or of the same protein in different cells, as we have 

observed for MHC-la. For instance, whilst in HEK293 and HeLa cells US2 

induces a higher level of MHC-la degradation than US11, in CHO cells US11 

performs significantly better than US2. This difference can be explained 

because CHO cells are derived from a different organism (hamster) and, thus, 

is somehow expected that immunoevasins from human CMV could display a 

diverse phenotype in a non-human cell line.

Up to now, just a few user friendly biochemical techniques have been described 

for the detection of retro-translocated molecules, often in the presence of 

proteasome inhibitors to favour accumulation of the retrotranslocated proteins. 

Retrotranslocation of MHC-la and of other proteins is often identified as the 

fraction of cytosolic deglycosylated intermediates, which usually requires the 

use of proteasome inhibitors or the interference with cytosolic ERAD steps to 

accumulate (i.e. Blom et al., 2004; Hassink et al., 2006; Greenblatt et al., 2011). 

In contrast, BirA biotinylation method was able to detect a significant amount of 

biotinylated molecules of MHC-la as well as secretory NHK-a1AT and HC that 

were still glycosylated, without requiring the presence of proteasome inhibitors. 

Up to now it has been difficult to label or to prove glycosylated cytosolically 

exposed ERAD intermediates, but they are likely to be present in cells, because 

it is well-established that the localization of cellular PNGase is only in the 

cytosol and its activity is non-essential in ERAD (Bloom et al., 2004). Moreover, 

for some glycoproteins it is known that after retrotranslocation they are exposed 

to the cytosol and polyubiquitinated by cytosolic E3-ligases prior to be 

deglycosylated by the cellular PNGase (Jarosch et al., 2002; Yoshida and 

Tanaka, 2010).

A landmark for supporting this conclusion is the presence of cytosolic lectins

such as Fbs1 and Fbs2, which can associate to SCF E3 ubiquitin ligases and

form a complex that seems to target in the cytosol glycosylated protein, but not

non-glycosylated ones (Yoshida et al., 2002 and 2005; Shenkman et al., 2013).

Such findings indicate that glycoproteins can reside in the cytosol after

retrotranslocation and be handled in several processes prior to eventual

deglycosylation (proteasome can digest efficiently also glycosylated
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polypeptides (Kario et al., 2008)) and final degradation. Reasonably, the 

biotinylation by overexpressed BirA is fast enough to label with biotin most of 

the retrotranslocated-glycosylated proteins during the first cytosolic ERAD 

steps. The existence of cytosolic E3-ligase-associated-lectins, their ability to 

bind cytosolically localized glycosylated misfolded proteins and their relevant 

role in ERAD (together to the non-essential role of PNGase in ERAD), strongly 

challenge, as not always reliable, the widely used method of evaluation of the 

fraction of retrotranslocated molecules only by means of their 

glycosylation/deglycosylation status.

Hence, by biotinylation in living cells it is possible to investigate the rate and 

extent of retro-translocation also for non-glycosylated proteins and regardless of 

the glycosylation status. Biotinylation of BAP-tagged proteins can be adapted to 

in vitro retro-translocation assays, being BirA widely used for in vitro 

applications.

In addition, the BirA method does not require cellular fractionations, which could 

always produce artifactual results. In fact, in our case cells are directly lysed in 

strong denaturing conditions, to avoid any post-lysis change in the ratio of 

biotinylated/non biotinylated substrates.

Accumulation of deglycosylated molecules seems to be a characteristic feature

of different cells lines. In the case of MHC-la we noticed that in HEK293 cells

the abundance of its deglycosylated fraction is less relevant than described IN

U373 cells (Wiertz et al., 1996b), and similar to the non-classical class I

molecule HFE in HEK293 cells (Vahdati-Ben Arieh et al. 2003).

In living cells BirA biotinylation appears to be very efficient in labelling recently

retrotranslocated molecules, well before their deglycosylation.

Deglycosylated molecules are only detected following proteasome inhibition or

interfering with late ERAD steps and, because of their cytosolic localization

were completely biotinylated in our experiments. This suggests that

deglycosylation is the rate-limiting step in the degradative pathway. According to

the results obtained by means of BirA biotinylation quantifying retrotranslocation

by considering only de-glycosylated molecules may result in underestimation of

the extent of the dislocated fraction. Moreover, treatment of cells with

proteasome inhibitors can lead to the activation of the unfolded protein

response (UPR) as consequence of accumulation of misfolded proteins. A

similar effect caused by the presence of biotin on our model proteins is quite
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unlikely, as no obvious differences were recorded in experiments where 

biotinylation of BAP bearing proteins was prevented (performing experiments in 

the absence of biotin or of BirA) or allowed. UPR implies increased expression 

of proteins involved in protein folding, such as chaperones, and proteins directly 

participating in retro-translocation, such as SEL1L and Derlin proteins (Oda et 

al., 2006; Kaneko et al. 2007). Consistently, in our experiments treatment with 

proteasome inhibitors led to an increase in the amount of retro- 

translocated/biotinylated MHC-la molecules accumulated even in the absence 

of immunoevasins.

