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Abstract

It is clear that the targeting of PDZ-containing substrates by E6 is important for the normal viral 

life cycle and for the progression to malignancy. However, which of these PDZ domain-containing 

proteins is relevant for HPV pathology is still elusive. In this study, we provide the evidence that 

different PDZ domain-containing proteins are differentially targeted by E6. With these 

experiments, we identified MAGI-1 as a sensitive proteolytic substrate for both the HPV-16 and 

HPV-18 E6 oncoproteins. We show that E6 promotes the degradation of membrane-bound and 

nuclear pools of MAGI-1, and the silencing of E6 expression resulted in the MAGI-1-mediated 

junctional recruitment of ZO-1. Using a mutant MAGI-1, resistant to E6-mediated degradation, we 

also show that its expression in HeLa cells also promotes membrane recruitment of the tight 

junction-associated proteins ZO-1 and PAR3, represses cell proliferation and promotes apoptosis. 

These findings suggest that E6-mediated inhibition of MAGI-1 function perturbs tight junction 

assembly, with concomitant stimulation of proliferation and inhibition of apoptosis. We also found 

that the cell polarity regulator hScrib is differentially targeted by HPV-16 and HPV-18 Ed- 

mediated degradation. Surprisingly, we found that residual levels of hScrib expression are required 

for the maintenance of high levels of HPV-18 E6 expression in HeLa cells. This is not due to an 

effect on E6 stability or transcription, but rather is due to an effect upon E6 translation. We provide 

evidence that hScrib and E6 both regulate the PI3K/mTORCl pathway, and that hScrib might 

regulate cap-dependent translation through the modulation of the mTORCl effector S6 kinase. This 

provides an unexpected role for hScrib in the regulation of tissue homeostasis, and provides further 

evidence that E6, by fine-tuning the levels of expression of its different cellular substrates, can 

impact upon a wide range of biological processes implicated in the pathogenesis of cervical cancer.
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Introduction

Oncogenic viruses: proto-oncogenes and tumor suppressors

The term oncogenic virus, or oncovirus, refers to a virus with a DNA or RNA genome whose 

infection is associated with cancer. This terminology originated from studies of acutely 

transforming retroviruses in the 1950-60s, however the notion that tumor development could have 

a viral etiologic origin was postulated at the dawn of the 20th century. The first suggestions that 

human and animal tumors could be transmitted by viruses came from the observations made by 

Giuseppe Ciuffo in 1907 and Ellermann and Bang in 1908, in which human warts and chicken 

leukemia could be transmitted to healthy recipients of cell-free filtrates derived from diseased 

donors (Ciuffo, 1907; Javier and Butel, 2008). Soon after, in 1909, similar experiments led Peyton 

Rous to discover that avian sarcomas could be transmitted using filtered cell-free tumor extracts, 

suggesting that a biological agent, the Rous sarcoma virus (RSV), could transmit a genuine cancer, 

similar to mammalian solid malignant tumors (Rous, 1910, Rous, 1911). Nevertheless, the concept 

of a infection-associated origin of cancer was dismissed for long time by the scientific community, 

and the field of tumor virology gained new interest only between 1930s-1960s with the 

identification of mammalian oncogenic viruses. In 1933, Richard Shope and co-workers reported 

the isolation of the first mammalian DNA tumor virus. They revealed that a filterable agent, the 

Shope papillomavirus, could transmit cutaneous warts in cottontail rabbits (Shope and Hurst, 

1933), and subsequently the Shope papillomavirus, now known as cottontail rabbit papillomavirus 

(CRPV), could produce skin carcinomas when inoculated in domestic rabbits (Rous and Beard, 

1934; Syverton and Berry, 1935). In addition, cancer-causing CRPV infections in domestic rabbits, 

were associated with a failure to produce viral progeny. This observation defined a paradigm for 

small DNA tumor viruses in which deregulation of the viral life cycle is often the causative event 

associated with the malignant progression of the infection.

After the first evidence suggesting that papillomaviruses might cause malignant tumors in rabbits,

an additional 40 years were necessary for the formulation of a hypothesis speculating on a possible

role played by human papillomaviruses HPVs in the onset of genital cancers (zur Hausen et al.,
2



1974; zur Hausen, 1975). This stimulated additional interest in papillomaviruses, which ultimately 

led in the late 1970s to the identification of cytological changes in cervical smears as being 

papillomavirus-specific (Meisels and Fortin, 1976). Subsequently in the early 1980s the complete 

nucleotide sequence of two human papillomaviruses, HPV la and 6b, (Danos et al., 1982; Schwarz 

et al., 1983) and of one bovine papillomavirus, BPV 1 (Chen et a l ., 1982), were published. In the 

same period the genomes of two “high-risk” HPV isolates, types 16 and 18, were cloned from 

cervical cancer biopsies (Durst et al., 1983; Boshart, 1984), providing the first evidence for the 

presence of these virus types in genital cancers, unlike “low-risk” types, such as HPV-6 and 11, 

which are mainly associated with genital warts that do not progress to malignancy. In the following 

years, fundamental insights into HPV-linked carcinogenesis were provided by the demonstration 

that specific viral genes, such as E7 and E6, were expressed in cancer cells (Schwarz et al., 1985). 

The first molecular evidence for the transforming potential of papillomaviruses came from studies 

showing that E6 and E7 could induce immortalization of human keratinocytes (Durst et al., 1987). 

Finally in 1991 at an International Agency for Research on Cancer (LARC) and World Health 

Organization (WHO) workshop, the causative role of HPV infection in the onset of cervical 

cancers was officially recognized by the scientific community (Bosch et al., 1992).

The other two families of small DNA tumor viruses are polyomaviruses and adenoviruses. 

Polyomaviruses were first discovered in mice (Gross, 1953; Stewart et al., 1953), and this was 

rapidly followed by the discovery of the simian virus 40 (SV40). SV40 is a naturally occurring 

infectious agent of the Rhesus macaque (Macaca mulatta) and is not associated with disease in 

Rhesus macaques or other monkeys. The virus was originally isolated as a contaminant of Rhesus 

monkey kidney cell cultures used to produce the polio vaccine (Sweet and Hilleman, 1960), and 

was assigned to the family Polyomaviridae, closely related to the human polyomaviruses BK 

polyomavirus (BKPyV or BKV), JC polyomavirus (JCPyV or JCV), KI (KIPyV), WU (WUPyV) 

and Merkel cell polyomavirus (MCPyV or MCV), the latter of which has been recently associated 

with the development of Merkel cell carcinoma (see below) (Feng et al., 2008; Jiang et al., 2009). 

Research on SV40 gained interest when it was found that Rhesus monkey kidney cell extracts 

could produce tumors when injected into newborn hamsters (Eddy et al., 1961) and that the agent



responsible for these tumors was indeed SV40 (Girardi et al., 1962; Eddy et al., 1962). Although 

these tumors in hamsters did not produce progeny virus, the animals were positive for antibodies 

against the viral protein large tumor antigen (or T-antigen). Furthermore, the small t antigen (or t- 

antigen) has been subsequently identified as the second SV40 oncoprotein. Small t-antigen 

possesses a weak transforming activity when expressed alone, but in combination with the T- 

antigen it cooperates in the induction of transformation (Sleigh et al., 1978; Seif and Martin, 1979). 

SV40 was also shown to infect human cells and to promote their transformation in tissue culture 

(Jensen et. al., 1963; Shein, 1967). However, the possible causality between SV40 infection and 

cancer in humans, particularly in human mesotheliomas and brain tumors, has long been a matter 

of debate (Fang et al., 2011), and, at present, there is minimal evidence for SV40 implication in the 

etiology of these tumors. As mentioned before, MCV is the only polyomavirus associated with 

carcinogenesis in humans, and MCV DNA is found in about 80% of Merkel cell carcinoma 

(MCC). Although MCV infection of the skin is very common during childhood, MCC occurs 

primarily in the elderly, and is strongly associated with immunosuppression (Moore and Chang, 

2010). Loss of immune control of the infection, promotes a strong reactivation of the replicative 

life cycle of the virus, and during progression to MCC this event is commonly followed by the 

viral DNA integration into the host genome (Feng et al., 2008). All MCC cells carry integrated 

MCV DNA molecules, suggesting that integration is a crucial event for MCC development. Viral 

DNA integration is believed to result from mutations in the MCV genome arising from the 

exposure of the skin to mutagenic agents, such as UV radiation. Integration is associated with the 

loss of viral replicative capacity, however, the expression of large T antigen is maintained and is 

required for the prolonged survival of MCC cells (Houben et al., 2010). The induction of the fully 

transformed phenotype is associated with additional mutations in the large T antigen ORF, which 

results in the loss of its ability to regulate viral DNA replication, but retains the ability to express 

its differentially spliced forms small and middle T antigens (Shuda et al., 2008; Shuda et al., 2009) 

and to interact with host cell tumor suppressors, such as pRB (see below).

The third member of small DNA tumor viruses are adenoviruses. These were first isolated in the 

1950s from adenoid and tonsil explants, where these viruses were found to be responsible for acute



respiratory diseases (Rowe et al., 1953; Hilleman and Werner, 1954). A few years later, it was 

shown that infection with some strains of adenovirus could lead to the formation of tumors in 

hamsters (Trentin et al., 1962). Similar to papillomavirus- and SV40-driven tumorigenesis, tumor 

cells from infected hamsters did not produce viral progeny and the hamsters developed antibodies 

against the adenovirus oncoproteins, E1A and E1B.

A number of other viruses are also defined as cancer-causing. These include the herpesviruses 

Epstein-Barr virus (EBV) and Kaposi’s sarcoma herpes virus (KSHV), the hepatitis B (HBV) and 

C (HCV) viruses and human T-cell leukemia virus-1 (HTLV-1) (Banks et al., 2012). As will be 

clear from the following discussion, research on the oncoproteins expressed by DNA tumor viruses 

has led to the discovery of cellular pathways commonly inactivated by viral oncoproteins and 

deregulated in most human cancers. In addition, they have provided excellent examples of 

oncogene addiction, since the expression of the oncoproteins in tumor cells is continuously 

required to maintain the transformed phenotype.

The oncogenes expressed by papillomaviruses, SV40 and adenoviruses act as direct carcinogens. 

By definition, a genomic sequence coding for a direct viral carcinogen is present in each cancer cell 

and expresses oncoprotein(s) that directly contribute to cell transformation. Indeed, in studies 

aimed at defining the viral DNA status in transformed cells, some regions or all of the SV40 DNA 

was found to be integrated into the host genome (Sambrook et al., 1968), whereas only a portion of 

the Adenovirus DNA was found integrated into host chromosomes (Sambrook et al., 1980). 

However, in tumors and in transformed cells in culture, the expression of selected genomic regions 

is maintained. For SV40, this region corresponds to the coding sequence for the large-T and small-t 

antigens (Huebner et al., 1963), whereas for Adenoviruses this is the early region of the genome 

expressing the E1A and E1B oncoproteins (Ross et al., 1980a, b). Likewise, in HPV-transformed 

cells the expression of E6 and E7 is responsible for the establishment and maintenance of the 

transformed phenotype. The functional relevance for the continued expression of viral oncoproteins 

became clear when they were found to interact with and inactivate important host cell tumor- 

suppressors, such as p53 and pRB. The first evidence for this came from the fact that hamsters



carrying SV40-induced tumors possessed high levels of antibodies against a 54 KD protein (Linzer 

and Levine, 1979), and that the high levels of expression of this protein, p53, in SV40 transformed 

cells were directly dependent on the expression of the viral T-antigen (Linzer et al., 1979), 

generating the mistaken concept that p53 might be a T antigen-induced oncoprotein rather than a 

tumor-suppressor. These observations were soon followed by one of the milestones of tumor 

virology: the discovery of the interaction between SV40 T-antigen and p53 (Lane and Crawford, 

1979). However, the importance of this association only became clear much later, when p53 was 

finally recognized as a tumor-suppressor. At the time of its discovery, the hypothesis that p53 could 

be a putative oncoprotein was further reinforced by recent discoveries suggesting that activating 

mutations in cellular proto-oncogenes could be a common mechanism during cell transformation 

(Parada et al., 1982; Der et al., 1982; Sukumar et al., 1983). In addition, cDNA clones coding for 

p53 generated in the early 1980s contained a mutation at codon 135 that conferred transforming 

capacity on the protein (Levine et al., 2004). It was only several years later that the comparison of 

the transforming p53 clones with wild type mouse p53 led to the identification of the mutation, and 

p53 was rapidly recognized as a potent tumor suppressor by its ability to repress transformation in 

cultured cells (Hinds et al., 1989; Finley et al., 1989). Moreover, in the same period mutations in 

the p53 genomic locus were found in colon carcinoma cases (Baker et al., 1989).

Now it is clear that mutations of p53 are associated with over half of all human cancers and its 

tumor-suppressor potential relies on its ability to promote apoptosis, cell cycle arrest and cellular 

senescence in response to proto-oncogenic cues, such as oncogene-induced hyperproliferation or 

DNA damage (Kastan and Bartek, 2004; Bieging and Attardi, 2012). The inactivation of p53 by 

viral oncoproteins was suggested to be a common tumorigenic mechanism used by small DNA 

tumor viruses, and this was supported by the observation that adenovirus E1B was also able to 

form a protein complex with p53 in adenovirus-transformed cells (Samow et al., 1982). 

Subsequently, the E6 oncoproteins expressed by HPV-16 and -18 were found to complex with p53 

(Wemess et al., 1990), but unlike adenovirus and SV40 oncoproteins, E6 recruited a host E3- 

ubiquitin ligase, E6AP, to promote the proteasome-mediated degradation of p53 (Scheffner et al., 

1990). The requirement by DNA tumor viruses to inactivate a potent pro-apoptotic protein such as



p53, is a direct result of their replicative life cycles, where the virus promotes S-phase re-entry and 

therefore stimulates high levels of DNA replication. This is accomplished through the inactivation 

of members of the “pocket protein” family, which includes the product of the retinoblastoma tumor 

susceptibility gene, pRB and its related proteins p i07 and p i30. The best studied functions of the 

pocket proteins are their abilities to repress transcription of E2F-responsive genes, through the 

direct association with members of the E2F family of transcription factors. Phosphorylation of 

pocket proteins by G1 cyclin-dependent kinases promotes the release of E2Fs, triggering the 

activation of genes required for cell cycle progression and proliferation (Reviewed in Manning and 

Dyson, 2011). The tumor suppressor activities of p53 and pRB are integrated by the expression of 

two other potent tumor-suppressor genes, p l6INK4a and pl4ARF, both expressed by the ESfKa/ARF 

locus (Sherr and Weber, 2000). The potential genome instability originating from loss of pRB 

function is prevented by the activation of p53 which, in turn, leads to cell-cycle arrest through 

activation of the cyclin-dependent kinase (CDK) inhibitor p21cipl and repression of cyclin B and 

CDK1 expression (el-Deiry et al., 1993; Smits and Medema, 2001). This is achieved by a feedback 

loop leading to the expression of pl4ARF, which induces the activation of p53 by inhibiting MDM2, 

the ubiquitin ligase responsible for the degradation of p53 (Stott et al., 1998). In addition, pl4ARF 

also promotes the hAda3-mediated acetylation of p53, ultimately leading to cellular senescence 

(Sekaric et al., 2007). On the other hand, loss of p53 function and induction of oncogenic stress 

triggers the expression of pl6INK4a, a potent inhibitor of cyclin-D-dependent kinases that prevents 

the inhibitory phosphorylation of pRB (Serrano et al., 1993; Suzuki-Takahashi et al., 1995; Sherr 

and Weber, 2000). In agreement with these activities the INKa/ARF, p53 and pRB genomic loci 

are among the most commonly mutated genes in human cancers (Sherr and Weber, 2000), and 

DNA tumor viruses have evolved efficient mechanisms to overcome their tumor-suppressor 

activity (Shamanin et al., 2008). Figure 1 summarizes how the activities of p53 and pRB are 

interconnected and their interplay in the prevention of cancer development.

The Rb protein was shown to interact with SV-40 large T-antigen (DeCaprio et al., 1988), 

adenovirus E1A (Whyte et al., 1988) and HPV E7 (Dyson et al., 1989; Boyer et al., 1996). HPV 

E7, El A and SV40 T-antigen share sequence homology in three regions, designated conserved



region (CR) 1, 2 and 3 (Dyson et al., 1992). Strikingly all three viral proteins harbor a short amino 

acid stretch (LXCXE) lying within the CR-2 region allowing for the interaction with members of 

the pocket protein family (Dyson et al., 1992; Helt et al., 2002). Interaction of SV40 T-antigen and 

adenovirus El A with pocket proteins results in their displacement from E2F transcription factors 

(Bagchi et al., 1990; DeCaprio et ah, 1988; Dyson et al., 1989), and possibly also in the alteration 

of their phosphorylation status (Wang et al., 1991; Parreno et al., 2001). Conversely, E7 

oncoproteins deriving from high-risk HPV types drive the proteasome-mediated degradation of 

pRB, pl07 and pl30 (Boyer et al., 1996; Helt et al., 2001; Gonzalez et al., 2001). Whilst the pRB 

binding is a conserved feature among high- and low-risk E7 proteins, and all are able to interact 

with the pocket proteins, only those E7s derived from high-risk viruses can direct proteasome- 

mediated degradation of Rb. In the case of p i30, this is bound and targeted for degradation by 

high- as well as low-risk E7 oncoproteins (Felsani et al., 2006; Klingelhutz et al., 2012), suggesting 

that the pocket protein-binding motif is necessary but not sufficient for the ability of E7 to drive 

their degradation.

In the context of HPV- and adenovirus-mediated tumorigenesis, E7 and E1A posses respectively 

the strongest oncogenic potential. Consistent with this, the expression of El A alone is able to 

promote cellular immortalization (Houweling et al., 1980), whereas E1B lacks transformation 

activity (Van den elsen et al., 1983), but E1A and E1B together cooperate to transform rodent cells 

(Graham., 1984). Similarly, HPV E7 possesses the stronger transforming activity, but together E6 

and E7 cooperate to transform human keratinocytes, the natural host of HPV infection (Barbosa 

and Schlegel, 1989; Hawley-Nelson et al., 1989; Miinger et al., 1989a; Watanabe et al., 1989).

It is clear that inactivation of p53, pRB and pocket proteins is common in the life cycles of human 

tumor viruses, and that is reflected in the tumors associated with their infection. It is also clear that 

additional functions of viral oncoproteins, independent of the p53 and pRB targeting, are important 

for the regulation of viral life cycle and tumorigenesis. For instance, high-risk HPV E6, adenovirus 

9 E40RF1 and HTLV-1 Tax evolved the ability to interact with PDZ domain-containing proteins 

(see below), and this was shown to play crucial roles in context of the viral life cycles and 

oncogenic transformation (Banks et al., 2012).
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Figure 1. Cartoon showing the interconnections between p53 and pRB pathways 

and their inactivation by small DNA tumor viruses. A. the expression o f p l4 ARF and 

p l6 INKa is part of a feedback loop that integrates p53 and pRB tumor-suppressor 

pathways. The activation of either p l4 MF or p l6 INKa following loss of pRB or p53 

respectively, activates mechanisms leading to cell cycle arrest, senescence and 

apoptosis. B. The expression o f the oncoproteins encoded by small DNA tumor 

viruses leads to the inactivation of both p53 and pRB, thereby inactivating the 

p 14/p 16 feedback loop.



The demonstration that certain human tumor virus oncoproteins can target PDZ domain-containing 

substrates provided an exciting early indication of their potential relevance in the development of 

human tumors. One of the first suggestions that PDZ-binding motifs (PBMs) (see below) might 

confer oncogenic potential and, by implication, that their PDZ domain-containing substrates might 

have tumor-suppressor potential, came from studies in a mouse model of mammary tumorigenesis. 

In this system, adenovirus 9 (Ad9) E40RF1 protein, has potent transforming activity, and this was 

dependent on an intact PBM (Lee et al., 1997). The E40RF1 oncoprotein is expressed by the E4 

region of the adenovirus genome, which encodes viral proteins important for the regulation of viral 

DNA replication and late gene expression (Halbert et al., 1985). The Ad9 possesses a unique 

tumorigenic capacity, and, unlike other adenoviruses, is able to induce estrogen-dependent 

mammary tumors in mice (Ankerst and Jonsson, 1989; Javier et al., 1991), and this phenotype is 

conferred by the E40RF1 PBM (Weiss and Javier, 1997; Thomas et al., 1999; Thomas et al., 

2001). The precise contributions of specific PDZ domain-containing substrates to this activity have 

remained elusive, although hDlg and MAGI-1 appear to be good candidates as tumor suppressors 

in this system (Javier, 2008). A particularly interesting development was the realization that 

cancer-causing HP Vs also encode a class-1 PDZ binding motif at the extreme C-terminus of the E6 

oncoprotein (Kiyono et al., 1997; Lee et al., 1997; Massimi et al., 2004). This is a highly conserved 

feature among the high-risk mucosal HPVs, such as HPV-16 or HPV-18, and this motif is absent 

from those HPV E6 proteins that are only associated with benign lesions. In addition, an intact 

PBM on E6 is essential for many of E6’s associated activities, including the regulation of viral life 

cycle, induction of EMT (epithelial-to-mesenchymal transition) and induction of malignancy in 

transgenic mouse models (Thomas et al., 2008). Another human tumor virus, HTLV-1, the 

causative agent of adult T-cell leukaemia, also encodes an oncogene, Tax, which has a PBM, 

through which it interacts with hDlg (Lee et al., 1997). Unlike E6, Tax does not seem to be 

involved in the later stages of disease, but an intact PBM does seem essential for the capacity of 

Tax to transform cells (Tsubata et al., 2005; Higuchi et al., 2007), suggesting that PBM-PDZ 

interactions might contribute to tumor initiation by HTLV-1.
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PDZ proteins in homeostasis and disease of epithelial tissues

PDZ domains and PDZ-binding motifs

PDZ (PSD-95, Disc-Large, Zonula-Occludens-1) domains are named based on the names of the 

first proteins in which the domain was recognized (Songyang et al., 1997). PDZ domains are motifs 

of 80-90 amino acids that form a conserved pattern of tertiary structures composed of 6 (3-sheets 

(pA-pF) and two a-helices (aA-aB). These are shown as a cartoon in Figure 2a, aligned with each 

of the three PDZ domains of human hDlg. Linear amino-acid stretches form joining loops that 

connect the different structural components of the PDZ domain. The shape of a correctly folded 

PDZ domain 2 of human hDlg is shown in Figure 2b. PDZ domains interact with PBMs located 

most commonly at the C-terminus of the target proteins, although internal PBMs also exist, and the 

specificity is given by the interaction between ligand side chains and the PDZ domain itself (Harris 

et al., 2001). Early studies identified two classes of PDZ domains based on the ligand specificity 

displayed: class I PDZ domains target sequence X[T/S]XOCOOH, and Class II PDZ domains 

target sequence. XOXOCOOH, where X is any residue and O is an hydrophobic amino acid 

(Songyang et al., 1997; Nourry et al., 2003). Less common PDZ domain-binding specificities were 

also identified with the class III PDZ domains (X[ED]XOCOOH) (Strieker et al., 1997). More 

recent studies, however, have shown that PDZ domains can interact with up to seven residues in the 

PBM (Zhang et al., 2007; Thomas et al., 2008), and this elicited the further subdivision of PDZ 

domains into 16 different subclasses (Tonikian et al., 2008; Subbaiah et al., 2011). Therefore, a 

single PDZ domain can interact with a multiplicity of different PBMs, making the number of 

possible PDZ-ligand combinations incredibly high. Target PDZ-binding peptides lodge in a cleft 

between (3B and aB strands, forming a hydrogen bonding network that allows the C-termini of 

target proteins to interact with the carboxylate binding loop connecting the (3A and pB sheets 

(Jemth and Gianni, 2007). This loop contains the consensus sequence R/K-X-X-X-G-O-G-O, also 

known as the GLGF repeat, that facilitates the hydrogen bonding to carboxylate groups and 

provides the specificity for the PDZ-binding sequence. An example of the mode of interaction of 

HPV-18 E6 PBM with the PDZ domain 2 of hDlg is shown in Figure 2c. The dissociation constants

10



A pA
 f  \  1— V - r Vtmmmmmmmm&p >̂aBaaaaaaaa_# Umm/

pC OA pD pE aB pF

t>
218- ADJfEYEEI^lEKG^iSGLGFS IACG1DSPHICDDSSIF IT  KII?GGAAAQDGRLRVM)CIlRV:JEVDVRDVrHSXA\TEAIKEAGSIVRLYV^ 3 0 8 
313 - VSEKIKHKIIKGPKGLGFSIAGGVGNQHIPCD55SIYVTKIIEGGflMKDGXLQIGDKHAVSKV€LEEVrHEEAVrAIKNTSDFVyLKVA403 
4 5 3 - ITEEPRKW1HRGSTGLGFNIVGGEDGE GIFISFILAGGPADLSGrLRKGDRIISTOSVDLRAASi£EQAAAAIKKAGQA\rTIVAO-544

Figure 2. Structural features of PDZ domains. A. A cartoon in linear format of the 

structural elements that compose a PDZ domain (adapted from Junqueira et al., 

2003) aligned with each of the three PDZ domains of human hDlg (hDlg). B. A 

cartoon showing the folding of the structural elements in Figure 2a, based on the 

crystal structure of hDlg PDZ2 (Zhang et al., 2007). The proximity of the N and C 

termini can be seen. (C) A cartoon showing the binding of a PDZ binding motif 

(PBM), in this case the 6 C-terminal amino acids of HPV-18 E6, to the PDZ domain 

of hDlg (Zhang et al., 2007). The antiparallel binding of the peptide can be seen.
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(IQs) calculated in solution for the al-syntrophin PDZ domain and PSD-95 PDZ domains 2 and 3 

were in the low micromolar range (1-10 jiM) (Niethammer et al., 1998; Harris et al., 2001). This 

moderate affinity places PDZ-mediated interactions in the same range as SH2 and SH3 domains, 

and suggests that these interactions are highly reversible in cells and are likely to be subject to 

regulatory mechanisms (Nguyen et al., 1998). In the case of PDZ-PMB associations, the on/off 

switch appears to be regulated in some cases through phosphorylation events (reviewed in Jelen et 

al., 2003; Kim and Sheng, 2004). Multiple kinase pathways have been shown to regulate PBM- 

PDZ interactions, indicating that a variety of biological processes are mediated through PDZ 

domains. In most cases, phosphorylation of phospho-acceptor sites in close proximity to the PBM 

negatively affects the binding of the PBM to the PDZ target. For instance, phosphorylation of the 

high-risk E6 PBM by PKA and Akt has been shown to prevent its interaction with PDZ-containing 

substrates (Kiihne et al., 2000; Boon and Banks, 2013), and similarly phosphorylation events 

within the PBMs of the inward rectifier K+ channel (Kir2.3), |32-adrenergic receptor and glutamate 

receptor (GluR2) have been shown to negatively regulate their PDZ-mediated recognition (Cao et 

al., 1999; Matsuda et al., 2000). However, examples exist in which the regulatory phosphorylation 

events occur in the PDZ domain, and in this case it promotes the interaction with the PBM 

(Hegedus et al., 2003). PDZ domain-containing proteins can generally be subdivided into one of 

three groups according to their domain composition: 1) PDZ-only proteins, containing exclusively 

one or multiple PDZ domains; 2) membrane associated guanylate kinases (MAGUKs) which 

contain one or multiple PDZ domains along with a SH3 and guanylate kinase (GUK) domains; and 

3) PDZ-proteins containing additional domains (reviewed in Jelen et al., 2003; van Ham and 

Hendriks, 2003).

Examples of some of the PDZ domain-containing proteins belonging to the three classes are 

depicted in Figure 3. Many PDZ domain-containing proteins typically function as scaffolds to 

recruit soluble proteins and assemble macromolecular signaling complexes at specialized cell-to- 

cell contact sites termed adherens junctions (AJ) and tight junctions (TJ) (Javier et al., 2008).
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Epithelial polarity complexes and establishment o f avico-basal cell polarity

Epithelial cell polarity can be referred as the establishment of asymmetries within a cell or a tissue. 

Cell polarity is required for the regulation of key biological processes and most aspects of 

development (i.e. organ development and function), and its loss is associated with a large 

proportion of late-stage cancers (Martin-Belmonte and Perez-Moreno, 2011). In complex 

eukaryotic tissues, such as stratified epithelia, two types of cell polarity can be distinguished: 

apico-basal polarity (ABP), in which functional membrane domains are set along the vertical axis 

of the cell through the polarized distribution of so called polarity complexes; and planar cell 

polarity (PCP), which refers to the coordinated positioning of cells within the plane of the 

epithelium. Often components of the ABP mediate pathways involved in PCP and vice versa, 

therefore the two types of polarity are interdependent and the maintenance of both is a requisite for 

regulation of cell adhesion and tissue architecture. Increasing evidence suggests that their 

perturbation is associated with early stages of tumorigenesis and cancer progression (McCaffrey 

and Macara, 2011; Martin-Belmonte and Perez-Moreno, 2011; Banks et al., 2012). For the purpose 

of this thesis I will focus on ABP, and in the next section I discuss how polarity proteins set ABP 

within cells, and provide evidence that link their loss by genetic inactivation or targeting by viral 

oncoproteins to tumorigenesis.

In vertebrate epithelia, three polarity complexes have been identified: the Crumbs (Crb-PALSl- 

PATJ) complex, the PAR (Cdc42-PAR6-PAR3-aPKC) complex, and the Scribble (Scrib-Dlg-Lgl) 

complex. Polarity complexes are formed by polarity determinants that were originally identified in 

model organisms such as worms, yeast and flies, and their high evolutionary conservation is 

underlined by the fact that mammalian members of the Scrib complex can complement their 

counterparts in Drosophila melanogaster and yeast mutant cells (Thomas et al., 1997a; Kim et al., 

2002; Dow et al., 2003; Grifoni et al., 2004). Cell polarisation is a stepwise process which requires 

the coordinated interplay of different biological processes, including migration, cadherin-based cell 

adhesion (see below) and cytoskeleton remodelling.
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Figure 4a recapitulates the basic steps leading to cell polarisation. Polarity complexes set cell 

polarity by distributing asymmetrically in epithelial cells, and by restricting their reciprocal pattern 

of localisation. In this scenario, the Crumbs complex localizes to, and identifies, the uppermost 

apical domain which is often associated with the formation of specialized membrane structures, 

such as microvilli and primary cilia which are connected to actin and spectrin filaments. 

