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ABSTRACT

TAR-DNA-binding 43kDa protein (TDP-43), is an RNA binding protein that has been 

linked to the pathology of neurodegenerative diseases such as ALS and FTLD. However, 

pathological mechanisms involving TDP-43, remain elusive. Current hypotheses have 

converged on altered RNA processing, due to a loss of function of TDP-43. To gain better 

insight into the pathogenic mechanisms linked to TDP-43, we hypothesised that a loss of 

function may lead to alterations in splicing and/or changes in protein expression in 

transcripts potentially linked to neurodegeneration. Thus, 2-dimensional electrophoresis (2- 

DE) gels and splice-junction microarrays were utilised to identify targets of TDP-43 whose 

expression exhibited association with altered TDP-43 levels.

The 2-DE analyses depicted changes in several proteins (spots), which, upon subsequent 

validation, did not reveal any correlations with differential spot intensities. In contrast, the 

splice-junction arrays identified TDP-43 dependent changes in 2371 genes from which 

candidate genes for validation were selected upon fulfilment of criteria for being altered 

when TDP-43 was depleted and reversible by overexpression of wild type TDP-43, but not 

with mutant (F4L) TDP-43. 162 genes were selected and further narrowed down based on 

a two-fold or higher splicing score. RT-PCR validation confirmed 6/19 transcripts, 

POLDIP3, BCL2L11, MADD, STAG2, BRD8 and FNIP1, as undergoing TDP-43 

dependent splicing. Protein level alterations, were also observed in MADD and STAG2, 

following which, TDP-43 binding sites were mapped. Lastly, using an inducible TDP-43 

aggregation model, a loss of function effect for TDP-43 was recapitulated i.e. similar 

changes in splicing profiles as when TDP-43 was knocked down, for all six of the above 

genes, thus, supporting a loss of function hypothesis in TDP-43 aggregates.



Our results further contribute to the number of genes known to be affected by TDP-43, 

with the distinct observation of involvement in apoptotic and mitotic pathways, which may 

have implications for TDP-43 proteinopathies.
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1. INTRODUCTION

The global increase in life expectancy, has led to an increase in the prevalence of 

neurodegenerative disorders, which are placing a huge burden on health care costs, and 

consequently an important economic and social concern (Banks et al. 2008). 

Neurodegenerative diseases are characterised by the progressive degeneration of neurons 

resulting in a wide range of symptoms including motor dysfunction, cognitive failure and 

dementia. Symptoms observed in patients tend to correlate with the type of neurons 

affected and their location, although it is not clear why only certain subsets of neurons are 

affected and not others (Przedborski et al. 2003). In addition, some cases also appear to 

have overlaps in symptoms or manifestation of the disease, e.g. dementia in patients with 

Amytrophic lateral Sclerois (ALS), Fronto-temporal dementia (FTD), Parkinson’s disease 

(PD) and Alzheimer’s (AD), suggesting a common molecular pathogenesis in these 

diseases (Przedborski et al. 2003; Lill & Bertram 2011). A common feature of 

neurodegenerative diseases is the deposition and accumulation of intracellular and or 

extracellular protein aggregates (Taylor et al. 2002; Ross & Poirier 2004; Skovronsky et al. 

2006; Renoux & Todd 2012). These aggregates are often composed of different misfolded 

proteins, as identified by immunohistochemical and histological staining, and have further 

facilitated the grouping and identification (diagnostic) of neurodegenerative diseases, 

based on common molecular pathology (Przedborski et al. 2003; Skovronsky et al. 2006). 

Furthermore, the type of aggregates can be sub-classified based on the presence or 

absence of amyloid structures, filaments or skein-like inclusions (Ross & Poirier 2004; 

Robinson et al. 2013), although in cases such as Amyotrophic Lateral Sclerosis (ALS) 

heterogeneous properties of aggregates have been reported (Robinson et al. 2013).

Studies aiming to understand the pathology of neurodegenerative diseases signified by the

accumulation of these aggregates have postulated that an initial seeding of misfolded
Page| 1



protein occurs, after which the wild type endogenous protein is recruited to the aggregates 

leading to the increased accumulation of protein (Aguzzi & Rajendran 2009; Polymenidou 

& Cleveland 2012). It is also thought that these intracellular aggregates can spread 

amongst adjacent cells (Desplats et al. 2009; Polymenidou & Cleveland 2011; Hansen et 

al. 2011), which incidentally, could account for the progressive nature of these diseases but 

not for the varied specificity of affected neurons. Thus, these studies seem to converge on 

the presence of a common molecular pathway i.e. cascade of events, beginning with the 

seeding of misfolded protein and subsequent spread in adjacent neurons. Despite the 

proposed mechanisms of disease progression, the exact causes or triggers of aggregate 

formation are still not well understood. Given that for each neurodegenerative disease, the 

major component of misfolded protein is different, or in some cases includes combined 

accumulations of several proteins, it is thought that the aggregates are an end stage 

manifestation of the disease, signifying a collapse in cellular maintenance of protein 

homeostasis (Polymenidou & Cleveland 2011).

In keeping with this hypothesis, several studies examining the pathological mechanisms of 

neurodegenerative diseases have analysed the identified misfolded proteins for mutations 

that could be relevant to disease. Advances in genome sequence analytical technologies 

such as next-generation sequencing, have enabled the wide-scale identification of such 

polymorphisms (Lill & Bertram 2011). Indeed, several sequence polymorphisms have been 

identified in several genes that appear to segregate with disease (Bertram & Tanzi 2005; 

Lill & Bertram 2011) and have been attributed to aberrant protein folding and production. 

These mutations are thought to play a role in the initial seed of misfolded protein 

(Polymenidou et al. 2011). However, in most cases of neurodegenerative diseases, familial 

inheritance i.e. Mendelian segregation within families, is in fact rare, and the majority of 

cases are sporadic or idiopathic (Bertram & Tanzi 2005; Lagier-Tourenne & Cleveland 

2009; Lill & Bertram 2011). While mutations or sequence polymorphisms in relevant



genes could be responsible for encoding aberrantly folded proteins or increase propensity 

for aggregation, they do not account for cases, where no specific mutations have been 

identified. Indeed, most neurodegenerative diseases are classified as complex diseases that 

seem to be linked to both genetic risk and environmental factors (Przedborski et al. 2003; 

Sheikh et al. 2012). Possible environmental factors range from decreased efficiency in 

cellular processes attributed to aging, to harmful chemical exposures (Przedborski et al. 

2003; Cannon & Greenamyre 2011).

Other avenues of neurodegenerative pathogenesis research have taken a more molecular 

approach, by attempting to understand the involvement of relevant proteins in various 

pathways, including specific targets of these proteins and how a loss of function could 

contribute to neurodegeneration. Such studies have identified pathological mechanisms 

such as tri-nucleotide repeat expansion disorders, in Huntington’s disease (HD) and 

myotonic dystrophies (DM), that perturb the system through RNA toxicity and which, has 

also resulted in a patho-clinical sub classification of these neurological disorders (La Spada 

& Taylor 2010; Renoux & Todd 2012). Repeat expansion disorders subsequently paved 

the way for the identification of RNA as a toxic species, which expanded the 

neurodegenerative research field towards examining the role of RNA metabolism and 

RNA binding proteins in neurodegenerative diseases (Renoux & Todd 2012; Belzil et al. 

2012).

Indeed, a major revolution in the field came when two RNA binding proteins TAR-DNA

binding protein, 43kDa (TDP-43) (Arai et al. 2006; Neumann, Sampathu, Kwong, Truax,

Micsenyi, Chou, Bruce, Schuck, Grossman, Clark, McCluskey, Miller, Masliah,

Mackenzie, Feldman, Feiden, H. A. Kretzschmar, et al. 2006) and fused in

sarcoma/translocated in sarcoma (FUS/TLS) were identified as the major components of

pathological inclusions in patients with ALS and Frontotemporal lobar degeneration

(FTLD) (Neumann et al. 2009). In the cases of ALS and FTLD, common pathological
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pathways are beginning to emerge, implicating altered RNA metabolism that is enforced 

by the identification of common RNA binding proteins and perturbations in protein 

homeostasis (Ling et al. 2013). Based on these observations, it has been suggested that 

ALS and FTLD are representative of a clinicopathological spectrum of a single disease 

(Geser et al. 2009; Cohen et al. 2011; Ling et al. 2013).

Currently, TDP-43 is known to constitute the main protein (97%) sequestered within the 

aggregates of ALS patients with relatively minor contributions (cumulative 3%) from 

superoxide dismutase 1 (SOD1) and FUS (Ling et al. 2013). This unprecedented 

percentage of inclusion in ALS provides a unique opportunity for gaining insight into 

pathological mechanisms involving TDP-43, which can be extrapolated to other 

neurodegenerative diseases with TDP-43 inclusions (TDP-43 proteinopathies). Thus this 

study focused on examining TPD-43 targets with the aim of gaining better insight into 

pathological mechanisms involved in ALS, which ultimately could inform the 

development of therapeutic strategies.

1.1. Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gherig’s disease, or motor 

neuron disease is an adult onset (typically 60 years and above although younger ages of 

onset have been reported) neurodegenerative disease, characterized by the progressive 

degeneration and death of motor neurons in the brain and spinal cord, ultimately resulting 

in paralysis and death (Rothstein 2009; Neumann 2009; Mackenzie et al. 2010; Geser et al. 

2011). The incidence of ALS is about 6 in 100 000 individuals affected with an average 

poor prognosis of about 2 to 5 years (Geser et al. 2011) 

(http://ghr.nlm.nih.gov/condition/amvotrophic-lateral-sclerosisV Symptoms generally 

begin with muscle fatigue and weakness, followed by wasting and fasciculation and are 

generally grouped into bulbar or spinal onset (Forbes et al. 2004; Ravits et al. 2013). The

spinal onset of ALS is characterised by asymmetrical focal muscle weakness and atrophy.

P age |4
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Bulbar onset on the other hand, is characterised by difficulties in swallowing (dysphagia) 

and speech (dysarthia) and respiratory failure due to the atrophy of upper and lower motor 

neurons and has faster (1-year) progression (Forbes et al. 2004; Ravits et al. 2013).

Incidences of ALS vary among different ethnicities and gender, with higher incidences 

generally being observed in men than in women (Logroscino et al. 2011). As mentioned 

previously, prognosis of ALS is poor (average 2-5 years) (Banks et al. 2008; Lagier- 

Tourenne & Cleveland 2009; Da Cruz & Cleveland 2011), with some patients also 

exhibiting symptoms of FTLD suggesting a continuum for disease pathology (Baloh, 

2011). Currently, no treatment exists that hinders the progression of the disease 

significantly. This is likely due to the fact that several factors are involved in the disease, 

as, since its approval in the 1990‘s, Riluzole by Sanofi-Aventis, a presynaptic glutamate 

release inhibitor, remains the only prescribed treatment for ALS patients offering a very 

modest survival benefit of 2 to 3 months (Miller et al. 2012).

1.1.1. Aetiology of ALS

The majority of ALS cases are sporadic, whereas 10% of cases are attributed to familial 

inheritance due to mutations in several genes (Da Cruz & Cleveland 2011; van Blitterswijk 

et al. 2012). The first gene found to be linked to ALS was superoxide dismutase-1 (SODI) 

in which mutations on exons 2 and 4 were found to segregate in a dominant manner in 

families with ALS (Rosen et al. 1993). Since then, of the rare (10%) familial cases of ALS 

(f-ALS) reported, 20% are linked to mutations in SOD1, with over 150 different mutations 

identified with a dominant inheritance (Taylor et al. 2002; Mackenzie et al. 2007; Lagier- 

Tourenne & Cleveland 2009; van Blitterswijk et al. 2012). Up until recently, efforts to 

understand ALS pathogenesis had focused on the biological consequences of mutations in 

SOD1, an enzyme which catalyses the intracellular detoxification of superoxide anion 0 2’ 

radical into hydrogen peroxide that is eventually converted into water (Rosen et al. 1993;
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Da Cruz & Cleveland 2011). Mutations in other genes have since been identified 

including fused in sarcoma/translocated in sarcoma (FUS/TLS) (Kwiatkowski et al. 2009; 

Vance et al. 2009), TDP-43 (Kabashi et al. 2008; Yokoseki et al. 2008; Sreedharan et al.

2008), angiogenin (ANG) (Greenway et al. 2006; Femandez-Santiago et al. 2009) and 

more recently, in the Matrin 3 {MATR3) gene (Johnson et al. 2014) and a repeat expansion 

in chromosome 9 open reading frame 72 (C9orf72) (DeJesus-Hemandez et al. 2011; 

Renton et al. 2011). In addition, a recent study suggested that the development of ALS may 

be oligogenic i.e. dependent on more than one mutation in one or more unrelated genes 

(van Blitterswijk et al. 2012), supporting a hypothesis for the involvement of other 

modifying factors both genetic and non-genetic.

Fundamentally, research efforts into familial forms of ALS have been driven by the 

hypothesis that the observed symptomatic similarities amongst fALS and sporadic ALS 

(sALS) implied a common molecular pathway, which could provide insights into the 

pathogenesis of ALS (Mackenzie et al. 2007). However in most cases, even between the 

different forms of ALS the presence of identified proteins in pathogenic inclusions differs, 

for instance the identification of misfolded SOD1 in ALS-SOD 1 (mutations in SOD1 

identified) but not in other sporadic forms of ALS, which mostly contained TDP-43 

suggesting a different mechanism of disease in fALS (Mackenzie et al. 2007; Neumann 

2009; Mackenzie et al. 2010).

In 2006, the identification of TAR-DNA binding protein (TDP-43) as the major protein in

proteinaceous ubiquitin-positive and tau-negative cytoplasmic inclusions in FTLD and

sALS patients (Arai et al. 2006; Neumann, et al. 2006), led to a shift in research focus to

this multi-functional RNA-binding protein. The presence of TDP-43 in the cytoplasmic

inclusions of both FTLD and ALS supported the hypothesis of a common disease

pathogenesis and the notion of the presence of a clinicopathological spectrum in a single

disease (Arai et al. 2006). Consequently, current emerging hypotheses on ALS pathology
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have converged on altered RNA processing linked to RNA binding proteins, focusing on 

the role of TDP-43 as an RNA binding protein.

1.2. TAR-DNA Binding Protein-43 (TDP-43)

The trans-active responsive DNA binding protein of 43kDa (TDP-43) is ubiquitously 

expressed and encoded by the TARDBP gene on chromosome lp36. TDP-43 was first 

identified as a transcriptional regulator in the human immune-deficiency virus type 1 

(HIV-1) genome where it was reported to bind to the trans-active response (TAR) element 

and repress transcription of the HIV-1 transcript (Ou et al. 1995). Recently, however, the 

role of TDP-43 in repressing viral gene expression has come into question, as one study 

reported no repression of viral (HIV) expression in either early or late stages of infection 

(Nehls et al. 2014). Nonetheless, a seminal role for TDP-43 in splicing regulation was 

reported in 2001 by Buratti et al. , wherein TDP-43 was found to contribute to the 

inhibition of CFTR (Cystic fibrosis transmembrane conductance regulator) exon 9 

recognition, resulting in the skipping of this exon. This was the first described role of TDP- 

43 as a splicing regulator.

Nonetheless, the aforementioned discovery of TDP-43 in pathogenic inclusions of patients 

with ALS, FTLD, Huntington’s (HD), inclusion body myopathy (IBM) Alzheimer’s (AD) 

cases have emphasised a role for this protein in neurodegeneration (Lagier-Tourenne et al. 

2010; Chen-plotkin et al. 2010), thereby redirecting research into understanding the 

functions and targets of TDP-43 that go awry in pathology.

1.2.1. Structure and Function

TDP-43 belongs to a highly conserved group of heterogeneous nuclear ribonucleoproteins 

(hnRNPs) that are known to be involved in multiple steps of gene expression regulation 

including transcription, splicing, mRNA stability, DNA replication/repair, protein 

translation and export or retention of nascent RNA (Krecic & Swanson 1999; Ayala et al.