Even though biotinylated molecules can be directly revealed by assaying blotted 

membranes with StrAv, the retardation assay allows to simply and directly 

establish the extent of the biotinylated fraction by detecting the non-biotinylated 

population and the possible presence of fragments, which may also be not 

biotin-labeled, as observed for calreticulin. In this respect, it is not clear what 

those calreticulin fragments represent. They were all derived from deletions of 

the C-terminus (since the tag is N-terminally located) with similar or shorter 

lengths than the Crt-AC mutant, which lacks 115 amino acids. It is possible that 

these fragments were generated and retained in the ER, and not retro

translocated. Alternatively, they may result from the activity of lysosomal 

proteases participating in degradation of ER material as a consequence of 

autophagy (Ding and Yin 2008). Since calreticulin retrotranslocation appears to 

be of relevance for its nuclear activity, it may not be related to the turnover of 

the protein via proteasomal degradation. It thus remains an open question 

whether natural turnover of calreticulin involves preferentially autophagy rather 

than proteasomal degradation.

A further advantage of biotinylation is the possibility to affinity purify biotin- 

labeled molecules, making possible for instance the analysis by mass- 

spectrometry of retro-translocation intermediates.

In summary, the mono-biotinylation of cytosolically dislocated molecules 

represents a simple, quantitative and consistent way of determining the extent 

of ER to cytosol retrotranslocation of proteins in living cells.
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Protein folding during retrotranslocation

DISCUSSION

The way in which secretory and membrane proteins that have entered the 

ERAD pathway cross the membrane barrier in order to be transported to the 

cytosol remains still obscure. Retro-translocation itself is frequently described 

as a step involving the unfolding of the polypeptide chain, followed by the actual 

extraction, probably through some sort of dislocation channel. Many hypotheses 

from different groups have indicated the translocon Sec61 (Wiertz et al., 1996a; 

Schmitz et al., 2000), the Derlin family proteins (Lilley and Ploegh, 2004; Sun et 

al., 2006), TRAM1 (Ng et al., 2010) and BAP31 (Wang et al., 2008) as possible 

components of this macromolecular structure. On the cytosolic side, the AAA 

ATPase VCP/p97 has been widely reported as necessary to provide energy for 

the entire process (Ye et al., 2001; Elkabetz et al., 2004; Carlson et al., 2006). 

Taking advantage of BirA biotinylation for detection of molecules retro

translocated from the ER to the cytosol (Petris et al., 2011, Vecchi et al., 2012) 

we decided to investigate the folding state of the retro-translocated fractions of 

CD4 and Tetherin. Biotinylation in living cells has also been recently used to 

study spontaneous retro-translocation of MHC class I molecules and 

cytosolic/luminal localization of prion protein isoforms (Wang et al., 2013; 

Emerman et al., 2010).

When co-expressed with HIV-1 Vpu, CD4 and Tetherin are induced to enter the 

ERAD pathway (Mangeat et al., 2009; Magadan et al., 2010). For both proteins 

we showed that biotinylation identifies the population of retro-translocated 

molecules and established that overexpressed Tetherin preferentially follows the 

retro-translocation/proteasome pathway, even in the absence of Vpu. More 

interestingly, both proteins are actually retro-translocated with disulphide 

bridges still formed. While for CD4 the three disulphide bonds are intra-chain, 

within each of the three out of four extracellular Ig domains, for Tetherin three 

inter-chain disulphide bonds are formed between two parallel monomers. 

Hence, CD4 and Tetherin exit the ER as a partially folded molecule and as a 

dimer, respectively. This observation is particularly remarkable in the case of 

Tetherin also because of its double unusual N-terminal (TM domain) and C- 

terminal (GPI) anchorage to the membrane.

In general the folding status of retro-translocated molecules is controversial. 

Indeed several publications (both Reviews and original papers) have actually
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addressed the problem of S-S bonds during retro-translocation. In many cases 

the need of a reduced substrate prior to dislocation was postulated, indirectly 

deduced, or presented as a step thought to be necessary or sometimes 

highlighted as a major open question (Hoseki et al., 2010; Hagiwara and 

Nagata 2012; Romisch 2005; Herbert et al., 2010; Feige and Hendershot 2011; 

Claessen et al., 2012; Hampton and Sommer 2012; Bagola et al., 2011; Okuda- 

Shimizu and Hendershot 2007; Vembar and Brodsky 2008). Conversely, our 

findings are a clear direct proof that different proteins retrotranslocate with intact 

S-S bonds. In literature there are few examples reported of artificial substrates 

that seem to be dislocated as folded molecules (Fiebiger et al., 2002; Tirosh et 

al., 2003). These evidences seem to suggest, in a very indirect way, that 

unfolding is not a prerequisite for crossing the ER lipid bilayer. It has recently 

been shown that the very large SV40 viral particle (30-40 nm in diameter), 

which dislocates from the ER to the cytosol to subsequently enter the nucleus, 

exits the ER as a complex assembly assisted by two ERAD-involved proteins, 

BiP and BAP31 (Geiger et al., 2011). A role for Derlin-2 has been also 

established during infection by mouse Polyomavirus, a virus similar to SV40 

(Lilley et al., 2006).