Conversely, the PAR and the Scrib complexes localize respectively at TJ and AJ (Figure 4b). In 

vertebrate cells, TJ set the limit between the apical and lateral domains of the cell, where 

transmembrane proteins, such as junctional adhesion molecules (JAMs), occludin and claudins, 

form a semi-permeable barrier that limits the paracellular diffusion of solutes. Adherens junctions 

define baso-lateral membrane identity and assemble beneath the TJs; the respective localizations of 

these two structures set the limit between the baso-lateral and sub-apical regions of the cell. As 

their name suggests, AJs represent the main adhesive cellular structures, and are characterized by 

the presence of cadherins and adaptor proteins such as p- and a-catenin which mediate homophilic 

interactions between cells (St Johnston and Ahringer, 2010).

PAR complex

The PAR complex includes the PDZ domain-containing proteins partitioning defective (PAR) 3 

and 6, the Ca+2 and diacylglycerol-independent atypical protein kinase C (aPKC) and the cell 

division control protein 42 (Cdc42), and it regulates the assembly of TJs. The initial stages of 

polarization and TJ assembly require the formation of cadherin-based homophilic adhesive 

structures. These primordial adhesive structures, known as puncta, contain a mixture of AJ and TJ 

components, including junctional adhesion molecules (JAMs), PAR3 and zonula occludens (ZO)-l 

(Suzuki et al., 2002). The subsequent dissociation of AJ and TJ components, and the maturation of 

separated junctional complexes, requires the activation of the RAC1 GTPase and the kinase activity 

of aPKC (PKC£ and PKCi in humans). PAR3 directly participates in restricting the activation of 

RAC1 to primordial adhesion structures through the recruitment of T lymphoma invasion and 

metastasis-inducing protein 1 (TIAM1), a RAC1 guanine nucleotide exchange factor (GEF), and its 

exclusion from subapical sites (Chen and Macara, 2005). Subsequently, aPKC is directly involved
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in the recruitment of the PAR complex at the TJs through the phosphorylation of PAR3, promoting 

its PDZ-mediated association with transmembrane TJ protein JAM-1 (Ebnet et al., 2001; Itoh et al., 

2001; Hirose et al., 2002), an activity that requires PAR6 to interact with and bring together aPKC 

and PAR3 (Schneeberger and Lynch, 2004). In addition, PAR6 tethers the PAR complex to the 

Rho family GTPase, Cdc42, (Joberty et al., 2000; Lin et al., 2000), an interaction that enhances the 

aPKC kinase activity (Yamanaka et al., 2001), favouring the phosphorylation of additional TJ 

components, including occludin, claudin-1 and ZO-1, at later stages of TJ assembly (Nunbhakdi- 

Craig et al., 2002). The activity of aPKC is counteracted by protein phosphatase 2A (PP2A), the 

first serine/threonine phosphatase found to localize at the TJs, which negatively regulates TJ 

assembly by dephosphorylating aPKC itself and its TJ substrates (Nunbhakdi-Craig et al., 2002). 

Therefore, TJ assembly and initial stages of cell polarity are regulated by fine-tuning of the aPKC 

kinase activity, as well as that of RAC1 and Cdc42 GTPases.

Crb complex

Of the three mammalian homologs of Drosophila Crumbs, Crb3 is the one expressed at the apical 

compartment of epithelial cells (Roh and Margolis, 2003). Crb3 is a transmembrane protein and 

coordinates the formation of the Crb polarity complex through the cortical recruitment of the 

MAGUK protein PALS1, mediated by the interaction between the PDZ domain of the latter and the 

C-terminus of Crb3. In addition to a PDZ domain, PALS1 possesses additional protein-protein 

interaction modules, including a L27 domain, which promotes the interaction with, and the apical 

recruitment of, PATJ (Schneeberger and Lynch, 2004), the third component of the Crb polarity 

complex. The Crb complex is physically linked to TJs through the interaction of PALS1 with 

PAR6. This association is mediated by the PDZ domain of PAR6 and N-terminus of PALS 1 and is 

enhanced by the GTPase activity of Cdc42 (Hurd et al., 2003). In addition, the C-terminal PBMs of 

the TJ proteins ZO-3 and claudin-1 bind respectively to the sixth and eighth PDZ domains of PATJ 

(Roh et al., 2002), strengthening the association of the Crb complex with TJs. The importance of 

the interaction between the Crb and the PAR complexes for the maintenance of apical polarity 

identity is underlined by the fact that overexpression of a dominant-negative form of PATJ in
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epithelial cells not only causes the mislocalization of PALS 1, but also disrupts the localisation of 

the PAR complex and of TJ core components (Hurd etal., 2003).

Scrib complex

The scribble (Scrib) complex is composed of the leucine-rich repeats and PDZ domain (LAP) 

protein Scrib, the MAGUK protein Dig and the WD40 domain-containing protein Hugl (the 

vertebrate homolog of Drosophila Lgl). The Scrib complex localizes at the AJs of mammalian 

cells, whereas in flies it associates with septate junctions, the Drosophila homologs of mammalian 

TJs (Bilder and Perrimon, 2000; Navarro et al., 2005). The Scrib complex co-localises with E- 

cadherin where it promotes the basolateral identity by preventing the basal expansion of the apical 

polarity complexes (Yamanaka and Ohno, 2008). This polarity complex was also shown to regulate 

the expansion of the apical domain at intermediate stages of polarisation. At this stage, Lgl 

interacts with PAR6 and aPKC, competing for their binding to PAR3 (Yamanaka et al., 2003), 

thereby inhibiting the PAR complex assembly and TJ maturation. In later stages of polarisation, the 

extensive aPKC-mediated phosphorylation of Lgl induces its dissociation from the PAR6-aPKC 

module (Plant et al., 2003). This is a crucial step during the acquisition of ABP, since 

phosphorylated Lgl is excluded from nascent TJs and is redirected to the AJ-associated hScrib 

complex, which in turn allows the assembly of the PAR complex and maturation of the sub-apical 

domain.

Assembly and signalling from junctional polarity complexes

Epithelial sheets are located at the boundaries between anatomical compartments where they 

strictly regulate the passage of solutes and immune cells without affecting the overall homeostasis 

of the tissue (Laukoetter and Nava, 2008). In this context, the polarized formation of cell junctions 

between neighbouring cells, maintains tissue homeostasis by i) forming spatially segregated cell 

compartments that respond to stimuli coming from different microenvironments, and ii) 

functioning as a scaffold for the recruitment of regulatory molecules. Consistent with this, loss of
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components of AJs as well as of TJs is associated with loss of cell polarity, increased proliferation 

and acquisition of invasive capacities (reviwed in Martin-Belmonte and Perez-Moreno, 2011). In 

the next sections I will provide an overview on the control of cell signalling by junction-associated 

proteins and on how viral oncoproteins can promote tumorigenesis through their perturbation.

Tisht junctions

Biochemical data revealed that TJs are supramolecular complexes composed of hundreds of 

proteins including transmembrane and scaffolding proteins, cytoskeletal components and signalling 

molecules (Tang, 2006). Within TJs, bundles of transmembrane proteins (such as claudins, 

occludin and junctional adhesion molecules (JAM 1-4) protrude in the intercellular space and 

contact the TJs of adjacent cells, while cytoplasmic scaffolding proteins interact with the 

cytoplasmic domain of transmembrane proteins, to stabilize the intercellular connections, assemble 

signalling complexes and modulate the activity of regulatory proteins. Within the epithelial sheet, 

intercellular TJ interactions from adjacent cells form a selective barrier for the paracellular 

diffusion of solutes and macromolecules (e.g. electrolytes and growth factors) controlling normal 

growth rates and homeostasis, of epithelial tissues by generating spatially segregated 

microenvironments exposed to different proliferative cues (Laukoetter et al., 2007; Tamura et al., 

2008; Vetrano et al., 2008). These two functions of TJ transmembrane proteins are not mutually 

exclusive since controlled paracellular permeability limits cell proliferation, whereas stimulation of 

proliferation down-regulates adhesive structures (Farkas et al., 2012). A good example of this 

regulation is the control of proliferation through the segregation of EGF and EGF-like ligands from 

their receptors (EGFR and ErbB2-4). Epidermal growth factor receptor (EGFR) and ErbB2-4 are 

members of the type-1 tyrosine kinase receptor family, and are involved in the regulation of 

physiological processes that require the controlled activation of proliferation and cell migration, 

such as development, and wound healing. Activation of EGFR and ErbB receptors occurs through 

their interaction with EGF or EGF-like ligands, which in turn leads to the stimulation of 

downstream proto-oncogenic pathways (Sweeney et al., 2001). In polarized epithelial tissues, 

EGFR and ErbB2-4 receptors are spatially segregated from their respective ligands; receptors
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localise at the basolateral domain, whereas ligands are present at the apical domain of the cells and 

in the extracellular fluid covering the surface of certain epithelia (Vermeer et al., 2003; Tsukita et 

al., 2008). In this context, intact TJs are believed to be the primary barrier to the paracellular 

diffusion of EGF and EGF-like ligands, and TJ disruption, for instance by mechanical injury of the 

epithelium, triggers epithelial proliferation and migration downstream of activated EGFR/ErbB 

receptors, leading to the rapid restoration of the epithelial sealing (Veemer et al., 2003). This 

barrier function of TJs has been recognized as a protective mechanism, ensuring a rapid restoration 

of the epithelial barrier function upon tissue damage (Chao et al., 2003). In addition, this also 

highlights that the maintenance of separated cellular compartments by junctional complexes limits 

the acquisition of potentially tumorigenic characteristics by epithelial cells. Figure 5 shows the 

basic structure of stratified epithelia and how TJs might contribute to the maintenance of tissue 

homeostasis.

The relevance of aberrant activation of ErbB signaling in human cancers has been provided (Hynes

and Lane, 2005; Murphy and Morris, 2012), and recently a link between activated ErbB2,

disruption of cell polarity and acquisition of carcinogenic properties has been reported (Aranda et

al., 2006; Xue et al., 2012). In 3D breast cancer cell models, active ErbB2 mediates loss of cell

polarity through the mislocalization of the PAR6-aPKC module, and cooperates with downstream

activated Ras/ERK signaling to activate proliferation (Aranda et al., 2006). This is also consistent

with other studies which show that mislocalization or overexpression of PAR6 and aPKC are

common in many cancers (Aranda et al., 2008). Expression of a PAR6 mutant unable to bind

ErbB2 prevented cell polarity alterations in mammary cells, underlining the critical role played by

the PAR complex in epithelial homeostasis. Intriguingly, ablation of hScrib in mutant PAR6-

expressing cells, restored the polarity defects produced by the ErbB2/PAR6-aPKC interaction

(Aranda et al., 2006), suggesting that the PAR and hScrib polarity complexes can modulate cell

polarity and prevent tumorigenesis through the regulation overlapping pathways. This is also

supported by the observation that both PAR3 and hScrib can regulate Rac, contributing to the

control of polarized cell migration by restricting Rac activity (Qin et al., 2005; Xue et al., 2012). In

contrast, a pro-oncogenic activity has been indicated for PAR6, with its overexpression being
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linked to increased proliferation and also to the induction of TJ breakdown. Furthermore, TGF0 

(transforming growth factor |3)-induced phosphorylation of PAR6 increases its interaction with the 

ubiquitin ligase Smurfl (Smad ubiquitylation-regulatory factor 1), thereby resulting in RhoA 

degradation and the induction of a more mesenchymal phenotype (Ozdamar et al., 2005). Thus the 

PDZ domain-containing components of the Par complex can function as promoters and inhibitors 

of EMT, depending on the balance of PAR3/PAR6 activities (Aranda et al., 2008).

Components of the PAR complex belong to a large group of proteins that contributes to the

assembly of a macromolecular complex on the cytosolic side of TJs, referred to as the TJ plaque.

The first TJ plaque protein identified was ZO-1 (zonula occludens-1) (Stevenson et al., 1986). ZO-

1, with ZO-2 and ZO-3, constitute the ZO protein family that localises at TJs of epithelial cells in a

cell density-dependent manner (Gottardi et al., 1996). ZOs share common structural features that

place them in the MAGUK superfamily, including multiple PDZ domains, SH3 and GUK domains

and proline-rich regions variable in length, and several ZO-interacting partners have been identified

(reviewed in Bauer et al., 2010). A crucial function of junctional-localised ZO-1 is the regulation of

RhoA-induced proliferation. This is achieved by ZO-1 directly through the SH3-mediated

membrane sequestration of the RhoA effector ZONAB/DbpA (Baida and Matter, 2000) and its

associated protein CDK4 (Baida et al., 2003), or through the recruitment of cingulin, another TJ

plaque protein, that in turn binds and sequesters the RhoA-specific guanine nucleotide exchange

factor (GEF) GEF-Hl/Lcf (Citi et al., 2009). ZONAB/DbpA is a Y-box transcription factor, whose

nuclear translocation stimulates proliferation by activating the gene expression of the Gl-

associated cyclin Dl, PCNA and ErbB2 (Baida and Matter, 2000; Sourisseau et al., 2006), in an

active RhoA-dependent manner (Nie et al., 2009). In addition, ZONAB/DpbA recruits the cyclin

Dl-associated kinase CDK4 to the nucleus (Baida et al., 2003), thus efficiently promoting the Gl-S

progression through the cell cycle. In agreement with these data, ZO-1 down-regulation is observed

in a large proportion of breast cancer cases (Hoover et al., 1998). The control of cell proliferation

mediated by the TJ protein ZO-1 is completed by the second member of the ZO family, ZO-2,

whose translocation to the nucleus of proliferating cells has been shown to inhibit the transcription

of cyclin Dl (Gonzalez-Mariscal et al., 2009), whereas a role in the modulation of cell-cycle-
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Figure 5. Contribution of TJs to the maintenance of epithelial tissue homeostasis. In

stratified epithelia the asymmetric division of basal cells (perpendicular to the basal 

membrane) generate daughter cells that are pushed along the differentiating 

epithelium and are committed for terminal differentiation. Cells o f the basal layer 

also maintain the ability to undergo symmetrically cell divisions (parallel to the 

basal membrane) in order to generate two daughter cells that maintain the stem cell 

phenotype. In the differentiating epithelium TJs (red squares between cells) are 

enriched in the granular layer (stratum granulosum) and form a barrier that blocks 

the paracellular diffusion o f solutes and growth factors, thereby preventing the 

exposure o f basal cells to proliferative cues. Upon mechanical injury of the 

epithelium and TJ disassembly, the lower epithelial layers become exposed to 

growth factor stimulation which ensures the rapid restoration o f the epithelial 

sealing by promoting transient cell migration and proliferation.



dependent stability of cyclin Dl has been proposed for ZO-3 (Capaldo et al., 2011). The assembly 

of TJ complexes and the correct localisation of ZO proteins are mutually dependent on each other 

(Umeda et al., 2006). Thus, in epithelial cells MAGI (MAGUK with inverted domain structure)-1 

is recruited to junctional sites by JAM-4 in a PDZ-dependent manner, and this promotes TJ 

stabilisation and recruitment of ZO-1 (Hirabayashi et al., 2003). MAGI-1 is a member of the 

MAGI protein subfamily that also comprises MAGI-2 and -3. These are defined as MAGUKs 

although they differ from the canonical domain composition, having a unique arrangement of 

protein-protein interaction domains (Dobrosotskaya et al., 1997). MAGI-1 is able to interact with 

PTEN and p-catenin through its PDZ domains 2 and 5 respectively (Dobrosotskaya and James, 

2000; Kotelevets et al., 2005). This set of interactions stabilises P-catenin at the membrane and re- 

localises PTEN to membrane bound sites, protecting it from proteasome-mediated degradation, a 

function also found with MAGI-2 (Valiente et al., 2005; Hu et al., 2007). The formation of a 

trimeric p-catenin-MAGI-PTEN complex has been shown to mediate PTEN tumor-suppressor 

function in the context of oncogene activation (Kotelevets et al., 2005). This is in agreement with 

the fact that membrane-bound PTEN down-regulates the PI3K signalling pathway (Leslie and 

Downes, 2002), thus inhibiting several processes related to tumor formation and cancer 

progression, including cell growth, survival and migration (Leslie and Downes, 2002; Salmena et 

al., 2008).

c
Adherens junctions

Adherens junctions mediate cell-cell adhesion through the formation of homophilic interactions 

between the extracellular domains of cadherins, which in epithelial cells are best represented by E- 

cadherin (Nagafuchi, 2001). The adhesive properties of E-cadherin are enhanced by formation of 

macromolecular complexes, mediated by the direct recruitment of cytosolic proteins by the 

intracellular domain of E-cadherin. These include p-catenin (the vertebrate homolog of Drosophila 

armadillo), y-catenin and pl20-catenin, which bind directly to E-cadherin and promote its 

localisation and stability (Reynolds et al., 1994; Yap et al., 1998; Huber and Weis, 2001; Davis et 

al., 2003). Engagement of cadherin-based junctions represents the basis for the induction of the
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polarised epithelial phenotype (Figure 4a). Consequently E-cadherin is, perhaps, the main barrier to 

the epithelial-to-mesenchymal transition in which epithelial cells lose cell polarity and acquire 

migratory and invasive capacities. During development, EMT is followed by its reverse process, 

MET (mesenchymal-to-epithelial transition) to regulate organ morphogenesis. Thus, during 

malignant transformation in epithelial tissues, the induction of EMT correlates with increased 

aggressiveness of the tumor (Thiery et al., 2009). So far, several inducers of EMT have been 

identified; these include the transcription factors TWIST, SNAIL and ZEB-1/2, which directly 

down-regulate E-cadherin expression through the repression of its promoter activity (Nieto, 2002; 

Peinado et al., 2007). One of the best known functions of E-cadherin-based AJs in the regulation of 

tumorigenesis is the control of the Wnt/p-catenin pathway through the modulation of APC 

(adenomatous polyposis coli) function. APC is a tumor-suppressor and plays a fundamental role in 

the regulation of the Wnt pathway, orchestrating the formation of the so-called “axin destruction 

complex”, formed by axin, the kinases CK2 and GSK3p, APC and p-catenin, which leads to the 

recruitment of the E3 ubiquitin-ligase p-Trcp and drives the proteasome-mediated degradation of p- 

catenin (de Law et al., 2007). Activation of the Wnt pathway and stabilisation of P-catenin, leads to 

the activation of a number of proto-oncogenic genes (Wnt target genes), whose expression is 

deregulated in many human cancers (de Law et al., 2007). Consistent with this important tumor- 

suppressor function, germline mutations in the APC gene are associated with familial adenomatous 

polyposis (Kinzler and Vogelstein, 1996), a risk factor for development of colon carcinoma. APC 

has multiple protein interaction sites, one of which includes a C-terminal class 1 PBM 

(Morais Cabral et al., 1996; Giles et al., 2003). The PBM-dependent interactions have been shown 

to be crucial for the modulation of its function, and mutations affecting the ability of APC to bind 

PDZ domains have been found in human cancers (Miyoshi et al., 1992; Pedemonte et al., 1998). 

The PBM-mediated interaction of APC with hDlg, appears to regulate its correct localization with 

important consequences for the regulation of cell-cycle progression and cell adhesion (Matsumine 

et al., 1996; Etienne-Manneville et al., 2005). The APC PBM also binds to the PDZ domain of the 

FAP-1 (Fas-associated phosphatase 1) tyrosine phosphatase (Erdmann et al., 2000). FAP-1 displays 

a pleiotropic behaviour in the context of the regulation of tumorigenesis. The phosphatase activity



of FAP-1 is required to inhibit the proliferation of Wnt-stimulated cells through the modulation of 

the APC/p-catenin complex (Erdmann et al., 2000; Welters et al., 2008); consistent with this, FAP- 

1 function is lost in colorectal cancers (Wang et al., 2004). On the other hand, FAP-1 had been 

originally identified for its antiapoptotic function through its ability to de-phosphorylate the death 

receptor Fas, thereby preventing Fas-ligand mediated apoptosis (Saras et al., 1997; Ungefroren et 

al., 2001). In addition, FAP-1 expression is progressively increased in cancer progression of the 

Ewing’s sarcoma family of tumors, in which FAP-1 is a direct transcriptional target for EWS-FLI1 

(Ewing sarcoma breakpoint region 1/Friend leukaemia virus integration 1) fusion protein (Abaan et 

al., 2005). Therefore, the function of FAP-1 with respect to tumorigenesis is likely to be highly 

context-dependent.

As discussed above, AJs are the resident site of the hScrib polarity complex. This complex is 

essential for regulating cell polarity and proliferation in Drosophila, with loss of any component 

resulting in broadly similar and complementary phenotypes. In human tumors, loss of hScrib and 

hDlg is a common event in later stages of cancer progression, although at earlier stages of disease 

progression the two proteins are expressed at extremely high levels and often mislocalised (Watson 

et al., 2002; Cavatorta et al., 2004; Nakagawa et al., 2004; Gardiol et al., 2006). However, their 

relative contribution to tumorigenesis in higher eukaryotes has begun to be clarified only recently. 

Depletion of either hDlg or hScrib in human keratinocytes has opposing effects on cell adhesion, 

invasion and apoptosis (Massimi et al., 2012). Considering that, in human cells, the function of 

hDlg still remains to be determined, this study suggested that its function is highly context- 

dependent. Human hDlg acted as tumor-suppressor during induction of anoikis, an apoptotic 

pathway induced by the growth of cells in the absence of cell-substratum attachment (Massimi et 

al., 2012). Conversely, loss of hDlg reduced the invasive potential of human keratinocytes 

(Massimi et al., 2012), and in a similar study, the depletion of hDlg impaired the invasive capacity 

of cervical cancer-derived HPV-positive cells (Krishna Subbaiah et al., 2012), suggesting a pro- 

oncogenic role for hDlg in certain circumstances. This activity of hDlg, however, has been linked 

to its ability to activate proto-oncogenic pathways upon its mislocalization by viral oncoproteins
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(see below) or activated cellular oncogenes (Frese et al., 2006; Garcia-Mata et al., 2007; Krishna 

Subbaiah et al., 2012).

hScrib is recruited to AJs and cell-cell contacts through its interaction with E-cadherin (Navarro et 

al., 2005) and the correct localisation of the two AJ components is mutually interdependent 

(Navarro et al., 2005; Qin et al., 2005). Recent studies have suggested that a central tumor- 

suppressor function of hScrib is its modulation of the Ras/Raf/MAPK pathway. Loss of hScrib 

cooperated with oncogenic Ras to promote anchorage-independent growth of breast cancer cells 

and invasion in organotypic 3D cultures (Dow et al., 2008), although the depletion of hScrib alone 

was recently shown to be sufficient to promote an invasive phenotype in human keratinocytes 

(Massimi et al., 2012). In addition, hScrib has been shown to reduce the levels of phosphorylated 

(active) ERK kinase (Dow et al., 2008; Nagasaka et al., 2010), at least in part, through the 

recruitment of the cellular phosphatase PPly (Nagasaka et al., 2013), and this activity of hScrib is 

required to suppress oncogenic Ras co-transforming activity (Nagasaka et al., 2010). The tumor- 

suppressor activity of hScrib also relies on its ability to induce pro-apoptotic pathways (Zhan et al., 

2008; Liu et al., 2010). Once again, however, this activity is context-dependent, since anti- 

apoptotic functions for hScrib have also been reported (Massimi et al., 2012). This is also 

highlighted by the observation that mislocalization of hScrib is sufficient to promote carcinogenesis 

in breast cancer cell models through the augmentation of the activity of the Hippo transducer Taz 

(Cordenonsi et al., 2011).

The transcription factors Taz and Yap are the final targets of the Hippo tumor-suppressor pathway, 

which is highly conserved from flies to humans (Pan, 2010). The activation of this pathway leads to 

a signalling cascade that culminates in the sequential activation of the kinases MST1 and LATS1, 

which in turn leads to the inhibitory phosphorylation of Yap and Taz. The phosphorylation of Taz 

leads to its proteasome-mediated degradation (Pan, 2010), and in this context hScrib controls the 

localisation and activity of MST1, which is required for the activation of LATS1. Consistent with 

this, loss of hScrib expression or its membrane displacement have been shown to induce the
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aberrant activation of Taz and acquisition of EMT and cancer stem cell-related traits (Cordenonsi et 

al., 2011). Similar effects were also mediated by Crb in mouse mammary cells. Assembly of the 

Crumbs complex resulted in increased Yap/Taz phosphorylation and in the inhibition of TGF(3- 

SMAD-mediated EMT (Varelas et al., 2010). This suggests that hScrib and Crb could have 

complementary tumor-suppressor effects through the regulation of the Hippo pathway. hScrib has 

been implicated in the induction of the c-Myc-mediated apoptotic pathway, through the formation 

of a ternary complex which includes hScrib, the Rac and Cdc42 GEF PPIX, and the G protein- 

coupled receptor kinase interactor 1 (GIT1) (Zhan et al., 2008). In polarised breast cancer cells, the 

c-Myc-mediated hScrib/pPIX/GITl complex drives apoptosis through the downstream activation 

of the Rac-JNK-Jun-Bim apoptotic pathway, whereas loss of hScrib function, caused by RNAi- 

mediated ablation or by membrane displacement of the protein, redirected c-Myc signalling from a 

pro-apoptotic to a pro-oncogenic pathway (Zhan et al., 2008), possibly involving an aberrant 

activation of the MAP kinase JNK (Wu et al., 2010). The interaction of P-PIX with hScrib has also 

been shown to modulate the correct localisation of the GEF at the leading edge of migrating cells, 

to promote directional migration by spatially restricting the activities of Rac and Cdc42 (Qin et al.,

2005), and to guide epithelial morphogenesis in 3D culture systems through the control of the 

Cdc42 and Rac effector p21-activated kinasel (PAK1) (Eastbum et al., 2012). Interestingly, in the 

latter study hScrib has been identified as a client protein for the HSP90/sgtl chaperone complex, 

and the integrity of the HSP90/sgtl/hScrib complex appears to be required to regulate hScrib 

stability (Eastbum et al., 2012). These data provide molecular evidence for the importance of the 

correct expression of hScrib for regulation of apoptosis, migration and epithelial morphogenesis.

For the other member of the hScrib polarity complex, the tumor-suppressor properties of Hugl are

the least understood. Vertebrates express two homologs of the Drosophila Lgl, Hugl-1 and Hugl-2

whose expression have been shown to be deregulated in a variety of human cancers (Schimanski et

al., 2005; Kuphal et al., 2006; Tsumga et al., 2007; Lisovsky et al., 2009). Moreover, recent

evidence suggests that Hugll and 2 are potent inhibitors of the EMT program. Consistent with this,

expression of Hugl-1 and Hugl-2 has been shown to promote junctional E-cadherin localization and

re-induction of the epithelial phenotype, respectively, in melanoma and breast cancer cell lines
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(Kuphal et al., 2006; Kashyap et al., 2012). Therefore, Hugl proteins are strong inducers of the 

epithelial program and this is achieved, at least in part, through the modulation of the EMT- 

associated transcription factor Snail (Kashyap et al., 2012). However, recent data from a zebrafish 

model for epidermal carcinogenesis, suggest that Lgl2 can maintain the epithelial phenotype by 

regulating ErbB2-associated signalling (Kashyap et al., 2012). To date there is no evidence for 

direct targeting of Lgl by oncogenic viruses, however the inactivation of the PDZ-containing 

members of the hScrib polarity complex are likely to affect also the activity of Lgl.

Targeting o f junctional complexes bv viral oncoproteins

As noted above, although human oncogenic viruses constitute a highly heterogeneous group of 

viruses, their life cycles necessitate the modulation of common host cellular pathways (Moore and 

Chang, 2010) and these effects are reflected in the tumors they produce. One such pathway is cell 

polarity, and different human tumor viruses adopt overlapping strategies to perturb the expression 

patterns of polarity proteins, including cadherins and PDZ domain-containing proteins (Figure 6). 

A list of PDZ domain containing proteins known to be targets for viral oncoproteins is provided in 

Table 1. Human tumor viruses, including HPV, EBV, HBV, HCV, and KSHV, have all been 

shown to perturb the pattern of E-cadherin expression. Oncoproteins expressed by EBV, HBV and 

HCV have been shown to down-regulate E-cadherin expression through the methylation of its 

promoter or by up-regulating the expression of EMT-associated transcription factors TWIST and 

SNAIL (Banks et al., 2012). In contrast, KHSV promotes both the degradation and the PAK-1- 

mediated mis-localisation of VE-cadherin in endothelial cells (Banks et al., 2012). In the case of 

HPV, both E6 and E7 oncoproteins are able to repress the transcription of E-cadherin by increasing 

the activity of DNA methyltransferases and E-cadherin promoter methylation (Laurson et al., 2010; 

D'Costa et al., 2012). In addition, the perturbation of members of the hScrib complex is also likely 

to affect E-cadherin stability (Qin et al., 2005; Lohia et al., 2012). Thus, HPV and other human 

tumor viruses perform a coordinated attack aimed at perturbing the pattern of expression E- 

cadherin, suggesting the importance of inhibiting E-cadherin function during viral life cycles.
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Figure 6. Distribution of polarity and signalling components at the AJs and TJs and 

their targeting by tumor-associated viruses. See the next page for the full legend.



Figure 6 (Cont.). Depicted are the transmembrane components of AJs and TJs as 

well as the cytosolic proteins associating with their plaques (blue boxes) and the 

downstream pathways that are regulated upon their assembly (green boxes) in non

infected and infected cells. The modulation of AJ- and TJ-associated components by 

oncogenic viruses leads to the deregulation of proto-oncogenic signalling pathways 

(see text) promoting cell proliferation, migration and invasion. TJ integrity creates 

separate microenvironments in the basal and apical compartments of polarized cells. 

Disruption of TJ assembly by oncogenic viruses through the inactivation of TJ- 

associated cytosolic proteins increases the accessibility of growth factor receptors 

(e.g. EGFR/ErbB) to their ligands (e.g. EGF), further promoting the activation of 

oncogenic pathways. Targeting of cadherin-based AJs or its associated proteins 

contributes to the loss of cell polarity and acquisition of a mesenchymal phenotype.