2008; Buratti & Baralle 2010). Structurally, all hnRNPs contain RNA-binding domains 

also known as RNA recognition motifs (RRM) that determine specificity to target RNA or 

DNA as well as auxiliary domains that facilitate protein to protein interactions (Krecic & 

Swanson 1999). In addition, hnRNPs contain nuclear export and localisation signals that 

enable them to shuttle between the nucleus and cytoplasm depending on the required 

function, at specific time points in the cell (Krecic & Swanson 1999; Ayala et al. 2008; 

Buratti & Baralle 2010). This is thought to facilitate the multifunctional aspects of 

hnRNPs. Accordingly, TDP-43 is a 414 amino acid protein that has two RRM domains 

known to facilitate RNA binding, and a glycine-rich C-terminal domain (Figure 1-1) 

(Buratti & Baralle 2001; Wang et al. 2004; Buratti et al. 2005; Ayala et al. 2005; Ayala, 

Zago, et al. 2008). These structural domains are similarly highly conserved in Drosophila 

melanogaster, Xenopus laevis and Caenorhabditis elegans homologs (Wang et al. 2004; 

Ayala et al. 2005). In addition, within the N-terminal region, TDP-43 also has nuclear 

localisation (NLS) and nuclear export signals (NES) that facilitate shuttling between the 

nucleus and the cytoplasm (Ayala, Zago, et al. 2008).

TDP-43 has been shown to preferentially bind to UG/TG repeats in RNA and single 

stranded DNA (Buratti & Baralle 2001), although this is not always the case as has been 

demonstrated by TDP-43 binding to its own 3’UTR to regulate expression in a negative 

feedback loop mechanism (Ayala et al. 2011). Sequence specific binding of TDP-43 to 

UG/TG repeats, is thought to be facilitated by RRM1, proximal to the N-terminal domain 

(Buratti & Baralle 2001) (Figure 1-1). Recent structural studies have further supported this 

role for TDP-43 RRM1 (Kuo et al. 2009; Bhardwaj et al. 2013; Kuo et al. 2014) and 

proposed that RRM2 is also involved in recognition and binding of UG/TG sequences in 

RNA and single stranded DNA by mechanistic folding (Kuo et al. 2009).
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F igure 1-1: Schematic diagram o f  the TDP-43 protein highlighting the structural domains and their 
functions. Functions o f the various domains are described including the N-terminal which contains, nuclear 
export and localisation signals known to facilitate shuttling in and out o f the nucleus and the Glycine-rich C- 
terminal that facilitates protein-protein interactions.

On the other hand, the glycine-rich region o f  the C-terminal domain o f  TDP-43 has been 

demonstrated to be necessary for interaction with other proteins including other hnRNPs 

such as hnR N P A 2/B l and hnR N PA l (Buratti et al. 2005; D ’A m brogio  et al. 2009).

Indeed, TDP-43 lacking the C-terminal is no longer able to regulate the skipping o f  exon 9

in the CFTR gene (W ang et al. 2004). Although the C-terminal domain o f  TDP-43 is not 

entirely required for localisation, TDP-43 lacking the C-terminal had more cytoplasmic 

presence despite the nuclear localisation signal (Ayala, Zago, et al. 2008). In addition, 

deleting or mutating the TDP-43 C-terminal significantly reduces the solubility o f  the 

protein and results in inclusion body formations, thought to be a result o f  the lack o f  

interaction between TDP-43 and other protein factors that promote solubility (Ayala, Zago, 

et al. 2008). The decrease in solubility and presence o f  inclusion bodies could be 

extrapolated to patients, wherein, a non-functioning or misfolded protein could increase the 

aggregation propensity o f  TDP-43. Indeed, studies that conducted sequence analyses o f  

TDP-43 have found that the C-terminal o f  TDP-43 is a ‘hot spot’ region for mutations and

TDP-43 has thus been linked to both fALS, sALS and FTLD (Lagier-Tourenne &



Cleveland 2009; Pesiridis et al. 2009). Nonetheless, the role of TDP-43 as an RNA-binding 

protein (RBP) has becoming increasingly important as several aspects of gene expression 

mysregulation have been linked to disease pathogenesis.

1.3. TDP-43: A global transcript regulator 

The involvement of RBPs in neurodegenerative disease has become an increasingly 

relevant field of research, following the identification and implication of several RBPs, 

such as TDP-43, FUS/TLS, hnRNP A1/A2, fragile X mental retardation protein (FMRP) 

amongst others (Hanson & Tibbetts 2012; Vanderweyde et al. 2013). RBPs are known to 

bind either RNA or DNA or both by forming either homodimers or heterodimers and 

perform specific functions within the cell. In general RBPs play numerous roles in the 

nucleus including pre-mRNA splicing, maturation and export, whereas in the cytoplasm 

they are able to regulate translation, transport and degradation (Vanderweyde et al. 2013). 

As discussed previously, TDP-43 is a typical hnRNP protein with characteristic features of 

RBPs that include RRMs and Glycine-rich domains. Currently, based on the role of TDP- 

43 and FUS/TLS, there is a convergence on the theory of altered RNA metabolism as a 

causative factor in neurodegenerative disease (Polymenidou et al. 2012) . Recently, another 

RBP, TATA box-binding protein associated factor 2N (TAF15) was identified and linked 

to ALS further supporting the functional role of this group of proteins in 

neurodegeneration (Ugras & Shorter 2012; Polymenidou et al. 2012).

Specifically, TDP-43 has been shown to be involved in several RNA processing pathways

including splicing, transcription, localisation, microRNA (miRNA) biogenesis and

stabilization (Lagier-Tourenne & Cleveland 2009a; Buratti & Baralle 2010; Polymenidou

et al. 2012a). Similarly, FUS/TLS has been linked to transcriptional regulation (Buratti &

Baralle 2010; Hanson & Tibbetts 2012; Lagier-Tourenne et al. 2012a), and additionally, a

role in pre-mRNA splicing of growth factors has been reported, thereby influencing

embryonic developmental pathways (Dichmann & Harland 2012). Both TDP-43 and
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FUS/TLS are reported to be involved in the formation of transient stress granules 

containing RNA in complex with RBPs (Polymenidou et al. 2012; Colombrita et al. 2012), 

however, for the purposes of this study, only the role of TDP-43 in relation to gene 

expression regulation will be discussed.

Based on the hypothesis of altered RNA metabolism due to a loss of function of TDP-43, 

several studies aiming at identifying functions of TDP-43 and its targets have been 

conducted. Emergent from these studies, is that TDP-43 plays a major role in the 

regulation of numerous transcripts by acting on the afore-mentioned RNA processing 

mechanisms that are discussed in more detail below. Currently, the most defined role of 

TDP-43 is its role in alternative splicing, which provides a strong basis for the hypothesis 

of an altered RNA metabolism in TDP-43 proteinopathies.

1.3.1. Gene expression regulation: Focus on A lternative Splicing

Within the cell several modes of gene expression regulation exist, that determine the 

temporal-spatial expression of specific sets of genes in different cells. Gene expression 

regulation can occur both during transcription and post-transcriptionally, and involves 

several mechanisms that range from alternative splicing and poly-adenylation, mRNA 

stabilization and localisation to non-sense mediated degradation of transcripts (Glisovic et 

al. 2008; Ward & Cooper 2011).

With the advent of the genomics sequencing era, came the perplexing discovery that the 

number of coding genes in organisms was not an indicator of cellular complexity. This 

observation is perhaps more emphasised in the comparison between mammalians and A  

thaliana, that have similar numbers of coding genes, approximately 25,000 (Blencowe 

2006). Thus, it is evident that there are mechanisms in place, which are responsible for the 

observed differential cellular complexity in organisms notwithstanding the number of 

coding genes. One of the mechanisms responsible for this diversity and complexity is
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alternative splicing, which is described as the mechanism by which components of primary 

transcripts (pre-mRNA), including 5’ and 3’ UTR, exons, introns and poly-A sites are 

spliced and rearranged to include various combinations, that result in different gene 

isoforms and consequently proteins (Faustino & Cooper 2003; Blencowe 2006; Tazi et al. 

2009; Kalsotra & Cooper 2012). An alternative view is that the non-coding sequences 

within genes, that contain enhancer and repressor elements, might be key drivers of 

organismal complexity as they respond to a range of signals, including thresholds and 

combinations of trans-acting factors (Levine & Tjian 2003).

High-throughput sequencing technologies have revealed that approximately 90-95% of the 

human genome undergoes alternative splicing (Pan et al. 2008; Wang et al. 2008; Kalsotra 

& Cooper 2012). In addition, several factors have been shown to regulate alternative 

splicing, including c/s-acting enhancer and silencer elements, the spliceosome and other 

trans-acting factors that are temporally expressed (Figure 1-2) (Tazi et al. 2009; Pagani & 

Baralle 2004; Baralle et al. 2009). A specific group of Uridine-rich small nuclear 

ribonucleproteins (U-snRNPS), collectively known as the spliceosome are responsible for 

the main splicing catalytic actions that remove introns and join exons together (Wahl et al. 

2009). Each of these snRNPs contain small nuclear RNA (snRNA) that mediate binding to 

the intron through base-pair interactions, thereby ensuring fidelity in the splicing process 

(Wahl et al. 2009). The spliceosome machinery is further sub-categorised into major and 

minor spliceosomes.

The major spliceosome, consisting of the Ul, U2, U4/U6 and U5, snRNPs recognizes 

specific consensus sequences in introns, including the dinucleotides GT-AG in the 5’ and 

3’ splice sites (SS) of introns, the branch point sequence and the polypyrimidine tract 

adjacent to the 3’ splice site, that facilitate the specific splicing of pre-mRNA (Wahl et al.

2009). The minor spliceosome on the other hand, consists of different but functionally 

similar set of U11/U12, U4atac/U6atac and U5 (common to both major and minor



spliceosomes) snRNPs, which recognize a different set o f  minor introns, known as ‘U 12- 

type introns’ (Patel & Steitz 2003). Although initially thought to recognize specific AT-AC 

dinucleotides at the 5 ’ and 3 ’ SS o f  introns, the minor spliceosome is now known to 

recognize a set o f  longer and tightly constrained consensus sequences at the 5 ’ SS and 

branch point o f  minor introns (Patel & Steitz 2003). The spliceosome m achinery facilitates 

splicing o f  both constitutive and alternatively spliced exons in a step-wise manner, assisted 

by the num erous trans-acting factors that facilitate the recognition and definition o f  

exon/intron boundaries (De Conti et al. 2013).

intron Exon Intron

Regulatory
complex

U2AF65

ynyuray/ /yyyyyyyn

ESE (<*>0looGE

F igure 1-2: Schematic representation o f factors involved in splicing. Consensus sequences found in the 
57 3 ’ positions o f introns also known as splice sites, and including the branch site, determine which splicing 
factors and components o f the spliceosome bind to facilitate the splicing process. Enhancer or silencer 
elements are also found within the exons or introns and are specific for certain proteins. As such, 
Serine/Arginine (SR) proteins and hnRNPs are generally thought to bind to enhancer or silencer elements 
respectively, thereby influencing the recognition o f splice sites by the spliceosomal complex. ISE-lntronic 
splicing enhancer; ISS-intronic splicing silence; ESE-Exonic splicing Enhancer; ESS-Exonic splicing 
silencer. Adapted from Pagani and Baralle, 2004.

In addition to the three core splicing sequences, additional elements within introns and 

exons, are present. These sequences known as intronic and exonic silencers or enhancers, 

bind trans-acting splicing factors that modulate the efficiency o f  splice site recognition, 

thereby determining which exons are constitutively or alternatively expressed (Figure 1-2) 

(Pagani & Baralle 2004; Ward & Cooper 2011). The combinatorial control and 

competition o f  these factors is thought to play an important role in the definition o f  

introns/exons, including alternative poly-A site selection (De Conti et al. 2013).



The temporal expression of these trans-acting factors can determine how and where a pre- 

mRNA transcript is spliced, necessitating a tightly regulated homeostatic control of these 

factors (Tazi et al. 2009; Lutz & Moreira 2011; McManus & Graveley 2012). A 

perturbation in any of these components including the structure of mRNA could lead to 

mis-processing of transcripts thus resulting in disease (Pagani & Baralle 2004).

Furthermore, the differential complexity of gene isoforms can be achieved by different 

types of alternative splicing events, including cassette exon inclusion or exclusion, 

alternative 5’ and 3’ splice site selection, mutually exclusive exons, intron retention and 

alternative promoter and poly-adenylation (poly-A) site selection (Blencowe 2006). The 

most common of these types of alternative events are cassette exons, accounting for 

approximately one third of known alternative splicing (AS) events (Blencowe 2006).
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Figure 1-3: Schematic representation o f  the various types o f  alternative splicing that can occur. The
most common type o f alternative splicing decribed to date is cassette exon inclusion or exclusion. Within 
each pre-mRNA, different kinds o f splicing events can occur depending on the concentration and type o f 
h-a/75-acting factors recruited to the sequence elements (Blencowe, 2006).

Apart from creating transcriptomic and consequently proteomic diversity, alternative 

splicing can also function to further regulate gene expression post-transcriptionally, such 

that aberrantly spliced transcripts are targeted for degradation. Aberrant splicing can lead 

to the introduction o f  premature termination codons (PTC) within transcripts, alter rnRNA 

stability or even alter the localization o f  rnRNA, resulting in degradation m echanisms such 

as non-sense mediated decay (NM D ) (Soergel et al. 2006).



13.1.1. TDP-43 in alternative splicing

A role for TDP-43 in splicing was first brought to light in a study by Buratti et al. (2001), 

in which TDP-43 was shown to be a negative regulator (promoting skipping/exclusion) of 

exon 9 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This 

study also identified a polymorphic TGmTn repeat in the 3’ end of intron 8, to which TDP- 

43 bound and resulted in the skipping of exon 9 (Buratti et al. 2001). Subsequent work by 

the same group showed that TDP-43 through its RRM domains, preferentially binds to UG 

repeats in single stranded DNA or RNA, thus confirming the nucleic binding capacity of 

the RRM (particularly RRM 1) domains (Buratti & Baralle 2001). In addition, the role of 

TDP-43 in splicing was further validated in Mercado et al. (2005) where depletion of TDP- 

43 was found to result in the inclusion of exon 3 of the apolipoprotein A-II (apoA-II) pre- 

mRNA. It should be emphasised however, that TDP-43 in most splicing situations does not 

act independently and binds to other proteins including other hnRNPs and splicing factors. 

Indeed, further work by Buratti et al. (2005) showed that TDP-43 was able to bind to 

hnRNP Al and hnRNP A2/B1 through its C-terminal and form a repressor complex that 

resulted in the skipping of exon 9 in CFTR pre-mRNA. This study also confirmed the 

protein-protein binding role of the glycine-rich C-terminal of TDP-43, which is also a 

characteristic feature of the hnRNP group of proteins (Buratti et al. 2005; Ayala et al.

2005).

TDP-43 was also reported to be a negative splicing regulator role in a more recent study 

that analysed the negative feedback loop of a splicing factor SC35, wherein TDP-43 was 

shown to competitively bind the terminal exon sequences in the 3’UTR of the 5 0 5  gene 

(Dreumont et al. 2010). The binding of TDP-43 to the terminal exon resulted in the 

inhibition of SC35-mediated skipping of the terminal intron (normally retained), thereby 

inhibiting un-productive splicing that serves as negative feedback mechanism (Dreumont 

et al. 2010).
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In contrast, another study reported a positive regulatory role for TDP-43 in splicing. 

Specifically, TDP-43 was found to enhance the inclusion of exon 7 in survival of motor 

neuron (SMN) pre-mRNA, through a multimeric complex formation with another positive 

splicing factor, (Transformer-2 protein homolog beta) Htra2~pi, resulting in increased 

expression of the SMN transcript (Bose et al. 2008). This study was however, performed by 

overexpressing TDP-43 which may not recapitulate the natural situation in vivo where 

protein levels are tightly regulated, and other studies that are in agreement with this role 

are required. Indeed, in the same study no changes in the splicing pattern were observed 

when TDP-43 was depleted. Nonetheless, the concept of TDP-43 having a dual role in 

splicing regulation is not novel and has been reported for other proteins (Bose et al. 2008).

The link between TDP-43 and alternative splicing provides further support for the 

involvement of altered RNA processing in TDP-43 proteinopathies, since theoretically, a 

lack of TDP-43 function in both the nucleus and cytoplasm should disrupt cellular 

homeostatic control and expression of multiple transcripts.

1.3.1.2. TDP-43 in transcriptional regulation

Apart from alternative splicing, other mechanisms involved in gene expression regulation 

include transcriptional repression or activation, rnRNA stabilisation and localisation and 

TDP-43 has been shown to be involved in a few of these processes. In fact, TDP-43 was 

first identified as a transcriptional repressor in HIV as a result of binding to the trans-active 

response (TAR) element (Ou et al. 1995). The mechanisms involved in TDP-43 mediated 

transcriptional repression in this case remain unknown, and do not require TG repeats but 

is reported to involve pyrimidine-rich sequences (Ou et al. 1995). Another role for TDP-43 

in transcriptional repression was reported for human intraacrosomal protein SP-10 

(ACVR1). In this case, TDP-43 was able to repress premature expression of SP-10 by
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binding to a complementary strand containing TG repeats in the promoter (Acharya et al.