CD4 and Tetherin are N-glycosylated. We found that for both proteins, a fraction 

of the biotinylated molecules retain their glycosylation state, in agreement with 

previous findings with MHC-la and NHK-a1AT (Blom et al., 2004; Petris et al.,

2011) and consistently with the fact that the de-glycosylating activity in 

mammalian cells is provided by the cytosolic PNGase (Misaghi et al., 2004). 

This confirms that de-glycosylation appears to be the rate-limiting step of the 

process, since de-glycosylated biotinylated material only accumulates upon 

proteasome inhibition, while glycosylated biotinylated molecules are also 

detected without inhibition. In addition, we observed dislocated CD4 molecules 

that were still glycosylated and with disulphide bridges formed while all the de- 

glycosylated isoforms were found completely reduced, indicating that, in 

addition to de-glycosylation, also the reduction of this molecule takes place after 

dislocation. Interestingly, in the presence of Vpu during short [35S]-Methionine 

labelling pulse we observed a pattern of CD4 bands which likely represents 

molecules ubiquitinated in the cytosolic tail (as described by Magadan et al.,

2010), targeted for retrotranslocation but still located in the ER lumen, since 

they are not biotinylated. Thus, it is possible that CD4 molecules targeted to
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ERAD undergo a first round of ubiquitination on the cytosolic tail, that trigger 

retrotranslocation, followed by fast deubiquitination as the biotinylated material 

glycosylated or deglycosylated is no more ubiquitinated. Then the cytosolically 

exposed CD4 should be further ubiquitinated and deubiquitinated for final 

proteasomal degradation. Interestingly CD4 can be ubiquitinated on multiple 

types of amino acids: Lys, Ser and Thr (Magadan et al., 2010). Based on the 

different amino acid on the substrate protein used for the first ubiquitin 

conjugation, and despite not yet reported, it could be speculated that some 

other residues other than the initial Met and the seven Lys of ubiquitin could be 

involved in the formation of polyubiquitin chains, as often is the same E3 

enzyme that catalyse chain elongation. For example, exploiting the structures of 

the ubiquitin protein (pdb 2k39, Lange et al., 2008), some Thr and Ser (over all 

Thr 9, Thr 12, Ser20) are well exposed on the surface of the ubiquitin protein 

(Fig. 48), quite distant and directed to different directions respected to Met1 and 

the seven Lys used for the already known types of polyubiquitin chains (Fig. 48 

and Fig. 8).

Thr 66

.Thr 22

Figure 48. Ubiquitin structure . Adaptation of an ubiquitin molecular structure (a single 

ubiquitin subunit from polyubiquitin-C polyprotein) from pdb 2k39 (Lange et al., 2008), colours 

represent accessibility of the amino acid residues (yellow highly accessible, dark blue hidden 

amino acid side chain). In the crystal structure are labelled and indicated the exposed Ser and 

Thr residues in the surface of the ubiquitin structure; the other few other Thr, Ser and Tyr, 

present in the ubiquitin molecule, but hidden in the structures are not labelled. Of note no Cys 

residues are present in ubiquitin.
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In the particular case of Tetherin, biotinylated dimers were in part also 

deglycosylated indicating that PNGase digestion can precede reduction. 

However, not all proteins behave like CD4 and Tetherin. For example, we have 

observed reduction prior to dislocation when the MHC-I a chain is directed to 

degradation by the CMV immunoevasin US2, suggesting that different 

requirements may apply to different proteins. To this respect, a crucial role for 

the activity of the ER-resident oxidoreductases PDI and ERdj5 was reported for 

the MHC-I a chain (Tortorella et al., 1998) and for other ERAD substrates such 

as BACE457 and BACE457A (Molinari et al., 2002), the NHK a 1-antitrypsin and 

the J chain of mouse IgM (Ushioda et al., 2008; Hagiwara et al., 2011). Indeed, 

a role for the redox potential during ERAD has been proposed (Tortorella et al., 

1998; Hosokawa et al., 2006).

An interesting case is represented by the conditional non-secretory mouse Ig k- 

light chain NS1, for which the evidence indicates that, in the presence of 

MG132, one of the two intra-chain disulphide bonds (in the Cl domain) remains 

oxidized while the one in the VL domain is already reduced and is the 

preferential ubiquitination site of the molecule (Okuda-Shimizu and Hendershot, 

2007; Shimizu et al., 2010). In this case, a model of partial dislocation was 

proposed with the reduced domain exposed to the cytosolic side and the 

oxidised one still in the ER lumen, until its final extraction and degradation 

(Okuda-Shimizu and Hendershot, 2007). However, our results here presented, 

obtained by positioning the BAP at either the N- or C-terminus of the NS1-LC, 

pictured an alternative model compatible with complete dislocation to the 

cytosol of both domains and representing a third case of folded protein 

retrotranslocated without been fully reduced. In addition the influence of the 

folding state of the Cl domain challenged with the NS1C mutant was essentially 

not influent on the dislocation and stability of the protein.