Besides induction of cell proliferation, another possible role for the perturbation of E-cadherin 

expression might be linked to its ability to modulate the cell-mediated immune response to viral 

infection. The recruitment of epidermal antigen-presenting cells to the sites of infection in the 

epidermis requires the expression of E-cadherin by both antigen- presenting cells and 

keratinocytes. Loss of E-cadherin expression leads to reduced retention of antigen-presenting cells 

in the infected tissue (Tang et al., 1993; Jakob and Udey, 1998), and low abundance of antigen- 

presenting cells at sites of viral infection has been shown to correlate with higher disease severity 

(Sprecher and Becker, 1983; Sprecher and Becker, 1989). Thus, the targeting of E-cadherin could 

contribute to the immune evasion by human tumor viruses; however, loss of E-cadherin is also 

strongly implicated in the process of virus-induced carcinogenesis. As mentioned above, the 

perturbation of E-cadherin expression is a hallmark of EMT and is invariably associated with loss 

of APC function and acquisition of invasive properties by tumor cells. In addition, loss of E- 

cadherin also results in the perturbation of hScrib complex-mediated regulation of cell polarity.

The perturbation in the pattern of hDlg expression has been shown to be associated in some cases

with acquisition of tumorigenic capacity, and this, in part, is achieved through the interaction of

hDlg with PBM-containing GEFs, including Netl and SGEF (Garcia-Mata et al., 2007; Krishna

Subbaiah et al., 2012). hDlg has been reported to regulate Netl localization and activity,

conversely, oncogenic mutants of Netl are believed to promote the hDlg sequestration and

inhibition of hDlg function (Garcia-Mata et al., 2007). Likewise, high-risk HPV E6 and E4-ORF1

tumorigenic activities have been shown to rely in part on the mislocalization of hDlg. In HPV-18

positive cervical cancer cells, E6 oncoprotein has been shown to recruit hDlg to detergent-insoluble

sites where, in cooperation with SGEF, a RhoG-specific GEF, hDlg promotes the invasiveness of

HeLa cells via the activation of RhoG (Krishna Subbaiah et al., 2012). The interaction of Ad9 E4-

ORF1 with PDZ proteins has been shown to recruit the oncoprotein to cell-cell contact sites, where

it drives the activation of the PI3-kinase, an activity that correlates with Ad9 mammary

tumorigenesis in mice (Frese et al., 2003). In this context, the E4-ORF1-mediated PI3-kinase

stimulation was shown to rely on the formation of a complex with hDlg, resulting in its membrane

sequestration where it cooperates with the adenoviral oncoprotein to stimulate the PI3 kinase
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pathway (Frese et al., 2006). Another homolog of hDlg, PSD95, has also been identified as a 

binding partner for high-risk E6 oncoproteins (Gewin et ah, 2004). PSD95 is a preferential 

proteolytic substrate for HPV-18 E6 oncoprotein, and the forced expression of this PDZ protein in 

HPV-positive cervical cancer cells has been shown to reduce their tumorigenic potential (Handa et 

al, 2007).

Many PDZ domain-containing proteins of the TJ plaque are inactivated by viral oncoproteins, 

resulting in the loss of TJ integrity. Consistent with the importance of ZO proteins for the 

modulation of cell proliferation, ZO-2 was found to interact with adenoviral E4-ORF1 in a PDZ- 

dependent manner, leading to aberrant cytoplasmic sequestration of the PDZ protein (Glaunsinger 

et al., 2001). Cells that lack ZO-1 and ZO-2 fail to form TJs (Umeda et al., 2006), and although the 

targeting of ZO-2 by E4-ORF1 proved the importance of ZO proteins for adenovirus 9-mediated 

transformation, other members of the ZO family do not appear to be directly targeted by virus- 

encoded oncoproteins. However, indirect effects are likely, through the inactivation of factors 

involved in the regulation of ZO localisation/activity. The PDZ proteins MAGI-1 and PATJ, have 

been shown to be substrates for high-risk HPV E6 and E4-ORF1 oncoproteins (Glaunsinger et al., 

2000; Latorre et al., 2005; Storrs and Silverstein 2007), and their inactivation is associated with 

mislocalisation of ZO-1 and other TJ components (Latorre et al., 2005; Kranjec and Banks, 2011). 

In the context of HTLV-1-mediated transformation, populations with reduced expression of MAGI- 

1 are selected during neoplastic transformation (Makokha et al., 2012). In addition, the loss of 

MAGI-1 observed in acute lymphoblastic leukaemia (Kuang et al., 2008) suggests that its tumor- 

suppressive potential goes beyond the regulation of junctional stability. In addition, MAGI-2 and 

MAGI-3 have also been shown to be the target for viral oncoproteins (Thomas et al., 2002; Ohashi 

et al., 2004) suggesting a potential tumor-suppressor role also for these proteins.

It is interesting to note that the crystal structures of HPV-18 E6 bound to the PDZ domains of 

MAGI-1, MAGI-3 and hDlg have recently been solved, and this allowed us to define the relative 

contributions given by single amino acids within the PBM and PDZ domains to the interaction 

(Zhang et al., 2007; Thomas et al., 2008a). Importantly, these studies revealed that not only
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residues within the HPV-18 E6 PBM (ETQV), but also those immediately upstream, contribute to 

the binding to PDZ proteins. The residues of the PBM specifically contributing to the binding to 

hDlg, MAGI-1 and -3 varied according to the PDZ substrate considered, suggesting that subtle 

differences within the PDZ domains of these proteins modulate the interaction with E6 PBM 

(Thomas et al., 2008a). Moreover, subsequent studies identified the specific residues within the 

PDZ domain-1 of MAGI-1 that mediate its association with the E6 PBM (Foumane et al., 2011). 

Within the PDZ1 the arginine residue at position 499 (K499) was shown to be crucial for the 

interaction with E6 PBM, and its mutation to glutamic acid (K499E) strongly reduces the strength 

of the interaction (Foumane et al., 2011). However, what the functional consequences are of the 

dismption of the interaction between MAGI-1 and E6 in context of the HPV pathology, remains an 

open question.

Targeting o f PDZ-dependent functions not associated with cell junctions

Although high-risk HPV E6 targets a number of PDZ domain-containing proteins associated with 

junctional complexes, it has also been shown to interact with PDZ-proteins associated with other 

activities, and a list of the identified E6 PDZ substrates is shown in Table 1. These include the 

protein phosphatases PTPN3 and FAP1, the Tax-interacting proteins (TIP)-l and -2 and CFTR 

(cystic fibrosis transmembrane regulator)-associated ligand (CAL) (reviewed in Thomas et al., 

2008b).

TIP-1 and TIP-2 were originally discovered as HTLV-1 Tax-binding proteins in a yeast two-hybrid

screen for PDZ-containing binding partners for Tax-1 (Rousset et al., 1998), and subsequently both

have been shown also to interact with high-risk E6 oncoproteins (Hampson et al., 2004; Favre-

Bonvin et al., 2005). TIP-2 interacts with the GTPase-activating protein (GAP) GAIP, which

associating with Ga subunits of heterotrimeric G proteins, promotes their rapid cycling from GTP-

to GDP-bound state, thereby accelerating their inactivation (De Vries et al., 1998). One of the

functions associated with TIP-2 expression is the modulation of cell responsiveness to TGFp, by

driving the expression of type III TGFp receptors at the cell surface through the direct interaction

with its class I PBM. This results in the activation of TGFp-responsive genes and inhibition of cell
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growth (Blobe et al., 2001). HPV-18 E6 has been shown to interact with and drive the proteasome- 

mediated degradation of TIP-2 and, consistent with its biological function, loss o f TIP-2 correlated 

with a decrease in TGFP-mediated cell growth inhibition of HPV-positive cells (Favre-Bonvin et 

al., 2005). In marked contrast with other PDZ-containing proteins, TIP-1 activity was shown to be 

promoted by the presence of HPV-16 E6. Structurally the TIP-1 protein is composed almost

Table 1. Identified PDZ-containing targets for viral oncoproteins.

Target PDZ Targeting Effects on target protein Target protein References

protein viral

oncoprotein

function

hDlg HPV E6 Degradation/sequestration Cell polarity / 

context

Gardiol et al., 

1999

dependent 

function (?)
Ad9 E4-ORF1 Sequestration Lee et al., 

1997

HTEV-1 Taxi Sequestration Hirata et al., 

2004

hScrib HPV E6 Degradation Cell polarity /

tumor

suppressor

Nakagawa and 

Huibregtse, 

2000

HTEV-1 Taxi Sequestration Okajima et al., 

2008

MAGI-1 HPV E6 Degradation, Cell polarity / 

tumor

Glaunsinger et 

al., 2000

suppressors
HTLV-1 Taxi Sequestration Makokha et
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al, 2013

Ad9 E4-ORF1 Sequestration Glaunsinger et 

al., 2000

MAGI-2 HPV E6 Degradation Thomas et al., 

2002

MAGI-3 HPV E6 Degradation Thomas et al., 

2002

HTLV-1 Taxi Sequestration Ohashi et al., 

2004

MUPP1 HPV E6 Degradation Cell polarity Lee et al., 

2000

Ad9 E4-ORF1 Sequestration Lee et al., 

2000

PATJ HPV E6 Degradation, Cell polarity Latorre et al., 

2005; Storrs 

ans Silverstein, 

2007

Ad9 E4-ORF1 Sequestration Latorre et al., 

2005

PSD95 HPV E6 Degradation Cell polarity /

tumor

suppressor

Handa et al., 

2007

TIP-1 HPV E6 Stabilization p53 inactivation Hampson et
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/ inhibitor of

PDZ-mediated

interactions

al., 2004

TIP-2 HPV E6 Degradation Modulator of

TGFp

signalling

Favre-Bonvin 

et al., 2005

PTPN3/PTPH1 HPV E6 Degradation Modulation of 

p38y / context- 

dependent 

function

Jing et al., 

2007; Topffer 

et al., 2007

FAP1/PTPN13 HPV E6 Degradation Modulation of

Fas-mediated

apoptosis /

context-

dependent

function

Spanos et al., 

2008b

CAL HPV E6 Degradation CFTR

trafficking and 

degradation

Jeong et al., 

2007

ZO-2 Ad9 E4-ORF1 Sequestration Cell

polarity/tumor

suppressor

Glaunsinger et 

al., 2001

exclusively of a single PDZ domain, and it has been proposed to antagonize PDZ-mediated 

interactions by competing with other PDZ-proteins for the binding to target PBMs (Alewine et al.,
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2006). A pro-oncogenic function for TIP-1 has been proposed, with the activation of Rho- 

dependent gene expression, exerted through the interaction with the PBM of the Rho effector 

rhotekin (Reynaud et al., 2000). Consistent with the latter studies, expression of TIP-1 in HPV-16 

E6-expressing cells has been shown to be required to activate RhoA signaling (Hampson et al., 

2004).

A contribution to the stimulatory effect of cell growth has been suggested to be given by E6

through the targeting of PDZ domain-containing cellular phosphatases. Three PDZ domain-

containing protein tyrosine phosphatases (PTPs), FAP-1 (PTPN13), PTPH1 (PTPN3) and

PTPMEG1 (Alonso et al., 2004), have been described, with PTPH1 and FAP-1 closely linked to

tumorigenesis. Although their roles in tumorigenesis are still controversial, FAP-1 and PTPH1 have

been shown to be inactivated by high-risk HPV E6 oncoproteins, supporting a tumor-suppressor

function in the context of the HPV pathology. Early studies suggested a possible tumor-suppressor

potential for PTPH1, since mutations were reported in some colorectal cancers (Wang et al.,

2004): however, more recent studies are indicative of pro-oncogenic activity. K-Ras was

shown to increase the expression levels of PTPH1 and p38y (Hou et al., 2010), with

PTPH1 and p38y interacting in a PDZ-PBM-dependent manner. This results in dephosphorylation

of phospho-p38y and inhibition of the phospho-p38y-mediated down-regulation of Ras signalling

(Han and Sun 2007; Hou et al., 2010), thereby generating a positive-feedback loop. PTPH1 was

also found to be overexpressed in a number of breast cancers, resulting in a perturbation of vitamin

D receptor localization and stimulation of cell proliferation (Zhi et al., 2011). PTPH1 has been

recently identified as proteolytic substrate for HPV-16 E6 oncoprotein in human keratinocytes

(Jing et al., 2007; Topffer et al., 2007). Expression of HPV-16 E6 in human immortalized

keratinocytes correlated with the acquisition of cell growth capabilities with reduced nutrient

requirements, in a PBM-dependent manner. Silencing of PTPH1 partially reproduced the ability of

keratinocytes to grow under stringent conditions, suggesting a contribution of loss of PTPH1

toward this phenotype (Jing et al., 2007). Although FAP-1 has been reported to be regulated

through its localization at AJs, it possesses a broader spectrum of biological activities. FAP-1 has

been shown to be a potent negative regulator of the Src signaling, and a regulator of the Fas-
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mediated apoptotic pathway (Cuppen et al., 2000; Ungefroren et al., 2001; Lai et al., 2007; 

Glondu-Lassis et al., 2010). Recently, HPV-16 E6, but not its PBM-deletion mutant, has been 

reported to promote anchorage-independent growth in tonsil epithelial cells and invasive cell 

growth in cooperation with activated Ras (Spanos et al., 2008a, Spanos et al., 2008b). Likewise, 

loss of FAP-1 was sufficient to promote anchorage-independent growth of epithelial cells, and 

depletion of the phosphatase cooperated with Ras to promote invasiveness (Spanos et al., 2008b). 

This suggest that these oncogenic activities of E6 are mediated, at least in part, through the 

inactivation of FAP-1.

CAL is a PDZ-containing protein associated with the Golgi apparatus. It is involved in the 

intracellular trafficking of different receptors (Yao et al., 2001; Hassel et al., 2003; Gentzsch et al.,

2003), and it was shown to promote the lysosomal degradation of CFTR, hence reducing its 

exposure on the cell surface (Cheng et al., 2002; Cheng et al., 2004). Recently, CAL was described 

as a novel binding partner for HPV-16 E6, and is targeted for proteasome-mediated degradation by 

HPV-16 and -18 E6 oncoproteins, although it is a preferential substrate for 16 E6 (Jeong et al., 

2007). Interestingly, CFTR expression was described as a prognostic marker for malignant 

progression of cervical cancer (Peng et al., 2012), hence the inactivation of CAL by E6 could 

significantly contribute to cervical cancer progression through the elevation of CFTR levels.

HPV life cycle

Papillomaviruses (PVs) are a broad group of small unenveloped DNA viruses, infecting a wide 

variety of vertebrates. A recent classification, listed 189 PV types in the Papillomaviridae family, 

organized in 29 genera according to their genetic and pathological characteristics. Of these, 5 

genera include the HPVs (Bernard et al., 2010). This heterogeneity is reflected by different 

replicative modalities, due to differences in their gene products, sites of infection, patterns of 

interaction with host factors and responsiveness to external stimuli. The best studied group are the 

alpha papillomaviruses, which infect cutaneous and mucosal epithelia with clinical manifestations 

ranging from self-remissive infections associated with benign warts to persistent infections that can 

eventually lead to anogenital and head and neck cancer. Within the alpha PV types, 12 HPV types
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have been defined as cancer-causing, with HPV-16 and -18 being predominant, accounting for 

about 70% of the global cervical cancer cases (zur Hausen, 2002), of which there are over 500 000 

new cases every year (Forman et al., 2012).

The HPV life cycle is intimately linked to the differentiation program of the infected keratinocytes, 

where the expression of specific viral gene products and maturation of viral particles coincides with 

the induction of differentiation in the infected cells. Figure 7 shows the genomic organization of 

HPV-16 and the sequential activation of the HPV genome in the infected epithelium. In the 

generally accepted model for HPV infection, viral particles are thought to penetrate stratified 

epithelia through micro-lesions, resulting in the localization of the virus at the basal lamina where it 

can infect stem cells or transiently amplifying cells of the basal epithelial layer, the natural host 

cells of HPV (Stubenrauch and Laimins, 1999; Pyeon et al., 2009). The pro-inflammatory response 

evoked during wound-healing processes, as well as the transient elevation of growth factors at the 

site of infection in the basal layer, are also thought to be beneficial for successful infection through 

the stimulation of cell proliferation. Recent evidence suggests that the mitotic progression through 

the cell-cycle and nuclear membrane break-down are also required for successful viral infection, 

allowing nuclear entry of the viral DNA (Peyon et al., 2009). In stratified epithelia only the cells in 

the basal layer are mitotically active, and this might in part provide an explanation for the tropism 

of HPV for these cells. At initial stages of infection, viral gene expression is activated resulting in 

the production of 20 to 100 copies of episomal viral DNA. Episomes are stably maintained in basal 

layer cells (Sterling et al., 1990; De Geest et al., 1993), and induction of differentiation results in 

the viral DNA vegetative amplification in the suprabasal epithelial layers, where viral DNA is 

amplified to a high copy number and ultimately packaged in the new virions. These three phases of 

the viral life cycle are accomplished by the activation and sequential expression of “early” and 

“late” viral proteins within the differentiating epithelium.

As mentioned above, the primary function of DNA tumor virus-encoded oncoproteins is to provide

an environment that can support the viral life cycle. The two major HPV oncoproteins are E6 and

E7, although E5 also displays important oncogenic functions (see below). The expression of HPV-
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16 E6 and E7 from the early region of the viral genome is under the control of the p97 promoter 

and begins at early stages after the virus entry. The expression of E6 and E7 in the basal layer 

clonally expands the population of infected cells that are competent to progress to the 

differentiation-promoted stages of viral life cycle (i.e. expression of late transcripts and release of 

viral particles). In stratified epithelia, the basal layer represents the reservoir of actively 

proliferating cells. As basal cells divide, a population of daughter cells is pushed to migrate in the 

suprabasal layers whilst the basal cell population is maintained as slow-cycling and self-renewing 

cells. In virus-free epithelia, cells that leave the basal layer exit the cell cycle, cease to replicate 

their DNA and, as a result of the terminal differentiation program, they lose their nuclei in the 

upper layers of the epithelium. Therefore, HPV needs to reprogram this process and force the cell 

cycle entry of differentiating cells in order to replicate the viral DNA and establish the infection; 

this is accomplished mainly through the expression of E6 and E7, which are expressed from initial 

phases of infection onwards. As mentioned above, E7 oncoproteins play an active role in the 

induction of cell proliferation through the inactivation of members of the pRB family, whilst E6 

prevents the activation of apoptotic pathways induced by E7, through the inactivation of p53. The 

cell-cycle entry in the basal cell layer is mainly controlled by pRB and p i07, whereas the S-phase 

re-entry in differentiating cells is preferentially regulated by p i30, likely reflecting the availability 

of different E2F family members of transcription factors during different phases of epithelial 

differentiation (Paramio et al., 1998; Litovchick et al., 2004). Thus, E7 proteins derived from high- 

risk HPV types through the inactivation of all the members of the pRB protein family, drive the 

acquisition of a S-phase competent phenotype throughout the epithelium (Zhang et al., 2006; 

Zerfass et al., 1995a). This also highlights the molecular basis for the different pattern of cell-cycle 

activation seen in the pathology linked to low-risk HPV infection, where S-phase competent cells 

are present primarily in the suprabasal layers of the epithelium (Doorbar et ah, 2012). In addition, 

the CKII-mediated phosphorylation of E7 increases the ability of E7 to bind and inactivate p i30 

(Genovese et al., 2008), suggesting that changes in the levels of CKII phosphorylation of E7 might 

affect the ability of E7 to perturb pocket protein function. Furthermore, the ability of E7 to promote 

the activation of E2F responsive genes depends on its ability to impair the function of cellular
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Figure 7. Schematic representation of HPV-16 genome and the sequential 

expression of viral gene products during differentiation of the infected epithelium. 

A. The ORFs encoding the different viral genes are positioned along the genome. 

The position of the early and late promoters, as well as of the long control region 

(LCR) are also depicted. B. The figure shows the presumed route of HPV infection 

of the epithelial mucosa basal cell layer through microtraumas. There is coordinate 

expression of the different viral gene products in a differentiation-regulated manner, 

with E6/E7 causing an expansion of S-phase competent cells. This allows viral 

genome amplification and, ultimately, the synthesis and shedding of new viral 

particles within a period of 2-3 weeks (adapted from Middleton et al., 2003).



histone deacetylases (HDACs) (Brehm et al., 1999; Longworth et al., 2005), and the activation of 

E2F-responsive promoters by E7 is dependent upon the integrity of both its pRB and HD AC 

binding sites (Zhang et al., 2004; Zhang et al., 2006). The ability of E7 to promote S-phase entry, is 

also aided by its interaction with cyclin-dependent kinase (CDK) inhibitors p21cip and p27kipl, 

leading to their inactivation (Zerfass-Thome et al., 1996; Funk et al., 1997; Jones et al., 1997b) and 

upregulation of the S-phase cyclins A and E (Zerfass et al., 1995b). The inhibitory effect of p21cip 

and p27kipl are in part driven by E7, also through the up-regulation of Akt activity. Akt, or PKB, is 

a serine/threonine kinase activated upon the sequential phosphorylation by PDK1 and mammalian 

target of rapamycin complex 2 (mTORC2), which are downstream targets of the growth factor- 

responsive phosphoinositide 3-kinase (PI3K). Akt regulates several proto-oncogenic processes, 

including proliferation, cell survival and protein translation, the last of which is mediated through 

the regulation of the “nutrient sensor” mTORCl and its associated signaling (Ma and Blenis, 

2009). In the stratified epithelium the activity of proto-oncogenic pathways, such as Ras and PI3K, 

are restricted in the basal layer and are lost during differentiation (Dajee et al., 2002; Menges et al.,

2006). The disruption of pRB-E2F complexes by viral oncoproteins has been suggested to promote 

the stimulation of PI3K and Akt, through the activation of the E2F-responsive gene Gab2, a 

positive mediator of PI3K signaling (Chaussepied and Ginsberg, 2004). The HPV-16 E7-mediated 

activation of Akt has been shown to promote the cytoplasmic retention of the CDK inhibitors p21cip 

and p27kipl upon oncogenic insult (Westbrook et al., 2002; Charette and McCance, 2007). The E7- 

induced mislocalisation of p21 and p27 correlated respectively with loss of oncogene-induced cell 

cycle arrest and increased migration of human foreskin keratinocytes (HFKs), and both these 

effects could be reverted upon inhibition of Akt (Westbrook et al., 2002; Charette and McCance,

2007). Interestingly, low-risk E7 oncoproteins are also able to stimulate the activity of Akt, 

however this occurs through a pocket protein-independent mechanism (Pirn et al., 2005). Thus, E7 

induces a pseudo S-phase condition in parabasal layers of the epithelium, establishing an 

environment suitable for the viral genome amplification.

As mentioned above, in normal epithelia, the expression of pl4ARF and activation of p53 can

function as a molecular sensor of unscheduled DNA replication. However, the expression of E6
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prevents the activation of these pathways by promoting the proteasome-mediated degradation of 

both hAda3 and p53 itself, an activity dependent upon the host E3 ubiquitin-ligase E6AP 

(Scheffner et al., 1990; Scheffner et al., 1993; Shamanin et al., 2008; Hu et al., 2009). Conversely, 

low-risk E6 proteins are thought to perturb p53 function by relieving its repression on TATA- 

containing promoters (Lechner et al., 1992) and hindering the activation of p53-responsive genes 

(Mietz et al., 1992; Pirn et al., 1994). Moreover, it was shown that E6-interacting regions of p300 

are necessary for E6 to inhibit p53-dependent transcription and that E6 activity can inhibit the 

acetylation of both p53 and nucleosomal core histones, without altering p53 and p300 recruitment 

to chromatin. This process is E6AP-independent and shows a unique mechanism of E6 repression 

of p53 activity which does not involve proteasomal degradation (Thomas and Chiang, 2005). In 

line with a central role for p300/CBP in the life cycle of many different viruses, several other DNA 

tumor viruses have also been shown to interact with p300/CBP (Goodman and Smolik, 2000; 

reviewed in Moore and Chang, 2010), highlighting its central role in regulating cellular 

homeostasis. As for other E6 targets, high-risk HPV E6 oncoproteins were reported to bind 

strongly to p300/CBP whereas the association with low-risk HPV-derived E6 is weaker (Patel et 

al., 1999). It was also shown that HPV-16 E6 inhibits the intrinsic transcriptional activity of 

p300/CBP on both p53 and NFicB-responsive promoter elements. In the case of p53 this is partly 

due to an inhibition of p300-mediated acetylation (Thomas and Chiang, 2005).

High-risk, but not low-risk, E6 proteins are able to reactivate the telomerase complex, partly in

cooperation with E7, thereby contributing towards prolonging the lifespan of infected cells

(Klingelhutz et al., 1994; Klingelhutz 1996; DeFilippis et al., 2003; Xuefeng et al., 2009). An

interesting function of E6, shared with E7, is its ability to activate PI3K/Akt signaling. Expression

of HPV-16 E6 in primary keratinocytes, has been found to be sufficient to sustain the PI3K

signaling under conditions of nutrient deprivation, through the aberrant hyper-activation of growth

factor receptors (Spangle and Miinger., 2013). This activity of E6 correlated with the stimulation of

mTORCl and increased cap-dependent protein synthesis (Spangle and Monger, 2010).

Interestingly, the effect produced by high-risk E6 oncoproteins on protein translation was shown to

be dependent upon its interaction with the E6AP and, in part, on its PBM. Consistent with this,
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low-risk HPV E6 oncoproteins, which are able to interact with E6AP but lack the PBM, were able 

to activate protein translation, albeit to a lesser extent compared with HPV-16 and -18 E6 

oncoproteins (Spangle and Munger, 2012).

An important factor in the establishment of infection, is the modulation of the host immune system 

response. This evasion can lead to the establishment of persistent infections, the prime risk factor 

for malignant progression (Bodily and Laimins, 2011). HPV exerts a global effect on the innate 

immune response in infected keratinocytes; pro-inflammatory cytokines, including type-1 

interferon, are not released and signals required for the activation and migration of intraepithelial 

Langerhans cells (LCs) and macrophages are inadequate (Kanodia et al., 2007). High-risk HPV E6 

and E7 actively contribute to this through the deregulation of the innate immune response. They 

cooperate to down-regulate the expression of interferon (INF)-responsive genes, including INF-a 

and -p (Nees et al., 2001). The two oncoproteins also perturb the signaling pathways activated 

following INF stimulation; E6 interferes with the activation of Jak-STAT signaling upon INF-a 

treatment (Li et al., 1999), whereas E7 blocks the activity of interferon responsive element (IRF)-l 

and NFkappaB following exposure of cells to interferon stimulation (Perea et al., 2000; Um et al., 

2002). In addition, perturbation of cell polarity by E6 and E7 through the reduction of cell surface 

E-cadherin exposure contributes to impair the recruitment of LCs to infected epithelial cells, 

ultimately leading to the depletion of LCs from the infected epithelium and inadequate T-cell 

priming (Matthews et al., 2003). Recently, PDZ proteins have also been shown to contribute 

directly to the regulation of the interferon response (Werme et al., 2008; Kumar et al., 2012), 

suggesting that E6’s PDZ-binding activity could be relevant for the modulation of innate immunity, 

although the experimental evidence is still missing.

The viral El and E2 proteins are among the first viral proteins to be expressed in the infected 

epithelium (Longworth and Laimins, 2004b). E2 is a DNA-binding protein that recognizes multiple 

binding sites in the LCR (long control region) of the viral genome. The association of E2 with El 

recruits the latter to viral origins, where the recruitment of cellular polymerases begins the viral 

DNA replication (Sedman et ah, 1997; Dixon et al., 2000). El possesses a helicase activity but has
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a weak DNA binding activity, and it requires the interaction with E2 to mediate its association with 

viral origins (Sedman et al., 1997; Dixon et ah, 2000). In addition, studies with the bovine 

papillomavirus type 1 (BPV1), revealed that E2 plays an important function in tethering the viral 

episomal DNA to host chromosomes, thereby ensuring an equal partitioning of replicated viral 

DNA to daughter cells (Skiadopoulos and McBride, 1998; lives et al., 2006). In BPV1, the host 

bromodomain protein Brd4 mediates the association of E2 with chromatin (You et al., 2004; 

McPhillips et al., 2006) and stimulates the E2-dependent transcription activation (lives et al.,

2006). Conversely, HP Vs rely on different cellular factors in order to mediate the tethering of viral 

DNA to chromatin through E2 (Parish et al., 2006), although Brd4 is required for the E2-mediated 

viral DNA transcription (McPhillips et al., 2006). It is important to note that intact El and E2 

ORFs appear to be required for the stable maintenance of BPV1 viral episomes, (Sarver et al.,

1984), and that the DNA-binding activity of E2 prevents the integration of HPV-31 genome into 

the host (Stubenrauch et al., 1998a). Viral genome integration leads to unscheduled E6 and E7 

expression, and has been proposed as one of the events leading to malignant progression of HPV 

infections (Jeon et al., 1995b; Song et al., 2000). Moreover, binding of E2 to its DNA-binding sites 

in the LCR has been shown to repress the activity of the early promoter (p97) (Steger and Corbach, 

1997; Stubenrauch et al., 1998a). Thus, this ability allows E2 to have an indirect inhibitory effect 

on cell proliferation through the repression of E6 and E7 expression (Francis et al., 2000).

The E5 protein is highly hydrophobic and interacts with the 16-kD pore-forming protein 

component of the vacuolar H+-ATPase, responsible for acidifying cellular organelles such as the 

Golgi apparatus (Conrad et al., 1993). E5-mutant HPV-16 and -31 genomes exhibit reduced DNA 

synthesis in the suprabasal layers of infected epithelia (Genther et al., 2003; Fehrmann et al., 

2003a) and hence impaired expression of late viral proteins (Fehrmann et al., 2003), however E5’s 

role in HPV genome amplification is controversial. One of the most prominent functions of E5 is 

its ability to potentiate EGF signaling and drive the activation of MAP kinase pathways (Conrad et 

al., 1994; Crusius et al., 1998; Crusius et al., 2000). Importantly, ERK kinases 1 and 2 have been 

show to be critical modulators of the nuclear accumulation of the viral helicase El, where
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phosphorylation by cyclin A and B/Cdk2 complexes inhibit the shuttling of El to the cytoplasm 

(Deng et al., 2004; Yu et al., 2007). However, loss of E5 function in the context of HPV-16 and - 

31 infection only marginally affected the viral genome amplification (Genther et al., 2003; 

Fehrmann et al., 2003), suggesting that host and viral DNA synthesis are uncoupled. The 

modulation of host mitogenic pathways, along with the ability to inhibit apoptosis (Kabsch et al.,

2004), supported a possible role for E5 in cancer progression together with E6 and E7. The 

expression of E5 induces the potentiation of the epidermal growth factor (EGF)-mediated 

mitogenic signal in multiple cell lines (Pirn et al., 1992; Leechanachai et al., 1992) and cooperates 

with E7 to transform primary rodent epithelial cells (Bouvard et al., 1994; Valle and Banks, 1995). 