2006).

1.3.1.3. microRNA regulation, stress granules and RNA translation

Other regulatory roles for TDP-43 have been reported. A previous study by Gregory et al. 

(2005) found TDP-43 to be in a complex with Dicer in the cytoplasm where it was reported 

to play a role in microRNA (miRNA) biogenesis, including being involved in target RNA 

cleavage. A subsequent study showed that TDP-43 was able to bind to and control 

expression levels of certain miRNAs; specifically let-7b which was down-regulated and 

miR-663 which was up-regulated (Buratti et al. 2010b). The authors were also able to show 

that several other rnRNA transcript expression levels were altered as a result of these 

interactions; among them, DYRK1A, STX3, VAMP3 and LAMC1 which are known to be 

involved in neuronal processes such as growth, synapse formation and exocytosis (Buratti 

et al. 2010b). Further support for the involvement of TDP-43 in miRNA biogenesis and 

regulation was provided in recent work, which showed that TDP-43 was able to bind both 

the Drosha and dicer complexes through protein-protein interactions and directly by 

binding specific miRNAs (Kawahara & Mieda-Sato, 2012). The previously reported 

changes in expression levels of let-7b and miR-663 were however not observed, and this 

was attributed to the different cell lines used in the different studies (Kawahara & Mieda- 

Sato 2012).

Several other reports have shown that TDP-43 and FUS/TLS are present in transient 

cytoplasmic stress granules bound to RNA molecules, which is thought to be facilitated by 

their ability to shuttle between the nucleus and cytoplasm (Liu-Yesucevitz et al. 2011; 

Bentmann et al. 2012). It is still debated as to whether stress granules are involved (i.e. as 

seed) in aggregate formation, since they have been found in brains of ALS patients, 

however the fact that stress granules contain RBPs including TDP-43 provides a plausible
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explanation for aggregate-independent toxicity due to depletion of the RNA molecules 

(Liu-Yesucevitz et al. 2011). In addition, TDP-43 has been found in RNA granules at 

neuron synapses where it is thought to respond to neuronal activity (Liu-Yesucevitz et al.

2011). The presence of TDP-43 in the RNA granules has been linked to stability and 

translation of RNA (Buratti & Baralle 2010; Freibaum et al. 2011). The study conducted 

by Freibaum (2011), a global proteomic analysis which identified proteins that co- 

immunoprecipitated with FLAG-tagged TDP-43, further supports a translation role for 

TDP-43 as it was found to be bound to numerous rnRNA translation proteins in the 

cytoplasm.

With regards to rnRNA stabilisation, TDP-43 was shown to bind to UG sequences in the 

3’UTR of lower molecular weight neurofilament light polypeptide (NF1), thus stabilising 

the transcript (Volkening et al. 2009). TDP-43 also interacted with both SOD-1 and 14-3-3 

proteins, known binders of NF1 for increased stability. Furthermore, the fact that NF1 

rnRNA was also found in stress granules of ALS neurons, supports a role for altered 

mRNA processing in disease (Volkening et al. 2009).

1.3.1.4. TDP-43 autoregulation: A negative feedback loop

Aside from having a regulatory role in the processing of other transcripts, TDP-43 has also 

been shown regulate its own expression through a negative feedback loop. A negative 

feedback autoregulatory mechanism has been reported for a number of regulatory proteins 

including hnRNP L (Rossbach et al. 2009) and Arginine/Serine (SR) proteins (Lareau et al.

2007) and the splicing factor SC35 (Dreumont et al. 2010). These proteins are able to bind 

to sequences within their own pre-mRNA resulting in unproductive splicing products that 

are targeted for degradation through various mechanisms including NMD, thus 

establishing a post-transcriptional control of protein levels (Rossbach et al. 2009; 

Dreumont et al. 2010). In these instances the binding of ‘self-proteins’ results in
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alternatively spliced transcripts, which depending on their composition determines the fate 

of the transcript.

In keeping with this mechanism, autoregulation through a negative feedback loop has been 

described for TDP-43. In the work done by Ayala et al. (2011), TDP-43 was reported to 

bind its 3’UTR, resulting in the down-regulation of nascent transcript under conditions of 

TDP-43 overexpression. In addition, the authors were able to prove that the capacity of 

TDP-43 to bind RNA was necessary for this autoregulation, as mutation of the 

phenylalanine (F) residues in RRM1 (reported to play the major role in RNA binding) led 

to a lack of regulation (Ayala et al. 2011). Interestingly, NMD was reported to not be 

involved in the degradation of the two major transcripts that utilised two different poly- 

adenylation (poly-A) sites in autoregulation (Ayala et al. 2011; Avendano-Vazquez et al. 

2012).

Subsequently, the same group identified the mechanisms involved in TDP-43 

autoregulation, described to be a complex interplay between transcription, alternative 

splicing of an intron in the TDP-43 3’UTR and the alternative selection of poly-A cleavage 

sites (Avendano-Vazquez et al. 2012). More specifically, they were able to show that the 

recognition of intron 7 for splicing within the TDP-43 3’UTR was dependent on RNA 

Polymerase II (RNA Pol II) stalling, which led to TDP-43 competitively binding to a 

CstF64 (Poly-A factor) binding site (GU3-5, U2-4). This interaction led to the splicing out of 

intron 7, which also contains the first poly-A in TDP-43, thus resulting in the use of an 

alternative second poly-A. The resultant transcript was found to be retained in the nucleus, 

similar to the transcript that utilises the fourth poly-A (Avendano-Vazquez et al. 2012). A 

model depicting the autoregulation mechanism of TDP-43 is shown in Figure 1-4, below.
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Figure 1-4: Model o f  TDP-43 o f  autoregulation. The binding o f TDP-43 to non-canonical sites in its own 
3 ’UTR results in unproductive splicing events, which are targeted for degradation. Under physiological 
levels TDP-43 can still bind to its 3 ‘UTR, however, the number o f bound molecules is determined through 
competition with the CstF-64. In contrast, high or increased cellular levels o f TDP-43, tip the balance in 
favour of TDP-43 resulting in the recognition and definition o f exon 7. The unproductive splicing o f intron 7 
in the TDP-43 3 ’UTR also leads to an alternative polyadenylation site selection, poly-A2 which is retained in 
the nucleus.

In vivo studies using mice expressing transgenic hum an TDP-43 have further supported the 

notion o f  TDP-43 autoregulation, as transgenic TDP-43 was able to reduce endogenous 

levels o f  mouse TDP-43 transcript, proving that this mechanism is conserved am ongst 

various vertebrate species (A vendano-V azquez et al. 2 0 12).

TDP-43 autoregulation through alternative splicing and differential poly-A site selection 

further emphasizes the role o f  TDP-43 in gene expression regulation. This observation 

coupled with the fact that TDP-43 is involved in numerous post-transcriptional regulation 

mechanisms supports the concept o f  TDP-43 being a global transcript regulator. Thus, it is 

not difficult to imagine that at the transcript level, dysregulation in TD P-43 levels could 

lead to a dysregulation cascade, in several transcripts through both direct and indirect 

interactions. Indeed, TDP-43 could be at the centre o f  a complex regulatory network. The
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exact role of TDP-43 in the cell, however, still remains to be defined conclusively. Indeed, 

a current spurt of research is looking into TDP-43 interactions at both RNA and protein 

level in an effort to provide a correlation with pathogenesis.

1.4. Characterization o f TDP-43 protein opathies 

The newly coined term ‘TDP-proteinopathies’ refers to a group of neurodegenerative 

disorders in which, TDP-43 has been identified as a major protein in pathological 

aggregates/inclusions in patients (Cohen et al. 2011). As has been discussed previously, the 

identification of TDP-43 in pathological inclusions of patients with ALS and FTLD 

sparked a paradigm shift in neurodegenerative research resulting in the discovery of TDP- 

43 inclusions in other disorders such as Alzheimer’s, Huntington’s hippocampal sclerosis 

and corticobasal degeneration (Neumann 2009). Currently, ALS and FTLD fall within this 

clinico-pathological group of TDP-43 proteinopathies that affect different subsets of 

neurons and are viewed as broad spectrum of a single disease (Mackenzie et al. 2007; 

Geser et al. 2009; Mackenzie et al. 2010; Baloh 2011). TDP-43 proteinopathies are 

characterised by TDP-43 accumulation in round inclusions bodies or skeins that are 

associated with nuclear clearance, although some nuclear inclusions have been reported 

(Arai et al. 2006; Neumann, et al. 2006). Within these pathological inclusions TDP-43 is 

found highly ubiquitinated and phosphorylated, with cleaved C-terminal fragments 

perceived to be toxic, also present (Arai et al. 2006; Neumann et al. 2006; Neumann 2009).

In an effort to gain insight into the pathological mechanism involved in TDP-43

proteinopathies, several studies have performed sequence analyses of TDP-43 in patients

compared to controls thus identifying several mutations segregating with disease

(Rutherford et al. 2008; Pesiridis et al. 2009; Neumann 2009; van Blitterswijk et al. 2012).

Currently, over 40 mutations have been identified in TDP-43 (Gendron et al. 2013).

Remarkably, most of these mutations are concentrated on the glycine-rich C-terminal of

the protein with a subset being found in the 5 73 ’ un-translated regions (UTR) and intronic
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regions (Pesiridis et al. 2009). The high frequency of mutations in the glycine-rich region 

of TDP-43 implicates the protein’s capacity to bind and interact with other proteins (C- 

terminal functionality) as a potentially key process in pathogenesis (Pesiridis et al. 2009). 

The numbers of mutations identified relative to the FTLD and ALS TDP proteinopathies 

vary, with the majority being linked to ALS. Although the frequency of TDP-43 mutations 

in FTLD is low (five identified thus far), most co-segregate with a sub-type of FTLD with 

motor neuron disease (FTLD-MND) (Gitcho et al. 2008; Gitcho et al. 2009; Pesiridis et al. 

2009; Neumann et al. 2009) which emphasises the notion of a disease continuum in TDP- 

43 proteinopathies. Nonetheless, pathological accumulations of TDP-43 are still observed 

in FTLD linked to mutations in other genes, such as pro-granulin (PGRN), Valosin- 

containing protein ( VCP) and charged multivesicular body protein 2B {CHMP2B) (Cairns 

et al. 2010; Neumann et al. 2009), which implies that TDP-43 accumulation might be a 

secondary pathological mechanism in these diseases.

On the other hand, approximately 30 mutations identified in TDP-43 thus far, as shown in 

Figure 1-5, have been linked to ALS (http://www.molgen.vib-ua.be/FTDMutations; ALS 

database also present) (Cruts et al. 2012), with the most commonly reported of these being 

the A382T and G348C mutations as reviewed in Kabashi et al. (2008) and Pesiridis et al. 

(2009). Phenotypically, no major differences exist between familial and sporadic forms of 

ALS with mutations in TDP-43 apart from the autosomal dominant inheritance patterns 

observed in familial ALS (Geser et al. 2009; Neumann 2009). Other studies have 

suggested an oligogenic effect of TDP-43 proteinopathies that is not only linked to 

mutations in TDP-43 but in other genes as well (van Blitterswijk et al. 2012).
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F igure 1-5: Schematic diagram o f the distribution o f mutations in TDP-43. The majority o f mutations 
are found in the Glycine-rich terminal o f TDP-43 with the exception of D169G found in RRM1. Mutations 
highlighted in red have been identified in sporadic ALS whereas those highlighted in black are familial 
(Lagier-Tourenne & Cleveland 2009).

With regards to understanding the biological relevance o f  these mutations, functional in 

vivo and in vitro analyses o f  some o f  these mutations have been shown to recapitulate the 

phenotypes observed in patients i.e. proteinaceous cytoplasmic inclusions and presence o f  

cleaved C-terminal fragments, although exact mechanisms still need to be elucidated 

(Rutherford et al. 2008; Pesiridis et al. 2009; N eumann 2009). Currently, none o f  the 

identified mutations have been linked to altered splicing activity, rnRNA instability or 

protein-protein interaction (M ackenzie et al. 2010), which implies an interplay between 

genetic risk factors and the involvement o f  other yet unknown factors in disease 

mechanisms. In complex diseases such as ALS and FTLD, where the environm ent and 

genetic risk factors are thought to play a role, functional biochemical assays m ay not 

provide a satisfactory answer. Indeed, it has been reported that most mutations in TDP-43 

as observed in large pedigrees, tend to have low penetrance (moreso in sporadic ALS), 

strongly suggesting the involvement o f  other modifying factors (van Blitterswijk et al. 

2012; Onodera et al. 2013). The involvement o f  these yet unknown modifying factors 

could provide clues as to the selective formation o f  these protein inclusions in specific 

subsets o f  neurons and why single mutation hit in TDP-43 does not always result in 

disease.



1.4.1. TDP-43 pathology: Loss o f function or Gain o f Function ?

The presence of aggregates in many neurodegenerative diseases, including ALS, presents a 

conundrum. Several speculations and hypotheses exist as to whether the aggregates are the 

cause of neurodegeneration, or are an un-related epiphenomena signalling cellular distress 

or even a protective mechanism for the cell (Baloh, 2011). Typically, the cytoplasmic 

inclusions found in TDP-43 proteinopathies have been shown to consist mostly of cleaved 

C-terminal fragments of TDP-43 accompanied with a nuclear depletion of the protein (Arai 

et al. 2006; Neumann et al. 2006; Neumann 2009; Mackenzie et al. 2010). Two main 

theories, therefore, exist with regards to the pathological mechanism of TDP-43 

proteinopathies. One theory proposes a role for the aggregates observed in patients to be a 

result of a gain of toxic function, in which misfolded and cleaved TDP-43 induce cellular 

toxicity. The other hypothesis, which correlates with the observed nuclear depletion of 

TDP-43, proposes that the sequestration of the wild-type full-length protein within the 

aggregates could lead to a loss of function in the nucleus.

With regards to the former, in which the aggregates are perceived to have a gain of 

function mechanism, several mechanisms could be at play, including the sequestration of 

functional endogenous protein, or the sequestration of other factors such as TDP-43 

binding partners or RNA that could result in toxicity. Within these aggregates as has been 

described previously, TDP-43 C-terminal fragments of 25 kDa and 35 kDa (with truncated 

N-terminal domains) have been observed in brain cytoplasmic protein inclusion and are 

thought to induce cellular toxicity as a result of subsequent post-translational modifications 

or as precursors for aggregation formation (Rutherford et al. 2008; Geser et al. 2009; 

Zhang et al. 2009). In support of the theory of toxic C-terminal fragments, two studies by 

Zhang et al. have shown that caspase-mediated cleavage of TDP-43 is a prior event to 

cytoplasmic translocation (Zhang et al. 2007), and that the 25 kDa fragment that is hyper- 

phosphorylated in residues 409/410 induces cellular toxicity by mechanisms that are still
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unknown (Zhang et al. 2009), implicating a role for cleavage and phosphorylation in the 

pathological process (Zhang et al. 2013). Furthermore, the C-terminal fragments of TDP- 

43 containing truncated RRM2 have been demonstrated to be aggregation prone, through 

the formation of (3-sheet strands that are thought to abnormally bind wild-type TDP-43 

protein (Winton et al. 2008; Igaz et al. 2009; Zhang et al. 2009; Wang et al. 2013). More 

importantly, the C-terminal domain of TDP-43 has been shown to contain a glutamine and 

asparagine (Q/N) prion-like region that could enhance aggregate formation (Fuentealba et 

al. 2010; Budini et al. 2012; King et al. 2012). Considering the known features of prion 

proteins, i.e. a misfolded seed can recruit proteins, it is not difficult to imagine that the 

presence of these domains in TDP-43 could contribute to the formation of aggregates 

among neurons that have encountered an injury or change in homeostasis (Cushman et al. 

2010; Furukawa et al. 2011). Interestingly, aggregate formation may not only involve the 

TDP-43 C-terminal, as a recent study implicated the extreme N-terminus of TDP-43 in the 

formation of oligomers that in turn form aggregates which sequester the wild-type full- 

length protein into inclusion bodies (Zhang et al. 2013). In contrast, a new dynamic related 

to aggregates has recently been proposed in an in vivo study conducted in D. melanogaster, 

in which the aggregates were found to confer a protective role in the retina against 

overexpression of TBPH (a TDP-43 ortholog) that was toxic (Cragnaz et al. 2014).