The fact that some proteins retrotranslocate with both carbohydrate chains 

attached and intact disulphide bonds, poses a limit to an exit mechanism based 

on a simple protein channel, because of the high steric hindrance imposed by 

the sugar moieties and the globular or multimeric structure of the oxidized 

polypeptide. While the CD4 dislocated species is still represented by a 

monomeric chain, for Tetherin there are two transmembrane domains and two 

GPI anchors to deal with, thus making the whole process far more complex.
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In any event, the minimal width of Ig domains, present both in CD4 and Ig LC, 

with disulphide bridges formed, and without considering the sugar moieties is of 

around 20-30 A (Wu et al., 1997; Rudd et al., 1999). Similar values have been 

proven for the width of Tetherin dimers in the coiled-coil region (residues 68- 

138) (Hinz et al., 2010). The Sec61a channel is only 15-25 A wide and during 

synthesis can accommodate the transport of non-glycosylated unfolded 

polypeptides of 5-8 A (Van den Berg et al., 2004), suggesting that a pore at 

least four times as wide is needed. It has been proposed but not completely 

proved, that the Sec61 channel could form the retro-translocation pore by 

dynamically interacting with different molecular partners and thereby changing 

its permeability properties, adapting it not only to function in the opposite 

direction, but also to accommodate wide folded proteins (Kalies et al., 2005). 

Pores of larger size such as the ones formed by perforin (130-300 A wide) (Law 

et al., 2010; Praper et al., 2011), which allow the movement of granzymes of 45- 

50 A width (Law et al., 2010) are large enough to compromise tight control of 

the transported material (Liu et al., 1995; Voskoboinik et al., 2006).

Therefore, our data suggest the existence of ways of exit from the ER 

alternative to a classical channel, operating for some ERAD substrates and 

possibly also for other structures, such as the significantly larger SV40 particles. 

Interestingly, import of some proteins into peroxisomes has been described to 

occur post-translationally (Rucktaschel et al, 2011), when the polypeptide has 

already undergone folding and quaternary interactions have been formed. For 

instance catalase, which enters the organelle as a mature tetramer in a 

receptor-mediated manner (Rachubinski and Subramani, 1995; McNew and 

Goodman, 1994 and 1996; Albertini et al, 1997) and the chloramphenicol 

acetyltransferase (CAT), which fused to a short peroxisomal targeting sequence 

enters in yeast and mammalian peroxisomes as a mature trimer (McNew and 

Goodman, 1994), indicate that folded and multimeric proteins can cross a lipid 

bilayer.

An alternative model for type-l transmembrane proteins, which does not 

consider dislocation as a pore-driven process has been suggested (Ploegh,

2007). The model postulated that extraction of the substrate could arise from 

the rearrangement of the ER membrane lipids leading to the formation of 

bicellar structures released in the cytosol. In this hypothesis formation of 

membrane complexes was proposed to involve lipid droplets, which are key
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organelles for the metabolism of lipids in mammalian cells that are accumulated 

after the exposure of cells to high fatty acids levels (Murphy, 2001). These 

organelles are formed by lipid ester deposition between the two leaflets of the 

ER membrane, from where they bud in structures formed by a single layer of 

phospholipids (Brown, 2001; Tauchi-Sato et al., 2002; Martin and Parton, 2006). 

A possible involvement of lipids could overcome the evidences of the 

retrotranslocation of large folded proteins; indeed the extraction of small lipid 

vesicles should facilitate the handling of highly hydrophobic transmembrane 

domains, as in the case of MHC-I (Ploegh, 2007). To support this hypothesis 

two main clues may be that lipids droplet accumulates under proteasomal 

inhibition and apoliprotein B (ApoB), a transmembrane marker protein of lipid 

droplets, can be ubiquitinated and is a proteasomal substrate (Ohsaki et al.,

2006). It could be interesting to address if also some viruses like polioma 

viruses and SV40, which are known to take advantage from the same set of 

proteins involved in extraction of misfolded glycoproteins (Lilley et al., 2006; 

Gilbert et al., 2006; Geiger et al., 2011) might be able to exploit this hypothetical 

lipid droplet pathway to leave the ER lumen. Recently, however, new 

experimental data has challenged this view, excluding a role for classical lipid 

droplets in ERAD for at least few substrates (Olzmann and Kopito, 2011). These 

evidences however do not exclude necessarily the involvement of transient lipid 

vesicles or membrane lipids rearrangements during the ERAD 

retrotranslocation step.

In conclusion, by means of BirA biotinylation we provided direct evidence that 

proteins can retrotranslocate from the ER to the cytosol with folded oxidised 

disulphide bridges. Our results therefore seriously challenge the prevalent view 

of a retro-translocation step involving transport of already denatured 

polypeptides and impose structural constraints to the molecular complex 

participating in the extraction phase.
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DISCUSSION

The role of p97 in ERAD is believed to be the extraction of ubiquitinated 

substrates to the cytosol from the ER membrane and to occur prior to 

degradation, but after at least one round of substrate ubiquitination 

(Nakatsukasa et al., 2008; Ye et al., 2001; Ye et al., 2003; Ernst et al., 2011). 