Nevertheless, during cancerous progression in most cases large parts of the viral genome, including 

the E5 ORF are deleted upon integration of the viral DNA into the host genome (Schwarz et al.,

1985), although the potentiation of EGFR signalling by E6 might compensate for loss of E5 

(Akerman et al., 2001).

The expression of E4 is under the control of the differentiation-dependent promoter, and it is the 

most highly expressed of the viral proteins. Its accumulation is dependent upon the formation of 

amyloid-like insoluble structures driven by the C-termini of E4 proteins (McIntosh et al., 2008). 

High level of E4 expression is a surrogate marker for efficient viral replication (Doorbar et al., 

1997), associated with productive viral life cycle and low grade lesions (Doorbar et al., 2012), 

whereas its expression is progressively lost during malignant progression. A role for E4 in mature 

virion release has been proposed, since E4 is able to interact with and reorganize cytokeratins 

(Doorbar et al., 1991; Wang et al., 2004). Loss of the integrity of the keratin network is thought to 

favor the viral egress (Doorbar et al., 1991). In addition, E4 promotes the G2 arrest of infected cells 

through the modulation of cyclin/Cdk complexes (Knight et al., 2004; Davy et al., 2005; Knight et 

al., 2006; Davy et al., 2006). This activity is thought to be important for uncoupling viral genome 

replication from mitosis, thus supporting HPV genome amplification while blocking progression 

through the cell cycle. Evidence for the relevance of E4 functions in context of the viral life cycle 

come from studies where loss of E4 reduced vegetative replication and expression of late
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transcripts, ultimately leading to reduced virion formation (Peh et al., 2004; Nakahara et al., 2005; 

Wilson et al., 2005).

The viral capsid proteins LI and L2 are expressed in the late stages of infection, after viral genome 

amplification. While both capsid proteins are essential for the assembly of infectious viral capsids 

(Zhou et al., 1993; Holmgren et al., 2005; Kamper et ah, 2005), LI, the major viral capsid protein, 

can spontaneously assemble into VLPs (Kimbauer et al., 1992), and this ability of LI provides the 

basis for the HPV vaccine (Kimbauer et al., 1992). Conversely, L2, the minor capsid protein, 

regulates the early stages of infection, promoting the shuttling of viral DNA from late 

endosome/lysosome compartments to the host cell nucleus. In the later stages of infection, it 

enhances the viral genome encapsidation, ensuring the successful completion of the productive 

stage of the life cycle (Holmgren et al., 2005).

From productive viral life cycle to cancer and the significance ofPDZ-protein targeting

An important feature of HPV and other tumor vims life cycles, is their ability to establish long

term persistent infection in their hosts (Banks et al., 2012). In order to persist, HPV needs to evade 

the host immune response. This is achieved in part by the E6 and E7 through the modulation of the 

innate immune response, but is also aided by the peculiarities of the HPV life cycle; it is 

exclusively intraepithelial, there is no viraemia and it is not associated with cytolysis or 

inflammation (Stanley, 2012b). The steps believed to be involved in the progression from 

productive viral life cycle to cervical cancer are depicted in Figure 8. Nevertheless, the vast 

majority of HPV infections (80-90%) result in low-grade lesions, and, as suggested by animal 

models of HPV infection, are cleared as a result of the generation of a CD4 and CD8+ T cell- 

mediated immunity which leads to the regression of the lesion (Nicholls et al., 2001; Monnier- 

Benoit et al., 2006). However, the lack of an effective cell-mediated immune response able to 

control the infection can lead to persistent infection and, in the case of cancer-causing HPV types, 

to an increased risk of developing high-grade lesions and invasive carcinoma. Long term infections 

imply that the cells have to support the expression of viral oncoproteins for long periods of time, 

thus increasing the risk of accumulating proto-oncogenic mutations and the likelihood of
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Figure 8. Schematic representation of the events believed to be involved in the 

progression from productive HPV infection (left-hand panel) to malignancy (right- 

hand panel). Upon HPV infection, the lack o f immune clearance might lead to a 

persistent infection in which lesions are not resolved and viral DNA can be detected 

over extended periods of time. This ultimately predisposes the host to the 

development of a malignancy. This is characterized by a loss of differentiation, no 

viral replication and high levels o f E6 and E7 oncoprotein expression (adapted from 

Middleton et al., 2003).



“mistakes” that eventually might lead to deregulation of the viral life cycle and/or viral DNA 

integration into the host genome. In HPV-infected epithelia, the viral life cycle can become 

deregulated as the result of the perturbation of viral gene expression, frequently leading to viral 

genome integration and progression to malignancy (Doorbar et al., 2012). This model appears to be 

confirmed by the observation that epithelia that are not permissive for the viral life cycle are sites 

where infection by high-risk HPV types can progress very rapidly to cancer, with high rates of viral 

genome integration (Herfs et al., 2012). In epithelia permissive for the viral life cycle, such as 

columnar and squamous cervical epithelia, where most of the research has been carried out, 

productive infection is primarily associated with low grade lesions, or cervical intraepithelial 

neoplasia grade 1 (CIN1), where tightly controlled expression of E6 and E7 sustains all the phases 

of productive viral life cycle. In this context, the consequences of deregulation of PDZ-containing 

proteins by high-risk E6 oncoproteins is still poorly understood. In stratified epithelia, symmetric 

divisions of basal cells occur parallel to the basal membrane axis, producing two daughter cells 

phenotypically identical that preserve the ability to proliferate and self-renew. Conversely, 

asymmetric divisions, perpendicular to the basal membrane produce a basal stem cell and an apical 

cell that is committed to differentiate (Muroyama and Lechler, 2012), involving the reorientation of 

the mitotic spindle and unequal distribution of cell fate determinants between daughter cells 

(Lechler and Fuchs, 2005). Although the mechanism that controls the switch from symmetric to 

asymmetric division in basal cells is poorly understood, compelling evidence suggests that 

reorientation of mitotic spindles requires components of the apico-basal polarity control (Roegiers 

and Jan, 2004). Therefore, HPV is potentially able to subvert the control of spindle orientation 

through E7’s stimulation of the cell cycle combined with the E6 perturbation of hScrib, hDlg and 

components of apical polarity complexes, all of which have been shown to direct the spindle 

orientation in epithelial cells (Knoblich, 2008; Johnson et al., 2009; Hao, 2010). This could 

contribute towards increasing the population of infected basal cells able to sustain viral replication 

and expand the area of the lesion by lateral spreading of infected cells. Although the status of most 

of the HPV PDZ-containing targets is still obscure in context of the viral life cycle, hDlg 

localization was found to be aberrantly cytoplasmic in the suprabasal layers of CIN1 lesions



(Cavatorta et al., 2004). This was similar to the pattern of hDlg distribution in the basal epithelial 

layers of the cervix, suggesting that HPV infection delays differentiation of epithelial tissues. 

Perturbation of PDZ polarity proteins by E6 in the suprabasal layers is likely to perturb the 

assembly of TJs, which normally takes place in the differentiated granular layer (Brandner et al., 

2002; Kirschner and Brandner, 2012). As discussed previously, assembly of TJs promotes the 

formation of segregated microenvironments in the cell that prevents the generation of proliferative 

cues. Thus, after establishment of HPV infection in wounded epithelia, the targeting of PDZ 

proteins and other components of the epithelial polarity machinery by HPV oncoproteins might 

delay the restoration of intact junctional complexes and of the epithelial barrier function. 

Ultimately, this would prolong the exposure of infected cells to proliferative cues, favoring the 

expansion of the HPV-positive cell population. A summary of the processes potentially targeted by 

HPV through the inactivation of PDZ domain-containing proteins is depicted in Figure 9. High-risk 

HPV genomes can be efficiently maintained as episomes in human keratinocytes, and episomal 

maintenance is dependent upon the functions of E6 and E7 and also of the viral replicative proteins 

El and E2 (reviewed in Doorbar et al., 2012). Human foreskin keratinocytes (HFKs) expressing 

wild type HPV-31 genomes display marked hyperplasia in suprabasal layers when cultured in 

organotypic raft cultures (Lee and Laimins, 2004). This effect was associated with the ability of 

HPV-31 E6 to interact with PDZ-containing proteins since, mutant genomes expressing a PDZ- 

defective E6 failed to promote the hyperplastic phenotype. HPV-31 genomes, where the E6 PBM 

has been mutated, provide evidence that loss of PDZ-binding activity results in the abolition of the 

replicative viral life cycle by the increased tendency of viral DNA to integrate into the host genome 

(Lee and Laimins, 2004). Recently, similar results have been obtained also with HPV-16 genomes 

stably expressed in immortal human keraticocytes (NIKS) (Nicolaides et al., 2011). In this study, 

genomes expressing a truncated form of E6, lacking its PBM, had an increased propensity to 

integrate in the host genome. However, this correlated with a reduced stability of PBM-defective 

E6 oncoproteins (Nicolaides et al., 2011).

Although the mechanism is still unknown, these studies suggest that the ability of E6 to interact

with PDZ domain-containing proteins is important for the establishment of viral copy numbers in
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Figure 9. Possible roles for the targeting of PDZ domain-containing proteins in the 

HPV pathology. Following infection of basal cells, HPV genomes are maintained as 

episomes (green circles in dividing cells). The expression o f HPV oncoproteins in 

these cells might lead to the expansion of the basal cell population harboring HPV 

genomes. In this scenario, the targeting o f PDZ domain-containing proteins by E6 
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suprabasal layers, targeting o f PDZ proteins might interfere with the normal 

differentiation process by preventing the formation of junctional complexes. 

Furthermore, this could also increase the exposure of infected cells to mitogenic 

stimuli, further supporting viral genome amplification and the vegetative life cycle.



basal layers of infected epithelia, and is essential for the correct progression of productive life 

cycle. Although a subset of HPV-16-positive cervical cancers can arise from cells containing 

exclusively episomes (Matsukura et al., 1989; Pett and Coleman, 2007; Vinokurova et al., 2008), 

deregulation of the viral life cycle due to viral DNA integration, has been proposed to be a 

hallmark of malignant progression of HPV infection (Cullen et al., 1991; Pirami et al., 1997; 

Badaracco et al., 2002; Woodman et al., 2003), and is associated with transition from low grade 

productive lesions to higher grade lesions (CIN3), where the ability of the virus to replicate is 

progressively lost. This condition is believed to be associated with the elevation of E6/E7 

expression, predisposing infected cells to accumulate mutations and leading to the development of 

overt cancer.

HPV and cancer

It is currently estimated that about 20% of cancer cases worldwide are caused by an infectious 

agent. It is important to note that infections leading to cancer in humans can have both viral and 

non-viral origins, and that 70% of these (about 15% of total cancer cases) are nonetheless linked to 

viruses. In terms of prevalence in human cancers, however, HPV-associated cancers are the most 

abundant, with HPV infection being responsible for approximately 5% of the cancer burden 

worldwide (Parkin and Bray, 2006).

Experiments in tissue culture systems and animal models showed the importance of the combined 

E6 and E7 activities for cellular immortalization and transformation (Hawley-Nelson et al., 1989; 

Matlashewski et al., 1987; Riley et al., 2003). Furthermore, in HPV-positive cells the inhibition of 

E6 and E7 expression, by re-expression of the HPV transcriptional repressor E2, or by siRNA 

ablation, results in the inhibition of cell growth and induction of cell death by apoptosis, thus 

highlighting the strict requirement of HPV-transformed cells for the continuous expression of E6 

and E7 (Alvarez-Salas et al., 1998; Yoshinouchi et al., 2003). It is important to point out, however, 

that in primary keratinocytes, the natural target of HPV infection, E6 displays only weak 

transforming capacity in absence of E7, and that both oncoproteins are required to promote cell 

immortalization (Barbosa and Schlegel, 1989; Hawley-Nelson et al., 1989; Miinger et al., 1989;
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Watanabe et al., 1989). An interesting feature of HPV oncoproteins deriving from these assays is 

that only E6 and E7 oncoproteins deriving from high-risk HPV types drive immortalization, 

whereas those expressed by low-risk types have weak or no immortalizing capacity (Schlegel et al., 

1988b; Hawley-Nelson et al., 1989). As mentioned before, p53 and pRB are major substrates for 

E6 and E7 in context of their immortalizing activity, however the interaction and perturbation of 

additional cellular factors are required for the full transforming capacity of HPV oncoproteins. For 

example, in tissue culture experiments E6 with mutated PBM was less efficient in conferring EMT- 

like characteristics and, moreover, was defective in cellular transformation and tumorigenicity 

(Kiyono et al., 1997; Watson et al., 2003). Furthermore, the HPV 16 E6 PBM was also shown to be 

required for induction of anchorage-independent growth of human tonsillar keratinocytes in 

cooperation with an activated Ras oncoprotein (Spanos et al., 2008a; Spanos et al., 2008b).

An important contribution towards the understanding of the relative contribution of E6 and E7 in 

malignant transformation has been provided by transgenic animal models mimicking the natural 

progression of HPV-induced tumorigenesis. In this model, transgenic mice express the K14HPV16 

E6/E7 transgene, in which E6 and E7 are placed under the control of the human keratin 14 (K14) 

promoter, whose activity is restricted to cells occupying the basal layer of the stratified epithelium. 

This restricts the expression of E6 and E7 to the cell type in which the natural infection takes place. 

Mice expressing the entire HPV early region under the control of the K14 promoter displayed 

hyperplasia, dysplasia and papillomatosis in different epidermal and mucosal sites (Arbeit et al., 

1994). In addition, the individual expression of E6 or E7 promoted epithelial dysplasia and skin 

tumors. It is interesting to note that tumors developing from E7-expressing mice were significantly 

different from those induced by E6 expression. The expression of E7 induced benign and well 

differentiated tumors, conversely those expressing E6 had a more malignant phenotype (Simonson 

et al., 2005; Song et al., 2000).

In contrast with animal models for skin carcinogenesis, transgenic mouse models for cervical 

cancer suggested that E7 can drive initial proliferation and induction of primary cervical tumors 

with weak invasive capacity, whilst E6, although it fails to drive the initial steps of tumorigenesis,
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significantly increases the dimension as well as the invasiveness of primary tumors induced by E7 

(Riley et al., 2003). These results were also supported by studies in models for head and neck 

squamous cell carcinoma (HNSCC) and in co-carcinogen assays, in which transgenic mice were 

treated with chemical carcinogens known to drive different stages of carcinogenesis. In these 

studies E7 was found to retain the strongest transforming potential and to drive tumorigenesis, 

whereas E6 had weak transforming capacity and was dispensable for initial tumor formation, 

although E6 contributed significantly in the later stages of tumor progression, enhancing the 

malignant conversion of the primary tumor (Strati and Lambert, 2007; Song et al., 2000).

Mutational analysis of E6 in the transgenic mouse models has shown that lack of p53 failed to 

cooperate with carcinogens to produce epidermal hyperproliferation, suggesting the existence of 

p53-independent tumorigenic pathways used by E6 (Song et al., 1999). In addition, mice 

expressing a mutant form of E6, E6I128T, unable to interact with E6AP, showed a reduced ability 

to overcome DNA synthesis block upon exposure to ionizing radiation, and to have a decreased 

propensity to develop spontaneous skin tumors compared with wild-type K14 E6 mice (Nguyen et 

al., 2002b). This also supports the notion that the association of E6 with E6AP is not exclusively 

required for the degradation of p53, but is involved in the inactivation of additional targets. Good 

candidates for p53-independent substrates important for E6 tumorigenic activity are the PDZ 

domain-containing proteins. Consistent with this, in mice expressing a PBM-defective mutant of 

E6 (E6A146-151), which retains the ability to interact with p53, but displays a reduced ability to 

promote hyperplasia in squamous epithelia, E6A146-151 still retained the capacity to promote 

malignant progression (Nguyen et al., 2003a; Simonson et al., 2005). This observation was also 

consistent with similar experiments in mouse lens epithelia, where the PBM of E6 was required to 

induce epithelial hyperplasia and defects in cell adhesion and differentiation (Nguyen et al., 

2003a). In HPV-16 cervical cancer transgenic mouse models, expression of a PBM mutant of E6 in 

combination with wild type E7 led to the formation of smaller tumors characterised by a reduced 

invasive potential (Shai et al., 2007). Thus the interaction of E6 with PDZ-containing substrates 

has marked effects on the metastatic progression of HPV-related cancers in mice.
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Results

Part I: 

Analysis of PDZ-containing proteolytic substrates of E6 in HPV-positive cells

MAGI-1. hDls and hScrib are degraded bv E6 in HeLa and CaSKi Cells

As mentioned before, several studies have identified a number of PDZ domain-containing proteins 

as potential targets of the high-risk HPV E6 proteins. Many of them were analysed in ectopic 

overexpression systems and each study made use of different cell types, thus making it difficult to 

directly compare the susceptibility of these targets to E6-induced degradation in cells. In an attempt 

to compare directly the degree to which the various PDZ domain targets of E6 are susceptible to 

increased rates of degradation, we used siRNA to block E6/E7 expression in CaSKi (HPV-16 

positive) and HeLa (HPV-18 positive) cells. HeLa and CaSKi are two cervical cancer-derived cell 

lines, hence they can reflect more closely the molecular events brought about by the expression of 

E6 and E7 in the context of cervical carcinogenesis. Extracts from E6/E7-silenced cells were 

analysed by western blot and compared with those from control cells transfected with siRNA to 

Luciferase, or from cells transfected with siRNA to E6AP. In the first set of assays we analysed 

changes in the levels of expression of hScrib and hDlg at 48h and 72h post-transfection. The results 

in Figure 10 show that there is a strong increase in the levels of p53 at both time points following 

siRNA transfection against E6/E7 and E6AP in both CaSKi and HeLa cells. This is in agreement 

with previous studies (Scheffner et al., 1993; Huibregtse et al., 1993) and confirms efficient 

ablation of E6 expression. In the case of hDlg, there is a modest increase in expression at the 48h 

time point in HeLa cells, and this is even more apparent at the 72h time point, thus confirming 

hDlg as a substrate for HPV-18 E6-induced degradation in HeLa cells (Mantovani et al., 2001a; 

Massimi et al., 2004; Handa et al., 2007). Interestingly there is also a slight increase in the overall 

level of hDlg expression in CaSKi cells. It is also noteworthy that hDlg migrates somewhat 

differently in the two cell lines, most likely reflecting differences in the degree of phosphorylation. 

This is particularly relevant, since phosphorylation events can influence the pattern of hDlg
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Figure 10. hDlg and hScribble are degraded in HeLa and CaSKi cells. A. HPV- 

positive HeLa and CaSKi cells were transfected with siRNA Luciferase, siRNA 

E6/E7 or siRNA E6AP and grown for 48h prior to harvesting. The expression 

patterns of hDlg, hScribble, p53 and also a-actinin to monitor the protein loading, 

were assessed by western blot analysis. B and C. The assay was repeated as in A, 

but HeLa and CaSKi cells were harvested at 72h post- transfection before western 

blot analysis. Numbers represent the percentage of band intensity for hScribble and 

hDlg in comparison with the siRNA Luciferase control (100%).



localization and its susceptibility to E6-mediated degradation (Massimi et al., 2006; Narayan et al., 

2009b). In the case of hScrib, there is a significant increase in its levels of expression in the E6/E7 

siRNA treated CaSKi cells at both the 48h and 72h time points, whereas changes in hScrib levels in 

HeLa cells are minimal at both time points. E6AP ablation has only modest effects on both hDlg 

and hScrib, which are somewhat dependent upon the time at which the assays were performed, 

however there are slight increases in hDlg expression in HeLa cells (Figure 10a) and in hScrib 

expression in CaSKi cells (Figure 10c). Taken together, these results confirm previous studies 

suggesting that hDlg and hScrib are preferential proteolytic substrates of HPV-18 and HPV-16 E6 

respectively (Thomas et al., 2005b).

Previous studies showed that the Dlg-related protein MAGI-1 is strongly bound by high-risk E6 

oncoproteins, and is also susceptible to E6-induced degradation (Glaunsinger et al., 2000; Thomas 

et al., 2001). However these studies were also performed in an in vitro setting or under conditions 

of ectopic expression, and the effects of E6 ablation on MAGI-1 expression in HPV-positive cells 

were not determined. Therefore, we analysed the MAGI-1 pattern of expression in a similar series 

of E6/E7 and E6AP ablation experiments in HeLa and CaSKi cells. The results in Figure 11 

demonstrate a strong increase in the levels of MAGI-1 expression in E6/E7-silenced HeLa cells at 

24 and 48h post-transfection, and this is also observed equally well following ablation of E6AP 

expression. In the case of CaSKi cells, there is a modest increase in MAGI-1 levels, although not as 

strong as that observed in HeLa cells. Since the rescue of MAGI-1 in CaSKi was weak, we wanted 

to confirm that the band detected did correspond to the MAGI-1 protein. To do this, we repeated 

the analysis including an siRNA against MAGI-1. The results obtained are shown in Figure 11c 

and, as can be seen, the protein that is rescued following siRNA against E6/E7 disappears when the 

MAGI-1 siRNA is also included. We then extended the analysis to another HPV-16 positive cell 

line, SiHa, and obtained similar results (Figure lid). Taken together, these results would suggest 

that whilst MAGI-1 is a good substrate of HPV-18 E6 it is also subject to HPV-16 E6-induced 

degradation.
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Analysis ofFAP1. TIP2, PTPN3 and PSD95 expression levels following E6/E7 knockdown

We next wanted to determine whether other reported PDZ substrates of E6, such as FAP-1, TIP-2, 

PTPN-3 and PSD95, were also similarly targeted by E6 in cervical tumour-derived cell lines. The 

HeLa and CaSKi cells were transfected with siRNA against E6/E7 and changes in the PDZ protein 

levels ascertained by western blot analysis. The results in Figure 12 show no significant changes in 

the levels of expression of either PTPN3 (Figure 12a) or TIP2 (Figure 12c), following siRNA 

ablation of either E6/E7 or E6AP. In contrast there was a significant increase in the levels of 

expression of PSD95 in HeLa cells and a slight increase in CaSKi cells (Figure 12b) following 

E6/E7 knockdown. Removal of E6AP had no effect on PSD95 levels of expression in HeLa cells, 

whilst in CaSKi cells, a greater increase was obtained. These results confirm that PSD95 is a 

potential target for HPV-18 and HPV-16 E6-induced degradation (Handa et al., 2007). In the case 

of FAP1, an apparently contradictory result was obtained. Although its levels of expression in 

HeLa cells are very low, siRNA to E6/E7 apparently reduces FAP1 levels still further (Figure 12d). 

This effect is more marked in CaSKi cells, where loss of E6/E7 expression results in a dramatic 

decrease in the levels of FAP1 expression. In addition, removal of E6AP also results in lower levels 

of FAP1 expression in HeLa, with a slight decrease also evident in CaSKi cells.

Since a number of these proteins were present at quite low levels, we also verified that the correct 

proteins were detected by the antibodies. To do this we performed a series of western blot analyses 

on cell extracts following transfection with siRNAs to each of the PDZ-domain containing proteins. 

The results in Figure 12e (PTPN3, TIP2 and FAP1) and Figure 12b (PSD 95) show that the protein 

recognized by the relevant antibody also disappears following transfection with the relevant 

siRNA.

Taken together, these results demonstrate that PTPN3 and TIP2 are not major targets of E6-induced 

degradation in monolayer cultures of cells derived from cervical tumours. In contrast, PSD95 

appears to be a good substrate for HPV-18 E6, in agreement with previous studies (Handa et al., 

2007). Finally, it would appear that, at least in cervical tumour-derived cells in monolayer culture,
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Figure 11. MAGI-1 is efficiently rescued in HPV-16- and HPV-18-positive cells 

upon E6/E7 ablation. A. HeLa and CaSKi cells were transfected with siRNA 

Luciferase, siRNA E6/E7 or siRNA E6AP and grown for 48h before harvesting. 

The expression patterns of MAGI-1, p53 and also a-actinin to monitor the protein 

loading, were assessed by western blot analysis. B. The assay was repeated as in A, 

but cells were grown for 72h before harvesting and western blot analysis. C. To 

confirm the identity of the band corresponding to MAGI-1, CaSKi cells were 

transfected with siRNA Luciferase, siRNA E6/E7, siRNA MAGI-1 (M-l) or a 

combination of siRNA E6/E7 and siRNA MAGI-1. 72h after transfection cells were 

harvested and western blot analysis was performed as in A and B. D. The assay was 

repeated in SiHa cells and processed as in panel B.
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Figure 12. Analysis of PTPN3, PSD95, TIP2/GIPC and PTPN13/FAP1 

susceptibility to E6 degradation in vivo. See the next page for the full legend.



Figure 12 (Cont.). HeLa and CaSKi cells were transfected with siRNA Luciferase, 

siRNA E6/E7 or siRNA E6AP and grown for 72h before harvesting. The 

expression levels of PTPN3 (A), PSD95 (B), TIP2/GIPC (C), PTPN13/FAP1 (D), 

p53 and a-actinin, were assessed by western blot. E. To confirm the correct identity 

of PTPN3, TIP2 and PTPN13, cells were transfected with siRNA Luciferase, 

siRNA PTPN3, siRNA TIP2/GIPC, or siRNA PTPN13/FAP1 and their expression 

patterns were assessed by western blot analysis. In panels A-D, numbers represent 

the percentage of band intensity for PTPN3, PSD95, TIP2 and FAPl in comparison 

with the siRNA Luciferase control (100%).



E6/E7 might actually increase the levels of FAPl expression. Whether this is through E6’s PDZ 

interactions with FAPl, or through an, as yet, unknown function of E7 remains to be determined.

HPV E6 preferentially degrades nuclear and membrane bound pools o f MAGI-1

Previous studies have shown that certain cellular pools of hDlg are more susceptible than others to 

E6-induced degradation (Massimi et al., 2004; Massimi et al., 2006; Narayan et al., 2009). Since 

MAGI-1 is a major common target for both HPV-16 and HPV-18 E6, we were interested in 

determining whether there are also similar cellular pools of MAGI-1 that are preferentially targeted 

by E6. To investigate this HeLa cells were transfected with siRNA against E6 and E7, and after 72 

hours cells were harvested and subjected to differential sub-cellular fractionation. For comparison 

we also included HI299 cells in the analysis to determine where MAGI-1 would normally be 

expressed in epithelial cells in the absence of HPV sequences. The cells were fractionated into 

cytosolic, membrane, nuclear and cytoskeletal components, and the levels of MAGI-1 expression 

in each fraction were ascertained by western blot analysis. The results obtained again demonstrate 

that MAGI-1 is a strong substrate for HPV-18 E6 induced degradation in HeLa cells (Figure 13a). 

Interestingly, the bulk of MAGI-1 protein that is rescued upon ablation of E6/E7 expression resides 

mainly in the membrane and nuclear fractions of the cell, with the largest recovered pool actually 

being present within the nucleus. In contrast, a similar fractionation of H1299 cells (Figure 13b) 

shows that the main concentration of MAGI-1 is found at membrane sites, with slightly smaller 

pools in the nuclear and cytosolic fractions. These studies demonstrate that the rescue of MAGI-1 

from E6-induced degradation results in a preferential restoration of MAGI-1 expression at 

membrane sites and also within the nucleus, suggesting that E6 targets MAGI-1 for degradation at 

membrane and nuclear sites.

HPV E6-induced degradation o f MAGI-1 disrupts cellular TJs

Although there is no information on the potential function of MAGI-1 in the nucleus, previous 

studies have implicated the membrane-bound form of MAGI-1 in the establishment of cellular TJs 

(Murata et al., 2005). It has also been shown that TJs are disrupted in HPV-positive cells, and a



possible role for hScrib was suggested in this phenotype (Nakagawa and Huibregtse, 2000). 

However, we reasoned that MAGI-1 was also a likely candidate to explain the disruption of TJs by 

HPV E6, since its expression is required to promote the junctional targeting of TJ-associated 

proteins, including ZO-1 and occludin (Hirabayashi et al., 2003). Therefore we proceeded to 

investigate the TJ status in cells that had been ablated for E6/E7 expression. At the same time we 

performed siRNA ablation of MAGI-1 and of hScrib on a subset of cells treated with siRNA to 

E6/E7, to determine whether any changes in TJs were MAGI-1 or hScrib dependent. 72h and 96h 

post-transfection of the siRNAs, HeLa cells were fixed and analysed by immunofluorescence for 

MAGI-1 and a TJ marker, ZO-1 (Stevenson et al., 1986, Denker and Nigam, 1998). We focused 

primarily on cells that were in contact so that junctions would have the opportunity to become 

established, and the results for MAGI-1 are shown in Figure 14. As can be seen, there is no MAGI- 

1 protein detectable at sites of cell-cell contact in the siRNA Luciferase control cells and ZO-1 

displays a diffused pattern of expression and is also absent at these sites. In contrast, siRNA to 

E6/E7 results in a very marked accumulation of MAGI-1 expression at cell-cell junctions. 

Interestingly, this occurs in a beaded structure at the 72h time point and there is also a perfect co

localisation with ZO-1 in these structures, suggesting the re-initiation of correct TJ formation. By 

the 96h time point this is even more marked and a broader junctional staining could be observed 

between adjacent cells. These results demonstrate that TJs can be re-established in HeLa cells when 

E6/E7 expression is ablated. Interestingly, a similar pattern of staining is also obtained upon 

ablation of E6AP expression, consistent with the results from the western blot analyses. We also 

analysed cells that had been co-transfected with a MAGI-1 siRNA, and, as can be seen in Figure 

14, there is a failure to restore TJs in cells treated with the MAGI-1 siRNA, as determined by the 

pattern of ZO-1 expression, even by the 96hr time point. In contrast, ablation of hScrib (Figure 

15a) has no effect upon the re-establishment of TJs upon ablation of E6/E7 expression. In addition, 

removal of E6/E7 expression in HeLa cells results in a marked increase in hScrib expression at the 

cell membrane, despite the apparent lack of significant levels of degradation seen in Figure 10. 