On the other hand, in support of the loss of function hypothesis, a recent review by Budini 

and Buratti (2011) proposed that a slight perturbation in the delicate balance of TDP-43 

regulation, could tip the scale towards an over expression of TDP-43 leading to increased 

aggregate formation that sequesters the full-length protein, thus creating a TDP-43 ‘sink’ 

that culminates in nuclear depletion. A lack of TDP-43 in the nucleus could lead to a 

break-down in the negative feedback loop resulting in increased production of TDP-43 

protein that could further drive aggregate formation (Budini & Buratti 2011; Polymenidou 

et al. 2012a). Since TDP-43 has a natural propensity to aggregate, it is possible that the
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increased am ount o f  TDP-43 in the cell leads to increased oligomerisation between TDP- 

43 molecules (Figure 1-6).

Figure 1-6: Schematic diagram depicting the combinatorial effect o f TDP-43 aggregation and loss o f  
function in the cell. Accumulation o f TDP-43in the cytoplasm could create a perturbation in the 
autoregulatory loop mechanism o f TDP-43 resulting in increased expression o f TDP-43.TDP-43 inclusions 
may also serve as seed for increased recruitment o f TDP-43 and other proteins (Polymenidou et al. 2012).

In keeping with efforts to understand triggers for aggregation, a study that exam ined the 

behavior o f  TDP-43 with mutated nuclear localization and export signals (N LS and NES), 

found that abolishing either one o f  these regions resulted in TDP-43 proteinopathy that was 

reminiscent o f  that observed in patients i.e, aggregate formation, hyper-phosphorylation 

and ubiquitination (Winton et al. 2008). However, up until recently, none o f  the previous 

studies had reported a functional effect as a result o f  endogenous TDP-43 sequestration 

within the aggregates. To this end, a follow up study building up on a previous cellular 

aggregation model by Budini; Romano et al (2014), found that when full length TDP-43 

was fused to 12 repetitions o f  the Q/N region found in the C-terminal o f  TDP-43, the 

resulting aggregates were able to sequester endogenous wild-type protein, resulting in a
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loss function, as determined by the altered splicing profile analyses of exons 9 and 3 of 

CFTR and Polymerase delta interacting protein 3 (POLDIP3/SKAR), respectively.

Interestingly, in vivo studies of TDP-43 knock-out showed that TDP-43 is essential for 

development as no embryos survived (Baloh, 2011; Budini et al. 2012). However, another 

study performed in mice, reported that when TDP-43 was conditionally knocked-down, 

progressive ALS-like symptoms were observed including motor-dysfunction and motor 

neuron loss, supporting a loss of function hypothesis and a role for TDP-43 in the survival 

of motor neurons (Wu et al. 2012).

Still, despite the evidence in support of both hypotheses, there is no consensus on the 

mechanisms that lead to TDP-43 pathology (Da Cruz & Cleveland 2011) and given the 

multi-functional role of TDP-43, it could very well be a combination of both mechanisms 

i.e. loss of function of the endogenous protein and gain of function of the subsequent 

aggregates, in addition to alterations in protein homeostatic mechanisms regulating other 

factors that interact with TDP-43. The fact that ALS and other TDP-43 proteinopathies are 

complex neurodegenerative diseases further provides challenges for researchers with 

regards to identifying the exact disease mechanisms that could inform the development of 

therapeutics.

1.4.2. TDP-43 proteinopathy disease models

Efforts towards understanding disease mechanisms in TDP-43 proteinopathies have 

incorporated several disease models, each with their unique limitations. The use of in vitro 

systems such as cellular models could provide partial insight albeit an incomplete picture, 

into factors involved in pathogenesis. For instance, Budini et al. (2012) engineered a 

cellular model in which TDP-43 aggregation and consequent effects could be studied. In 

effect, they were able to map the TDP-43 Q/N region, corresponding to 321-369 amino 

acids which facilitated binding of TDP-43 to other proteins (hnRNPs) and played a role in
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aggregation, as determined by the results of a synthetic construct containing 12 repeats 

(12X) of the Q/N region, fused to a GFP reporter (Budini et al. 2012). Although studies 

using this model were able to recapitulate the formation of aggregates, no toxicity and or 

cleaved C-terminal TDP-43 fragments were observed and only minimal amounts of 

endogenous TDP-43 were sequestered within the aggregates (non-functional), highlighting 

a temporal limit of this cellular model as suggested by the authors (Budini et al. 2012). 

Nonetheless, a build-up on this study by the same authors incorporating full length TDP-43 

fused to the above mentioned 12Q/N repeats, was able to functionally ascertain the 

sequestration of the endogenous protein within the aggregates, thereby supporting a loss of 

function hypothesis disease mechanism involving TDP-43 (Budini; Romano et al. 2014).

In vivo disease models in part, are able to provide a solution for the above mentioned limits 

with the added advantage of a relatively easily manipulated system that closely resembles 

that of humans. For TDP-43 proteinopathies specifically, various systems based on protein 

homology have been identified, including Mouse, Rat and D. melanogaster. Other 

organisms such as yeast (S. Cerevisiae) (Johnson et al. 2008; 2009) and bacteria have also 

been used as host systems for expression of transgenic human TDP-43. TDP-43 bears a 

cumulative 70% similarity with M. mnsculus and D. melanogaster indicating a shared 

function of the orthologous proteins in their respective species (Wang et al. 2004).

The use of D. melanogaster as a model for studying neurodegenerative diseases is

appealing due to the presence of high neuronal complexity (different cell types and

neurotransmitters) and brain function (learning and memory), similar to humans (Romano

et al. 2012). Furthermore, D. melanogaster have a relatively short life-cycle and are easily

manipulated using inducible gene expression systems. Indeed, a study by Ayala et al

(2005) showed that hTDP-43 and D. melanogaster TDP-43 also known as TBPH, bear

functional similarities in RNA binding and roles in splicing. Functional similarity between

TDP-43 and TBPH was further confirmed in a study that analysed TDP-43 regulation of
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HDAC6\ wherein knockout of TBPH resulted in the down-regulation of the HDAC6 

transcript (Fiesel et al. 2010).

With regards to TDP-43 pathology, several insights using the D. melanogaster model have 

been gained. For instance, over-expression of TBPH or hTDP-43 in flies has been reported 

to result in toxicity-induced neurodegeneration that is not linked to cytoplasmic inclusions 

(Feiguin et al. 2009; Li et al. 2010). On the other hand deletion or complete knockout of 

TBPH was shown to greatly reduce survival as embryos only survived to the second instar 

larval stage (Fiesel et al. 2010). In addition, partial deletion of TBPH was reported not to 

change viability of embryos but adult flies showed decreased motility and lifespan as a 

result of underdeveloped neuromuscular junctions (less axonal branches) (Feiguin et al. 

2009). Another study confirming functional similarity between TDP-43 and TBPH showed 

that hTDP-43 was able to rescue/increase dendritic branching in genetic null mutants of 

TBPH (Lu et al. 2009). These phenotypes closely resemble those observed in patients and 

emphasise the suitability of using D. melanogaster as a disease model. In keeping with 

this, other studies have examined the effect of previously identified mutations in TDP-43 

and reported enhanced neurotoxicity as well presence of aggregate and fibril formation 

(Estes et al. 2011; Guo et al. 2011). Nonetheless, the sequence similarity of TBPH and 

hTDP-43 (77% at the N-terminal and 22% at the C-terminal (Romano et al. 2012) could 

account for disease phenotypic differences observed in humans and other animal models 

such as rodents that have a much higher sequence similarity.

In fact several studies, conducted on mice (95% homology to hTDP-43) and rats (reviewed

in Baloh, 2011 and Tsao, 2012) have taken advantage of this fact in an attempt to create

TDP-43 disease models that can provide insight into the pathogenesis of the disease. Based

on the previously discussed hypotheses on the pathogenicity of TDP-43, transgenic mice

and rat lines that over-express and knock-down TDP-43 have been studied (Tsao et al.

2012). In particular, mice over-expressing transgenic hTDP-43 under heterologous
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promoters that target specific subsets of cells, including neurons have been found to be 

consistently toxic across various studies in a dose-dependent manner (Da Cruz & 

Cleveland 2011; Baloh 2011; Tsao et al. 2012). Other studies aiming to overcome the issue 

of toxicity due to over-expressing TDP-43 used a bacterial artificial chromosome (BAC) 

gene expression system in mice and rats, and found that the lower levels of expression 

(almost 3X more than endogenous-still quite high), recapitulated better the physiological 

features observed in patients (Zhou et al. 2010; Swarup et al. 2011). On the other hand, as 

has been mentioned previously, knock-down of TDP-43 is embryonic lethal and a 

conditional knockout was shown to result in death soon after induction, highlighting that 

TDP-43 is not only important for development but also for survival (Sephton et al. 2010; 

Kraemer et al. 2010). In addition, conditional knockout of TDP-43 in post-natal mice did 

not show a decrease in protein expression levels nor exhibition of any ALS or FTLD-like 

symptoms, except for a lean phenotype, which proved un-related (Chiang et al. 2010).

Nonetheless, mice expressing transgenic human or mouse TDP-43 with mutations or 

altered levels of expression, are reported to exhibit similar phenotypic features of TDP-43 

pathology as observed in patients including, cognitive impairment, selective loss of 

neurons, motor deficits, gait abnormality and lethality to varying extents depending on the 

type of promoter used in the study (Da Cruz & Cleveland 2011; Tsao et al. 2012). Line to 

line variability has also been observed making it difficult to reproduce results or make 

conclusive analyses. Still, expression of transgenic wild type or mutant TDP-43 in rodent 

models, broadly recapitulates pathological features as observed in patients, including 

nuclear depletion, C-terminal fragments and hyper-phosphorylation (Baloh 2011). In 

addition, it appears that the cellular inclusions containing phosphorylated TDP-43 

aggregates are not an outstanding feature of these animal models (Baloh, 2011) unlike in 

patients where inclusions are a hallmark of disease.
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The use of transgenic mice and rats as in vivo disease models however, highlight a few 

limitations. Firstly, human TDP-43 may be non-functional (viewed as mutant) in the rodent 

background resulting in toxicity, through a perturbation of endogenous mouse tdp43 

homeostasis (Da Cruz & Cleveland 2011; Baloh 2011; Tsao et al. 2012). Secondly, the 

physiological variability of symptoms observed could point towards a necessity for 

controlled and matched mice genetic backgrounds, despite the use of identical promoters. 

Thirdly, the fact that the characteristic protein inclusions observed in patients are not 

regularly observed in the rodents could mean that the proposed toxicity of TDP-43 

pathology is achieved in a manner that is independent of aggregate formation in these 

animals and does not provide clues into the perceived role of these aggregates in patients 

(Da Cruz & Cleveland 2011; Baloh 2011).

In parallel with mammalian disease models of TDP-43, other studies have looked at other 

eukaryotic organisms for TDP-43 pathology answers, including yeast. Although yeast lack 

a true TDP-43 homolog, over-expression of TDP-43 in yeast was shown to recapitulate the 

characteristic features observed in cell lines and patients, where cytoplasmic protein 

aggregation and toxic C-terminal fragments were observed (Johnson et al. 2008; Johnson 

et al. 2009). In addition, yeast studies have supported hypothesis that cellular toxicity may 

be independent of aggregates (despite their presence) and that the RRM or RNA binding 

capacity of TDP-43 is necessary for induction of toxicity (Johnson et al. 2008; 2009; Baloh

2011). Other models such as zebrafish of TDP-43 proteinopathy have also been reported to 

exhibit a motor neuron phenotype when TDP-43 was knocked down and these symptoms 

could be rescued upon overexpression of wild type TDP-43 (Kabashi et al. 2008). Notably, 

in invertebrate models of TDP-43 proteinopathies, there is a convergence on the theory of 

toxicity being independent of cytoplasmic inclusions and is thought to involve a 

modulation within TDP-43 RNA binding partners (Baloh 2011).
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More recently, with the discovery that somatic cells could be reprogrammed, the use of 

induced pluripotent stem cells (iPS) as a disease model has gained momentum. iPS cells 

have provided a platform in which cells from patients could be used to understand 

pathogenesis, based on mutations (Mattis & Svendsen 2011; Patani et al. 2012). With 

regards to TDP-43 proteinopathies, a recent study that used iPS cells reported an increased 

vulnerability of motor neurons due to a M337V mutation in TDP-43 inherent in a patient, 

following stress induction through inhibition of key signalling pathways (Bilican et al.

2012). In addition, the authors also reported an increase in levels of protein including 

soluble and detergent-insoluble TDP-43, although no cytoplasmic inclusions were 

observed (Bilican et al. 2012). A similar study that examined phenotypic differences in a 

patient (A90V) and control iPS cells upon stress induction, reported a higher percentage of 

TDP-43 in the cytoplasm, lower levels of TDP-43 and down-regulated mir-9 (Zhang et al.

2013).

Despite being a more closely related model in terms of disease and species specificity, 

there are still some limits of using iPS cells as disease models. For instance, the fact that 

the cells undergo genetic reprogramming means that cells are reverted to a somewhat 

“younger” state which would make it difficult to study age-related factors in connection 

with complex disorders such as ALS that also have sporadic forms (Mattis & Svendsen 

2011). Furthermore, in the context of the brain and other tissues, neuronal cells are 

normally surrounded by other differentiated cells and factors, and the lack thereof in cell 

culture conditions, may not recapitulate the cellular milieu that initially led to disease. 

Coupled with this, is the fact that in disease situations, specific subsets or populations of 

neurons are affected, and so the challenge would be to enrich iPS cells of these specific 

subsets in a reproducible and predictable manner (Patani et al. 2012). In addition, it has 

been reported that these somatic cells do not undergo complete reprogramming and could 

retain epigenetic memory of the original tissue (Kim et al. 2010; Mattis & Svendsen 2011).
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With the rapid progression of advances in technology, it is possible that these limitations 

will soon be addressed.

Thus, lessons from disease models of TDP-43 proteinopathies, point towards a cellular 

toxicity whose exact mechanism remains unknown. The involvement of aggregates is still 

quite heavily debated and as such there is no consensus on whether TDP-43 pathology 

exerts a toxic gain of function or loss of function mechanism. The latter seems a more 

attractive candidate for pathogenesis given the nuclear clearance observed in TDP-43 

proteinopathies, implicating a disturbance in the autoregulation of TDP-43, although, the 

involvement of both mechanisms could be at play. However, for plausibility of the loss of 

function theory, further studies looking into the physiological role of TDP-43 in the cell 

are required. To this end, there has been a flurry of research aimed at identifying targets of 

TDP-43 at a global scale, utilising advanced high-throughput technologies.

1.5. Identification o f TDP-43 RNA targets 

In the post-genomic era, several high-throughput technologies have been developed that 

enable global analyses of cellular changes in both the transcriptome and proteome in large 

data sets, including fold differences in expression (Buratti et al. 2012). With regards to 

analysing global transcriptomic changes, technologies such as microarrays (Johnson et al. 

2003) and next-generation sequencing have been particularly useful in distinguishing 

between alternatively spliced transcripts, including expression levels of the various 

isoforms (Blencowe 2006; Buratti et al. 2012). Coupled to sequencing, technologies such 

as UV cross-linking immunoprecipitation (CLIP) are able to identify trans-acting factor 

binding sites in vivo, which provide insight on positional regulation by these factors (Ule et 

al. 2005). These methodologies have been applied with regards to TDP-43 and ALS 

(discussed below) in an effort to understand global changes within cells under 

physiological and pathological conditions.
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Since microarrays were first described (Lipshutz et al. 1999), several adjustments have 

been made, including the development of splice junction arrays (Yeakley et al. 2002; 

Johnson et al. 2003), that are now routinely used to analyse global splicing changes within 

the cell. Splice-sensitive microarrays utilise probes positioned on exons and exon-exon 

junctions and are able to detect changes in splicing as well as changes in expression of 

isoforms due to these splice changes (Hallegger et al. 2010). In particular, a study that 

utilised splice-sensitive microarrays, RNA-seq and CLIP to analyse consequences of TDP- 

43 depletion in mice, found that transcripts with very long introns and which also encoded 

proteins involved in synaptic activity, were significantly depleted in mice brain and were 

significantly enriched for TDP-43 clusters (Polymenidou et al. 2011). In addition, the study 

also identified over 500 transcripts that underwent TDP-43 dependent alternative splicing 

based on combined data from RNA-seq and splice-sensitive microarrays (Polymenidou et 

al. 2011). Several similar studies have been conducted using different disease models, in an 

effort to determine whether there is a correlation of altered RNA processing in TDP-43 

proteinopathies with toxicity and neurodegeneration as observed in patients. One such 

study examined the effects of TDP-43 depletion and overexpression in Drosophila and 

concluded that since there was no significant overlap in affected genes, both mechanisms 

of toxicity employed different cellular programs (Hazelett et al. 2012).