This was proposed to be performed by p97 either by an active pulling of 

substrates through the hypothetical retrotranslocon, or even in an unknown 

manner across the lipid membrane, or by segregating the polypeptide that has 

already been liberated from the ER membrane (Nakatsukasa and Brodsky

2008).

p97, however, is an enzyme located in the cytosol or associated to the cytosolic

side of the ER membrane when involved in ERAD, which interacts with both

ubiquitinated and non-ubiquitinated proteins. Overall the predominant models

foresee that, if p97 is not present or is inactive because of ATP depletion or

inhibition of its ATPase activity, the ERAD substrates are not dislocated or only

partially dislocated or not degraded, (i.e. Ye et al., 2001; Ye et al., 2003;

Rabinovich et al., 2002; Okuda-Shimizu and Hendershot, 2007). But, it is

striking that markers of cytosolic localization like ubiquitination and interaction

with the p97 ATPase protein complex were always reported, in particular for

soluble luminal proteins, as a partial dislocation of the model proteins (i.e. Ye et

al., 2001; Rabinovich et al., 2002; Shimizu et al., 2010; Ernst et al., 2011 and

2009). This was primarily due to the accumulation of ERAD substrates, which

largely associate even when ubiquitinated, to the pellet (microsomal/ER

containing fraction) in cell fractionation experiments, and to an apparent

resistance of part of the microsomal accumulated material to protease

digestion. Consistently with this, since down regulation of p97 induces UPR, it

has been interpreted as an indication that it is the consequence of accumulation

of ERAD substrates in the ER lumen (i.e. Ye et al., 2001; Rabinovich et al.,

2002; Ye et al., 2003; Elkabez et al., 2004). These evidences are certainly

strong, but not necessarily conclusive. Because, during high speed

centrifugation several particles, other than ER-derived vesicles and similar lipid

compartments, end up in the pellet, such as mitochondria, proteasomes,

ribosomes, and several other large protein complexes (Kalies et al., 2005;

Greenblatt et al., 2011; Ackerman et al., 2006; Tang et al., 2011; Fujii et al.,
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2012).

It is generally accepted that during ERAD one or more large protein complexes 

are formed (i.e. Ye et al., 2003; Christianson et al., 2011), some of them are 

located almost completely in the cytosolic side of the ER membrane, involving 

usually also transmembrane proteins (i.e. Ye et al., 2004; Lilley and Ploegh 

2004; Christianson et al., 2011; Ernst et al., 2011 and 2009). Undoubtedly, 

proteins fully exposed to the cytosol might be abundantly tethered to the 

cytosolic side of the ER membrane (pellet fraction) by the strong interaction of 

the complex components to the latter (i.e. Greenblatt et al., 2011; Ernst et al., 

2011 and 2009; Baker and Tortorella, 2007; Jarosh et al., 2002).

In a similar scenario the widely reported requirement of ATP and p97ATPase 

activity for protein dislocation (i.e.; Ye et al., 2001; Ye et al., 2003; Jarosh et al., 

2002; Flierman et al., 2003) might be the simple result of the need of ATP 

hydrolysis for releasing of ERAD substrates from the p97 containing complex 

and for the eventual proteasomal degradation (which also need ATP hydrolysis 

to work), but not necessarily for the extraction from the lumen of the ER or from 

an hypothetical embedded intermediate in the ER membrane.

However, affecting p97 or proteasomal activity for a long period of time might 

cause a bottleneck and as a consequence is also possible that some of the 

ERAD substrates could accumulate in the ER lumen.

At any rate, there are two major problems for the interpretation of p97 published 

results, the first resides in the general semantic definition of what is actually the 

retrotranslocation step, while the second is the lack of reliable ways to establish 

protein localization between cytosolic and luminal compartments both in vitro 

and in living cells.

According to the literature the ER to cytosol retrotranslocation is the dislocation 

and solubilization of a ER membrane/luminal substrate to the cytosolic fraction 

before proteasomal degradation (Hampton and Sommer, 2012). But, for 

instance such definition is not adapted to ERAD substrates, which never appear 

soluble before proteasomal degradation (Okuda-Shimizu and Hendershot, 

2007). There is a known association of a proteasomal population to the ER 

membrane (Kalies et al., 2005), which was proposed to degrade these 

substrates during or immediately after crossing of the membrane, for instance in 

the case of NS1-LC (Okuda-Shimizu and Hendershot, 2007).

Thus, it is important to discriminate whether p97 is necessary for crossing the
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membrane (representing the actual retrotranslocation step) or to render the 

substrate soluble, a step that may not always be reached.

Moreover, in most ERAD models the solubilization of the proteins can be 

observed only when the proteasome is directly or indirectly inhibited (i.e. Ernst 

et al., 2011 and 2009; Wiertz et al., 1996a). Therefore, it could be considered 

that this effect may represent an artefact rather than a required step of the 

process, as this fraction is just the effect of proteasomal impairment and may 

result simply by the escape from degradation after disassembly of the ERAD 

complex.

The resistance in protease sensitivity assays, apart from being quite difficult to 

be properly performed and despite of being a strong localization criteria, does 

not necessarily demonstrate a luminal localization of the protein, even if controls 

with non-ionic detergent added to the sample allows a complete degradation. 

Indeed, polypeptides in protein complexes associated to membranes can be 

resistant to proteases, but could still be sensitive to detergents, favouring 

protease degradation. Of note, ERAD complexes resistant to non-ionic 

detergent solubilization are known (Greenblatt et al., 2011; Ernst et al., 2011).