Furthermore, in control siLuciferase CaSKi cells residual hScrib is localized predominantly at cell 

contact sites, and a potent rescue of the cytoplasmic pool of the protein can be observed upon
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Figure 13. MAGI-1 is rescued at membrane and nuclear sites upon silencing of E6 

in HPV-positive cells. A. HeLa cells were transfected with siRNA Luciferase or 
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Figure 14. Rescue of MAGI-1 from E6-induced degradation restores TJs. HeLa 

cells were seeded on glass coverslips and transfected either with siRNA Luciferase, 

siRNA 18E6/E7, a combination of siRNA 18E6/E7 plus siRNA MAGI-1, or with 

siRNA E6AP. Cells were grown for 72h or 96h before fixing and incubated with 

anti-MAGI-1 and anti-ZO-1 antibodies and counterstained with rhodamine- 

conjugated (MAGI-1) and fluorescein-conjugated (ZO-1) secondary antibodies. 

Confocal images were taken at 480 and 510 nm wavelengths.
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Figure 15. Loss of hScrib does not affect TJ formation. See the next page for the 

full legend.



B siLuc siE6/E7

Figure 15 (Cont.). Loss o f hScrib does not affect TJ formation. HeLa cells (panel A) 

and CaSKi cells (panel B) were seeded on glass coverslips and transfected with 

siRNA Luciferase, siRNA 18E6/E7, siRNA 18E6/E7 in combination with siRNA 

hScrib or siRNA 16E6/E7 as indicated. Cells were grown for 96h before fixing and 

staining for hScrib (red) and ZO-1 (green) in HeLa cells or for hScribble (red) and 

p53 (green) in CaSKi cells. White arrows indicate sites of hScrib and ZO-1 

junctional accumulation.



silencing of E6 and E7 (Figure 15b), suggesting that hScrib can be differentially regulated by HPV- 

16 or -18 E6 oncoproteins. However, taken together, these results suggest that loss of TJs in a 

HPV-positive, tumour-derived cell line is, at least in part, due to the ability of E6 to induce the 

degradation of MAGI-1.

Generation of an E6-resistant MAGI-1 mutant

The K499E mutation reduces MAGI-1 affinity for E6

The fact that MAGI-1 is a sensitive proteolytic substrate of E6 prompted us to perform a more

detailed analysis of its possible function in the context of HPV pathology. To do this, we reasoned

that using a MAGI-1 mutant that was resistant to E6 targeting might by one way to address this.

We made use of previous studies suggesting that E6 interacts with MAGI-1 specifically through its

PDZ domain 1 (Thomas et ah, 2001), and more recent structural data that identified the lysine 499

(K499) as one of the most critical residues within the PDZ1 domain mediating its interaction with

E6 (Foumane et al., 2011). Using surface plasmon resonance to measure the binding affinity

between peptides encompassing the HPV-16 and -18 E6 PBMs and a purified form of MAGI-1

PDZ1, these studies suggested that the K499E mutation was indeed able to produce a dramatic

decrease in the interaction between E6 and MAGI-1 (Foumane et al., 2011). However, these results

were not verified in the context of full-length E6 and MAGI-1 proteins and, importantly, the impact

of the K499E mutation on the ability of E6 to degrade MAGI-1 was not assessed. In an attempt to

address these points, we decided to introduce the K499E mutation into the full-length MAGI-1

cDNA. For this purpose, a FLAG-tagged wild-type MAGI-1 (Mlwt) expression construct was used

as a template to generate the K499E MAGI-1 mutant (M1K499E) by site-directed mutagenesis.

Figure 16a shows a comparison between the protein sequence of wild-type and K499E MAGI-1

PDZ1 domain, and the structural elements of the PDZ domain that mediate the interaction of

MAGI-1 to its PBM-containing partners are highlighted. Once the FLAG-tagged M1K499E was

generated, we first wanted to verify that the wild-type and mutant MAGI-1 proteins were expressed

at comparable levels. To assess this, 293 cells were transiently transfected with the two constmcts.

24h after transfection cells were harvested and MAGI-1 expression levels were analysed by SDS-
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PAGE and western blot using anti-FLAG antibody. As can be seen in Figure 16b, wt and mutant 

MAGI-1 proteins are expressed at comparable levels in 293 cells, suggesting that the K499E 

mutation does not alter the steady state levels of MAGI-1. In order to test whether the K499E 

mutation could indeed reduce the affinity of MAGI-1 for HPV-16 and -18E6 oncoproteins, we first 

performed GST pull-down assays. To do this, HPV-16 and 18 E6 were expressed as GST-fusion 

proteins and purified using glutathione-coated agarose beads. The beads were incubated for 1 hour 

at 4°C with cell extracts from 293 cells that had been transiently transfected with either the Mlwt 

or M1K499E expression plasmids. After extensive washing, the amount of MAGI-1 bound to GST- 

E6 was assessed by SDS-PAGE and western blotting using anti-FLAG antibody. As can be seen in 

Figure 16c, GST-18 E6 bound strongly to Mlwt and bound about 70% of the protein compared to 

the input, whereas the K499E mutation exhibited a dramatically reduced ability to interact with E6. 

Similar results were also obtained with GST-16 E6 (Figure 16d), although wild-type MAGI-1 was 

bound less efficiently compared with 18 E6, which is in agreement with previous studies (Thomas 

et al., 2001). Thus these results confirm that the residue K499 within the MAGI-1 PDZ1 domain is 

important for the recognition of MAGI-1 by both the HPV-16 and -18 E6 oncoproteins.

MAGI-1 K499E mutant is resistant to E6-mediated degradation

To determine whether the reduced ability of E6 to interact with the MAGI-1 K499E mutant also 

resulted in decreased rates of degradation, we compared the relative susceptibilities of wild-type 

and mutant MAGI-1 to E6-mediated degradation in vitro. The two MAGI-1 proteins were in vitro 

translated in the presence of 35S-labelled methionine, and then incubated at 30°C for different 

periods of time with in vitro translated and radiolabelled HPV-16 and -18 E6, and the pattern of 

MAGI-1 expression was assessed by SDS-PAGE and autoradiography. The results in Figure 17a 

show that the levels of wild-type and mutant MAGI-1 are stable over a period of 120 minutes when 

incubated in absence of E6. In contrast, wild-type MAGI-1 was degraded upon addition of HPV-16 

or -18 E6, with HPV-18 E6 being the most efficient (Thomas et al., 2001). Consistent with the 

reduced level of interaction, M1K499E was also significantly more resistant to E6-mediated
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Figure 16 (Cont.). The K499E mutation affects the E6-binding capacity of MAGI-1. 

A. diagram showing the domain composition of MAGI-1 and the location of the 

K499E mutation. Elements of secondary structure that compose the PDZ1 are also 

shown (PA-E (p-strands A to E); aA-B (a-helix A to B)), and those involved in the 

interaction with E6 and other target proteins are highlighted in red (adapted from 

Foumane et al., 2011). B. HEK 293 cells were transfected with lpg of FLAG- 

tagged wild-type or mutant MAGI-1 and grown for 24h hours prior to harvesting. 

The levels of MAGI-1 expression were assessed by western blot, p-galactosidase 

was included to monitor the transfection efficiency. C and D. Extracts from 

HEK293 cells transfected with 3 pg of wild-type or mutant MAGI-1, were 

subjected to GST-pulldown reactions with the indicated GST fusion proteins, and 

bound MAGI-1 was detected by western blot using anti-FLAG antibody. Numbers 

represent the percentage of wild type and mutant MAGI-1 proteins bound to the 

indicated GST-fusion protein relative to the input control. The lower panel shows 

the Ponceau staining of the membrane, confirming the equal loading of the GST 

proteins.
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Figure 17. The K499E mutation renders MAGI-1 resistant to E6-mediated

degradation. See the next page for the full legend.



Figure 17 (Cont.). A. Wild-type and the K499E mutant, together with HPV-16 and 

HPV-18 E6 oncoproteins, were in vitro translated in the presence of 35S-labelled 

methionine or cysteine. They were then incubated together at 30°C as indicated. 

Residual MAGI-1 protein was detected by SDS-PAGE and autoradiography. 

Numbers are the band intensities expressing the percentage of residual MAGI-1 

protein relative to the control (100%). B. HEK 293 cells were co-transfected with 

lpg of FLAG-tagged wild-type or K499E mutant and either 2, 5 and lOpg of HPV- 

18 E6 expression plasmid. After 24 hours cells were harvested and the expression 

levels of MAGI-1 and P-galactosidase were detected by western blot analysis. C. 

HeLa cells were transfected with 3pg of FLAG-tagged wild-type or K499E mutant 

MAGI-1. After 24 hours the cells were treated with MG-132 for an additional 3 

hours prior to harvesting. The expression levels of MAGI-1, p53 and P~ 

galactosidase were assessed by western blot analysis.



degradation; although low levels of degradation were observed at the later time points, which is 

consistent with the residual binding of E6 to the K499E mutant.

To investigate whether similar results could also be obtained in vivo, we compared the steady state 

levels of FLAG-tagged wild-type and mutant MAGI-1 in 293 cells when expressed alone or in 

combination with increasing amounts of HPV-18 E6 (Figure 17b). In good agreement with the in 

vitro assay, Mlwt was highly susceptible to E6-induced degradation, whereas, the K499E mutant 

was significantly more resistant. We then proceeded to investigate whether the K499E mutant was 

resistant to E6 targeting in the more physiologically relevant setting of cervical cancer-derived cells 

that express endogenous levels of E6 oncoprotein. To do this we expressed the FLAG-tagged 

MAGI-1 constructs in HeLa cells. 24 hours after transfection, cells were left untreated or treated 

with the proteasome inhibitor MG-132 for an additional 3 hours before harvesting, in order to 

determine whether differences in MAGI-1 level of expression were due to proteasomal 

degradation. Total cell extracts were separated by SDS-PAGE and the pattern of MAGI-1 and, for 

comparison, of p53 expression was analysed by western blot. As can be seen in Figure 17c, MG- 

132 treatment produced a strong recovery in the levels of p53 expression, confirming the efficient 

inhibition of the proteasome. In agreement with our degradation assays in 293 cells, the expression 

levels of the K499E mutant in HeLa were significantly higher than the wild-type protein, again 

reflecting their differential susceptibility to HPV-18 E6-mediated degradation. Proteasome 

protection produced an increase in the levels of expression of both Mlwt and M1K499E, 

confirming that M1K499E is nonetheless susceptible to 18 E6-mediated degradation, although to a 

much lesser extent than the wild-type MAGI-1.

The K499E mutation perturbs the functionality o f MAGI-1 PDZ1 but does not affect its sub-cellular 

localization

The crystal structures of MAGI-1 PDZ1 and Dig PDZ2 and 3 in complex with a peptide 

encompassing the HPV-18 E6 PBM have been solved (Zhang et al., 2007). These data suggested 

that, unlike most PDZ-PBM interactions, the association of 18 E6 with PDZ domains is stabilized
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by non-canonical residues that extend upstream of the PBM, and make contact with |3-strands B 

and C and the a-helix B of PDZ domains (Zhang et al., 2007; Thomas et al., 2008a). With regard to 

the MAGI-1 PDZ1 domain, the K499 residue maps in its P-strand C (Figure 16a), one of the 

structural components in close proximity to the substrate binding groove (Doyle et al., 1996; 

Foumane et al., 2011), indicating that the alteration of this domain could potentially perturb the 

functionality of the PDZ domain rather than selectively block the interaction with E6. To date, 

several PBM-containing cellular proteins have been identified as potential binding partners for 

MAGI-1 PDZ1, including the RhoA modulators NET1 and pll6Rip (Dobrosotskaya, 2001), JAM4 

(Hirabayashi et al., 2003) and the zyxin family protein LPP (Foumane et al., 2011). Of these, 

however, only the interactions between MAGI-1 PDZ1 and the Rho GEF NET1 and JAM4 have 

been confirmed by biochemical analysis (Dobrosotskaya., 2001; Hirabayashi et al., 2003), although 

JAM4 has been shown to preferentially associate with MAGI-1 through its PDZ4 domain 

(Hirabayashi et al., 2003). In an attempt to define whether the K499E MAGI-1 mutant retained the 

overall functionality of its PDZ1 domain, we decided to monitor the interaction of Mlwt and 

M1K499E with NET1. To do this, 293 cells were transiently transfected with the FLAG-tagged 

Mlwt and M1K499E constmcts, either alone or in combination with MYC-tagged NET1. After 24 

hours, the cells were harvested and cell extracts were immunoprecipitated using anti-MYC 

antibody, and the co-immunoprecipitated Mlwt and M1K499E were detected by western blot using 

anti-FLAG antibody (Figure 18a). The results of these assays demonstrate that wild-type MAGI-1 

specifically co-immunoprecipitates with NET1, confirming previous results (Dobrosotsakaya, 

2001). In contrast, the interaction between NET1 and the K499E mutant was significantly reduced, 

suggesting that this mutation does introduce structural changes into the substrate binding groove of 

the PDZ1 domain so that the ability of MAGI-1 PDZ1 to interact with the PBM of NET1 is 

perturbed. It is interesting to note, however, that the PBMs of 16 and 18 E6 oncoproteins, as well as 

that of NET 1, possess a glutamic acid at position -3 which contributes to the interaction with K499 

within the MAGI-1 PDZ1 domain (Figure 18b). Therefore, we reasoned that the interaction of the 

MAGI-1 PDZ1 domain with PBMs that do not have a glutamic acid at the -3 position might be less 

susceptible to the K499E mutation. In order to test this hypothesis, we repeated the GST pull-down
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Figure 18. The K499E mutation affects the interaction of MAGI-1 with NET1 but 

not with HPV-58 E6. A. HEK293 cells were transfected with 3pg of the FLAG- 

tagged MAGI-1 plasmids together with 5pg of MYC-tagged mNETl, as indicated. 

After 24 h cells were extracted and immunoprecipitated using anti-MYC antibody. 

NET 1-bound MAGI-1 moieties were then detected by western blot using anti- 

FLAG antibody. B. Sequence alignment of the PBMs of JAM-4, NET1, HPV-16 

E6, HPV-18 E6 and HPV-58 E6. C. HEK 293 cells were transfected with 3 jig of 

the FLAG-tagged MAGI-1 constructs; after 24 h the cells were harvested and 

extracts were subjected to GST-pulldown reactions using the GST-HPV-58 E6 

fusion protein, and bound MAGI-1 was detected by western blot using anti-FLAG 

antibody. Numbers represent the percentage of wild type and mutant MAGI-1 

proteins bound to the indicated GST-fusion protein relative to the input control. The 

lower panel shows the Ponceau staining of the membrane, confirming the equal 

loading of the GST proteins.



assays of wild type and mutant MAGI-1 using purified GST-tagged HPV-58 E6, whose PBM is 

identical to HPV-18 E6 except that it has a glutamine at the -3 position (Figure 18b). As shown in 

Figure 18c, the amount of wild type and K499E mutant MAGI-1 pulled down by HPV-58 E6 was 

similar. This suggests that the K499E mutation only marginally affects the ability of HPV-58 E6 to 

bind to MAGI-1. Therefore, this confirms that the presence of a glutamic acid at the -3 position of 

the PMB of MAGI-1-binding partners makes an important contribution to the interaction, and, 

importantly, also suggests that the K499E mutation might affect to a lesser extent the interaction 

with other MAGI-1 binding partners that do not have a glutamic acid residue at the -3 position, 

such as for example JAM-4 (Figure 18b).

The fact that the K499E mutation might affect the functionality of the PDZ1 domain towards some 

MAGI-1 binding proteins, prompted us to investigate whether this might impinge on the pattern of 

MAGI-1 sub-cellular localization, and in particular on its membrane targeting, since the integrity of 

the PDZ domains has been reported to be important for this function (Dobrosotskaya and James, 

2000; Laura et al., 2002). A previously identified membrane-bound interaction partner for MAGI-1 

is p-catenin, and although the binding site for p-catenin is spatially segregated from the PDZ1 

domain, interacting with the PDZ5 domain of MAGI-1 (Dobrosotskaya and James, 2000), we 

speculated that this association could be a marker to indirectly test the functionality of the K499E 

MAGI mutant. We repeated the co-immunoprecipitation experiments in 293 cells by 

overexpressing HA-tagged p-catenin alone or in combination with the FLAG-tagged Mlwt or 

M1K499E constructs. After 24h cells were harvested and Mlwt or the M1K499E were 

immunoprecipitated by incubating cell extracts with anti-FLAG conjugated agarose beads. Co- 

immunoprecipitated P-catenin was detected by western blot using anti-HA antibody, and the results 

of this assay are shown in Figure 19a. As can be seen, p-catenin co-immunoprecipitated with 

similar efficiencies with both the wild-type and mutant MAGI-1, suggesting that the membrane 

targeting of MAGI-1 is not affected by the K499E mutation. To confirm this, we also compared the 

expression pattern of wild-type and mutant MAGI-1 by immunofluorescence analysis. To do this 

FLAG-tagged Mlwt and M1K499E were transfected into U20S cells and, after 24 hours, the cells
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were fixed and stained with anti-FLAG antibody. As can be seen from Figure 19b, and in 

agreement with previous studies (Dobrosotskaya and James, 2000), wild-type MAGI-1 displayed a 

differential pattern of sub-cellular localization, with different pools of MAGI-1 detectable in the 

nucleus as well as in the cytoplasm of transfected cells, whereas a prominent membrane staining 

was also apparent in cells forming intercellular junctions. In good agreement with the p-catenin co- 

immunoprecipitation experiments, the sub-cellular distribution of M1K499E was very similar to 

the wild-type protein, confirming that the K499E mutation does not affect the sub-cellular 

distribution of MAGI-1.

Taken together these data suggest that the K499E mutation which blocks HPV-16 and -18 E6 

recognition, is only likely to affect the ability of MAGI-1 to interact with its cellular partners that 

recognize the PDZ1 domain and which have a glutamic acid residue at the -3 position of the PBM. 

Consistent with this, the K499E mutation does not appear to affect the sub-cellular localization of 

MAGI-1.

The M1K499E mutation potentiates the ability o f MAGI-1 to establish tizht junctions in HeLa cells

Previous studies defined an important role for MAGI-1 in the establishment of TJs, by promoting 

the recruitment of TJ-associated proteins such as ZO-1 and occludin (Hirabayashi et al., 2003), and 

recently the silencing of HPV-18 E6 in HeLa cells was shown to promote the junctional 

accumulation of ZO-1 through MAGI-1 (Figure 14; Kranjec and Banks, 2011). These observations, 

prompted us to investigate whether the expression of MAGI-1 was sufficient to promote the 

junctional recruitment of TJ-associated proteins in HeLa cells, and to define whether the K499E 

mutant could potentiate this activity of MAGI-1. To do this, we decided to monitor the expression 

pattern of the TJ-associated proteins ZO-1 and PAR3 (Stevenson et al., 1986; Izumi et al., 1998; 

Kranjec and Banks, 2011). HeLa cells were grown on glass coverslips and transfected with the 

FLAG-tagged MAGI-1 constructs; 24 hours after transfection cells were fixed and the expression 

patterns of MAGI-1, ZO-1 and PAR3 were analysed by confocal microscopy. In order to evaluate 

whether the expression of Mlwt and M1K499E could confer an advantage in terms of junctional
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Figure 19. The K499E mutation does not affect the interaction of MAGI-1 with p- 

catenin and does not affect its localization. A. HEK293 cells were transfected with 

3pg of wild-type or mutant MAGI-1 expression plasmids together with 5jxg of HA- 

tagged P-catenin. After 24 hours cell extracts were immunoprecipitated using anti 

FLAG-antibody conjugated agarose beads, and MAGI-1-bound p-catenin was then 

detected by western blot using anti-HA antibody. The arrow indicates the position 

of HA-tagged p-catenin. B. U20S cells were transfected with the FLAG-tagged 

MAGI-1 constructs, and after 24 hours the cells were fixed and incubated with anti- 

FLAG antibody to detect the MAGI-1 pattern of expression. White arrows indicate 

sites of MAGI-1 junctional accumulation.



assembly, multiple confocal fields were used to count transfected and untransfected HeLa cells 

until at least 100 FLAG-positive cells were analysed. Within each sample, HeLa cells were divided 

into subpopulations based on their positivity for the FLAG staining (MAGI-1 transfected or 

untransfected) and on their ability to form ZO-1 and PAR3-positive cellular junctions. As can be 

seen in Figure 20a, the vast majority of HeLa cells did not display junctional staining of ZO-1, and 

a similar pattern of staining was also observed for PAR3 (Figure 20b), suggesting that that HeLa 

cells are largely unable to form intact cellular junctions. This was also confirmed by direct cell 

counting, since within the untransfected subpopulation about 10-20% of HeLa cells displayed ZO- 

1- and PAR3-positive junctional staining (Figure21a). Strikingly, the expression of wild type and 

mutant MAGI-1 significantly increased the junctional assembly in HeLa cells, with the wild type 

and K499E mutant MAGI-1 proteins displaying similar efficiencies in promoting the junctional 

recruitment of ZO-1 and PAR3 (Figure 20 and Figure 21a). This is in agreement with the fact that 

the K499E mutation does not affect the ability of MAGI-1 to localize at junctional sites between 

contacting cells (Figure 18c), and further suggests that the mutant retains the capacity to restore 

junctional complexes. Furthermore, when compared with the wild type protein, the expression of 

the K499E mutant produced a much higher number of MAGI-1-positive cells, which is consistent 

with its increased resistance to E6-mediated degradation (Figure 20a and 20b, Figure 21b). In 

addition, this increased proportion of K499E MAGI-1-expressing cells was reflected in a 

corresponding increase in the number of cells showing junctional recruitment of ZO-1 and PAR3 

(Figure 20a and 20b, Figure 21c).

Taken together, these data suggest that wild type and mutant MAGI proteins display comparable 

efficiencies in recruiting ZO-1 and PAR3 to cell contact sites, however the resistance of the K499E 

mutant to E6 degradation increases the number of HeLa cells with intact cell junctions, indicating 

that MAGI-1 expression potently enhances the ability of HeLa cells to form junctional complexes.

A well known biological effect associated with the establishment of junctional complexes is the 

inhibition of cell proliferation (Baida et al., 2003; Aijaz et al., 2005; Sottocomola et al., 2010).



Previous studies indicated that both ZO-1 and PAR3 can inhibit cell proliferation when localized at 

cell contact sites by modulating the activity of multiple proteins implicated in Gl/S cell cycle 

transition (Baida and Matter, 2000; Sottocomola et al., 2010). Therefore, having shown that the 

expression of K499E mutant MAGI-1 can potently increase the junctional recruitment of ZO-1 and 

PAR3, we were interested in determining whether this could also correlate with an inhibition of cell 

proliferation in HeLa cells. In order to do this, we labeled proliferating cells with the thymidine 

analogue 5-ethyny 1 -2’ -deoxyuridine (EdU), which allows the visualization of proliferating cells 

while not affecting the overall structural integrity of the cell (Salic and Mitchison, 2008). HeLa 

cells were grown on glass coverslips and transfected with the FLAG-tagged Mlwt and M1K499E 

constructs. 24h post transfection, and prior to fixation, HeLa cells were pulsed with EdU for 

additional 2 hours, and the pattern of MAGI-1 and ZO-1 expression and the proportion of EdU- 

positive cells were visualized by confocal microscopy. As can be seen in Figure 22a, a high 

proportion of untransfected HeLa cells display positive nuclear EdU staining, demonstrating that 

the HeLa cells are highly proliferative. The expression of wild type MAGI-1 led to an increase in 

junctional ZO-1 staining and this correlated also with the absence of EdU staining in the Mlwt- 

expressing cells. Conversely, K499E mutant MAGI-1, which also showed high levels of ZO-1 

junctional recruitment, displayed a reduced ability to block the proliferation in HeLa cells 

compared with the wild type protein, suggesting that the integrity of MAGI-1 PDZ1 domain 

increases its ability to inhibit cell proliferation. The quantification of the number of EdU-positive 

nuclei relative to MAGI-1 expression, confirmed that wild type MAGI-1 dramatically reduced the 

proliferative potential of HeLa cells, and that the K499E mutation decreases the ability of MAGI-1 

to inhibit cell proliferation by about 20% (Figure 22b). Nevertheless, consistent with the ability of 

mutant MAGI-1 to form larger MAGI-1-positive HeLa cell populations, its expression also 

correlates with an increased population of EdU-negative cells compared with the wild type protein 

(Figure 22c). These data suggest that MAGI-1 is a negative regulator of cell proliferation and that 

its expression in HeLa cells is capable of reducing the proportion of proliferating cells. However 

this regulation of the proliferative potential appears to be independent of MAGI-1’s ability to

58



A Untransfected MAGI-1 wt MAGI-1 K499E

Figure 20. The expression of wild type and mutant MAGI-1 promotes junctional 

assembly in HeLa cells. A. HeLa cells were seeded on glass coverslips and 

transfected either with wild type or mutant MAGI-1. After 24 hours the cells were 

fixed and incubated with anti-FLAG and anti-ZO-1 antibodies and counterstained 

with rhodamine-conjugated (FLAG) and fluorescein-conjugated (ZO-1) secondary 

antibodies. Confocal images were taken at 480 and 510 nm wavelengths. Confocal 

images were taken at 480 and 510 nm wavelengths. White arrows indicate sites of 

MAGI-1 and ZO-1 junctional accumulation.



B Untransfected MAGI-1 wt MAGI-1 K499E

Figure 20 (Cont.). B. Cells were seeded and transfected as in A. After fixation, cells 

were incubated with anti-FLAG and anti-PAR3 antibodies and counterstained with 

rhodamine-conjugated (FLAG) and fluorescein-conjugated (PAR3) secondary 

antibodies. Confocal images were taken at 480 and 510 nm wavelengths. White 

arrows indicate sites of MAGI-1 and PAR3 junctional accumulation.
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Figure 21. The resistance of MAGI-1 K499E to E6-mediated degradation correlates 

with an increased junctional assembly in HeLa cells. See the next page for the full 

legend.



Figure 21 (Cont.). The total number of HeLa cells showing M l- or M1K499E- 

positive staining were quantified within the total cell population visualized by 

immunofluorescence. In each experiment at least 100 wild type and mutant MAGI- 

1-positive cells were counted. A. The number of ZO-1 and PAR3-positive junctions 

formed in untransfected, wild type and mutant MAGI-1-transfected cells was 

calculated as the percentage of cells displaying ZO-1- and PAR3-positive 

junctional staining in each subpopulation (one way analysis of variance [ANOVA]). 

B. The total population of wild type and mutant MAGI-1-expressing cells was 

calculated as the percentage of FLAG-positive cells present in each sample relative 

to the total population of untransfected cells (P<0,0001; unpaired two-sample t- 

test). C. Percentage of MAGI-1-positive cells displaying ZO-1-positive (P=0,0006) 

and PAR3-positive (P<0,0001) junctional staining relative to the total population of 

untransfected cells counted in each sample (unpaired two-sample t-test). Each panel 

represents the mean values and standard deviations calculated from three 

independent experiments. The corresponding P values are: *P<0.05; **P<0.01; 

***P<0.001;****P<0.0001.



restore TJs, since it seems to depend, in part, upon an as yet unidentified function of the MAGI-1 

PDZ1 domain.

In order to assess whether the MAGI-1 is able also to mediate the inhibition of cell proliferation in 

HPV-negative cells, we repeated the EdU staining upon transfection of wild type and K499E 

mutant MAGI-1 in HaCaT cells, and the results are shown in Figure 23. As can be seen, in 

agreement with previous studies (Massimi et al., 2012), HaCaT cells form cellular junctions 

between adjacent cells, as evidenced by junctional recruitment of ZO-1 (Figure 23a). Consistent 

with the data obtained in HeLa cells, wild type and K499E mutant MAGI-1 proteins co-localized 

with ZO-1 at cellular junctions, although the expression of either construct marginally increased the 

ZO-1 junctional recruitment. When the two MAGI-1 constructs were expressed in HaCaT cells, the 

effects on cell proliferation were markedly reduced when compared to HeLa cells (Figure 23a). 

This was highlighted by the quantification of the cells displaying an EdU-positive nuclear staining 

(Figure 23b), where about the 40% of MAGI-1-expressing cells also displayed an EdU-positive 

staining. As expected, in the absence of E6, the two constructs displayed a similar transfection 

efficiency (Figure 23c), however, consistent with lower efficiency of MAGI-1 in inhibiting the 

proliferation of HaCaT cells, also the percentage of EdU-negative and MAGI-1-positive cells 

compared to the total cell population was likewise reduced compared to HeLa cells (Figure 23d).

Taken together these data indicate MAGI-1 has a strong capacity to induce the junctional 

recruitment of TJ-associated proteins, and that the ability of MAGI-1 to inhibit cell proliferation 

could be linked to the inhibition of specific functions associated to the expression of E6 and E7.

MAGI-1 is a pro-apoptoticprotein

The epifluorescent examination of HeLa cells stained for wild type and mutant MAGI-1 suggested 

us a possible involvement of this protein in the regulation of apoptosis, since proportions of the 

MAGI-1-expressing cells had morphological features resembling those of cells undergoing 

apoptosis, including blebbing and rounding up of the cells (Taylor et al., 2008). In our opinion this



was particularly interesting since HeLa cells have been shown to be resistant to different apoptotic 

stimuli (Assefa et al., 1999; Eichholtz-Wirth and Sagan, 2000), and MAGI-1 had been previously 

implicated in the regulation of apoptosis (Ivanova et al., 2007; Gregorc et al., 2007); however its 

possible direct involvement in the induction of apoptosis has not been previously investigated. A 

well studied biochemical event associated with the induction of apoptosis is the fragmentation of 

genomic DNA (Williams et al., 1974; Tian et al., 1991) due to the activation of cellular nucleases 

(Wyllie, 1980; Nagata et al., 1998). Therefore, in order to determine whether the expression of wild 

type and K499E mutant MAGI-1 could promote apoptosis of HeLa cells, we decided to monitor 

their pattern of DNA fragmentation by performing terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL) assays. In addition, we also included HaCaT cells in the analysis, in 

order to determine whether MAGI-1 could also induce apoptosis in HPV-negative cells. To do that, 

HeLa and HaCaT cells were seeded on glass coverslips and transfected either with wild type or 

K499E mutant MAGI-1 constructs. Since the induction of DNA fragmentation is a rather late event 

during induction of apoptosis (Collins et al., 1997), we decided to grow the cells for 48h after 

transfection. The cells were then fixed, and the pattern of wild type and K499E mutant MAGI-1 

expression as well as the number of cells positive for the TUNEL reaction, were assessed by 

immunofluorescence and confocal microscopy. Results are shown in Figure 24 and, as can be seen, 

untransfected HeLa (Figure 24a) and HaCaT (Figure 24b) cells both showed a low level of 

apoptosis, as evidenced by the low proportion of TUNEL-positive cells. Strikingly, the expression 

of wild type and mutant MAGI-1 led to the appearance of MAGI-1/TUNEL-positive cell 

subpopulations in both cell lines, suggesting that the ability of MAGI-1 to induce apoptosis is not 

exclusive to HPV-positive cells. In addition, the expression of the K499E mutant in HeLa cells led 

to a higher number of MAGI-1-positive cells than the wild type protein, and this also correlated 

with an increased subpopulation of MAGI-1/TUNEL-positive cells. It is also interesting to note 

that in HaCaT cells the TUNEL positivity associated with the transfection of the MAGI-1 

constructs was not linked to the acquisition of a clear apoptotic morphology as in the case of HeLa 

cells under the same experimental conditions. However, this is consistent with the fact that some 

cell types can acquire an apoptotic morphology rather slowly, although they are already undergoing
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Figure 22. MAGI-1 inhibits cell proliferation o f HeLa cells. See the next page for 

the full legend.