Other studies examining expression changes that were TDP-43 dependent such as Ayala et 

al (2008), employed microarray analysis in HeLa cells depleted of TDP-43 and found a 

dramatic increase in expression levels of Cyclin dependent kinase 6 (Cdk6) at both the 

rnRNA and protein level. Cdk6 phosphorylates the retinoblastoma protein (pRb) involved 

in the control of cellular proliferation, thus hyper-phosphorylation due to depleted TDP-43 

could possibly lead to an increased activation of pro-apoptotic pathways (Ayala et al. 2008; 

Buratti & Baralle 2010). Similarly, two separate studies using expression profiling and 

splice sensitive arrays to examine cellular changes upon TDP-43 depletion found histone
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deacetylase 6 (HDAC6), a protein involved in the formation and degradation of cellular 

aggregates to be significantly down-regulated (Fiesel et al. 2010) and TDP-43 dependent 

inclusion of exon 3 in (S6 kinase 1 (S6K1) Aly/REF-like target or Polymerase delta 

interacting protein 3) (SKAR/POLDIP3) (Fiesel et al. 2012). These studies highlighted a 

role for TDP-43 in cellular toxicity, through HDAC6 and translation regulation through a 

much more active isoform of SKAR, thereby broadly affecting cellular proteomic 

homeostasis which could be extrapolated to disease (Fiesel et al. 2012).

Similar large scale analyses have since been ustilised involving UV cross-linking 

immunoprecipitation (UV-CLIP) and high throughput sequencing cross-linking 

immunoprecipitation (HITS-CLIP) techniques. CLIP, analyses involve UV-mediated 

crosslinking of protein bound to RNA in the cell, after which immunoprecipitation is 

carried out using a protein-specific antibody. Subsequently, the bound protein and RNA 

are digested, leaving just the peptide bound to RNA, which can then be sequenced, 

following amplification with adaptor sequences (Ule et al. 2005); various modifications 

exist for the downstream processes.

A study by Tollervey et al. (2011) conducted using iCLIP (modified version individual

nucleotide resolution) in SH-SY-5Y cells, human embryonic stem cells and brain tissue

from healthy controls and patients with FTLD-TDP-43, found TDP-43 clusters in deep

intronic regions, long non-coding RNA (IncRNA), intergenic regions as well 3’UTRs of

numerous rnRNA sequences. In addition, this study confirmed that TDP-43 preferentially

bound stretches of UG repeats and reported a position-dependant splicing regulatory role

(Tollervey et al. 2011). Concurrently, in addition to finding that TDP-43 preferentially

bound UG stretches, Xiao et al. (2011) showed that TDP-43 also bound poly-pyrimidine

tracts (although at a much lower frequency than UG-rich sequences), in lumbar spinal cord

RNA of controls and ALS patients. In addition, this study also confirmed TDP-43 position-

dependent regulation of alternative spliced exons in five out eight genes analysed (Xiao et
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al. 2011). A similar independent study using mouse models and iPS cells confirmed the 

above findings in addition to finding that while FUS/TLS and TDP-43 had distinct rnRNA 

targets, they also shared common targets and functional roles in the processing of distinct 

sets of IncRNAs (Lagier-Tourenne et al. 2012b). This study also reported a general 

reduction in rnRNA and proteins for transcripts that were bound by both TDP-43 and 

FUS/TLS in neuronal cells and spinal cords of patients (Lagier-Tourenne et al. 2012b), 

supporting a role for a loss of function mediated by TDP-43 aggregation.

Other methodologies that have been used to identify RNA targets of TDP-43 include RNA 

immunoprecipitation-microarray analysis (RIP-Chip) and RIP-sequencing. With this 

method, RNA bound to a protein of interest is immunoprecipitated using a protein-specific 

antibody followed by proteinase digestion to separate the protein from RNA (Keene et al. 

2006). Once the RNA has been isolated from the ribonucleoprotein complex (RNP), cDNA 

conversion is perfomed and transcripts are hybridised on a microarray chip (Keene et al.

2006). Using RIP-Chip, performed on mouse neuronal cells (NSC-34) Colombrita et al. 

(2012) confirmed that TDP-43 and FUS/TLS bind distinct sets of mature RNAs and this 

was thought to facilitate their involvement in translation and stability. The authors were 

also able to confirm RNA targets that had previously been identified using other methods, 

such as Tafl5 and Atxnl, and that TDP-43 targets were enriched for transcripts associated 

with neuron-specific activities (Colombrita et al. 2012). Another study using RIP-analysis 

performed on mice confirmed that TDP-43 targets were enriched for synaptic function, 

neuronal development and RNA metabolism, in addition to finding other proteins that were 

in complex with TDP-43 (Sephton et al. 2011).

Collectively, these studies confirm that TDP-43 preferentially binds to UG stretches

within long introns and 3’UTRs of various transcripts with varying consequences. Such

global studies provide large sets of data that enable the identification of RNA targets of

TDP-43 and in most cases the consequences of TDP-43 binding in these targets.
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Effectively, most of the works described in these studies highlight a major role for TDP-43 

in alternative splicing regulation, and to a minor extent, roles in transcription and 

translation regulation. Other, mechanisms of TDP-43 on its targets, if they exist, remain to 

be elucidated.

Still, some challenges exist, such as limitations presented by mice models that do not 

necessarily undergo the same splicing events as in humans. In addition, the heterogeneity 

within cellular models and technological differences could confound results, making it 

difficult to find consensus targets for TDP-43. Even more importantly, is the fact that 

despite the millions of data that are obtained from global scale analyses, these often need to 

be validated using other methods. In the case of TDP-43, since a major role in splicing has 

been identified, most validation strategies involve the use of RT-PCRs and minigenes, 

which are well-known and established assays for identifying and characterizing alternative 

splicing as well as binding sites. The characterization of TDP-43 targets and the 

mechanisms involved could provide a much needed insight into disease mechanisms 

including its actual role in proteinopathies associated with neurodegeneration, which to 

date, have not been clearly defined.

1.6. Study Rationale

All the approaches described above have yielded a vast number of genes whose

expression/splicing levels become altered following changes in TDP-43

expression/localization. This result is not surprising if we consider the high number of

molecular pathways in which TDP-43 seems to be involved, that include

mRNA/lncRNA/miRNA processing, mRNA transport/stability, and mRNA translation

(Buratti & Baralle 2012). However, this abundance of targets also suggests that not all of

these changes can be ascribed to a direct consequence of just TDP-43 action (Romano &

Buratti 2013). The reason being that most hnRNPs regulate mRNA splicing processes in a

highly co-operative manner (Huelga et al. 2012; Chen et al. 2012; Wang et al. 2013) and it
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is possible that many of TDP-43 functional roles will also be dependent on the presence of 

specific partners. Indeed, TDP-43 is certainly no exception to this situation, at least with 

regards to the role it plays in splicing regulation (Buratti et al. 2006). To this date, there are 

still very few endogenous exons/introns that are known to be directly affected by TDP-43 

levels (Romano & Buratti 2013). In addition, substantial changes in the endogenous 

protein production in neuronal cell lines following TDP-43 depletion, has been shown only 

for SKAR/Poldip3 and the TDP-43 protein itself (Shiga et al. 2012; Fiesel et al. 2012; 

Bembich et al. 2014). From the point of view of understanding TDP-43 pathology, 

therefore, this could represent a crucial aspect of future therapeutic approaches.

1.6.1. Aims and Objectives

In order to gain better insight into the consequences of TDP 43 depletion in the cell a series 

of overlapping high-throughput screening approaches were utilised; taking advantage of 

previously constructed HEK-293 stable cell lines that can be induced to express a variety 

of TDP-43 isoforms (Ayala et al. 2011). As has been described in Ayala et al (2011), each 

of the stable cell lines were generated using the Flp-In recombinase system which ensures 

that only a single copy of the integrated transgene is expressed following tetracycline 

induction. The stable cell lines used in this study are described below;

> HEK-293-Flp-In: This cell line also known as the ‘host’ cell line, only contained 

the integrated Flp-In recognition sites and were used as control cells in all analyses.

> HEK 293-TDP-43 wild-type tagged protein: -This cell line inducibly expresses full 

length TDP-43 cDNA fused to a FLAG tag at the N-terminal. In addition, in these 

cells, the over-expression of wild type TDP-43 is able to down-regulate 

endogenous TDP-43 expression as shown in Figure l-7a below.

> HEK 293-TDP-43-RRM-1-2 Mutant: -In this cell line TDP-43 cDNA containing

both RRM-1 (F147L, F149L) and RRM-2 (F229L, F231L) mutations are combined

in addition to an N-terminal FLAG. The substitution of Phenylalanine (F) for
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Leucine (L) in the RRM s inhibits the RNA binding capacity o f  TDP-43, which is 

confirmed by the lack o f  TDP-43 autoregulation observed in cells expressing this 

mutant Figure 1 -7b following tetracycline induction.
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F igure 1-7: Schematic representation o f  HEK 293 stable cell lines expressing wild-type and mutant 
TDP-43. (a) The HEK 293 stable clone containing full length cDNA of TDP-43 is able to down-regulate 
expression o f endogenous TDP-43 as early as 24 hr, as can be observed in the western blot analyses, (b) In 
contrast, mutating the Phenylalanine residues in both RRM domains inhibits the ability o f TDP-43 to bind 
RNA, consequently impairing autoregulation as can be observed in the adjacent western blot, where both 
endogenous TDP-43 and flag-tagged TDP-43 are visible. (Reproduced from Ayala et al., 2011).

Due to the similar background between these lines, this approach has been particularly 

useful for identifying several novel genes where TDP-43 can be ascribed as playing a 

direct role in regulating protein isoform production. Therefore, in this study a two-pronged 

approach that utilised Affymetrix Genesplice arrays (that have previously been described 

in detail) and 2-Dimensional gel electrophoresis was used to elucidate a com m on network 

o f  TDP-43 RNA targets, in which expression changes could be observed, both at the RNA 

and protein level.

The use o f  two-dimensional gel electrophoresis (2-DE) to analyse global differential 

protein expression, is a popular and versatile method o f  protein resolution that com bines 

isoelectric focusing (separates proteins according to their isoelectric point (pi)), and SDS- 

PAGE (separation according to molecular weight) (Garfin 2003). 2-DE separation permits 

the generation o f  protein maps o f  cells under different conditions including protein 

expression changes associated with the different cellular states.



By utilizing both splice-sensitive and 2-D electrophoresis, the observed global changes at 

the RNA and protein level will provide further insight into the role of TDP-43, including 

pathogenic processes that could lead to neurodegeneration.
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2. MATERIALS AND METHODS

2.1. Cell culture and sample preparation for microarray and 2-DE
analyses.

For both microarray and 2-DE analyses, Flp-In HEK293 (Invitrogen) with inducible 

siRNA resistant FLAG-tagged wild type TDP-43, F4L mutant (Ayala et al. 2011) cells 

were cultured in DMEM-Glutamax-I (GIBCO, Life technologies) supplemented with 10% 

fetal bovine serum (EuroClone) and 1% penicillin/streptomycin (Gibco) in 35 mm dishes 

or six well plates and incubated at 37°C and 5% CO2 . Induction of tagged TDP-43 

expression was achieved with 1 pg/ml tetracycline (Sigma).

2.1.1. RNA interference and RNA extraction

Knockdown of endogenous TDP-43 was performed by RNA interference using HiPerFect 

Transfection Reagent (Qiagen) and siRNA specific for TDP-43 (Dharmacon; target 

sequence 5’-aagcaaagccaagaugagccu-3’). Shortly prior to transfection 5x105 cells were 

seeded in 6-well plates in 1.4 ml of culture medium containing serum and no antibiotics. 

3 pi of 40pM siRNA TDP-43 was diluted in 91 pi of Opti-MEM (Gibco, Life 

Technologies) and 6 pi of HiPerFect Transfection Reagent was added to the diluted 

siRNA. Following 10 min of incubation, the complexes were added drop-wise onto the 

cells. After 24 hours, the same procedure was performed with the exception that cells were 

detached from the 6-well plates, centrifuged at low speed (1,000 x g) to remove previous 

media containing siRNA transfections mixture, and re-seeded shortly before transfection. 

Consequently, three siRNA transfections were performed for each experiment. The siRNA 

against firefly luciferase gene was used as a control (Dharmacon Non-Targeting siRNA 

#2). Total RNA from individual samples was purified using TRIzol reagent (Invitrogen) 

according to manufacturer’s instructions. RNA quality control and microarray analysis was
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performed at GenoSplice (France). A schematic representation o f  the experimental set-up 

for both analyses is shown below (Figure 2-1).

HEK293 HEK293 HEK293(TDP43wt) HEK293(4F/L)
+tet + te t + tet + tet

+ control siRNA +TDP43siRNA +TDP43siRNA +TDP43siRNA

72h Induction

Sample Preparation

Total RNA Total protein lysate

Figure 2-1: Schematic diagram o f experimental set-up for both microarray and 2-dimensional gel 
analyses.

2.1.2. P ro te in  e x tra c tio n  a n d  b i-d im e n s io n a l se p a ra tio n .

With regards to the 2-D E gels, the same culturing procedure and siRN A  transfection 

protocol as described above was utilised. Similarly, after 72 hours o f  induction and siRNA 

treatment, total protein was harvested from the cells as follows. Protein isolation was 

performed as has been described previously (Tang et al. 2007) with a few exceptions. 

Approximately 1 x 10 7 cells in triplicate estimated to contain 1 m g o f  protein were initially 

washed with 9% sucrose in dFbO, followed by another wash containing IX protease 

inhibitor cocktail (Roche) to remove salts. Cells were then pelleted by centrifugation at 

maximum velocity and the resulting pellet in re-supended in destreak rehydration solution 

(GE Healthcare) supplemented with immobilised pH gradient (IPG) buffer, sonicated, 

centrifuged and again re-suspended in the same solution in preparation for isoelectric



focusing. Protein samples were first separated according to their isoelectric point on 

immobilized pH-gradient strips (pH3-ll NL) 1% v/v as follows: proteins were first put 

onto the ceramic holder and the dry strip placed on top with the gel-side being in direct 

contact with the proteins. Cover fluid was put on top and left for at least 8 hr. Isoelectric 

focusing was carried out on an EttanlPGphorR IEF unit (Amersham Biosciences), at 20 °C, 

using the following program: 50 V for 4 h, 500 V for 1 h, 1000 V for 2 h, and 8000 V up to 

48 000 V hr and 5500 V for 29 hr (to avoid diffusion). Each focused strip was dried of 

excess oil and gel melted at low voltage prior to treatment with equilibration buffer 2.5 mL 

(6 M urea, 30% glycerol, 50 mM Tris-HCl pH 8.8, 2% w/v SDS, 25 mg DTT, and 

bromophenol blue (tracking dye)), for 10 min, at room temperature. After removing this 

solution, a second equilibration was performed for 7 min with 2.5 mL of a solution 

containing the same components with the exception of 62.5 mg iodoacetamide used instead 

of DTT. Strips were then washed briefly in IX running buffer.

Subsequently, the proteins were then separated based on molecular weight by placing the 

strips horizontally on 12% SDS-PolyAcrylamide gels with 30 pi of standard protein 

marker (Fermentas) loaded alongside strip and run at 40 mA per gel overnight. After 

running gels were washed once with dH20 and fixed for 1 hr in 10% (v/v) ethanol 7% 

(v/v) Acetic acid and stained overnight with 0.12% Colloidal G-250 Coomassie Blue and 

de-stained with dH2 0 .

2.1.3. In-gel digestion and peptide extraction

Initially, spots identified to undergo differential intensity were excised and sent to

Proteome Factory (Germany) for analysis. When performing the re-analysis the spots

selected were prepared for analysis by an in-house mass spectrometry facility. Prior to this

analysis in-gel digestion of spots identified to undergo differential intensity but had no

genes identified, shown in Table 2-1, was performed essentially as described in Bhardwaj

et al. (2013) with a few exceptions. All traces of Coomassie blue staining were removed
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from the excised spots by washing with different concentration of methanol (MeOH), 

starting at 100% and then rehydrated with 30% MeOH and dH20 wash. The gel pieces 

were then subsequently washed 4-6X for 30 min each on a mixer with 50% MeOH 

containing 20 mM TEAB (TriethylammoniumBicarbonate) then with 1 ml dH20 and dried 

on a SpeedVac for 15 min at medium temperature. 10 pi of Trypsin solution (0.5 pg/ml; 98 

pi of 20 mM TEAB) was added to the gel pieces, mixed and incubated at 37°C for 15 min 

followed by addition of 10 pi of dH20 and further incubation at 37°C overnight. Following 

trypsinization supernatant from the gel pieces was collected into a clean tube. 5% Formic 

Acid was then added to the gel pieces (just enough to cover) and sonicated. Supernatants 

from the trypsinization and sonication were combined, concentrated by drying on the 

Speed Vacuum and sent for mass spectrometry analysis (Mike Mayers, ICGEB).