It is generally believed that ubiquitination occurs prior to the interaction of the 

substrate with the p97 complex, which should provide the energy for extracting 

the unfolded protein in an ATP dependent manner (Ye et al., 2001; Jarosh et al., 

2002; Shimizu et al., 2010). Our results using the p97QQ dominant negative 

mutant in retrotranslocation assays in living cells clearly challenge this 

predominant view, leading to different possible interpretations of the role of 

p97ATPase in ERAD.

The membrane-extracting role of p97 should rise per se serious perplexities in 

the case of soluble luminal proteins, since microsomal associated ubiquitinated 

fractions are a clear evidence of ER to cytosol dislocation. In this case a sort of 

ratcheting mechanism has been proposed, in which ubiquitination on the 

cytosolic side ensures that the soluble protein does not slip back into the lumen 

before it can be engaged by p97 (Shimizu et al., 2010). However, we found a 

clear large accumulation of biotinylated and non-ubiquitinated cytosolic NS1 LC 

in the presence of p97QQ indicating exposure of the protein to the cytosol. 

Similar results were obtained with NHK-a1AT that accumulated as biotinylated 

material when co-expressed with p97QQ. This retrotranslocated fraction was 

almost all glycosylated. Defects in deglycosylation efficiency of NHK-a1AT and
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Tetherin co-expressed with p97QQ was also observed following proteasomal 

inhibition. This is consistent with the dominant negative effect on degradation of 

the impaired ATPase p97 mutant. It is possible that by blocking the ATPase 

activity (as in p97QQ) the link between the substrate recognition function 

performed by the regulating proteins associated to p97 N-terminus, and the 

effector function by proteins such as PNGase, bound to p97 C-terminus, is 

impaired. In fact, deep conformational changes are induced by the ATP 

hydrolysis (Rouilleret al., 2002; Davies et al., 2008). Moreover, PNGase was 

shown to interact simultaneously also with the shuttling factor HR23/Rad23 

(Kamiya, et al., 2012), which is the direct link to transfer the substrate from 

p97/cdc48 to the proteasome (Richly et al., 2005). As it has been proposed that 

the p97 substrates are first recognized by substrate-recruiting cofactors and 

then processed by substrate-processing cofactors such as the PNGase (Rumpf 

and Jentsch, 2006), it can be envisaged that PNGase action occurs mainly 

downstream of p97. However, PNGase is known to interact also with Derlinl 

(probably at the C-terminus between amino acids 187 and 251 (Katiyar et al., 

2005)) and this can explain residual PNGase recruitment and activity. In view of 

this, it can be explained the inefficient deglycosylation observed also when 

p97QQ transfected cells were crossed to a proteasomal inhibition both in the 

case of NHK-a1AT and Tetherin.

Experiments with NHK-a1AT and Derlinl mutants that do not interact with p97 

because of the deletion of the SHP box motif (FxGxGQRn, where n is a non

polar residue), showed accumulation of deglycosylated NHK-a1AT substrate, 

demonstrating that disruption of the Derlinl/p97 interaction does not affect 

retrotranslocation and deglycosylation. (Greenblatt et al., 2011). Based on this 

and other data, it has been proposed that p97 activity is required in a step 

downstream of retrotranslocation and Derlin 1 involvement (Greenblatt et al.,

2011).

Complete loss of Derlinl or p97 ATPase functions might lead to a failure to 

disassemble ERAD complexes, preventing appropriate presentation of 

dislocated substrates to the proteasome, but is not directly involved in the 

retrotranslocation (membrane crossing) step.

Interestingly, the ERAD/retrotranslocation pathway is also involved in the cross 

presentation process in specialised antigen presenting cells, a mechanism that
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remains poorly understood (Joffre et al., 2012). In cross presentation, 

exogenous antigens uptaken from the extracellular compartment are 

retrotranslocated from peculiar endosomes and phagosomes to the cytosol 

exploiting ERAD components like Sec61 and p97 before proteasomal 

degradation and reload of the resulting peptides on MHC-I molecules in the ER 

lumen (Joffre et al., 2012). It was proposed that functional p97 was required for 

the retrotranslocation of internalised antigens from those kind of phagosomes 

and thus for effective cross presentation (Ackerman et al., 2006). However, 

despite a clear major role for the p97 ATPase activity in cross presentation, the 

assays performed considered dislocation, strictly as the full cytosolic 

solubilization of the uptaken antigens. For example, in an interesting work 

(Ackerman et al., 2006) exit of the antigen (luciferase) from the internalisation 

endosomes was determined on the supernatant fraction after high speed 

centrifugation. In doing this, an already dislocated fraction associated to ER 

membranes in the presence of p97QQ, similarly to what was observed with our 

reporter systems, was completely excluded and not taken into consideration. It 

is therefore likely that, also in the dislocation of antigens in the cross 

presentation pathway, p97 acts not in the extraction from the ER lumen, but 

downstream in the solubilization and efficient degradation. In this scenario the 

pivotal role of p97 is maintained, but is just positioned a step after the 

retrotranslocation, intended as the crossing of the ER membrane and exposure 

to the cytosolic side.