Figure 22 (Cont.). A. HeLa cells were seeded on glass coverslips and transfected 

either with FLAG-tagged wild type or mutant MAGI-1 constructs. After 24 hours, 

and prior to fixation, cells were incubated with EdU for additional 2 hours in order 

to allow its incorporation by proliferating cells. After fixation, cells were incubated 

with anti-FLAG and anti-ZO-1 antibodies and counterstained with rhodamine- 

conjugated (FLAG) and fluorescein-conjugated (ZO-1) secondary antibodies. After 

incubation with the indicated antibodies, cells were processed for the detection of 

EdU-labeled DNA (green nuclei). Confocal images were taken at 480 and 510 nm 

wavelengths. White arrows indicate sites of MAGI-1 and ZO-1 junctional 

accumulation. B. The percentage of EdU-positive cells was quantified by direct cell 

count of untransfected, wild type or K499E mutant MAGI-1-transfected cells 

displaying positive nuclear EdU staining within each subpopulation (one way 

analysis of variance [ANOVA]). C. Cells were counted as in B, and shown is the 

percentage of MAGI-1-positive cells displaying EdU-negative staining relative to 

the total population of untransfected cells counted in each sample (P=0,0008; 

unpaired two-sample t-test). Each panel represents the mean values and standard 

deviations calculated from three independent experiments. The corresponding P 

values are: *P<0.05; **P<0.01; ***P<0.001;****P<0.0001.



A M1wt M1K499E

Figure 23. MAGI-1 is less efficient to inhibit the cell proliferation of HPV-negative 

cells. A. HaCaT cells were seeded on glass coverslips and transfection was carried 

out as in Figure 22. After 24 hours, and prior to fixation, cells were incubated with 

EdU for additional 2 hours in order to allow its incorporation by proliferating cells. 

After fixation, cells were incubated with anti-FLAG and anti-ZO-1 antibodies and 

counterstained with rhodamine-conjugated (FLAG) and fluorescein-conjugated 

(ZO-1) secondary antibodies. After incubation with the indicated antibodies, cells 

were processed for the detection of EdU-labeled DNA (green nuclei). Confocal 

images were taken at 480 and 510 nm wavelengths. White arrows indicate sites o f 

MAGI-1 and ZO-1 junctional accumulation.
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Figure 23 (Cont.). B. The percentage of EdU-positive cells was quantified by direct 

cell count of untransfected, wild type or K499E mutant MAGI-1-transfected cells 

displaying positive nuclear EdU staining within each subpopulation (one way 

analysis of variance [ANOVA]). C. The total population of wild type and mutant 

MAGI-1-expressing cells was calculated as the percentage of FLAG-positive cells 

(~100 cells per sample) present in each sample relative to the total population of 

untransfected cells. D. Cells were counted as in B, and shown is the percentage of 

MAGI-1-positive cells displaying EdU-negative staining relative to the total 

population of untransfected cells counted in each sample. Each panel represents the 

mean values and standard deviations calculated from three independent 

experiments. The corresponding P values are: *P<0.05; **P<0.01;

***P<0.001;****P<0.0001.



A Untransfected M1wt M1K499E

Figure 24. The expression of MAGI-1 induces apoptosis in HeLa and HaCaT cells. 

A. HeLa cells were seeded on glass coverslips and transfected either with wild type 

or mutant MAGI-1. After 48 hours the cells were fixed and incubated with the anti- 

FLAG antibody and counterstained with rhodamine-conjugated secondary 

antibodies. After incubation with the indicated antibodies, cells were processed for 

the identification of TUNEL-positive cells using the In situ cell death detection kit 

according to the manufacturer’s instructions. Confocal images were taken at 480 

and 510 nm wavelengths.
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Figure 24 (Cont.). B. HaCaT cells were seeded on glass coverslips, and the 

immunodetection of MAGI-1 and the TUNEL assay were performed as in A.
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Figure 25. The expression of MAGI-1 correlates with induction o f apoptosis. See 

the next page for the complete legend.



Figure 25 (Cont.). The expression of MAGI-1 correlates with induction of 

apoptosis. A. The percentage of TUNEL-positive HeLa cells was quantified by 

direct cell count of untransfected, wild type or K499E mutant MAGI-1-transfected 

cells displaying positive TUNEL staining within each subpopulation (one way 

analysis of variance [ANOVA]). B. The total population of wild type and mutant 

MAGI-1-expressing cells was calculated as the percentage of FLAG-positive cells 

(-100 cells per sample) present in each sample relative to the total population of 

untransfected cells (P=0,0002; unpaired two-sample t-test). C. Cells were counted 

as in A and B, and shown is the percentage of MAGI-1-positive cells displaying 

TUNEL-positive staining relative to the total population of untransfected cells 

counted in each sample (P=0,0033; unpaired two-sample t-test). D. The percentage 

of wild type or K499E mutant MAGI-1-transfected HaCaT cells displaying positive 

TUNEL staining was determined as in A (one way analysis of variance [ANOVA]). 

Each panel represents the mean values and standard deviations calculated from 

three independent experiments. The corresponding P values are: *P<0.05; 

**P<0.01; ***P<0.001;****P<0.0001.



the biochemical events associated with the apoptosis (Oberhammer et al., 1994), in addition this 

also suggests that the kinetics of the induction of apoptosis are different between HeLa and HaCaT 

cells. Therefore, these data indicate that the increased resistance of K499E mutant MAGI-1 to Ed- 

mediated degradation also correlates with an increased induction of apoptosis. In order to gain 

more quantitative insights about the ability of MAGI-1 to induce apoptosis, we decided to count the 

cells in each sample and to correlate the number of TUNEL-positive cells to the status of MAGI-1 

expression. At least 100 cells were counted per sample, and as can be seen in Figure 25a, and in 

good agreement with the confocal images, only a small proportion of untransfected HeLa cells 

displayed TUNEL-positive staining; in contrast the expression of either wild type or mutant 

MAGI-1 led to a strong induction of apoptosis. It is also interesting to note that the two MAGI-1 

proteins displayed a similar efficiency in inducing apoptosis, suggesting that the PDZ domain 1 is 

probably not involved in this function of MAGI-1. In addition, the expression of the K499E mutant 

MAGI-1 in HeLa cells generated a larger MAGI-1-positive population than the wild type protein 

(Figure 25b), and, consistent with this, also the MAGI-1/TUNEL-positive subpopulation was 

higher upon the expression of the mutant (Figure 25c). Untransfected HaCaT cells showed a 

slightly higher susceptibility to apoptosis induction compared to untransfected HeLa cells, however 

the expression of the MAGI-1 constructs also induced a high degree of apoptosis but with similar 

efficiencies (Figure 25d), although the levels in HaCaT were slightly lower then in HeLa.

Taken together, these data suggest that the expression of MAGI-1 increases the rate of cell death in 

both HPV-positive and HPV-negative cells, and that this function of MAGI-1 is likely not to be 

exerted through the PDZ domain 1. Moreover, this provides an additional advantage for HPV to 

promote the E6-mediated degradation of MAGI-1.
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Part H:

Regulation of HPV-18 E6 expression by hScrib

hScrib specifically stabilizes HPV-18E6 protein levels

It is well established that the continuous expression of E6 and E7 oncoproteins is a prerequisite for

maintaining the survival and tumorigenic potential of HPV-positive cancer cells. Recent studies

suggested that the interaction of high-risk HPV E6 oncoproteins with PDZ domain-containing

proteins could be beneficial for the viral life cycle by maintaining high levels of E6 expression

(Nicolaides et al., 2011). Furthermore, these studies also suggested that this phenomenon was

linked to the direct stabilization of E6 by several different PDZ substrates rather than by one

specific E6 target. However, all of these analyses were done under conditions of ectopic

overexpression, and we were interested in determining whether different PDZ domain-containing

substrates of E6 could likewise contribute to maintaining the steady state levels of E6 in cells

derived from cervical lesions, in which E6 is expressed at endogenous levels. To do this, we

decided to investigate the effect of siRNA ablation of several different PDZ domain-containing

targets of E6 upon the steady state levels of E6 expression in HeLa cells, as reagents for the

detection of HPV-18 E6 are readily available (Tomaic et al., 2009; Krishna Subbaiah et al., 2012).

Cells were transfected with siRNA against Luciferase, hScrib, hDlg, TIP2, PSD95, MAGI-1,

PTPN3 and FAP1. We also included in the analysis siRNA against HPV-18 E6/E7 as a reference

for E6 downregulation. 72 hours after transfection, the cells were extracted and the expression

levels of HPV-18 E6, p53 and the set of silenced PDZ proteins were monitored by western blot

analysis. In addition, since recent studies had shown that the stability of HPV-18 E6 in HeLa cells

is dependent upon E6AP expression (Tomaic et al., 2009), we also assessed the levels of E6AP in

order to determine whether PDZ proteins might affect the expression of E6 indirectly through the

modulation of E6AP levels. The results are shown in Figure 26a, and the quantifications of HPV-

18 E6 levels from multiple experiments are shown in Figure 26b. As can be seen, control

siLuciferase HeLa cells express readily detectable levels of endogenous HPV-18 E6, p53 and

E6AP as well as of the PDZ proteins TIP2 and hScrib, whereas lower residual levels of hDlg
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Figure 26. hScrib regulates the expression of HPV-18 E6 in HeLa cells.



Figure 26 (Cont.). A. HPV-positive HeLa cells were transfected with siRNA 

Luciferase, siRNA HPV-18 E6 or siRNA against the indicated E6 PDZ substrates. 

Cells were grown for 72 hours prior harvesting and the expression patterns of HPV- 

18 E6, hDlg, hScrib, TIP2, p53, E6AP and a-actinin, to monitor the protein loading, 

were assessed by western blot analysis. B. Band intensities were determined using 

the OptiQuant quantification program. E6 levels were normalized to 100% relative 

to siLuciferase-transfected HeLa cells. Histograms represent the mean values and 

standard deviations calculated from three independent experiments (unpaired two- 

sample t-test). C. The silencing of hScrib was performed as in A but using two 

different siRNAs specific for hScrib. The expression levels of HPV-18 E6, hScrib, 

p53 and a-actinin to monitor the protein loading, were assessed by western blot 

analysis. The corresponding P values are: *P<0.05; **P<0.01;

***P<0.001;****P<0.0001.



expression could be detected. Silencing of E6 and E7 produced a massive downregulation of HPV- 

18 E6 expression compared with control cells, and, as expected, this led to a significant increase of 

p53 expression levels, which is consistent with previous studies (Scheffner et al., 1993; Huibregtse 

et al., 1993), and with the results presented in Figures 10, 11 and 12. It is interesting to note that 

upon ablation of E6/E7 the expression levels of E6AP were also upregulated, and this is consistent 

with previous studies suggesting that high-risk HPV E6 promotes the self-ubiquitylation and 

increased rates of proteasome-mediated degradation of E6AP (Kao et al., 2000). In addition, in 

agreement with previous results (Kranjec and Banks, 2011; Figure 10b and 10c), the silencing of 

HPV-18 oncoproteins in HeLa cells produced a rescue of hDlg levels of expression and also hScrib 

levels were increased. In contrast, TIP2 levels remained relatively unchanged. Surprisingly, among 

the E6 PDZ targets assayed, the ablation of hScrib produced a dramatic reduction of HPV-18 E6 

levels of expression, with an efficiency that was slightly lower than that obtained with the E6/E7 

siRNA (Figure 26a and 26b). Consistent with this reduction in E6 levels of expression, the ablation 

of hScrib also resulted in increased levels of hDlg, E6AP and p53, although to a lower extent than 

in siE6/E7 transfected HeLa cells. Interestingly, similar levels of E6AP upregulation were also 

obtained upon ablation of hDlg, TIP-2, PSD95 and FAP1, and similarly p53 expression was also 

generally increased upon the silencing of the other E6 PDZ targets, although in this case HPV-18 

E6 levels were not significantly reduced. In this context, the modulation of p53 expression has been 

linked so far only to the PDZ protein TIPI, which by promoting increased p53 ubiquitylation, 

increases its levels of proteasome-mediated degradation (Han et al., 2012), therefore loss of TIPI 

would be expected to increase p53 levels. However, our data also suggest that p53 expression 

could, at least in part, be regulated by multiple PDZ domain-containing proteins in HeLa cells. In 

addition, silencing of hDlg also produced a strong upregulation in the levels of hScrib expression, 

which was even higher than that obtained following ablation of E6. Low levels of hScrib 

upregulation were also obtained by silencing MAGI-1, TIP2 and PSD95. Similarly, hDlg and TIP2 

expression levels were also elevated upon silencing of the other PDZ domain-containing proteins, 

possibly suggesting the existence of a high level of compensation between different PDZ proteins.
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In order to confirm that the maintenance of HPV-18 E6 levels in HeLa cells were indeed dependent 

upon the expression of hScrib, and to verify that this was not due to any off-target effects of the 

hScrib-specific siRNA we repeated the analysis with an alternative siRNA obtained from a 

different supplier. As can be seen in Figure 26c, the two hScrib siRNAs blocked the expression of 

hScrib, although with slightly different efficiencies. Consistent with the results in Figure 26a and 

26b, the two hScrib siRNA produced a similar reduction in the HPV-18 E6 levels of expression, 

and this reduction correlated directly with the efficiency with which hScrib levels were reduced.

Taken together these data confirm that loss of hScrib expression in HeLa cells can directly lead to a 

reduction in the levels of E6 in HeLa cells, and that multiple PDZ proteins are involved in complex 

molecular networks that might regulate the function of p53 as well as of other PDZ proteins.

Previous studies suggested that HPV-18 E6 displays a differential subcellular localization, with 

protein pools localizing predominantly at membrane and nuclear sites of transfected cells 

(Grossman et al., 1989). In order to investigate whether loss of hScrib affected the pattern of 

expression of specific pools of E6 we performed fractionation experiments on HeLa cells 

transfected with either siRNA against Luciferase or hScrib. 72 hours post-transfection, HeLa cells 

were separated into four subcellular fractions and the expression pattern of HPV-18 E6, p53 and of 

the fraction-specific markers a-tubulin, E-cadherin, p84 and vimentin were assessed by western 

blot analysis. As can be seen from Figure 27, in siLuciferase transfected cells we detected the 

majority of E6 in the membrane fraction, with lower levels present in the nuclear and cytoplasmic 

fractions. In cells transfected with control siRNA, p53 was mainly expressed in the nucleus with 

residual levels also found in membrane and cytoskeletal fractions. Conversely, in cells transfected 

with hScrib siRNA, the levels of E6 are generally reduced in all three fractions. Consistent with 

this, p53 levels increase slightly in the same three fractions. These data suggest that silencing of 

hScrib in HeLa cells affects the total levels of E6 expression, rather than a specific subcellular pool.
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Figure 27. Loss of hScrib does not affect specific subcellular pools of E6 in HeLa 

cells. HeLa cells were transfected with siRNA Luciferase or siRNA hScrib, and 

after 72h cells were fractionated into 4 subcellular compartments: cytosol (FI), 

membrane (F2), nucleus (F3), cytoskeleton (F4). The expression patterns of HPV- 

18 E6, p53, hScrib and those of the four subcellular fraction markers E-cadherin 

(membrane), p84 (nucelus), a-tubulin (cytoplasm) and vimentin (cytoskeleton) were 

assessed by western blot analysis.



Ablation o f hScrib does not affect HPV-18 E6 turnover

Having shown that loss of hScrib results in decreased levels of HPV-18 E6, we were interested in 

investigating whether this was due to an increase in the rate of E6 turnover, since previous studies 

had shown that the lack of PDZ binding capacity affected E6 stability (Nicolaides et al., 2011). To 

do this, we decided to monitor the E6 half-life in HeLa cells following ablation of hScrib 

expression. 72 hours after transfection, the cells were treated with cycloheximide for different time- 

points. The cells were then harvested and the expression levels of E6 were monitored by western 

blotting. The results are shown in Figure 28a, with the quantifications from multiple experiments 

shown in Figure 28b. In agreement with previous studies, the half-life of HPV-18 E6 in control 

siRNA-transfected HeLa cells was between 60 and 120 minutes (Grossman et al., 1989; Tomaic et 

al., 2009). This is also in agreement with previous studies showing that different subcellular pools 

of E6 display differences in their half-life, and that the membrane pool of the protein, the 

predominant form of E6 found in HeLa cells, has a half-life of about 2 hours (Grossman et al., 

1989). The silencing of hScrib however, did not produce any significant change in the E6 half-life, 

suggesting that loss of hScrib expression does not affect E6 turnover. It is interesting to note, 

however, that although the turnover of E6 was not affected in siScrib transfected HeLa cells, p53 

was stabilized in these cells. Consistent with previous studies, in control siRNA transfected HeLa 

cells the half-life of p53 was between 15 and 30 minutes (Talin et al., 1998). The ablation of hScrib 

significantly prolonged the half-life of p53, which is consistent with the overall decrease in E6 

levels, but this is not as a result of increased E6 turnover.

We were then interested in investigating whether hScrib might alter the levels of E6 gene

expression. Since E6 and E7 are expressed from a bicistronic mRNA (Schneider-Gadicke and

Schwarz, 1986; Smotkin and Wettstein, 1986), we reasoned that any reduction in E6 transcription

in HeLa cells, would also be reflected by lower levels of E7 expression. The high-risk HPV E7

oncoprotein promotes the proteasome-mediated degradation of hypophosphorylated, E2F-binding

competent forms of pRB (Boyer et al., 1996; Gonzalez et al., 2001). Therefore, the analysis of the

expression pattern of differentially phosphorylated forms of pRB in HPV-positive cells can be used
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as a surrogate marker to monitor the levels of E7 expression (Tang et al., 2006). HeLa cells were 

transfected with control siLuciferase, siRNA against hScrib or HPV-18 E6/E7 as a reference for the 

silencing of E7. After 72 hours, cells were harvested and the expression pattern of pRB was 

monitored by western blot analysis. The results of this assay are presented in Figure 28c, and the 

quantifications of pRB levels obtained in multiple experiments are shown in Figure 28d. In 

agreement with previous studies, our results demonstrate that pRb is expressed as differentially 

phosphorylated forms, and that HeLa cells predominantly express the hyper-phosphorylated pRB 

(Tang et al., 2006). Following ablation of E6 and E7, the expression of p53 and the ratio between 

the hypo- and hyper-phosphorylated pRB levels are significantly increased, demonstrating the 

efficient silencing of both oncoproteins. In contrast, whilst loss of hScrib expression led to an 

increase in p53 levels, the ratio between the hypo- and hyper-phosphorylated forms of pRB was 

comparable to that of the control siRNA-transfected HeLa cells, indicating that upon loss of hScrib 

the levels of E7 expression remained unaffected. Interestingly however, loss of hScrib resulted in 

an overall reduction of both pRB forms. This might be a reflection of a decrease in E6 levels, as 

previous studies suggested that E6 was able to induce high levels of expression of both hypo- and 

hyper-phosphorylated pRB (Malanchi et al., 2004). Taken together these data indicate that loss of 

hScrib does not directly affect the levels of transcription of E6 and E7 in HeLa cells.

Loss o f hScrib decreases HPV-18 E6 translation

We were next interested in determining whether E6 rates of translation were affected by loss of 

hScrib. To do this, HeLa cells were first transfected with siLuciferase or siScrib, and after 72 hours 

the cells were treated for 6 hours with cycloheximide to block protein translation. Cells were then 

washed several times with PBS to remove the cycloheximide, and the recovery in the levels of 

HPV-18 E6 and p53 protein expression were monitored over time by western blot analysis. The 

results are shown in Figure 29a, and the quantifications of multiple experiments are shown in 

Figure 29b. As can be seen, the prolonged treatment with cycloheximide produced over an 80% 

decrease in the levels of E6 in both control and siScrib transfected HeLa cells. Even more apparent 

was the drop in p53 levels, which upon cycloheximide treatment became undetectable in both the
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Figure 28. Loss of hScrib does not affect HPV-18 E6 protein stability nor its 

transcriptional rate. A. HeLa cells were transfected with siRNA against Luciferase 

or siRNA against hScrib, 72 hours after transfection and prior to harvesting, cells 

were treated with cycloheximide for 5 different time points: 0, 15, 30, 60 and 120 

minutes. The expression levels of HPV-18 E6, p53, hScrib and a-actinin to monitor 

the protein loading, were assessed by western blot. The collated results from 3 

independent experiments to measure E6 protein turnover in cells treated with 

siRNA Luciferase and siRNA hScrib are shown in panel B. Band intensities were 

determined using the OptiQuant quantification program. The E6 levels in 

siLuciferase and siScrib transfected cells were normalized to 100% at time 0. 

Shown are the mean values and standard deviations calculated from three 

independent experiments
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Figure 28 (Cont.). C. HeLa cells were transfected with siRNA against Luciferase or 

siRNA HPV-18 E6/E7 or siRNA hScrib. 72 hours after transfection, cells were 

harvested and the expression pattern of pRB, p53, hScrib and a-actinin, to monitor 

the protein loading, were assessed by western blot. D. Band intensities were 

quantified using the OptiQuant quantification program, and levels of of hypo- 

phosphorylated and hyper-phosphorylated pRB expression in control, siLuciferase- 

transfected cells, and siScrib-transfected cells were normalized to 100%. 

Differences in the expression pattern of pRB were expressed as percentage of hypo- 

phosphorylated and hyper-phosphorylated pRB protein relative to control cells. 

Histograms represent the mean values calculated from three independent 

experiments. Standard deviations are also shown (unpaired two-sample t-test). The 

corresponding P values are: *P<0.05; **P<0.01; ***P<0.001;****P<0.0001.
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Figure 29. hScrib regulates the translation of HPV-18 E6 in HeLa cells. A. HeLa

cells were transfected with siRNA against Luciferase or siRNA against hScrib. 72 

hours after transfection, cells were treated with cycloheximide for an additional 6 

hours. After the treatment, and prior to harvesting, cells were washed three times 

with PBS to remove the cycloheximide and protein translation was left to recover in 

complete medium for 4 different time points: 0.5, 1, 3 and 5 hours. The collated 

results from 3 independent experiments are shown in panel B. Band intensities were 

determined using the OptiQuant quantification program. The E6 levels in 

siLuciferase and siScrib transfected cells were normalized to 100% at time 0. 

Shown are the mean values and standard deviations calculated from three 

independent experiments.



control and siScrib transfected cells. Upon removal of cycloheximide, the levels of HPV-18 E6 

expression progressively recovered after the 30 minute time point. It is interesting to note that the 

bulk of E6 oncoprotein was translated within 3 hours of cycloheximide wash-out, suggesting that 

the accumulation of E6-encoding mRNAs during translation inhibition led to the rapid synthesis of 

newly translated E6 upon removal of cycloheximide. In contrast, loss of hScrib in HeLa cells 

greatly reduced the rate of recovery in E6 protein levels upon translation re-initiation. Interestingly, 

the pattern of p53 recovery was opposite to that of E6, being rapidly upregulated in siScrib cells 

after cycloheximide wash-out, which is consistent with the lower levels of E6 expression in these 

cells. Taken together these data suggest that the residual expression of hScrib in HeLa cells 

contributes towards maintaining high levels of HPV-18 E6 expression through the modulation of 

its rate of translation.

hScrib regulates the mTORCl pathway through the modulation ofS6 kinase activity

Previous studies suggested that the E6 mRNA is translated using the canonical cap-dependent 

ribosome scanning model (Stacey et al., 2000; Tan et al., 1994). In this model, the 40S ribosome 

subunit contacts the 5’ end of the mRNA and begins to scan the messenger until it recognizes a 

suitable start codon, at which the 60S ribosomal subunit is recruited to form the complete ribosome 

and begin the polypeptide translation (Kozak et al., 1989; Pestova et al., 2001; Gebauer and Hentze 

2004). In this process the rate-limiting step is the translation initiation, in which the loading of the 

small (40S) ribosomal subunit onto the mRNA is dependent upon the recruitment of multiple 

translation initiation factors (elFs), including eIF4E, eIF4A and eIF4G, to form the translation 

initiation factor 4F (eIF4F) complex at the 5’ cap structure of the mRNA (Ma and Blenis, 2009). In 

this context, the mTOR complex 1 (mTORCl) is part of the molecular machinery that couples 

growth factor stimulation to translation initiation by promoting the assembly of the eIF4F complex 

and enhancing the scanning activity of the small ribosomal subunit (Martin and Blenis, 2002). 

Therefore, we speculated that hScrib might modulate cap-dependent protein translation through the 

regulation of components of the mTORCl pathway. To assess this possibility, we decided to 

investigate the activity of the PDK1 and S6 kinases, two protein kinases known to modulate the



mTORCl pathway (Pullen and Thomas; 1997; Williams et al., 2000). Figure 30a shows a cartoon 

of the mTORCl pathway, and, as can be seen, the activity of PDK1 and S6 kinase is regulated by 

phosphorylation events. The autophosphorylation of PDK1 at serine 241 is crucial for its full 

activation, which is required upstream of mTOR for the activation of the pathway through the PI3K 

signaling (Casamayor et al., 1999). On the other hand, mTOR directly activates its effector S6 

kinase through the phosphorylation of its threonine 389; in turn, activated S6 kinase promotes 

protein synthesis by modulating the activity of multiple proteins involved in translation. HeLa cells 

were transfected with either siRNA Luciferase, or siRNA hScrib and after 72 hours the cells were 

harvested and levels of PDK1, S6 kinase and Akt were assessed by western blot by using 

antibodies to detect the total as well as phosphorylated forms of the different kinases. As can be 

seen in Figure 30b, HeLa cells express high levels of phospho-serine 241 (pS241) PDK1, and, 

surprisingly, the ablation of hScrib resulted in a reduction of both the phosphorylated and total 

PDK1 levels, suggesting that the reduced levels of phosphorylation are a reflection of the lower 

total protein levels. The activation of PDK1 results in the phosphorylation of Akt at threonine 308, 

which for its full activity also requires the mTORC2-mediated phosphorylation of serine 472 

(Alessi et al., 1996; Scheid et al., 2002). The two phosphorylation events are sequential, however 

which of the two sites needs to be phosphorylated first to allow the subsequent full activation is 

still not completely clarified. Upon reduction of PDK1 expression due to the loss of hScrib, the 

levels of phosphorylated T308 as well as S473 Akt were also reduced, suggesting that the PDK1- 

mediated phosphorylation might play a crucial role in the full activation of Akt (Toker and Newton, 

2000). Furthermore, this also indicates that the expression of hScrib might positively regulate the 

PI3K pathway. In the case of S6 kinase, this protein is expressed as two isoforms, p70 and p85, 

which share the same sequence with the exception that the p85 isoform has an extended N-terminus 

encoding a nuclear localization signal that promotes its nuclear accumulation (Pullen and Thomas, 

1997). The mTORCl-mediated phosphorylation of a threonine residue which is located at position 

389 in p70 and at position 412 in p85 is most critical for their function in vivo (Weng et al., 1998); 

therefore we also monitored this phosphorylation event upon silencing of hScrib in HeLa cells. 

Similar to PDK1, the ablation of hScrib also led to the downregulation of total and phosphorylated
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Figure 30. The expression of hScrib in HeLa cells maintains high levels of total 

PDK1 and S6 kinase levels. A. A cartoon summarizing the main components of the 

mTORCl pathway is shown. The relative position of the components along the 

pathway as well as activating phosphorylation events are depicted. Adapted from 

Cheng and Force, 2010. B. HeLa cells were transfected with siRNA Luciferase or 

siRNA hScrib. 72 hours after transfection cells were harvested and the patterns of 

expression of total and phosphorylated levels of Akt, PDK1 and S6 kinase as well 

as those of hScrib and a-actinin as loading control, were assessed by western blot.



p70 and p85 S6 kinase. Previous studies indicated that the expression of HPV-16 E6 in human 

keratinocytes is sufficient to promote the activation of PDK1 and S6 kinase (Spangle and Monger, 

2010), therefore we decided to also include siRNA against HPV-18 E6 in the analysis, in order to 

rule out the possibility that effects on PDK1 and S6 kinase activity produced by the ablation of 

hScrib are indirectly linked to a reduction of E6 levels. Since previous studies suggested that E7 

can also affect the levels of components of the PI3K pathway (Pirn et al., 2005; Menges et al., 

2006; Charette and McCance, 2007), we decided to use an siRNA that targets the intronic region of 

the E6 ORF. This strategy has been shown to efficiently inhibit the expression of HPV-18 E6 

whilst only marginally affecting the expression of HPV-18 E7 and E6* (Butz et al., 2003), which is 

consistent with the fact that type-I transcripts encoding the full-length E6 and E7 proteins are 

expressed at significantly lower levels than type-II and III transcripts, which encode E6* and E7 

(Schneider-Gadicke and Schwarz, 1986). As can be seen in Figure 31a, silencing of HPV-18 E6 

produced a reduction in levels of total and phosphorylated PDK1 comparable to that obtained by 

the ablation of hScrib. This indicates that the effect on PDK1 expression could be, at least in part, 

linked to the reduction in E6 levels upon loss of hScrib in HeLa cells. Interestingly, however, the 

silencing of E6 did not downregulate total and phosphorylated S6 kinase protein levels compared 

with siScrib cells, suggesting that hScrib might be regulating protein translation through the 

modulation of the S6 kinase activity.