2.2. Validation analyses

2.2.1. Quantitative real-time PCR (qPCR) Analysis for genes identified in 2-

DE analyses

For all qPCR analyses, RNA extraction and cDNA conversion were performed as 

described above. qPCR was performed with the iQ SYBER Green Supermix on a CFX96 

Real-time PCR Detection System (BioRad). Primer sequences used to amplify genes 

analysed in the 2-DE analyses are shown in Table 1 below:

Gene/Primer Name Forward Reverse
EEF2 5 ' -  GCCAGATCATCCCCACAGC-3' 5 ' -  CCCGCTTCCTGTTCAAAACC-31
CCT8 5 ' -CCCCAGGTTCTCAGAGCTCAC-3 ' 5 1-GGATGACACACAAAGCATCG-3 '
U2AF1 5 1-TGCTGCCGTCAGTATGAGATG-3' 5 ' -TCTCGACCGCCTCCTGTC - 3 '
MDH1 5 1-TTGTTGTGGGTAATCCAG-'3 5-GACATTCTTTACATCATTAGC-3'
NASP 5 ' -GAGTCCACAGCCACTGCC- '3 5 1-GCATTGACAGCTGCTGGA-'3
HSPA9 5 ' -CAGAAGCAATCAAGGGAGCAG-3' 5 1-CACAACTGAAGGGGTGGTTC-3'

Table 2-1: Primer sequences used to amplify genes analysed in both microarray and 2-DE analyses.
Sequences are written in 5 ’-3’ direction. Primers were mapped to exonic sequences and not exon-intron 
junctions.
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PCRs were performed at 98°C for 30 sec, 95°C for 10 sec, Ta (relevant annealing 

temperature; range 55-57°C) for 30 sec for 40 cycles followed by a thermal denaturation 

step. Expression levels of target genes were quantified relative to either GAPDHor HPRT 

house-keeping genes using the 2-aaC t method. Student’s /-test was used to determine 

significant differences between groups where a p-value < 0.05 was considered statistically 

significant.

2.2.2. Northern Blots

Northern blot analyses were performed to quantify relative mRNA abundance. Total RNA 

was extracted from the cells by means of a single-step extraction method using EuroGold 

TriFast™ (Euroclone, SanBio) reagent, according to the manufacturer’s guidelines. 

Subsequently, for each sample, 10-20 pg of RNA mixed with IX sample buffer (50 pi of 

MOPS 10X, 2 pi of EtBr (10 mg/ml), 250 pi of deionised formamide, 37% formaldehyde, 

bromophenol blue and dFbO) was denatured at 70°C for 5 min, cooled on ice, spun down 

and loaded on 1.2% formaldehyde Agarose gels and run at 85 V for 4 hr. After the run 

RNA was transferred onto Hybond N+ nylon membranes (Amersham Biosciences) and 

UV-cross-linked. A 1 hr pre-hybridization of the membrane was performed in 

ULTRAhybaid® Ultrasensitive hybridization buffer (Ambion) at 42°C followed by 

hybridization at either 42/50 depending on the probe. The probes were generated by PCR 

using primers described in section 4.2.1 and PCR products labelled with Rediprime II 

DNA Labeling System (GE Flealthcare) according to the manufacturer’s instructions. 

Probes were denatured at 95-100 °C for 5 min prior to hybridization. Washes to remove 

un-hybridized signal were performed for 20 min each as follows: 2X SCC + 0.1% SDS, IX 

SSC + 0.1% SDS, 0.5X SSC +0.1% SDS, 0.1 X SSC + 0.1% SDS. Visualization of signal 

was carried out with a Cyclone Plus Storage Phosphor Scanner and the included OptiQuant 

Software (Perkin Elmer).
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2.2.3. RT-PCRs

Validation of transcripts depicted to be altered in a TDP-43 dependent manner was 

performed using the same cell lines, culture conditions and siRNA treatment as described 

in 4.1 above. Prior to reverse transcriptase PCR (RT-PCR) analyses, total RNA was 

extracted as in section 4.2.2 and converted to cDNA as follows: 1 pg of RNA together with 

2 pi (100 ng/pl) of random hexameric primers (Promega) were denatured at 70°C and snap 

cooled on ice, after which, transcription mixture containing IX First strand buffer 

(Invitrogen) 10 mM DTT, 1 mM dNTPs, and 1 pl (100 U/ pl) Moloney murine leukaemia 

virus (MMLV) (Invitrogen) reverse transcriptase added in a final volume of 20 pl. The 

reaction mixture was incubated at 37°C for one hour. 4 pl of cDNA was used in 50 pl 

PCR. For each gene, primers used in the endogenous RT-PCR assay are as shown in Table

2-2 below.
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GENE/
PRIMER

FORWARD REVERSE

BIM/BCL-2 5 ’-TCTGAGTGTGACCGAGAAGG-3 ’ 5 ’-TCTTGGGCGATCCAT ATCTC3 ’

SKAR/POLDIP3 5 ’-GCTTA ATGCCAG ACCGGG AGTTG-3 ’ 5 ’-TCATCTTCATCCAGGTCATAT AAATT-3 ’

STAG2 5 ’ -GT AT GTTT ACTT GG A AA AGTTC AT G-3 ’ 5 ’ -T G ATTC ATCC AT A ATT G A AGCTGG A-3 ’

MADD 5 ’-GACCTGAATTGGGTGGCGAGTTCCCT- 
3’

5 ’ -C ATTGGTGTCTT GT ACTT GTGGCTC-3 ’

FNIP1 5 ’-GCTACA AG ATAGTCTTG AATTC ATC-3 ’ 5 ’ -C AG ACCGTGCTAT GCC ACT GTCTCT-3 ’

BRD8 5 ’-C AATTCTT GGCC ACGC AGTT GATT A-3 ’ 5’-CTCAGAGAGAAAGTGGAGGAGGTTC-3’

ERGIC3 5 ’-ATGGAGGCGCTGGGGAAGCTGAA-3 ’ 5-’CATGCCAGCTCAGCCTCTGAGCTC-3 ’

CASK 5 ’-AGGGAAATGCGGGGGAGTATTAC-3 ’ 5 ’-CATTCCTCAAGTTCAGGAGAAGG-3 ’

CRAMP1L 5 ’-AGAACACTGCTCCCTAGACCATCG-3 ’ 5 ’-CCCC ACGGTGGGAGGGTATCTC-3 ’

ZNF207 5’- GTATGCCCCCACCTGTTCCACGT-3’ 5 ’-CAGGGATATATCCTGATCTGGATGGA- 
3’

BID 5 ’-GTCAACAACGGTTCCAGCCTC AGGA-3 ’ 5 ’-TCACCAGGCCCGGAGGGATGCTACG-3 ’

NLGN2 5 ’-ATGTGACTCCTGGCGCTGTGTCT-3 ’ 5 ’-GCCTGGTCCCCCGTGCTGAGAAA-3 ’

ALFY 5 ’-CGTCAGC AG AATGCCCT G AAGT A-3 ’ 5 ’-GTTT GACTTTAGC A ATAGTAT CT-3 ’

TBX19 5 ’-ACTAATGAGATGATTGTG ACC AA-3 ’ 5 ’ -GCT GAT CGTCC AC AGGC ACGCGT-3 ’

FBOX018 5 ’-CTCGGGCTCCAGGTCCCGGCC AG-3 ’ 5 ’-GCCGAGACGTACTGTCCTGTCGT-3 ’

ANKRD12 5 ’-AATCGCGGGGCGACGCTGTCCTG-3 ’ 5 ’-CTTTCTTCCAT AGGTTTCTCT A-3 ’

GANAB 5 ’-TTGCTGGTGCTAGAGCTTCAGGG-3 ’ 5 ’ -CC AA ATTGT AG AGCCG ATATGGC-3 ’

C20ORF24 5 ’-ATGAGCGGGGCGGCGGCGGAAGGA-3 ’ 5’-CAGTGTAAAAGATGATCCAAATG-3’

CI40RF18 5 ’-GAGTAAAATTTCAAGAG ACTGAA-3 ’ 5 ’-TCCAAAGGA A ACTTGGAGTTGTTAC-3 ’

Table 2-2: Primer sequences used in endogenouse RT-PCR assays.

RT-PCR analyses of the hybrid minigenes used in this study were similarly performed by 

conversion of total RNA extract in into cDNA as described above. For pTB based 

minigenes, cDNA was amplified in a 50 pl PCR using the ALFA Fwd 2-3a 5'- 

CAACTTCAAGCTCCTAAGCCACTGC-3' and BRArl Rev 5'- 

TAGGATCCGGTCACCAGGAAGTTGGTTAAATCA-'3 reverse primers. In the case of 

the pcDNA3 minigene, the universal primers T7 forward and SP6 reverse (Sigma-Aldrich) 

were used for amplification.
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Except where the annealing temperatures have been specified (Table 4-2), PCR cycling 

conditions used for all RT-PCR assays were as follows; 94°C for 2 min, 35 cycles of 94°C 

for 30 sec, 50°C (+/-1) for 35 sec, 72°C for 40 sec and a final extension of 72°C for 7 min. 

Subsequently, PCR products were analysed on a 2% Agarose gel stained with EtBr 

(Sigma-Aldrich).

2.2.4. Minigene constructs

In order to determine the exact binding sites of TDP-43 in the alternatively spliced exons, 

minigenes were used. Minigenes are well-known assays used to study splicing and 

incorporate the use of an expression plasmid containing a global promoter and poly-A site 

(Cooper 2005). The presence of restriction endonuclease sites allow for the introduction of 

exogenous genomic sequence, which can be further analysed to determine intronic or 

exonic elements that bind trans-acting factors.

Mini-gene constructs for both MADD and STAG2 genes were prepared by amplifying the

relevant skipped/included exons as well as a few 100 base pairs of flanking intronic

sequences. Specifically for the MADD mini-gene, exon 31 together with 278bp and 266 bp

of 5’ and 3’ flanking intronic sequences were amplified using forward primer 5’-

ccatatggAGGCCAGC AGC AGGGCCTT CGG-3 ’ and reverse primers 5’-

ccatatggTTCACTGAGCTGCTTCAGGACC-3’. Both primers contained Ndel restriction

sites at their 5’ ends that were used to clone the 609 bp amplified fragment into the pTB

expression plasmid which is a modified version of the a-globin-fibronectin mini-gene

(Baralle et al, 2003; Pagani et al, 2000). Unless otherwise stated, all subsequent primer

sequences highlighted with bold letters indicate restriction sites for the primer specific

enzymes. For the BRD8 and FNIP1 minigenes, exon 20 and exon 7 with 250 bp flanking

intronic sequences respectively, were cloned into the pTB vector as described above.

Primers used to amplify the relevant regions in BRD8 and FNIP1 were as follows; BRD8

Intron 19 Ndel forward 5 ’ -GGA ATTCC AT AT G A ATT ATTA ATTCCTCTGGG A-3 ’,
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BRD8 Intron 20 Ndel reverse 5 '-GG AATTCC AT AT GAG AT CCTTC ACCCCT AG A AT - 

3’ and FNIP1 Intron 6 Ndel forward 5'-

GG A ATT CC AT AT GATT AC AT AT AG ATTT ATT AG-3 ’, FNIP1 Intron 7 Ndel reverse 

5-GGAATTCCATATGTCATTATGCCACAAGAGAAATG-3’.

For STAG2, initial minigenes were constructed in the pTB minigene using the following 

primers: STAG2 Intron 30-NdeI Fwd 5 ’ -CC AT AT GGTT GAT C ATTTTCT GT ACT AT A- 

3’ and 5 ’ -CC AT AT GGT ATTTA A ACTTTT CCA AC AG AT-3 ’ reverse primers were used 

to amplify the 540 bp fragment containing exon 30b that was then cloned into the pTB 

mini-gene. No change in splicing profile was observed for STAG2 with this minigene 

therefore, a minor modification was performed to widen the context by including more 

sequences upstream of exon 30b which included exon 30 and 223 bp of upstream intronic 

sequence. In this modified minigene, only the forward primer was altered to STAG2 Intron 

29 Fwd 5 ’ -CC AT AT GGT CT CCTT GC ATTT ACC AC ACT G-3 ’ whereas the reverse 

primer remained the same. Similarly, no splicing profile changes were obtained with the 

above mini-gene and therefore, a three-exon mini-gene construct in pCDNA3 was 

constructed for STAG2 using the following primers; STAG2 Ex 30-KpnI-Fwd 5’- 

CGGGGTACCCTGAAGAAAGTAGTAGTAGTGACAG-‘3 and STAG2-lnivon 30b-NotI 

Rev 5’-ATAAGAATGCGGCCGCCAATGGGGAGCCACAGA-3 ’, was used to amplify 

the first fragment of 898bp (exon 30, exon 30b and 508bp downstream intronic sequence ) 

whereas the second set; STAG2 Intron 30b-NotI-Fwd 5’- 

ATAAGAATGCGGCCGCCTCTGTTTGCCATGGTAGAC-3’ and STAG2 Ex 31-ApaI 

Rev 5 ’-ATATATGGGCCCCAAATCTATATCCATGGTGTCAAAATCC-3 ’ was used to 

amplify the second fragment of 737 bp (505 bp of upstream intronic sequence and exon 

31). The two fragments were sequentially cloned into the pcDNA3 vector (Invitrogen) and 

all constructs confirmed by standard Sanger sequencing (Macrogen, Netherlands) prior to 

large scale plasmid preparations and transfections.
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2.2.5. Transfections

HEK 293 cells were grown in 35 mm dishes in standard Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% FBS and Pen/Strep and incubated at 37°C+ 5% 

CO2. Prior to transfections cells were approximately 50-60% confluent. Transfections of 

all minigene constructs were performed using a modified calcium phosphate method 

(Kingston et al. 2001). For each transfection, approximately 3 pg plasmid DNA was mixed 

with 2M CaCH and water added to make up the volume to 100 pl. The DNA/CaCh 

mixture was then added to another microfuge tube containing equal volume (100 pl) 2X 

Hepes Buffered Saline (HBS) in a drop-wise manner while mixing the HBS vigorously 

with a pipette (to create bubbles) to facilitate calcium phosphate complex formation. The 

mixture is then added to the cell slowly in a drop-wise manner. In cases where cells were 

required to be silenced prior to transfection with minigenes, cells were washed gently with 

IX warm PBS to remove siRNA mixture and fresh media added then minigenes were 

transfected on the evening of the third day (56hrs after siRNA transfection) after which 

cells were incubated for another 16-20 hr.

2.2.6. Western Blots and Protein extraction

Cells were pelleted by centrifugation at 1000 x g and total protein extracted in cell lysis

buffer containing 15 mM Hepes (pH 7.5), 250 mM NaCl, 0.5% NP-40, 10% Glycerol, and

IX complete protease Inhibitor. The cell lysate was then sonicated for 10 min on high and

centrifuged at 10,000 x g to remove cellular debris. The resulting supernatant was

quantified using Bradford (Thermoscientific, Pierce). Approximately 30 pg of protein

mixed with 2X sample buffer were loaded and ran on 10% SDS-PAGE with IX running

buffer (50 mM Tris, 0.38 M Glycine, 0.1% w/v SDS) at 25 mA. After electrophoresis, the

proteins were transferred (wet) onto nitrocellulose membrane (Amersham, BioSciences) in

IX transfer buffer at 200 V for 1.5 hr. Antibodies used for protein detection in this study

included anti-TDP-43 (Buratti et al, 2001), Tubulin (Sigma) anti-MADD (Abeam), anti-
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MDH1 (Abeam), anti-NAPlLl (Abeam) and anti-STAG2 (Cellular signalling 

technologies). Detection was conducted according to standard western blotting procedure 

using either secondary anti-rabbit or anti-mouse HRP conjugated antibodies and ECL 

(Amersham) for developing blots.

2.2.7. Electrophoretic-mobility shift Assays (EMSA)

A region of intronic MADD sequence, approximately 64 bp upstream of exon 31 (skipped 

exon) containing a stretch of TG-repeats (5’-GTGTGCTGTGT-3’) was chosen for band 

shift analysis following the observation that the minigene splicing profile was similar to 

that of the endogenous transcript. The DNA oligo was synthesised by Sigma, Life Science 

and radio-labelled using [y-32P] ATP and T4 polynucleotide kinase (New England 

Biolabs). Briefly, 5pl of DNA (100 ng/ pl) oligo, IX PNK buffer, 1 pl (10U/ pl) and 1 pl 

[y-32P] ATP (1000 pCi/ pl) were incubated for 1 hour at 37°C. The labelled oligo was then 

precipitated in three volumes ethanol and 3M NaAc at pH 5.2 for an hour on dry ice and 

subsequently washed with 70% ethanol. Following centrifugation, the air-dried pellet was 

re-suspended in 50 pl dH20 and 1 pl used in the binding reaction.