More interesting is the dominant effect of coexpression of the CHFV OTU 

deubiquitinase with p97QQ: when expressed together the effect resembled the 

overexpression of OTU alone, which was a remarkable accumulation of 

retrotranslocated material both deglycosylated and not. This was observed 

considering the protein abundance, the biotinylation levels and the amount of 

deglycosylated material. Up to now there are 32 DUBs known, which can 

associate with p97 (Sowa et al., 2009). Some of them have opposite effects, for 

instance: Ataxin-3 seems to remove ubiquitin from ERAD substrates preventing 

degradation, while USP13 and YOD1 to favour degradation (Ernst et al., 2009; 

Sowa et al., 2009). The strong effect of CHFV OTU is similar to an inhibition of 

proteasomal degradation, but overcoming the decreased deglycosylation 

efficiency on ERAD substrates observed with p97QQ, even in OTU/p97
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crossing experiments. Thus, OTU acts similar to Ataxin3 in preventing 

degradation and similar to the effect of the overexpression of the DUB protease 

domain of the Epstein-Barr Virus (EBV) large tegument protein (BPLF1). This 

deneddylase hydrolyses also K48 and K63 ubiquitin linkages, similar to CHFV  

OTU (Ernst et al., 2011; Frias-Staheli et al., 2007; Capodagli et al., 2011).

In experiments with the dominant negative mutant of the cytosolic 

deubiquitinase YOD1 (C160S), deglycosylation and efficient degradation of the 

soluble luminal ERAD model ribophorin-l was prevented. This result was 

interpreted as a halt of dislocation of the substrate (Ernst et al., 2009). In 

addition, accumulation of ubiquitinated proteins associated to p97 in the cytosol 

was interpreted as a halt on the dislocation reaction (Ernst et al., 2009). Upon 

EBV-DUB co-expression with the C160S mutant, deglycosylation was achieved. 

Therefore, the authors concluded that, because of the EBV-DUB de

ubiquitinase activity retrotranslocation was allowed to proceed. In this scenario 

both, ubiquitination and deubiquitination from the cytosolic side are steps 

needed for retrotranslocation. (Ernst et al., 2009 and 2011). and upstream of 

p97 activity.

However, in other cases this need of DUBs activity might not be required for 

retrotranslocation. For instance, MHC-la was found retrotranslocated (luminal 

domain exposed to the cytosol) by means of BirA biotinylation after treating cells 

with DUBs inhibitors (Wang et al., 2013) but, consistent with a role upstream of 

p97 and PNGase activity, the dislocated MHC-la was mainly glycosylated and 

associated with the pellet/microsomal fraction. The authors concluded that 

dislocation of MHC-la is dependent of DUB activity, while, the data suggest that 

they are required for solubilisation and efficient de-glycosylation. Of note, the 

dislocation of this molecule does not require ubiquitination on both its tail and 

ectodomain, but is needed for rapid proteasomal degradation, thus challenging 

any involvement of both the ubiquitination and deubiquitination of the substrate 

in the dislocation step. In addition, in this report (Wang et al., 2013) a chemical 

inhibitor of p97 ATPase activity (DBeQ) (Chou et al., 2011) caused 50%  

increase (biotinylation assay) in the accumulation of dislocated-glycosylated 

MHC-la. In experiments of double treatment with both DBeQ and proteasomal 

inhibitors both dislocated-glycosylated and deglycosylated MHC-la were clearly 

observed. The detected total dislocated fraction was almost equal to treatment 

with only proteasome inhibitor and the major difference was a diverse ratio
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between glycosylated and deglycosylated retrotranslocated molecules. 

Strikingly, despite the results supported a post-dislocation role for p97 ATPase 

activity, it was concluded the opposite: that dislocation was dependent of p97 

function. Again the pivotal problem might in part reside in a relevant semantic 

definition: whether a protein that left its original luminal localization and 

becomes exposed to the cytosol should be defined dislocated (dislocation = 

change of localization), as we believe, or not.

The similarities in deubiquitination specificity of EBV-DUB and CHFV OTU 

suggest a similar activity between the two. However, with OTU we observed a 

clear and efficient retrotranslocation/biotinylation of every ERAD model tested, 

indicating that OTU acts after the ER to cytosol dislocation.

Interestingly, most if not all of the known p97/Cdc48 ATPase dependent 

functions seem to be directly linked to the ability of the protein to bind to 

ubiquitinated proteins and to segregate them from their binding partners or to 

extract them from protein complexes (Liu and Ye, 2012). A role of p97 in 

regulating protein interactions (not associated with dislocation) at cell 

membrane was reported (Jentsch and Rumpf, 2007; Shcherbik and Haines, 

2007). The general result is the separation of polypeptides from relatively large 

immobile subcellular structures, membrane associated or not (Liu and Ye,

2012). For this reason, p97 has been dubbed “segregase” (Jentsch and Rumpf,

2007). According to our data, this p97 segregase function on large multiprotein 

complexes is in agreement with our interpretation of a post dislocation role of 

p97 in ERAD.
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A reporter system based on TEVp proteolytic activity