The fact that loss of hScrib expression led to a reduction of total S6 kinase levels might indicate 

that this is linked to increased turnover of the protein. To assess whether the reduced levels of S6 

kinase might result from increased degradation, we repeated the silencing of hScrib in HeLa cells 

in the presence of the proteasome inhibitor MG-132. 72 hours posttransfection, siLuciferase or 

siScrib HeLa cells were left untreated or treated with MG-132 for an additional 3 hours prior to 

harvesting. The levels of total and phosphorylated forms of PDK1, S6 kinase and also HPV-18 E6 

were assessed by western blotting. The results are shown in Figure 31b, and, as can be seen, the 

ablation of hScrib again led to the efficient reduction in the levels of E6 expression. The 

proteasome inhibition led to a strong accumulation of HPV-18 E6 levels in siLuciferase HeLa cells,
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which is in agreement with previous studies suggesting that E6 is regulated by the proteasome in a 

E6AP-dependent manner (Stewart et al., 2004). Interestingly, upon silencing of hScrib the 

proteasome inhibition did not induce a rescue of E6 protein levels, which is consistent with the 

result in Figure 28 showing that loss of hScrib does not affect E6 protein stability. Upon 

proteasome inhibition total and phosphorylated PDK1 were upregulated in siLuciferase HeLa cells, 

suggesting that PDK1 is also regulated through the proteasome. In hScrib-silenced cells, however, 

PDK1 displayed a pattern of expression similar to E6, with the MG-132 treatment failing to rescue 

total and pS241 levels. Conversely, total S6 kinase levels were only marginally modified upon 

proteasome inhibition, both in siLuciferase and siScrib HeLa cells, indicating that its expression is 

most likely not regulated through the proteasome. However when the levels of phosphorylated S6 

kinase were monitored upon MG-132 treatment, phospho-p85 S6 kinase levels were massively 

increased in both siLuciferase and siScrib transfected cells whereas phospho-p70 remained 

relatively unaffected. These data suggest that total and phospho-p70 are not regulated by the 

proteasome, whereas phospho- and total p85 display a differential mechanism of regulation and 

loss of hScrib might promote the proteasome-mediated degradation of phospho-p85 S6 kinase.

70



A HeLa B HeLa

Phosp hD-pS5 S6< 
Phospho p70 S6K

pJSSSK

p70S5K

Figure 31. HPV-18 E6 regulates the expression levels of PDK1 but not those of S6 

kinase. A. HeLa cells were transfected with siRNA Luciferase, siRNA hScrib and 

siRNA E6. 72 hours after transfection cells were harvested and the expression 

patterns of total and phosphorylated PDK1 and S6 kinase, as well as those of 

hScrib, HPV-18 E6 and a-actinin as loading control, were assessed by western blot. 

B. The siRNA transfection was performed as in A, but cells were treated with the 

proteasome inhibitor MG-132 for an additional 3 h prior to harvesting. The 

expression pattern of total and phosphorylated PDK1 and S6 kinase, as well as 

those of hScrib, HPV-18 E6 and a-actinin as loading control, were assessed by 

western blot.
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Discussion

Part I:

E6-mediated regulation of PDZ domain-containing proteins in HPV-positive cells

A number of PDZ domain-containing substrates of E6 have been described, and many of these

proteins are involved in diverse regulatory pathways, including the assembly of cell-cell junctions

and cell attachment, and in the control of cell signaling. Potential tumor suppressor activities have

also been assigned to several of these proteins. An important question that remains to be answered

is whether or not all of these substrates are equally susceptible to E6-induced degradation in vivo,

and how the relevant pathways they regulate might contribute to HPV-related malignancy. In an

attempt to provide an answer to that, in our analysis we used specific siRNAs to silence the

expression of E6 and E7 and E6AP in HPV-16 and HPV-18 transformed cell lines with the aim of

identifying potential E6 PDZ domain-containing substrates relevant for HPV carcinogenesis in

vivo. Recent structural studies had shown that the PDZ recognition by the HPV-16 and HPV-18 E6

PBMs requires very defined structural features, and minimal variations in the sequences of either

the PBM or of the target PDZ domains has dramatic effects upon the pattern of substrate selection,

as well as in the recognition of specific PDZ domains within the same protein (Zhang et al., 2007).

This is also supported by in vitro studies in which hDlg, hScrib and MAGI-1 were shown to be

differentially selected for degradation by HPV-16 and HPV-18 E6 oncoproteins, with the former

being more efficient for binding to hScrib, whereas HPV-18 E6 displays an increased affinity for

hDlg and MAGI-1 (Gardiol et al., 1999; Pim et al., 2000; Thomas et al., 2001; Thomas et al.,

2005). Although residues located upstream of the canonical PBM of E6 oncoproteins have been

shown to contribute to the interaction with PDZ domains (Zhang et al., 2007; Thomas et al.,

2008a), the major contribution towards the differential selection of these PDZ proteins is brought

by the last residue of their PBM; respectively V and L in HPV-18 and -16 E6. This was further

underlined by recent biacore measurements of the IQ values for the association of MAGI-1 PDZ

domain 1 with the PBMs of HPV-16 and HPV-18 E6. These studies suggested that by mutating the

HPV-16 E6 PBM into that of HPV-18 E6 (-ETQL—>V) the affinity of MAGI-1 PDZ domain 1 for
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HPV-16 E6 could be increased of three folds (Foumane et al., 2011). Similarly, by swapping the 

two PBMs HPV-16 E6 becomes more efficient in degrading hDlg and MAGI-1, whereas HPV-18 

E6 increases its efficiency in degrading hScrib (Thomas et al., 2001; Thomas et al., 2005). In 

agreement with all these studies, the data presented in Figures 10, 11 and 12 strongly suggest that 

the proteolytic degradation of PDZ proteins by E6 in HPV-transformed cells, is a highly specific 

process that involves the targeting of a specific subset of host-encoded PDZ domain-containing 

proteins.

In our study, we found that the levels of MAGI-1 expression are very low in HPV-16 and HPV-18- 

positive cells, and increased significantly following ablation of E6/E7 expression. As shown in 

Figure 11, the silencing of E6 and E7 led to a dramatic rescue of MAGI-1 protein levels in HeLa 

and SiHa cells, whereas the rescue in CaSKi was somewhat more marginal. However, the fact that 

MAGI-1 levels of expression were efficiently rescued in SiHa, but not in CaSKi, upon ablation of 

HPV-16 E6 and E7 suggests that the low levels of MAGI-1 expression in CaSKi cells might not be 

directly dependent upon HPV-16 E6 expression, and indicates that MAGI-1 is a sensitive 

proteolytic substrate for both HPV-18 and HPV-16 E6 oncoproteins in vivo. A marked difference 

in the pattern of HPV-16 and HPV-18 E6 PDZ substrate selection appears to be particularly 

relevant for some other potential targets, including hDlg, hScrib and PSD95. An interesting aspect 

of hScrib and hDlg expression in HPV-positive cells is that their levels are readily detectable in 

HeLa and CaSKi cells. Upon ablation of E6 and E7, hScrib appears to be rescued more efficiently 

in CaSKi than in HeLa cells (Figure 10a and 10c), whereas hDlg showed the higher degree of 

rescue in HeLa cells at 48 and 72 hours post transfection (Figure 10a and 10b). However, an 

increase in hDlg levels became more apparent at 72h after transfection also in CaSKi cells (Figure 

10b), suggesting that HPV-16 E6 retains the ability to promote the degradation of hDlg in HPV- 

transformed cells. It is also interesting to note that upon silencing of E6 and E7 the pattern of hDlg 

expression differed between HeLa and CaSKi cells, likely representing differentially modified 

forms or different isoforms of hDlg. This suggests that both HPV-16 and HPV-18 E6 target hDlg 

for degradation in vivo, but they might differ in the selection of the pools of hDlg targeted for

" 72



degradation. Similarly, we found that the hDlg-related protein, PSD95, is efficiently targeted by 

HPV-18 E6, but less so by HPV-16 E6 (Figure 12b), and this is in agreement with previous reports 

(Handa et al., 2007). Silencing of E6AP largely confirmed the differential PDZ substrate selection 

pattern between HPV-16 and HPV-18 E6. It would be of interest to better define the contribution of 

E6AP towards the degradation of E6 PDZ substrates, since previous studies reported that E6 can 

degrade its substrates also in a E6AP-independent manner (Massimi et al., 2008b). However, in our 

experimental setting it is hard to obtain conclusive evidence about the involvement of E6AP in the 

E6-mediated degradation of its substrates, since loss of E6AP expression has been shown to greatly 

affect E6 stability (Tomaic et al., 2009), making it virtually impossible to differentiate their 

respective contribution towards the degradation of E6 substrates under these experimental 

conditions.

Of the remaining PDZ substrates of E6 that were analysed, we failed to obtain conclusive evidence 

that PTPN3 (Figure 12a) or TIP2 (Figure 12c ) were targeted for degradation either by HPV-16 or 

HPV-18 E6 in monolayer cultures of cells derived from cervical tumors and. This is in marked 

contrast with previous studies suggesting that TIP2 and PTPN3 are targeted for proteasome- 

mediated degradation by high-risk HPV E6 oncoproteins (Favre-Bonvin et ah, 2005; Topffer et al., 

2007; Jing et al., 2007). However, these studies do not rule out the possibility that these PDZ 

domain-containing proteins may be degradation substrates of E6 in other biological settings: during 

different stages of the normal viral life cycle where the cells are subject to terminal differentiation, 

or at an earlier stage of tumour development. This might reflect differences in the phosphorylation 

status of the target protein, which could influence accessibility to E6 and subsequent targeting 

(Massimi et al., 2006; Narayan et al., 2009). Finally, we should also emphasize that, although 

degradation has been proposed as a major mechanism by which E6 exerts its function, it is possible 

that some of these substrates may be only bound by E6, and that blocking a certain PDZ substrate- 

ligand interaction might be sufficient for E6 to modulate the function of that particular cellular 

PDZ domain-containing protein, or alternatively, E6 might also alter the localization of the 

substrate.
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The last E6 PDZ domain-containing substrate analysed in our study was the non-receptor tyrosine 

phosphatase PTPN13 or FAP-1. We included this protein in our analysis since previous studies 

described FAP-1 as a proteolytic target for the HPV-16 E6 oncoprotein in tonsillar keratinocytes 

(Spanos et al., 2008b). In our analysis we detected very low levels of FAP-1 expression in HeLa 

cells, whereas higher FAP-1 protein levels were expressed in CaSKi cells. Surprisingly, the 

expression of FAP-1 was downregulated in both HPV-positive cell lines upon ablation of E6 and 

E7, whereas its levels were unchanged upon silencing of E6AP in CaSKi cells (Figure 12d). This 

pattern of expression in CaSKi cells would fit with a possible involvement of E7 in the regulation 

of FAP-1. This possibility is particularly intriguing since two sequences matching the putative E2F- 

binding site TTTSSCGC (where S is C or G) are present in the promoter region of FAP-1 (C.K. 

personal observation; Abaan and Toretsky, 2008). This suggests that that HPV-16 E7 could 

indirectly drive the expression of FAP-1 through the destabilization of E2F/pRB complexes.

Considering the differences in the regulation of FAP-1 by HPV E6 in head and neck and cervical 

cancer-derived cells, it is important to note that there appear to be some significant differences 

between HPV-mediated head and neck and cervical carcinogenesis. Recent studies in which HPV- 

16 E6 and E7 were expressed in head and neck tissues, under the control of the K14 promoter, 

suggested that in head and neck tumors the carcinogenic potential of HPV-16 is less dependent 

upon the ability of E6 to interact with E6AP and its PDZ domain-containing substrates (Jabbar et 

al., 2010) compared with models for cervical carcinogenesis (Shai et al., 2007a ; Shai et al., 2010), 

indicating that in different tissues HPV oncoproteins might follow different routes of oncogenic 

transformation. In addition, these differences are also underlined by the fact that although the p 16 

expression is generally accepted as a surrogate marker for cervical cancer progression (Tsoumpou 

et al., 2009), the correlation between the p i6 overexpression and HPV-positive cancers in different 

head and neck tissues appears not to be unequivocal (Hoffaman et ah, 2012), possibly reflecting 

tissue specific differences.

FAP-1 function appears to be highly pleiotropic and context-dependent. Consistent with this, 

several reports ascribe to FAP-1 both tumor suppressive and tumor promoting functions (Abaan
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and Toretsky, 2008). A relevant aspect of FAP-1 biological activity is its effect on Fas-mediated 

apoptosis. The activation of the Fas (CD95/APO-1) receptor, which is exposed on the cell surface, 

occurs through the engagement of the Fas ligand (FasL/CD95L), a trimeric protein belonging to the 

tumor necrosis factor (TNF) superfamily, ultimately resulting in the induction of caspase-8-medited 

apoptosis. Expression of FAP-1 has been correlated either with a decreased expression of FasR on 

the cell surface (Ungefroren et al., 2001; Ivanov et al., 2001) or with the deregulation of the Fas- 

associated pro-apoptotic signaling (Meinhold-Heerlein et al., 2001; Foehr et al., 2005; Wieckowski 

et al., 2007), thereby prolonging the survival of FAP-1 expressing cells. The maintenance of FAP-1 

expression in the context of viral life cycle could then represent an additional strategy to escape 

apoptosis or evade the immune system surveillance, since the Fas-associated signaling is one of the 

prime mediators of T-cell-mediated cytotoxicity towards virus-infected cells (Ju et al., 1994). This 

hypothesis is also reinforced by the fact that HPV-16 E5 has been shown to downregulate FasR 

protein levels and its membrane targeting. In addition, other viruses, including adenovirus, KSHV 

and HTLV-1, have evolved similar mechanisms to block Fas-mediated apoptosis (Shisler et al., 

1997; Tollefson et al., 1998; Belanger et al., 2001; Okamoto et al., 2006). Obviously, further 

studies are required to determine whether E7 can upregulate FAP-1 in an E2F-dependent manner.

Since biochemical data suggest that MAGI-1 is the strongest interacting partner of HPV E6

(Thomas et al., 2001, Zhang et al., 2007) we focused on further defining the relevance of MAGI-1

degradation in HPV-induced malignancy. MAGI-1 is a TJ-associated protein whose best

understood function is its ability to promote TJ assembly (Hirabayashi et al., 2003; Murata et al.,

2005). However, the sequence analysis of MAGI-1 reveals the presence of a strong bipartite

nuclear localization signal in the carboxy terminus of the protein (Dobrosotskaya et al., 1997),

consistent with there being a pool of MAGI-1 normally resident within the nucleus of epithelial

cells (Dobrosotskaya and James, 2000; Kranjec and Banks, 2011). Thus, this complex pattern of

distribution suggests that MAGI-1 is likely to be involved in additional biological processes beside

its ability to promote the assembly of junctional complexes. Using differential cell fractionation we

verified that the abolition of E6/E7 expression restores MAGI-1 expression at two main locations

within HPV-positive cells: the cell membrane and the cell nucleus (Figure 13a). This suggests that
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whatever functions these two pools of MAGI-1 perform, the removal of one or both has advantages 

for the virus. Fractionation experiments in HPV-negative cells, however, revealed high levels of 

MAGI-1 expression also in the cytoplasm (Figure 13b), suggesting that the pattern of MAGI-1 

localization is likely to be dynamic and cell-type specific. There are currently no studies available 

that could offer an explanation for what MAGI-l’s function is in the nucleus. Further studies will 

aim at more fully defining the functions of this form of the protein.

In contrast, the membrane-bound form of MAGI-1 has been implicated in the control of TJs 

(Murata et al., 2005), which are lost in HPV-positive cells (Nakagawa and Huibregtse, 2000; 

Latorre et al., 2005; Storrs and Silverstein, 2007). The results reported here show that this loss is 

indeed a result of E6 directing the degradation of MAGI-1. Using ZO-1 as a marker of TJ integrity, 

we have confirmed that these junctions are largely absent in HPV-18-positive HeLa cells, and that 

ablation of E6 expression results in a clear re-accumulation of MAGI-1 at the cell membrane, 

accompanied by an accumulation of ZO-1 at the same cellular location (Figure 14). Interestingly, 

this appears to be a slow process, with a bead-like structure, indicative of the early stages of 

junction formation (Kimura et al., 2010), apparent at 72h after transfection with E6/E7 siRNA, and 

more complete junctions visible by 96h. To verify that restoration of TJs depends upon the rescue 

of MAGI-1 from E6-induced degradation, we co-transfected a MAGI-1 siRNA with the E6/E7 

siRNA, and in this case there was no evidence of TJ formation (Figure 14). Recent studies 

suggested that hScrib is also strongly implicated in the process of epithelial TJ assembly 

(Nakagawa and Huibregtse, 2000; Ivanov et al., 2010; Elsum et al., 2013). However, upon 

silencing of hScrib in combination with E6 and E7 in HeLa cells we failed to detect any deleterious 

effect upon ZO-1 junctional recruitment (Figure 15a), confirming the specificity of the results with 

MAGI-1.

Potential roles played by MAGI-1 in HPV-related disease

A particularly interesting structural insight in the context of MAGI-1 regulation by E6, has been the 

identification of lysine 499 within the PDZ-1 domain as a crucial residue required for the 

interaction with the PBM of HPV-16 and HPV-18 E6 oncoproteins (Foumane et al., 2011).
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Consistent with this, mutating K499 to E in the context of full length MAGI-1, we were able to 

dramatically decrease the affinity of MAGI-1 for HPV-18 and HPV-16 E6 oncoproteins (Figure 

16c and 16d), and this also correlated with a reduced ability of E6 to induce the proteasome- 

mediated degradation of MAGI-1, in vitro and in vivo (Figure 17). The PDZ domain 1 of MAGI-1, 

has also been identified as the interacting region for the PBM of multiple cellular proteins, and one 

of such binding partner is NET1 (Dobrosotskaya, 2001). NET1 is a RhoA-specific guanine 

nucleotide exchange factor which is involved in a number of cancer-associated biological 

processes, including cell migration, proliferation and matrix invasion (Murray et al., 2008; Han et 

al., 2012). By performing co-immunoprecipitation assays we confirmed that NET1 is a binding 

partner for wild type MAGI-1 in vivo, and that the K499E mutation also strongly affects the 

interaction of MAGI-1 with NET1 (Figure 18a). However, the K499E mutation might not 

completely disrupt the functionality of the PDZ 1 domain, as the interaction with HPV-58 E6 was 

shown to be not affected by the mutation (Figure 18c). Furthermore, by performing 

immunofluorescence on wild type or K499E mutant MAGI-1-transfected cells, we showed that the 

mutation does not significantly modify the pattern of subcellular localization of MAGI-1, and also 

does not affect its interaction with a membrane-bound protein such as P-catenin (Figure 19).

The generation of the K499E MAGI-1 mutant provided a valuable molecular tool for exploring its

role in the context of HPV-related pathology, since it allowed us to evaluate the effects of

reintroducing MAGI-1 expression in HPV-positive cells without the need to silence E6 and E7

expression. By transiently expressing wild type and mutant MAGI-1 in HeLa cells, we confirmed

that MAGI-1 expression alone is sufficient to drive TJ reassembly in HPV-positive cells, which

was assessed by monitoring the expression of ZO-1 and another TJ marker, PAR3 (Figure 20a, 20b

and Figure 21). However, both ZO-1 and PAR3 have a dynamic pattern of junctional localization,

and have been shown to co-localize with AJ components during the induction of primordial AJ

structures following initial cell-cell contact (Ando-Akatsuka et al., 1999; Suzuki et al., 2002).

Therefore, we cannot rule out the possibility that the ZO-1- and PAR3-positive junctional

structures observed in MAGI-1-expressing cells are infact primordial AJs. Nevertheless, these data

strongly suggest that MAGI-1 directly participates in the establishment of macromolecular
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complexes that localize at the TJ plaque in fully polarized cells. PAR3 is part of the PAR complex 

which localizes and controls the maturation of TJs, however PAR3 has been shown to be able to 

promote TJ assembly independently of PAR6 and aPKC (Chen and Macara, 2005), suggesting that 

PAR3 is one of the prime regulators of TJ formation. Therefore, the fact that MAGI-1 enhances 

PAR3 junctional localization strongly suggests the involvement of MAGI-1 in the establishment of 

cell polarity by inducing the formation of apical junctional structures (Murata et al., 2005). In 

support of this, the expression of MAGI-1 and PAR3 have been shown to have similar effects on 

the recruitment of occludin at TJs (Hirabayashi et al., 2003; Chen and Macara, 2005). However, so 

far a direct interaction of MAGI-1 with either ZO-1 or PAR3 has not been shown, suggesting that 

their MAGI-1-mediated junctional recruitment is likely to occur in an indirect way. MAGI-1 as 

well as ZO-1 and PAR3 have all been shown to interact with JAMs which are enriched at the TJs 

of epithelial cells (Ebnet et al., 2000; Bazzoni et al., 2000; Itoh et al., 2001; Ebnet et al., 2003; 

Hirabayashi et al., 2003). The interaction of the cytoplasmic domain of JAM molecules with 

components of the TJ plaque has been shown to promote their stabilization. Therefore it is likely 

that the expression of MAGI-1 might promote the initial clustering of JAM molecules at the cell 

membrane (Hirabayashi et al., 2003 ), which subsequently also drives the recruitment of ZO-1 and 

PAR3. Figure 32 summarizes the role of MAGI-1 in maintaining TJ integrity as well as in 

regulating proliferation and apoptosis, and describes the effects of E6 expression in the context of 

MAGI-1 activity.

These results demonstrate that the loss of TJs in HPV-18 positive HeLa cells is a direct 

consequence of the ability of E6 to direct the degradation of MAGI-1, and might provide a an 

explanation of why this protein is targeted by the virus during the life cycle and by E6 in 

malignancy.

TJs play an important role in differentiation where their correct assembly promotes the exit from 

the cell cycle and contributes to keratinocyte differentiation (Saitou et al., 2000; Bordin et al., 

2004; Aijaz et al., 2005). Loss of TJs can therefore be expected to delay the differentiation process. 

In addition, TJs directly participate in the regulation of cell proliferation by modulating signaling
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cascades such as MAPK, PKB/Akt and RhoA signaling (Li and Mrsny, 2000; Kotelevets et al., 

2005; Aijaz et al., 2005). Interestingly, both ZO-1 and PAR3 are believed to be involved in 

controlling cell proliferation; while ZO-1 binds and sequesters the transcription factor 

ZONAB/DbpA at the cell membrane (Baida et al., 2003), PAR3 is believed to potentially regulate 

cell proliferation through the modulation of the p53-binding partner ASPP2 (Sottocomola et al.,

2010). In our cell proliferation assay, we found that the expression of wild type MAGI-1 had 

dramatic effects upon the proliferative potential of HeLa cells (Figure 22). However this effect was 

shown to be largely independent of the junctional recruitment of ZO-1 and PAR3. Consistent with 

this, the K499E mutant MAGI-1 was less efficient than the wild type protein in inhibiting cell 

proliferation yet displaying the same efficiency as the wild type protein in promoting ZO-1 and 

PAR3 junctional recruitment. Most importantly, the effects of MAGI-1 upon cell proliferation 

appear to be specific for HPV-positive cells, since the transfection of wild type and mutant MAGI- 

1 into HaCaT cells had a much weaker effect upon cell proliferation (Figure 23).

This suggests that MAGI-1 can regulate cell proliferation through a mechanism not involving its 

junctional recruitment. An intriguing possibility is that MAGI-1 might regulate cell proliferation, at 

least in part, through the modulation of RhoA activity (Figure 32a). This is supported by the fact 

that MAGI-1 interacts with the RhoA-specific activator NET1, and that MAGI-1 had already been 

shown to modulate the activity of another small GTPase Rapl, with consequent stabilization of 

vascular-endothelial cell adhesion structures (Mino et al., 2000; Sakurai et al., 2006;). In addition, 

RhoA and NET1 have already been described as positive regulators of cell cycle progression 

(Leyden et al., 2006; Han et al., 2012). The decreased ability of the K499E mutant MAGI-1 to 

inhibit cell proliferation would then be consistent with its reduced capacity to interact with NET1. 

It is also interesting to note that recent studies had shown that NET1 is mainly localized in the 

nucleus of epithelial cells, where its activity is required to maintain RhoA in an active GTP-bound 

state (Garcia-Mata et al., 2007; Dubash et al., 2011). Although the effect that the MAGI-1 could 

have on NET1 is still not clear, these data potentially provide a possible biological function for the 

nuclear pools of MAGI-1 in regulating RhoA activity, and might suggest that the targeting of
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nuclear pools of MAGI-1 contributes to increase the proliferation of HPV-positive cells (Figure 

32b).

Our data also suggest a new function for MAGI-1 in the induction of apoptosis of HPV-positive 

cells. We hypothesized a possible involvement of MAGI-1 in the regulation of apoptosis since 

upon expression of wild type and K499E mutant MAGI-1 in HeLa cells, we noticed that a 

proportion of MAGI-1-positive cells were also displaying a morphology typically associated with 

apoptosis. In order to determine whether MAGI-1 could indeed promote apoptosis we performed 

TUNEL assays on HeLa cells transiently transfected either with wild type or K499E MAGI-1 

constructs (Figure 24a). Our data strongly suggest that both the wild type and mutant MAGI-1 can 

promote the apoptosis of HeLa cells. It is also interesting to note that the K499E mutant MAGI-1 

displayed an efficiency in the induction of apoptosis that was comparable to that of the wild type 

protein. Therefore, this might suggest that the regulation of apoptosis by MAGI-1 is not dependent 

upon functions associated with the PDZ1 domain. Furthermore, as for the induction of junctional 

assembly in HeLa cells, the increased resistance of the K499E mutant MAGI-1 to E6-mediated 

degradation also correlated with an increased subpopulation of HeLa cells undergoing apoptosis 

(Figure 24a and Figure 25).

Therefore, taken together these data strongly indicate that the E6-mediated degradation of MAGI-1 

could represent an additional mechanism evolved by high-risk HPV types to escape apoptosis.

Previous studies had suggested that TJ assembly might also be implicated in the regulation of 

apoptosis. It is interesting to note that the PAR3 binding partner ASPP2 has been shown to be 

strongly implicated in the induction of apoptosis by promoting the p5 3-mediated transactivation of 

pro-apoptotic p53 target genes, including Bax, PUMA, and Fas/CD95 (Samuels-Lev et al., 2001; 

Wilson et ah, 2013). In addition, given the fact that ASPP2 localizes at cellular junctions in a 

PAR3-dependent manner (Sottocomola et al., 2010), it is tempting to speculate that the MAGI-1- 

induced junctional recruitment of PAR3 could play some role in the pro-apoptotic activity of 

ASPP2. It is also interesting to note that the inactivation of p53 by E1B did not affect the ability of 

ASPP2 to induce apoptosis (Kobayashi et al., 2005), suggesting that ASPP2 can induce apoptosis
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Figure 32. A. Cartoon summarizing the regulation o f TJ integrity and apoptosis by 

MAGI-1. A possible role for the nuclear pools of the protein in inhibiting RhoA 
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in a p53-independent manner. In addition, recent studies showed that loss of occludin mediated the 

resistance of squamous cell carcinoma cells to apoptotic stimuli (Rachow et al., 2013), suggesting 

that the maintenance of TJ integrity can play important roles in the regulation of apoptosis.

Part II: 

Regulation of HPV-18 E6 expression by hScrib

From the data presented in this thesis and elsewhere (Thomas et al., 2001; Nguyen et al., 2003a; 

Thomas et al., 2005; Simonson et al., 2005; Shai et al., 2007; Kranjec and Banks, 2011) it is clear 

that the targeting of PDZ domain-containing proteins by E6 plays an important role in the 

pathogenesis of cervical cancer. In addition, E6 oncoproteins can select specific PDZ proteins to 

target for proteasome-mediated degradation and recent studies indicated that different subcellular 

pools of PDZ proteins are subjected to differential regulation by E6 (Narayan et al., 2009; Krishna 

Subbaiah et al., 2012). Increasing evidence also suggests that certain PDZ domain-containing 

proteins or specific subcellular pools can cooperate with E6 in the maintenance of the transformed 

phenotype (Krishna Subbaiah et al., 2012). In our study we identified an unexpected role for hScrib 

in the context of the HPV-related pathology through the regulation of HPV-18 E6 protein 

translation. Previous studies already suggested that the maintenance of high-risk HPV episomes in 

human keratinocytes is dependent upon the ability of E6 to interact with its PDZ domain- 

containing substrates (Lee and Laimins, 2004; Nicolaides et al., 2011; Delury et al., 2013). In 

addition, the interaction of HPV-16 E6 with multiple host encoded PDZ domain-containing 

proteins was shown to regulate its levels of expression, suggesting that this effect is mediated by 

the engagement of the E6 PBM with multiple PDZ proteins rather than involving a specific PDZ 

domain-containing substrate of E6. However, all of these assays involved overexpression settings, 

and an analysis of the potential regulation of E6 by PDZ domain-containing proteins at an 

endogenous level was still missing. By ablating a pool of PDZ domain-containing proteins in HeLa 

cells we found that only loss of hScrib expression reduced endogenous levels of HPV-18 E6 

expression (Figure 26). This suggests that in the context of endogenously expressed protein only 

hScrib appears to modulate E6 levels of expression.



Before discussing the hScrib data in more detail, it is worth considering the results obtained in 

Figure 26 with the ablation of the other PDZ domain-containing proteins. Upon silencing of hScrib, 

hDlg, TIP2, PSD95 and PTPN3, we observed a general increase in E6AP expression levels. In the 

case of hScrib, the upregulation of E6AP expression could be related to the reduction of E6 

expression, since previous studies showed that E6 can promote the proteasome-mediated 

degradation of E6AP (Kao et al., 2000). However, the fact that the loss of the other PDZ proteins 

elevated E6AP levels, without affecting the expression of E6, could suggest a more direct 

involvement of these proteins in the regulation of E6AP levels. Similarly, p53 levels were shown to 

be increased upon the ablation of all of the PDZ proteins included in our analysis. So far, previous 

studies identified only TIPI as a putative PDZ protein able to modulate p53 protein levels (Han et 

al., 2012). Nevertheless, our data strongly suggest that the expression of additional PDZ proteins 

could modulate the pattern of p53 expression in HPV-positive cells, at least in part, in a E6- 

independent manner. Whether this is a general stress response triggered by the loss of these PDZ 

proteins, or a more specific effect remains to be determined. Furthermore, we also observed that 

there is a significant interplay between the different PDZ domain-containing proteins in HPV- 

positive cells. This is particularly evident in the case of hScrib, whose levels of expression were 

dramatically increased upon ablation of hDlg in HeLa cells. Although previous studies failed to 

observe a change in the levels of hScrib expression upon loss of hDlg (Ivanov et al., 2010), our 

data suggest that compensatory effects between different PDZ domain-containing proteins might 

exist in HeLa cells.