For the STAG2 3-exon minigene EMSA analysis, the cloned region was first divided into

five separate fragments by PCR amplification with primers that contained a T7 promoter

sequence (highlighted in bold on primer sequence) on the forward strand for each pair.

Primers used in the amplification of each fragment were as follows; STAG2 Fragment 1:

forward 5'-

TACGTAATACGACTCACTATAGGCACGCAGGTAACATGGATGTTA-3’ and

reverse 5'-ATGGCATGCTGA-3’, Fragment 2: forward 5'-

T ACGT AAT ACG ACT C ACT AT AGGGT A AGTG AG AGTGCCTT ATT-'3 and reverse

5'-A AG CT A AT AC A AT A-3’, Fragment 3: forward 5’-

TACGTAATACGACTCACTATAGGTCTAACTGGTTTTCTTCCCTCAA-3’ and

reverse 5-GTGTACCAGGCATG-3’, Fragment 4: forward 5'-
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T ACGT AAT ACGACTC ACTAT AGGCT GTC ACGTAGTAGGCATT GTGTGAGTGA 

GTGCGCGCA-3’ and reverse 5'-GTGTACCAGGCATGCGCGCACT-3’, fragment 5: 

forward 5'-T ACGT AAT ACG ACT C ACT AT AGG ATT AGGTACT G A AT G AATG A-3 ’ 

and reverse 5*- GAATTAAAGGTCAG-3’. PCR products obtained were then gel purified 

and used as templates for in vitro T7 (Stratagene) RNA transcription and labelling with [y- 

32P] UTP (800Ci/mol) (Perkin Elmer). Transcribed RNA was treated with DNAse I 

(Roche) according to the manufacturer’s guidelines and purified on Nick columns 

(Amersham Pharmacia Biotech) according to the manufacturer’s instructions. The labelled 

RNAs were then ethanol precipitated as described previously and re-suspended in RNAse- 

free water.

Binding reactions containing labelled DNA oligos {MADD) or labelled RNA probes 

(STAG2) together with purified recombinant TDP-43 protein (300 ng) were performed in 

IX binding buffer (10 mM NaCh, 10 mM Tris pH 8.0, 2 mM MgCh, 5% Glycerol and 1 

mM DTT) for 10-20 min at room temperature prior to electrophoresis on a 6% 

Polyacrylamide native gel at 100 V for 1.5 hours in 0.5X Tris borate/EDTA (TBE) buffer 

at 4°C. In the case of STAG2 EMSA analyses where transcribed RNA was used in the 

binding assay, RNAse inhibitor (Roche) was also added to the reaction. A pre-run of the 

gel (approximately 10-20 min) was performed before samples were loaded. Following 

electrophoresis, the gels were then dried on 3 MM Whatmann paper and exposed on a 

Cyclone™ Phosphor screen (Packard). In addition, cold competition binding analyses 

against a known positive binder (UG6) of TDP-43 were performed using 20-fold molar

excess amounts of un-labelled MADD oligo, and un-labelled in vitro transcribed RNA for 

STAG2. Cold competitors were added 5 min prior to addition of labelled oligos or RNAs 

and band shifts were analysed by electrophoresis under conditions described above.
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2.2.7.I. Recombinant GST-TDP-43 purification

Purified recombinant TDP-43 expressed in BL21 bacterial cells was obtained using 

Glutathione S-Sepharose 4B beads (Pharmacia) elution. Briefly, 5 ml of previously 

transformed BL21 cells were inoculated into 100 ml LB with Ampicillin and left to grow 

for approximately 4 hours in a shaker. The culture was then induced with 1M IPTG 

(Isopropyl p-D-l-thiogalactopyranoside) and left to grow for another 4 hours. The cells 

were then harvested by pelleting at 4,000 rpm for 20 min and pellet re-suspended in lysis 

buffer (IX PBS and 0.01% Triton X-100) and sonicated. The supernatant following 

centrifugation was mixed with 0.5 ml of resin or slurry and incubated on shaker at 4°C for 

1 hr 30 min. Resin washes were performed in lysis buffer and subsequent elution in 

reduced L-Glutathione (Sigma) according to the manufacturer’s guidelines.

22.7.2. RNA In-vitro transcription 

Fragments used as templates for in vitro transcription were obtained by PCR amplification 

with primers containing T7 promoter sequence at the 5’ end to facilitate T7 polymerase 

transcription as described in section 4.2.7 above. Gel extracted PCR fragments were 

quantified and used as templates in the in vitro transcription reaction as follows: 1 pg of 

DNA, 4 pl of transcription buffer (Stratagene) NTP mix (15 mM each of ATP, CTP, GTP 

and 1.5 mM UTP), 100 mM DTT (Dithithreitol) and 0.5 pl T7 (50 U/pl) RNA polymerase 

were mixed briefly in a microfuge before adding 2 pl of [alpha-32P] UTP (1000 pCi/pl) 

(Perkin Elmer) in a final volume of 20.5 pl and incubated at 37°C for 2 hr. A DNAse I 

(Roche) digestion of DNA template was performed for 20 min prior to Nick Column 

purification and ethanol precipitation of transcribed RNA. In cases where ‘cold’ (un- 

labelled) RNA was transcribed, 5 mM UTP was added to the reaction instead of the 

radioactive isotope.



2.2.8. Mutagenesis and deletion constructs

Mutagenesis of the MADD intronic sequence (5’-GTGTGCTGTGT-3’) was performed 

using the Quik-change® Site-Directed mutagenesis kit according to the manufacturer’s 

guidelines. Two complimentary mutagenesis primers; MADD MUT Fwd: 5’-

gggtggggctgtagctgggagaACAtAcCgCgaggggcaggggtggagcctgtgggc-3’ and MADD MUT 

Rev: 5 ’-gcccacaggctccacccctgcccctcGcGgT aTGTtctcccagctacagccccaccc-3 (mutated

nucleotides in capital letters) were used in the mutagenesis PCR and mutated sequences 

confirmed by sanger sequencing. Similarly for STAG2, deletion of fragments three and five 

which were shown to bind to TDP-43 in the EMSA analysis was achieved by a deletion 

PCR using cycling conditions outlined in the Quik-change® manufacturer’s guidelines. 

Primers used for the deletion PCRs consisted of STAG2 delta n3 forward 5’- 

CT ATTGT ATT AGCTT CATC ATTTTCCATT-3 ’ and reverse 5'-

A AT GG AA AAT GAT G A AGCT AAT AC A AT AG-3 ’ and STAG2 delta n5 forward 5'- 

TGAGTGAGTGCGCGCATGCCTGGTACACCATCATTTTCCATTATACTTGAATAT 

AG-3’ reverse 5'-

CTATATTCAAAGTATAATGGAAAATGATGGTGTACCAGGCATGCGCGCACTCA 

CTCA-3’. Subsequently, Dpnl digestion at 37°C was performed for all PCR products prior 

to transformation in DH5a E-Coli cells.

2.3. Immunoflourescence in the TDP-43 cellular aggregation
model

Construction of the TDP43-12XQ/N aggregation model has been described in detail in 

Budini et al. (2014). For immunofluorescence, cells were seeded onto 22x22 mm, glass 

cover slips in 35 mm dishes induced with tetracycline for 72 hr, fixed with 4% PFA, 

blocked with 2% BSA/PBS and incubated with primary antibodies. The primary antibodies 

used were anti-Flag (Sigma, F I804) and anti-TDP-43 (Protein Tech, 10782-2-AP). 

Secondary antibodies: anti-mouse-AlexaFluor 594 (cat. A21203), anti-rabbit-AlexaFluor
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488 (cat. A21200) and T0-PR03 dye (cat. T3605) were all purchased from Life 

Technologies. Cells were analyzed on a Zeiss LSM510 Metaconfocal microscope.

2.4. General procedures

2.4.1. Cell Culture Maintenance

All cell lines were plated in 10 cm culture dishes at concentrations of 6.0 x 105 and 

maintained in DMEM (Gibco) supplemented with 10% heat inactivated FBS, 1% 

Pen/Strep in a 37°C with 5% CO2 atmosphere. Cells were passaged every 3 days at 80- 

100% confluence. Experimental culture plates were seeded at concentrations of 5 x 105 in 

35 mm dishes or six-well culture plates.

2.4.2. Agarose Gel Electrophoresis

Analysis of PCR products and DNA was performed on either 1 -2% Agarose gels stained 

with EtBr (0.5pg/ml) in IX TBE Buffer at 100 V. To estimate sizes a DNA ladder marker 

(Invitrogen) was loaded with each gel run alongside samples.The duration of the run was 

dependent on the type of analysis and length of fragments. DNA was visualised in a UV 

transilluminator and either printed or stored digitally.

2.4.2.1. Gel extraction

Gel extraction was performed following generation of inserts with PCR for sub-cloning

purposes or in preparation for RNA transcription. DNA samples were electrophoresed in

1% Agarose stained with EtBr at 100 V. Following visualization with UV, the desired

bands were excised from the gel and purified using the Eurogold gel extraction kit

(Euroclone). Briefly, 600 pl of binding buffer (1 g/ml) was added to gel slices in a 1.5 ml

microfuge tube and incubated at 55°C for 10 min with vortexing every 2 min. The mixture

with the dissolved gel was then loaded onto the column and centrifuged at maximum speed

for 1 min. Flow-through was discarded and column washed 2X with 700 pl wash buffer,

with the flow-through discarded each time. Elution of DNA was performed using 30 pl
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elution buffer and column centrifuged at maximum speed for 2 min. Recovered DNA was 

quantified by approximating the minimum amount of EtBr intercalated DNA multiplied by 

the number or pl loaded onto the gel.

2.4.3. Cloning

2.4.3.1. Competent cells

Competent DH5a Escherischia Coli (E.coli) cells were prepared according to the Calcium 

Chloride (CaCh) method described in Sambrook, Fritsch and Manniatis (1989). Briefly, a 

single colony of bacteria was inoculated in 5 ml Luria Broth (LB) and incubated in a 37°C 

shaker overnight. A 1/100 dilution, i.e. 1 ml of the of the overnight culture was inoculated 

in 100 ml LB using aseptic technique and left to grow for 2-3 hr in a 37°C shaker until 

mid-log phase i.e. optical density of LB at 600 nm was between 0.5 and 0.8. Optical 

density was determined using a spectrophotometer. The 100 ml LB containing bacteria 

was then poured into two separate 50 ml tubes and pelleted at 3,000 x g for 10 min at room 

temperature. The pellet was then re-suspended using 1 ml ice cold 100 mM CaCL and an 

extra 30 ml added before a second spin at 3,000 rpm for 10 min at 4°C. The pellet 

produced was re-suspended again in 1 ml CaCh and 50% glycerol and stored at -80°C in 

200 pl aliquots.

2.4.3.2. Klenow-Kinase Reactions

Klenow-kinase reactions were used to prepare PCR products for blunt-ended ligation into

the pUC vector. The Klenow fragment, a proteolytic product of E. Coli DNA Polyemerase I

was used for removal of nucleotide overhangs introduced by the Taq Polymerase following

PCR, whereas T4 Polynucleotide kinase was used to phosphorylate the 5’ends of the PCR

products. First, PCR products were denatured at 98°C for 2 min, then 5 mM MgCh and

Klenow fragment (2.5 U), 1 pl (5 mM) dNTPs were added and the mixture incubated at

37°C for precisely 15 min. Subsequently, a mixture containing EDTA (0.2 mM), ATP (1
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mM), T4 polynucleotide kinase (10 U), and kinase buffer were added to the previous 

mixture, which was then incubated for a further 30 min at 37°C. Heat inactivation of 

enzymes was conducted at 65°C for 20 min.

2.4.3.3. Ligation reactions

Generation of recombinant plasmids was performed using T4 DNA ligase (Roche) in a 

ligation reaction as follows: 1 pl of vector (20 ng), X (calculated amount of insert), IX 

ligase buffer (Roche), 1 U of T4 DNA ligase and dH20 in a final volume of 30 pl 

incubated at 25°C or room temperature. In most cases, 15 pl of the ligation reaction was 

used to transform cells. The vector to insert ratio was calculated as 5:1 (insert/vector). T4 

DNA ligase was used for both sticky and blunt end ligations. In some cases, vectors were 

treated with Calf-intestinal alkaline phosphatise (CIP) to reduce the number of false 

positives due to plasmid recirculation.

2.4.3.4. Bacteria transformation

Previously frozen competent cells were thawed quickly and placed on ice. Plasmid DNA 

was added to 60 pl of competent cells in a 1.5 ml microfuge tube and incubated on ice for 

1 hr. Following the incubation, cells were heat shocked at 42°C for 90 sec and snap cooled 

on ice for another 90 sec. Antibiotic-free LB medium (60 pl) was subsequently added to 

the cells and incubated in a 37°C shaker for 30 min-1 hr. Subsequently, 200 pl of 

transfromed cells were plated in pre-warmed selective agar plates containing Ampicillin 

(50 pg/ml) and incubated overnight at 37°C.

2.4.3.5. Small-scale and large-scale plasmid preparations

In general, small (mini-prep) preparations were used to purify small volumes of up to 20 

pg of high-copy plasmid DNA in volumes ranging between 50-100 pl, whereas higher 

concentrations and large volumes of plasmid DNA were purified using to large-scale
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preparation methods. Mini-preps, were performed using the he Wizard® Plus SV miniprep 

kit according to the manufacturer’s guidelines (Promega) whereas large-scale (midi-preps) 

preparations were performed using the JETSTAR Plasmid Midi Kit (Genomed). For the 

midipreps inoculation of bacteria cells was performed in 50 ml LB with antibiotic. Purified 

plasmids obtained from the above preparations were either used in a restriction 

endocnuclease digest (to verify presence of insert) or in transient transfections (Midipreps) 

of cells.

2.4.3.6. Restriction enzymatic analysis

In this study, restriction digests were used for recombinant plasmid analysis. In each case 

the appropriate enzyme and its specific buffer were selected. The incubation temperatures 

for each enzyme as given by the manufacturer were adhered to including the use of 

additives such as BSA. In all cases 100 ng of plasmid DNA was digested and in a 20 pl 

reaction volume. Enzymes were obtained from New England Biolabs.

2.4.4. General Reugenis and Chemicals

-PBS: 137 mM NaCl, 2.7 mM KC1, 10 mM Na2HP04, 1.8 mM KH2PO4, pH 7.4 

-10X TBE: 108 g/1 Tris , 55 g/1 Boric Acid, 9.5g/l EDTA

-5X Loading dye: lOOg Sucrose, 48g Urea, lOOmL TBE, 1% Bromophenol blue in 200 mL 

final volume

-10X Transfer buffer: 30g Tris, 144g Glycine, ; 1X= 1/10 Dilution + 20 mL Methanol in 1 

L final volume

-4X SDS Protein loading buffer: 0.2 M Tris pH 6.8, 40% Glycerol, 0.8% Beta- 

mercaptoethanol, 0.4% Bromophenol blue, 8% SDS in a final volume of 10 mL 

-20X SSC (pH 7): 175.3 g NaCl, 88.2 g Tris Sodium Citrate in final volume of 1 L 

-10X MOPS: 0.2 M MOPS (3-(N-morpholino)propanesulfonic acid), 0.01 M EDTA pH 

8.0, 0.05 M Sodium Acetate (NaAc).
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-Colloidal: 600 mL dH20, 100 g NH4SO4, 70 mL Phosphoric Acid, 1.2 g Coomassie 

Brilliant blue G-250 in a final volume of 1 L.
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3. RESULTS

3.1. Analyses and validation o f TDP-43 dependent differential 
protein expression using 2-Dimensional gel electrophoreses.