We found that expression of TEVp in the cytosol of mammalian cells allowed to 

discriminate the localization of the TS-tagged (TEVp cleavage site) domain 

between the ER luminal compartment and the cytosol. This feature allowed us 

to exploit TEVp catalytic activity to study ERAD and in particular the 

retrotranslocation step, with an approach similar to BirA biotinylation. In both 

cases we took advantage of the overexpression of cytosolically localised 

enzymes to quickly label dislocated proteins. BirA and TEVp are two completely 

unrelated proteins, being the first a cytoplasmic bacterial biotin ligase and the 

second a protease of a virus infecting plant cells (Beckett et al., 1999; Parks et 

al., 1995). However, they both share a considerable specificity towards their 

minimal target sequence and a comparable catalytic efficiency (Km 0.025 mM, 

k Ca t  0.2 (s'1) in the case of BirA (Slavoff et al., 2011) and Km 0.061 mM k c a t  0.16 

(s’1) in the case of TEVp (Kapust et al., 2001)). In parallel experiments with 

MHC-la and CMV immunoevasins we observed that the two reporter systems 

revealed similar levels of retrotranslocated molecules. The major difference was 

the requirement of transfecting four/five times more plasmid encoding TEVp 

than BirA, due to the well-known auto-cleavage of TEVp. Some TEVp more 

stable mutants described in the literature (Kapust et al. 2001) and tested in our 

laboratory were not more efficient than the wild type TEVp. Nevertheless, no 

obvious toxicity was observed in TEVp transfected cells, probably because of 

both, the specificity of the protease and the relatively low abundance of active 

enzyme. Our finding that, under optimal conditions in retrotranslocation 

experiments in living cells, TEVp and BirA labeled the same molecular fraction 

(almost all the biotinylated was cleaved and all the cleaved was biotinylated) 

strengthened the findings observed with BirA (and also the ones with TEVp) and 

in general the idea of using cytosolically localized enzymes as a way to detect 

retrotranslocated molecules in living cells.

This second method to label dislocated molecules in living cells offer new 

opportunities for biochemical and imaging approaches. For instance, the 

cleavage might be used to reveal an epitope previously hidden or to activate a 

quenched fluorescent protein. In addition the use of TEVp is simple, non

requiring treatment of cells with biotin or incubation with streptavidin as in the 

retardation assays for the quantification of the proportion of retrotranslocated
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molecules.

Another advantage of TEVp system is the very limited size of its target 

sequence (only seven amino acids), which should minimally affect conjugated 

proteins and also does not contain any Lys, that are the most frequent 

ubiquitination sites.

Other than the very classical MHC-la/immunoevasins ERAD system used for 

the first validation of TEVp in labelling ER to cytosol retrotranslocated 

molecules, we focused on the NS1STK- mutant. With this protein our aim was 

to corroborate the results obtained by BirA biotinylation, which revealed that it 

was degraded by the proteasome at a lower rate compared to the wild type 

NS1. TEVp assays showed, in agreement with the biotinylation assay and with 

the published evidences, that NS1STK- was more stable but still degraded and 

ubiquitinated in the Cl domain (Shimizu et al., 2010). Moreover, TEVp 

confirmed our finding of the complete cytosolic localization of the C-terminus, 

thus indicating that the method can be used to analyse how protein substrates 

become exposed to the cytosolic milieu during dislocation.

Of note, BirA and TEVp are two independent techniques useful to analyse 

retrotranslocation of soluble non-glycosylated proteins, as demonstrated with 

NS1, which are the most difficult to study.

Another very interesting ERAD reporter system could be based on E. coli 

enzyme lipoic acid ligase (LplA). Engineered mutant of this ligase are capable 

of recognizing fluorescent substrates and catalysing, both in vitro and in living 

cells, their covalent conjugation to a short 13 amino acids long peptide 

(GFEIDKVWYDLDA) called LplA Acceptor Peptide-2 (LAP-2) and other related 

small tags (Uttamapinant, et al., 2010; Cohen et al., 2011). The small molecular 

size (39kDa) and enzymatic features of LplA and mutants in conjugating the 

natural substrates and fluorophores to the appropriate target sequences are 

similar to BirA and TEVp (Slavoff et al., 2011; Kapust et al., 2001). This enzyme 

was already used to label proteins with compartment specificity (Uttamapinant, 

et al., 2010; Cohen et al., 2011) and thus should be useful for replacing BirA or 

TEVp since should provide a simple fluorescent based assay. In particular it 

could be useful to be used in genome wide siRNAs screenings to identify 

essential ERAD components in the still obscure ER to cytosol retrotranslocation 

step. It would be however interesting to compare the efficiency of such a system

159



DISCUSSION

with the ones here described and with the two recently published techniques to 

analyse ERAD in intact cells, which are based on two different ways of 

fluorescence reconstitution of split GFP, either based on PNGase activity or not 

(Zhong and Fang, 2012; Grotzke et al., 2013), in particular considering that the 

fluorescence reconstitution is probably substantially slower than BirA, TEVp or 

LplA activity (Kerppola, 2009).

In general, this approach of expressing cytosolic reporter enzymes should be 

useful and easily applicable to evaluate several kind of movements from an 

extracellular/luminal compartments to the cytosol of appropriately tagged 

molecules, compounds or viruses.
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