Further analysis of the mechanisms through which hScrib exerts these effects on E6 expression

appears to rule out an effect on E6 protein turnover, since its half-life was unchanged upon ablation

of hScrib (Figure 28). Furthermore, in our fractionation experiments we failed to detect any

variation in the pattern of subcellular localization of HPV-18 E6 upon loss of hScrib (Figure 27),

suggesting that the pattern of E6 expression was not affected by loss of hScrib. This assay did

however highlight a number of points about E6. First we confirmed that HPV-18 E6 displays a

differential pattern of subcellular localizations, with the bulk of it being expressed at membrane

bound sites (Grossman et al., 1989). In addition, previous studies had shown that HPV-18 E6
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promotes the nuclear export of p53 in order to drive its degradation primarily through the cytosolic 

proteasome pathway, although E6 can drive the nuclear degradation of p53 albeit with lower 

efficiencies (Freedman and Levine, 1998; Stewart et al., 2005). We found that p53 localizes in 

nuclear as well as membrane fractions in siLuciferase transfected HeLa cells, and the reduction of 

the levels of E6 expression induced by the loss of hScrib expression led to an increase in p53 

protein levels in both nuclear and in extra-nuclear fractions of HeLa cells, confirming that HPV-18 

E6 can degrade different pools of p53. However, this does not appear to fit with the E6-mediated 

relocalization of p53. We also observed that HeLa cells express high levels of nuclear hScrib and 

E-cadherin. Previous studies have defined that the tumor-suppressive functions of hScrib are highly 

dependent upon its membrane localization, and consistent with this the displacement of hScrib 

from the membrane to the cytoplasm has been described to interfere with hScrib pro-apoptotic 

activity (Liu et al., 2010; Zhan et al., 2008) and with its ability to regulate the Hippo pathway 

(Cordenonsi et al., 2011). In HeLa cells we detected hScrib predominantly in the nucleus and in the 

membrane, with lower levels of expression present in the cytoplasm. Importantly, so far no nuclear 

localization for hScrib has been described, and it is interesting to speculate that E6 might play a 

role in the nuclear accumulation of hScrib, although the possible function of nuclear pools of 

hScrib remains to be determined. On the other hand, the aberrant cleavage of E-cadherin and the 

nuclear localization of its cytoplasmic domain have been correlated with the loss of the epithelial 

phenotype and acquisition of tumorigenic properties in epithelial cells (Ferber et al., 2008; Chetty 

et al., 2008; Salahshor et al., 2008). However, recent studies detected high levels of full length E- 

cadherin expression in the nucleus of a proportion of metastatic colorectal cancer cells, indicating 

that the mislocalization of full length E-cadherin is potentially an important event during invasive 

cancer progression (Salahshor et al., 2008). The nuclear expression of E-cadherin in HeLa cells 

might then be consistent with their high tumorigenic potential. The HPV oncoproteins are known to 

downregulate the E-cadherin expression by inducing hyper-methylation of its promoter (Laurson et 

al., 2010; D'Costa et al., 2012), however these data suggest that part of the residual E-cadherin 

expressed in HeLa cells might be aberrantly localized in the nucleus, possibly contributing to their 

tumorigenic potential.



Previous studies have shown that the pattern of endogenous HPV-18 E6 expression in HeLa cells 

can be modulated by some of its cellular binding partners, including E6AP and 14-3-3 proteins 

(Tomaic et al., 2009; Boon and Banks, 2013), with loss of E6AP associated with a strong reduction 

of E6 half-life (Tomaic et al., 2009). Ablation of hScrib in HeLa cells did not significantly affect 

E6 turnover or the transcription of its mRNA (Figure 28), but dramatically perturbed the recovery 

of HPV-18 E6 protein levels upon release from the inhibition of protein translation (Figure 29); this 

is consistent with the involvement of hScrib in the regulation of E6 translation, previously shown to 

be cap-dependent (Tan et al., 1994; Stacey et al., 2000). It is also interesting to note that although 

E6 and E7 are transcribed from the same mRNA, they appear to be translated through different 

mechanisms; with E7 translation displaying a reduced cap-dependency and being potentially 

translated through an IRES-dependent mechanism (Stacey et al., 1995; Stacey et al., 2000).

Intriguingly, we found that upon loss of hScrib the half-life of p53 (Figure 28a) was also 

significantly increased in HeLa cells, consistent with reduced levels of E6 expression, whereas its 

translation efficiency was largely unaffected (Figure 29a). However, p53 has been reported to be 

translated through both cap-dependent and cap-independent mechanisms due to the presence of a 

internal ribosome entry site (IRES) in its 5’-UTR (Ray et al., 2006). Therefore, this suggests that 

the pattern of p53 expression upon loss of hScrib is linked to the reduced expression of HPV-18 E6 

but is independent from the hScrib-regulation of protein translation.

As an attempt to define the molecular mechanism by which loss of hScrib could affect protein 

translation we analysed the effects on the phosphatidylinsositol-3 kinase (PI3K)/mammalian target 

of rapamycin complex 1 (mTORCl) pathway. This pathway is known to integrate the availability 

of nutrients present in the environment surrounding the cells to with the activation of anabolic 

pathways, and the stimulation of protein translation is the best understood mechanism through 

which the PI3K/mTORCl pathway promotes cell growth and proliferation (Fingar and Blenis, 

2004). Since the functionality of both pathways is required for the effective activation of protein 

translation, it is important to note that our study highlighted that E6 and hScrib might act 

synergistically to activate protein translation through the regulation of separate components of



PI3K and mTORCl pathways. Our data suggest that silencing of E6 in HeLa cells leads to a 

reduction in the levels of PDK1 expression (Figure 31a). PDK1 is a direct downstream effector of 

PI3K, and one of the better understood functions associated with its activity is the phosphorylation 

of Akt in its activation loop (or T-loop) at threonine 308 (T308). Previous studies suggested that, 

upon activation of the PI3K pathway, the kinetics of Akt activation involve its mTORC2-mediated 

phosphorylation at S473, which in turn facilitates the subsequent T308 phosphorylation by PDK1 

(Scheid et al., 2002; Sarbassov et al., 2005). Although alternative mechanisms of Akt activation 

have also been proposed (Toker and Newton, 2000), it is clear that the phosphorylation of Akt at 

both sites is a crucial requirement for its full activation (Alessi et al., 1996; Scheid et al., 2002). 

Previous studies suggested that the expression of HPV-16 E6 was sufficient to maintain high levels 

of active Akt (Spangle and Miinger, 2010; Spangle and Monger, 2013), and this indicates that the 

E6-mediated upregulation of PDK1 expression might be in part responsible for driving high levels 

of Akt activity. It is also interesting to note that some of the biological activities associated with 

Akt function can be specifically linked to one of the activating phosphorylation events. For 

instance, while the S473 phosphorylation is required for Akt to regulate cell survival pathways, the 

PDK1-mediated T308 phosphorylation of Akt was suggested to be most critical for the activation 

of components of the mTORCl pathway involved in protein translation (Jacinto et al., 2006). Thus, 

our data suggest that the regulation of PDK1 levels by E6 might represent a prime mechanism 

through which E6 stimulates the PI3K/mTORCl pathway and protein translation.

In addition, the expression of HPV-16 E7 has also been shown to drive the activation of Akt in 

organotypic raft cultures, and this activity was linked to the ability of E7 to inactivate pRB 

(Menges-e/ al., 2006). Moreover the E7-mediated activation of Akt was shown to induce cell 

migration in human keratinocytes by driving the Akt-mediated cytoplasmic mislocalization of p27 

(Charette and McCance, 2007). This indicates that HPV oncoproteins coordinately induce a 

stimulatory effect on Akt, suggesting that they regulate a wide variety of biological processes 

through the modulation of PI3K pathway.
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Previous studies had indicated that hScrib is a negative regulator of PI3K signaling. hScrib was 

shown to facilitate downregulation of Akt by promoting the membrane recruitment of the Ser/Thr 

protein phosphatase PHLPP1 (Li et al., 2011). Although we failed to detect an upregulation of 

phosphorylated Akt upon loss of hScrib in HeLa cells (Figure 30b), we believe that decreased 

levels of phosphorylated Akt might be a reflection of decreased levels of PDK1 expression driven 

by the reduced levels of HPV-18 E6 in cells transfected with siRNA against hScrib. We 

hypothesize that hScrib might have a more direct effect on the pattern of total and phosphorylated 

p70 and p85 S6 kinase expression (Figure 31). The function of the p70 isoform of S6 kinase has 

been shown to be strongly implicated in the induction of cap-dependent protein translation and cell 

cycle progression, and its mTORCl-mediated phosphorylation at threonine 389 (T389) has been 

shown to be critical for these activities (Lane et al., 1993; Jefferies et al., 1997; Zhou et al., 2011). 

Similarly, p85 S6 kinase can be phosphorylated by mTORCl at the same position, however the 

biological consequences of the activation of p85 are less clear, although this isoform has also been 

linked to the induction of cell cycle progression (Reinhard et al., 1994). The fact that hScrib seems 

to regulate the total levels of both isoforms of the S6 kinase might argue that hScrib directly 

regulates the levels of S6 kinase expression, rather than its activation downstream of activated 

mTORCl.

Taken together these data provide an unexpected function for hScrib in HPV-positive cells, and 

suggest that the maintenance of a critical level of hScrib expression in HPV-positive cell 

monolayers could, in part, contributes to the pro-oncogenic activity of E6 and E7 through the 

positive regulation of p70 and p85 S6 kinase, and this is also likely to contribute indirectly to 

hScrib-mediated regulation of translation, including that of HPV-18 E6.

It is also interesting to note that the treatment of HeLa cells with the proteasome inhibitor MG-132 

produced a dramatic increase in the levels of phosphorylated p85, but not of p70, S6 kinase 

expression (Figure 31b). This suggests that the two isoforms of the S6 kinase are regulated through 

different mechanisms, and that the mTORCl-mediated phosphorylation of p85 enhances its 

proteasome-mediated degradation. In addition, upon ablation of hScrib, the proteasome inhibition
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appears to rescue, at least in part, the levels of phosphorylated p85 S6 kinase expression, indicating 

that loss of hScrib might contribute to the proteolytic degradation of phosphorylated p85. Recent 

studies defined that p85 S6 kinase positively regulates apoptosis under oxidative stress, promoting 

the inhibition of mdm2 and accumulation of p53 (Jia et al., 2013). Although this activity of p85 

was shown to occur in a mTORCl-independent manner, the enhanced proteasome-mediated 

degradation of phosphorylated p85 might interfere with this activity.

The different modalities of regulation displayed by the two isoforms of S6 kinase could be 

reflected by their different pattern of subcellular distribution. Previous studies suggested that the 

presence of a nuclear localization signal in the extended N-terminus of p85 induces its nuclear 

accumulation (Reinhard et al., 1994). However, their localizations appear to be dynamic, since p70 

has been shown to translocate in the nucleus upon phosphorylation by mTORCl in the Gi phase of 

the cell cycle and cytoplasmic pools of p85 have also been identified (Rosner and Hengstschlager,

2011). So far, it is not clear in which subcellular compartment the degradation of p85 occurs, in 

addition, the mechanism involved in its nucleo-cytoplasmic shuttling is not known. An interesting 

possibility is that hScrib might regulate the stability of phosphorylated p85 also through the control 

of its subcellular localization. Thus, the expression of hScrib might contribute to the correct 

localization of p85 and p70 S6 kinase isoforms, and its loss would therefore potentially lead to the 

mislocalization of S6 kinase to cellular compartments where the kinase is normally degraded. 

Although the levels of p70 S6 kinase are not rescued upon proteasome inhibition, previous studies 

suggested that p70 is degraded through a caspase-dependent mechanism (Dhar et al., 2009). 

Therefore these data suggest the intriguing possibility that the two isoforms of S6 kinase are 

regulated by different proteolytic pathways and that hScrib might play a role in modulating their 

levels of expression. However, whether hScrib might protect p70 S6 kinase from caspase cleavage 

needs still to be determined. A summary of the potential regulation of PI3K/mTORCl pathway by 

E6, E7 and hScrib is shown in Figure 33.

Taken together, these studies define a new function for hScrib in affecting protein translation, most 

likely through the modulation of S6 kinase activity. These studies also highlight the role of E6 in
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fine-tuning the levels of expression and function of its target proteins, such that optimal conditions 

for viral replication are attained. However, the stimulation of growth-promoting pathways 

ultimately predispose cells to the acquisition of tumorigenic capacities during malignant 

progression.
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Figure 33. Regulation of the PI3K/mTORCl pathway and protein translation by 

HPV oncoproteins and hScrib. Insulin or growth factor stimulation leads to the 

activation of the PI3K/mTORCl pathway (see text). Both E6 and E7 have been 

shown to converge on the activation o f this pathway through the regulation o f Akt, 

and E6 may also stimulate Akt through the maintenance o f high levels of PDK1 

expression. E6 could also indirectly activate mTORCl signaling, and protein 

translation, through the modulation of hScrib expression patterns leading to the 

upregulation of p70 and p85 S6 kinase isoforms. The ability of hScrib to regulate 

levels of p70 S6 kinase expression may then directly contribute to the expression o f 

E6 through the regulation of its cap-dependent translation. The pattern of p85 S6 

kinase appears to differ from that of the p70 isoform, and the mTORC-1 mediated 

phosphorylation may enhance its proteasome-mediated degradation. Apparently, the 

expression of hScrib and/or its modulation by E6 may counteract the degradation o f 

p85. (PIP2, Phosphatidylinositol (3,4)-bisphosphate; PIP3, Phosphatidylinositol 

(3,4,5 )-trisphosphate).



Materials and Methods

Plasmids

pCDNA-3 FLAG-tagged MAGI-1 has been described previously (Glaunsinger et al., 2000). The 

K499E MAGI-1 mutant was generated using the GeneArt Site-Directed Mutagenesis System 

(Invitrogen) according to the manufacturer’s instruction, using the following primers:

forward primer 5 ’ TCCTGCAGATCGAAAGCCTCGTCCTCGATGGTCCT;

reverse primer 5 ’ ACGAGGCTTTCGATCTGCAGGAACTCATCAGGCTC.

Untagged HPV-18 E6 and HPV-16 E6 pCDNA-3 expression plasmids have been described 

previously (Gardiol et al., 1999; Pirn et al., 1994), as have the GST-fusion proteins HPV-18 E6 and 

HPV-16 E6 (Pirn et al.,2000). The GST-fusion protein HPV-58 E6 was generated by subcloning 

PCR amplified HPV-58 E6 from the respective pcDNA construct, into compatible BamR I and 

EcoR I restriction sites of pGEX2T using the following primers:

forward primer 5’ ATGGATCCATGTTCCAGGACGCAGAG;

reverse primer 5’ CGGAATT CTT AC ACTT GT GTTT GT CT GC.

pCMV MYC-tagged Netl was described previously (Garcia-Mata et al., 2007) and HA-tagged (3- 

catenin was kindly given by Prof. Claudio Brancolini.

Cell culture and transfection

HEK 293 (human embryonic kidney), U20S (human osteosarcoma), HeLa (HPV-18-positive), 

CaSKi (HPV-16-positive), SiHa (HPV-16-positive), HaCaT (human immortalized keratinocytes) 

and HI299 (non-small cell lung carcinoma) cells were maintained in Dulbecco’s modified Eagles 

Medium (DMEM) supplemented with 10% fetal bovine serum, penicillin-streptomycin (100 U/ml) 

and glutamine (300 pg/ml). For all siRNA (Dharmacon) delivery the cells were seeded on 6 cm 

dishes at a confluence of 1.2 x 105 and transfected using Lipofectamine 2000 (Invitrogen) with 

siRNA against luciferase, HPV-16 E6/E7 (5’UUAAAUGACAGCUCAGAGG), 18 E6/E7
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(5’CAUUUACCAGCCCGACGAG), 18 E6 (5’CUCUGUGUAUGGAGACACA), E6AP or siRNA 

against the different PDZ-proteins (relevant Dharmacon Smart Pools). For siRNA transfection 

followed by immunofluorescent analysis, HeLa cells were seeded at a confluence of 1.2 x 105 on 

glass coverslips.

DNA transfection in HEK 293 cells was performed using the standard calcium phosphate 

precipitation protocol as described previously (Matlashewski et al., 1987c). For DNA transfection 

in U20S cells followed by immunofluorecent analysis, cells were seeded on glass coverslips at a 

confluence of 1.5 x 105 and transfected using the calcium phosphate precipitate protocol followed 

by glycerol shock. Briefly, 5 hours after the addition of the DNA precipitate, cells were treated 

with 15% glycerol in PBS for 1 minute. Cells were then washed for three times with IX PBS and 

left to grow for additional 24 hours. For DNA transfection in HeLa, cells were seeded on 6 cm 

dishes at a confluence of 1.5 x 105 and transfected using Fugene HD (Promega). For DNA 

transfection followed by immunofluorescent analysis HeLa and HaCaT cells were seeded at the 

same confluence on glass coverslips.

Inhibitors

The proteasome inhibitor Z-leu-leu-leu-al (CBZ; Sigma) was dissolved in DMSO and used at 50 

pM for the indicated time.

Antibodies

The following antibodies were used: mouse monoclonal anti-HA antibody 12CA5 (Roche), mouse 

monoclonal anti-ZOl (Z01-1A12) (Invitrogen), rabbit polyclonal anti-PAR3 (Millipore), mouse 

monoclonal anti-human pRB (BD Pharmingen). Mouse monoclonal anti-PSD95 (6G6-1C9) and 

mouse monoclonal anti-p84 (5E10) were from Abeam. The following antibodies were purchased 

from SIGMA: rabbit polyclonal anti-MAGI-1 (M5691), rabbit polyclonal anti-PTPN-3 (T6453) 

mouse monoclonal anti-a-tubulin (T6199), mouse monoclonal M2 anti-FLAG antibody (F3165) 

and rabbit polyclonal anti-FLAG (F7425). The following antibodies were purchased from Santa 

Cruz Biotechnology: mouse monoclonal anti-p53 (DO-1), mouse monoclonal anti-a-actinin (H-2),
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mouse monoclonal anti-Dlg (2D11), goat polyclonal anti-Scribble (C-20), goat polyclonal anti- 

TIP2 (N-19), rabbit polyclonal anti-FAP-1 (H-300), rabbit polyclonal anti-E-cadherin (H-108), 

mouse monoclonal anti-Myc (9E10) and mouse monoclonal anti-vimentin (V-9). The following 

antibodies were from Cell Signaling Technology: rabbit polyclonal anti-Akt (9272), rabbit 

polyclonal anti-phosphorylated Akt (T308) (9275),rabbit polyclonal anti-phosphorylated Akt 

(S473) (9271), rabbit polyclonal anti-PDKl (3062), rabbit monoclonal anti-phosphorylated PDK1 

(S241) (C49H2), rabbit monoclonal anti-p70 S6 kinase (49D7), mouse monoclonal anti- 

phosphorylated p70 S6 kinase (T389) (1A5). The mouse monoclonal antibody anti HPV-18 E6 (N- 

terminus #399) was generated and generously provided by the Arbor Vita Corporation.

Western blotting and immunoprecipitation

For western blot sample preparation, cells were lysed in 2x SDS sample buffer (lOOmM Tris HC1 

pH 6.8; 200mM DTT, 4% SDS, 20% glycerol, 0.2% bromophenol blue) and the whole cell extracts 

were separated by SDS-PAGE and blotted on 0.22 nitrocellulose membranes (Schleicher and 

Schuell). The membranes were blocked at 37°C for 1 hour in 10% milk/PBS, except for those 

probed with anti-MAGI-1, anti-PTPN-3, and anti-PSD95 which were blocked in 5% milk/PBS; all 

membranes probed with the antibodies from Cell Signaling Technology were incubated in 5% 

milk/TBS 0.1% TWEEN 20; the membranes probed with the anti-HPV-18 E6 antibody were 

incubated in 2% BSA/5% milk in lxTBS 0,1% TWEEN 20. The membranes were incubated with 

the appropriate primary antibodies diluted in 10% milk/PBS 0.5% TWEEN 20; except for the anti- 

MAGI-1, anti-PTPN-3 and anti-PSD95 antibodies which were diluted in 5% milk/PBS 0.05% 

TWEEN 20; all the antibodies from Cell Signaling Technology were diluted in 5% BSA/lxTBS 

0.1% TWEEN except for the anti-phosphorylated p70 S6 kinase that was incubated in 5% 

milk/lxTBS 0.1% TWEEN 20. The HPV-18 E6 antibody was incubated in 1% BSA/2.5% milk in 

lxTBS 0.1% TWEEN 20. The incubation times were 2 hours at room temperature for all 

antibodies, except for the anti-PTPN-3, anti-FAPl, anti-E-cadherin, anti-PSD95, all the Cell 

Signaling Technology antibodies and the anti-HPV-18 E6 antibody, which were incubated
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overnight at 4°C. After several washes the membranes were incubated with the appropriate HRP- 

conjugated secondary antibody (DAKO) for 1 hour at room temperature. After extensive washing 

the blots were developed with ECL or ECL plus reagent (GE Healthcare) according to the 

manufacturer’s instructions. Protein band intensities were quantitated where possible using the 

OptiQuant quantification program.

For co-immunoprecipitation experiments cells were scraped in ice cold PBS and extracted in lysis 

buffer (1% Triton X-100, 50mM Tris [pH 7.5], 300mM NaCl, ImM EGTA, ImM EDTA) 

supplemented with protease inhibitors (Setl, Calbiochem). The extracts were then passed through a 

26G needle multiple times and then cleared by centrifugation. Extracts from cells expressing 

FLAG-tagged MAGI-1 constructs, were incubated with anti-FLAG beads (SIGMA) for 2 to 3 h on 

a rotating wheel at 4°C. For the immunoprecipitation of MYC-tagged NET1, cell extracts were 

incubated with the MYC antibody or the control antibody for approximately 3 hours on a rotating 

wheel at 4°C. Protein-A-Sepharose beads (GE Healthcare) were then added for an additional 60 

minutes at 4°C. The beads were then extensively washed, and the immunoprecipitated proteins 

were analysed by western blotting.

Fusion protein purification and in vitro binding assays

GST-tagged fusion proteins were expressed and purified as described previously (Thomas et al., 

1996). Briefly, 40 ml of an overnight culture of E.Coli strain DH5-a previously transformed with 

the appropriate expression plasmids were inoculated into Luria Broth containing ampicillin 

(75pg/ml) and grown at 37°C up to an OD of 0.6 at 395 nm. Recombinant protein expression was 

induced for 3 hrs with ImM isopropyl-P-D-thiogalactopyranoside (IPTG, Sigma). The cells were 

harvested by centrifugation, disrupted by sonication in lysis buffer (1% Triton X-100 /lxPBS) and 

the lysates were cleared of cell debris by centrifugation. The GST-fusion proteins were then 

incubated for 1 hour with glutathione-conjugated agarose beads at 4°C. The purity of all fusion 

proteins was determined by SDS-PAGE and Coomassie Brilliant Blue R (Sigma) staining.
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For in vitro binding and degradation assays, proteins were transcribed and translated in vitro in 

rabbit reticulocyte lysate using the Promega TNT system according to the manufacturer's 

instructions. The HPV-18 and HPV-16 E6 proteins were radiolabelled with [35S]-cysteine while 

MAGI-1 proteins were radiolabelled with [35S]-methionine.

Equal amounts of in v/Yra-translated proteins were added to GST fusion proteins bound to 

glutathione resin and incubated for 1 hour at 4°C. After extensive washing with PBS containing 

0.5% NP-40, the bound proteins were analysed by SDS-PAGE and autoradiography.

For GST pull-down assays using cell extracts, FLAG-tagged wild type and K499E mutant MAGI-1 

were transfected into HEK 293 cells. 24h after transfection cells were scraped in ice-cold PBS and 

extracted in lysis buffer (1% Triton X-100, 50mM Tris [pH 7.5], 300mM NaCl, ImM EGTA, ImM 

EDTA) supplemented with protease inhibitors (Setl, Calbiochem). The extracts were then passed 

through a 26G needle multiple times and cleared by centrifugation. Extracts from cells expressing 

FLAG-tagged MAGI-1 constructs, were incubated with the indicated GST-fusion proteins for 1-2 

hours on a rotating wheel at 4°C. The beads were then extensively washed, and the 

immunoprecipitated proteins were analysed by western blotting.

In vivo degradation assays

HEK 293 cells were transfected with lpg of either wild type or K499E MAGI-1 constructs along 

with 0.3 jug of LacZ. pCDNA3 18 E6 plasmid was also included at increasing concentrations: 2, 5, 

lOpg. 24 hours post-transfection, the cells were harvested and analyzed by western blotting.

In vitro degradation assays

Degradation assays were performed as previously described (Thomas et al., 2001). Briefly, 

radiolabelled proteins were mixed and incubated for the indicated times at 30°C. Volumes were 

adjusted using water-primed lysate. The residual MAGI-1 proteins were analyzed by SDS-PAGE 

and autoradiography.
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Subcellular fractionation assays

HeLa cells were seeded on 6 cm dishes and transfected with the relevant siRNAs. After 72h, cells 

were removed from the dishes by trypsinization and differential extraction of HeLa cells was 

performed to obtain cytoplasmic, membrane, nuclear and cytoskeletal fractions using the 

ProteoExtract Fractionation Kit (Calbiochem) according to the manufacturer's instructions. The 

differential protein expression plus fraction-specific markers, was analysed by SDS-PAGE western 

blotting.

Immunofluoresence microscopy and EdU staining

Cells were fixed with 3.7% paraformaldehyde in PBS for 20 minutes and permeabilized with 0.1% 

Triton X-100 in PBS for 5 minutes. Slides were incubated with primary antibodies for 2 hours at 

37°C, extensively washed in PBS and incubated for 30 minutes at 37°C with secondary anti-rabbit 

or anti-mouse antibody conjugated to fluorescein or rhodamine (Molecular Probes). Samples were 

washed several times with water and mounted with Vectashield mounting medium (Vector 

Laboratories) on glass slides. Slides were analysed with either a Leica DMLB fluorescence 

microscope with a Leica photo camera (A01M871016), or a Zeiss LSM 510 confocal microscope 

with two lasers giving excitation lines at 480 and 510 nm. The data were collected with a 60x 

objective oil-immersion lens.

For EdU staining, cells were seeded on glass coverslips and transfected with FLAG-tagged wild

type or K499E mutant MAGI-1 constructs. 24 hours after transfection EdU was added to the

culture medium at a final concentration of 20jiM for 2 hours. After labeling, cells were fixed with

3.7% paraformaldehyde in PBS for 20 minutes and permeabilized with 0.1% Triton X-100 in PBS

for 5 minutes. Primary antibodies were incubated for 2 hours at 37°C, extensively washed in PBS

and incubated for 30 minutes at 37°C with secondary anti-rabbit or anti-mouse antibody conjugated

to fluorescein or rhodamine (Molecular Probes). After several washes in PBS, incorporated EdU

was detected by incubating coverslips with the reaction mix solution (5mM (+)Na-L-Ascorbate

(Sigma), ImM copper sulphate, 0,05mM 6-Carboxyfluorescein-TEG azide) for 30 minutes at room

temperature. Samples were washed several times with water and mounted with Vectashield
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mounting medium (Vector Laboratories) on glass slides. Slides were analysed with Zeiss LSM 510 

confocal microscope with two lasers giving excitation lines at 480 and 510 nm. The data were 

collected with a 60x objective oil-immersion lens.

TUNEL assays

Cells were seeded on glass coverslips and transfected with FLAG-tagged wild type or K499E 

mutant MAGI-1 constructs. 24 hours after transfection, were fixed with 3.7% paraformaldehyde in 

PBS for 20 minutes and permeabilized with lxPBS 0.1% sodium citrate, 0.1% Triton X-100 for 5 

minutes. The coverslips were incubated with the rabbit polyclonal FLAG antibody for 2 hours at 

37°C, followed by incubation with the rhodamine-conjucated anti-rabbit antibody (Molecular 

Probes) for 30 minutes at 37°C. After several washes in PBS, apoptotic cells were detected using 

the fluorescein-conjugated in situ cell death detection kit (Roche) according to the manufacturer’s 

instructions. Samples were washed several times with water and mounted with Vectashield 

mounting medium (Vector Laboratories) on glass slides. Slides were analysed with a Zeiss LSM 

510 confocal microscope with two lasers giving excitation lines at 480 and 510 nm. The data were 

collected with a 60x objective oil-immersion lens.

Half-life experiments

72h post transfection, cells were treated for different time points as indicated with cycloheximide 

(50pg/ml in DMSO) to block protein synthesis. DMSO treated cells were used as the control. Total 

cellular extracts were then analyzed by Western blot and the intensity of the bands was measured 

using Optiquant program. The standard deviation was calculated from three independent assays.

Determination ofHPV-18E6 andp53 translation efficiency

HeLa cells were seeded on 6cm dishes at a confluence of 1.2 x 105and transfected using 

Lipofectamine 2000 (Invitrogen) with siRNA against Luciferase or hScrib (Dharmacon). 72h after 

transfection cells were treated with cycloheximide (50pg/ml in DMSO) for additional 6 hours. 

Cells treated with DMSO alone were used as control for the expression of HPV-18 E6 and p53. In



order to monitor the recovery of E6 and p53 protein translation cycloheximide was removed and, 

after several washes in PBS, cells were left to grow for different time points in fresh DMEM 

supplemented with 10% fetal bovine serum, penicillin-streptomycin (100 U/ml) and glutamine (300 

jig/ml). Total cellular extracts were prepared by harvesting cell in 2X SDS sample buffer, and then 

analyzed by Western blotting.
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