High throughput analyses of cellular processes have gained considerable momentum in the 

advent of the ‘omics’ era, enabling a more global view of changes within cells under 

various conditions. An example of such a method that offers a global analytical view of 

changes in protein expression under different conditions is 2-Dimensional (2-DE) gel 

electrophoresis. In this study, 2-DE was utilised to determine global protein expression 

changes that were dependent on the levels of expression of TDP-43, including its RNA 

binding capacity. The exact set-up of the experiments for 2-DE analyses has been 

described in section 2.1 of materials and methods. The cells used for this analysis consisted 

of previously constructed HEK 293 stable cell lines (described in introduction section 

1.6.1), which could inducibly express wild-type or mutant transgenic TDP-43. Four 

triplicate groups of cells representing different cellular conditions were analysed. Group 

(A) HEK 293 Flp-In T-Rex cells expressing physiological levels of TDP-43 (siLuciferase 

treatment), group (B) HEK 293 Flp-In T-Rex cells depleted of endogenous TDP-43 

(siTDP-43 treatment), Group (C) HEK 293 Flp-In-T-Rex cells depleted of endogenous 

TDP-43 with simultaneous tetracycline-induced expression of wild type FLAG-TDP-43, 

and lastly, group (D) HEK 293 Flpln-T Rex cells depleted of endogenous TDP-43 with 

simultaneous tetracycline-induced expression of mutant (F4L: 4 Phenylalanines mutated) 

FLAG-TDP-43, that is unable to bind RNA. The western blot confirmation of the various 

levels TDP-43 can be seen in Figure 3-1.
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Figure 3-1: Western blot analyses o f  the various levels o f TDP-43 in HEK-293 stable cell lines used in 
both 2-DE and splice-sensitive microarrays. Antibody against TDP-43 was used to detect both the 
endogenous and transgenic TDP-43 expression whereas tubulin was used as a loading control. In addition, 
for a uniform background, tetracycline was added to cells treated with control (siluciferase) and siTDP-43. 
Similarly, tetracycline inducible cell lines expressing wild-type and mutant TDP-43 were also treated with 
siTDP-43.

Additionally, tetracycline was added to all four groups o f  cells and the inducible cells lines 

were also treated with siTDP-43 for uniformity. Proteins extracted from these four groups 

o f  cells, were initially separated based on their isoelectric points, followed by molecular 

weight separation using 10% SDS-PAGE. For ease o f  reference, these four groups cells 

will be referred to as A, B, C and D in subsequent descriptions. Analysis o f  differential 

spot intensity resulting from the various cellular conditions was analysed and normalised 

automatically using algorithms from the REDFIN software from LUDESI 

(http://www.ludesi.com). Briefly, the normalisations were performed by m atching pairs o f  

spots (match ratio normalisation method) between a base image/gel (e.g. control luciferase 

gel) and study gel after which the spot-volume ratio was calculated. Individual spot 

volumes for each gel are then multiplied by the spot volume ratio (also known as the 

normalisation factor). Alternatively, the software calculates the ratio between the sum o f  

the volumes o f  all spots in the base gel and the study gel; each spot volum e is then 

multiplied by this ratio volume. Representative images o f  the gels obtained from the 2-D E

http://www.ludesi.com


analysis are shown below (Figure 3-2). Specifically, differences in spot intensities were 

compared between the three groups (B, C, and D) and the control (A), and the most 

variable spots selected and sent for mass spectrometric analysis. Peptides were identified 

using nanoLC-ESI-M S/M S by the Proteome Factory (AG, Berlin, Germany).

a) Control (siLUC) b)siTDP

I*

c) TDP W To/e

*  1404
300 * -ksO

<b . . .  P 666 
140 « '1m 413 ' O

421
0

i  a323
C O N

O
308

b) TDP MUT (F4L) M ut

0 » * •  * * .

r  ?

•  •

F igure 3-2: (a-d) Representative 2-DE gel images o f the relative conditions o f TDP-43 levels that were 
analysed. Red circles represent the most variable spots selected by the software and their identification 
number. The spot marked CON represents an overlapping spot to the 323, which was analysed to ensure that 
there were no overlapping between the two spots.



3.1.1. Spot validation: Comparative analyses of transcripts and spot

intensities

Comparative analyses of differential intensity amongst spots under the various cellular 

conditions described previously, identified the most variable spots compared to the control 

(group A) to be 140, 1404, 300, 308, 323, 413, 421 and 666. Mass spectrometry analysis 

identified hits (peptides) within each protein spot that corresponded to either one or more 

genes (Table 2-1) and which were subsequently selected for validation based on their 

perceived relevance to TDP-43 related processes, mascot score and proximity to observed 

molecular weights and isoelectric points. This included genes involved in RNA 

metabolism or cellular survival/apoptotic processes. Interestingly, within the spots sent for 

mass spectrometric analysis, peptides matching TDP-43 were identified in spot 323, which 

validated the 2-DE analysis with regards to differential intensities, as this spot was shown 

to undergo an increase in staining intensity in group C gels which contained protein from 

cells overexpressing wild-type TDP-43.

To begin with, genes that were likely representative of matched peptides, U2AF1 and 

MDH1 in spot 308, HSPA9 and CCT8 in spot 413 and EEF2 in spot 421 (Table 2-1), were 

chosen for subsequent follow-up analyses. Splicing factor U2 small nuclear RNA auxiliary 

factor 1 (U2AFI) is a component of the spliceosome and was thus relevant for this study 

since TDP-43 is involved in splicing and RNA metabolism processes. Similarly, the 

eukaryotic elongation factor 2 (EEF2), is known to be involved in translation of RNA. The 

genes malate dehydrogenase 1 (MDH1), T-complex protein 1 subunit theta (CCT8) and 

mitochondria heat shock protein 75 (HSPA9) were chosen for validation on the basis of 

their involvement in cellular metabolism and or protein folding (chaperones) under cellular 

stress conditions.
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Spot No.
P ro tein
nam e/s

Accession No.
Th eoretical
M W /p l

O bserved
M W /p l

M ascot
score

M atch ed
peptides

140 ALB P02768 69 k D a/5 .9 72kDa/4.3 335 8

1404 ALB P02768 69kDa/5.9 58kD a/5.8 435 18

300 N.S - 63kDa/4.3 - -

308 U2AF1; MDH1 Q01081;P40925
27kD a/9.1;
36kDa/6.9

36kDa/6.5 197;149 8;6

323 TDP-43 Q 13148 45kD a/5.9 48kD a/5.8 90 5

323 Con UQCRC1 P31930 53kDa/5.9 N.C. 276 8

413 HSPA9;CCT8 P38646;P50990
74kD a/5.9 ;
60 /5 .4

68kDa/5.5 192 4

421 EEF2 Q6PK56 95kD a/6.4 72kDa/6.31 649 34

666 UAP1, CCT2 Q16222; P78371
59kD a/5.9;
58kD a/6.0

59kD a/6.1 85;79 2;2

Table 3-1: List o f the most variable spots identified from the 2-DE analyses and the number o f
matched peptides for each gene. Spots with matched peptides corresponding to various genes were selected 
for subsequent secondary validation analyses. ALB-Albumin, U2AF1-U2 auxiliary factor 1, M DHl-M alate 
dehydrogenase 1, TDP-43-TAR-DNA binding protein, HSPA9-Heat shock 70 kDa protein 9, CCT8 - 
Chaperonin containing TCP 1 subunit theta, EEF2-Eukaryotic elongation factor, UQCRCl-Ubiqiunol 
cytochrome reductase complex core protein 1, UDP-GlcNac/UAPl- Udp-N-Acetylglucosamine 
Pyrophosphorylase 1, CCT2-Chaperonin containing TCP 1 subunit beta, N.S-No significant peptides 
matched N.C- Not calculated.

Different validation strategies were employed in an effort to confirm correlative changes 

between genes corresponding to matched peptides and spot intensities, and which, would 

also facilitate a quick and simple m ethodology for validation. To begin with, quantitative 

real-time PCR (q-PCR) analyses were performed to determine w hether changes in 

transcript expression o f  the genes corresponding to matched peptides did indeed result in 

differential protein production due to variation in TDP-43 levels. Specifically, q-PCR 

analyses were performed for U2AF1, MDH1, EEF2 , HSPA9  and CCT8  in control cells 

(group A) and cells overexpressing wild-type flag-TDP-43 (group C). Figure 3-3 shows 

fold differences in transcript expression analysed by qPC R  (upper panel) com pared to 

differential spot intensities (protein expression differences) within the three spots (lower 

panel histograms-Figure 3-3).



As can be observed in Figure 3-3, the genes U2AFI, MDH1 and EEF2 exhibited transcript 

expression changes that correlated with the difference in spot intensity observed for spots 

308 and 421 i.e. an increase in protein expression (Figure 3-3 a-c). In contrast, / /S /M P an d  

CCT8  in spot 413, exhibited a decrease in transcript expression when TDP-43 was 

overexpressed, which did not correlate with the increase in spot intensity (protein) 

observed (Figure 3-3 d-e).

a) U2AF1 b) MDH1 c) d) e)
CCT8HSPA9

i M w m l 0,0 R.»iiisteriJ |
C ontrol TDP-WT o /e  Control TDP-WT o leControl TDP-WT o le Control TDP WT ole C ontrol TDP W T o /e

C on trol TDP-W T o / e  C on trol TDP-W T o / e  C on trol TDP-W T o / e  C on trol TDP-W T o / e  C on tro l TDP-W T o / e

Spot 308 Spot 308 Spot 421 Spot 413 Spot 413

Figure 3-3: Comparative analysis o f transcript expression and relative spot intensities. Changes in 
transcript expression (graphs in the upper panel) that correlated with the change in spot intensity (graphs in 
the bottom panel) were observed for the genes U2AF1, MDH1 and EEF2 (a-c) upon tetracycline induction o f 
wild type FLAG-TDP-43 (TDP-WT o/e).For HSPA9 and CCT8  there was no correlation with the differential 
intensities observed within the spots (d-e). The y-axes on the bottom panel graphs represent normalized 
values o f spot intensities, with the horizontal line representing mean value o f the triplicates. qRT-PCRs are 
representative o f  three independent experiments in each cellular condition. *p-value< 0.05; **p-value<0.01; 
***p-value<0.001. P-values are as follows: LJ2AFI-3.36* 10"6; MDH1-3A* 10‘6; EEF2-4.2* 10'5; HSPA9- 
0.04; CCT8-0.006.

Subsequently, due to the seemingly positive correlation observed between protein and RNA 

expression in U2AFI, MDFH and EEF2  (Figure 3-3 a-c), additional validation analyses 

were performed. No subsequent validations were performed for HSPA9  and CCT8  in spot

413, as no correlation was observed.



The highest ranking peptide match score within spot 421, corresponded to the EEF2 

transcript, which was previously shown to undergo a decrease in expression relative to the 

overexpression of TDP-43 that correlated with the 2-DE differential spot analysis (Figure

3-3c). To further validate this result EEF2 transcript expression was analysed in cells 

depleted of TDP-43 (group B) versus cells overexpressing TDP-43 (group C). In principle, 

if the overexpression of TDP-43 had a direct correlation with the decrease in expression of 

the EEF2 transcript, then a TDP-43 knockdown should result in an increase in transcript 

expression.

As depicted by histograms representative of 2-DE differential spot intensity (Figure 3-4a, 

compare group B versus C), an increase in spot intensity at spot 421 was observed upon 

TDP-43 depletion. However, analysis of the expression levels of the EEF2 transcript in 

TDP-43 depleted cells versus TDP-43 overexpression (Figure 3-4b), showed a 1.7 fold 

increase in expression of EEF2 in cells overexpressing TDP-43, which was contrary to the 

observed decrease in spot intensity (Figure 3-4a).
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F igure 3-4: A comparative analysis o f  spot 421 and EEF2 transcript expression following TDP-43 
knockdown versus TDP over expression, (a) Triplicates o f spot intensity differences detected in spot 421 
under the various conditions pertaining to TDP-43: siRNA against TDP-43 treated cells o f group B (red) 
versus FLAG-TDP-43 overexpression group C (blue). The mean o f each triplicate is represented by the 
horizontal line across the bars. The knockdown o f TDP-43 results in an overall increase in spot intensity 
whereas overexpression results in a decrease, (b) Fold difference in expression o f the EEF2 transcript TDP- 
43 depleted cells compared to overexpression o f TDP-43. Fold differences in qPCR are representative of 
three independent experiments. EEF2-0.008. **p-value < 0.01.

This lack o f  correlation indicated that either TDP-43 had an in-direct effect on the EEF2  

transcript, or another intervening gene/protein not idenetified by mass spectrometry was 

effecting the observed changes in spot intensity.

For spot 308, different validation analyses were performed for both U 2AEI and/or M DHI 

that included analysis o f  transcript abundance using northern blots and western blots to 

detect differences in protein expression. In this case the choice o f  validation strategy was 

informed by the observation that for the previous analysis in spot 421, no correlation was 

observed using q-PCR, thus northern blots were utilised to better detect relative differences 

in abundance o f  m R N A  transcript and validate the qPCR analyses w hich are known to 

sometimes have amplification biases. Northern blot analysis o f  the U2AF1 m R N A  transcript
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showed a decrease in transcript abundance as quantified by Image J from three independent 

experiments (Figure 3-5, lower panel) upon overexpression of TDP-43 as compared to the 

control cells after normalisation with GAPDH mRNA (Figure 3-5a). This decrease in 

transcript abundance as determined by northern blot analysis was the opposite of the 

previously observed increase in transcript expression by qPCR and the increase in staining 

(protein) intensity at spot 308. Since northern blots are more reliable in detecting differences 

mRNA abundance (Ding et al. 2007) , this analysis was more likely to reflect the actual 

situation of transcript change following overexpression of TDP-43, thus no further analyses 

were performed for U2AF1.

On the other hand, transcript abundance of MDH1 by means of a northern blot, another 

protein identified in spot 308 by mass spectrometry, was found to increase when TDP-43 

was over-expressed (Figure 3-5). This was in line with the observed increase in differential 

spot intensity and q-PCR analysis (Figure 3-3b). Consequently, as a final validation effort 

and taking into consideration the correlation between all the analyses performed thus far, an 

analysis of protein expression differences by means of a Western blot was performed. 

Immunodetection of MDH1 protein levels (Figure 3-5c) detected two different isoforms of 

the protein (phosphorylated and mature), both of which did not show any changes in 

expression levels upon overexpression of wild type FLAG-TDP-43 that correlated with the 

previous analyses.
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Figure 3-5: Northern blot analyses o f U2AF1 and MDH1 mRNA. (a) In the upper panel U2AF1 northern 
blot analysis in physiological levels o f TDP-43 (control), and overexpression o f the FLAG-TDP-43 protein. 
In the middle panel, a northern blot with GAPDH transcript signal which was used for the normalisation of 
the U2AF1 signal. In the lower panel, EtBr staining o f the ribosomal RNAs (rRNA) that were used as length 
markers and to check the integrity o f total RNA. EtBr stained rRNAs were also used as alternative 
normalisers. The graph at the bottom represents Image J quantified relative expression levels o f the mean 
values obtained from three independent experiments in the already described cellular conditions, (b) MDH1 
northern blot under physiological levels o f TDP-43 and overexpression o f the FLAG-TDP-43 protein with 
the EtBr stained rRNA gel below, that was used to normalise relative transcript abundances. The graph at the 
bottom represents Image J quantified relative expression levels o f MZ?///obtained from the mean o f three 
independent experiments, (c) Western blot analysis o f MDH1. Two isoforms were detected including 
phosphorylated (pM DHl) and un-phosphorylated (MDH1) forms o f the protein. Endogenous levels o f TDP- 
43 and the overexpression o f the FLAG-TDP-43 were analysed using an anti TDP-antibody. Antibody 
against tubulin was used as loading control.

These results suggested two hypotheses; another protein, not identified by the mass 

spectrometry analysis, could be responsible for changes observed in the 2D gels or that the 

program used for normalisation (Ludesi image analysis software) and quantification o f  

spots was not as accurate as had been perceived.



Consequently, since no succesful correlation had been observed in this initial validation 

analysis, a mass spectrometric re-analysis was performed for the rest of the spots shown to 

undergo significant variability, but for which no proteins had been identified (Table 3-1), 

namely, spots 140, 300 and 1404.

3.1.2. Mass spectrometry re-analysis and validation

Prior to the mass spectrometry re-analysis, an in-gel digestion and peptide extraction was 

performed for spots 140, 300 and 1404 according to the protocol specified in section 2.1.3 

of materials and methods. In addition, other spots (308 and 323) that had previously been 

analysed were included as technical controls. From the re-analysis, 2/5 spots analysed had 

the same high-ranking peptides identified as in the previous mass spectrometry analysis 

performed by Proteome Factory (Berlin, Germany). Specifically, serum Albumin (ALB) 

and MDH1/U2AF1, were again identified as high-ranking peptide hits for spots 1404 and 

308 respectively. For spot 323, Ubiqiunol cytochrome reductase complex core protein 1 

(UQCRC1), was identified as a high-ranking peptide match, which was in contrast to the 

previously identified TDP-43 hit. In the previous mass spectrometry analysis for spot 323, 

other low-ranking matched peptides identified, did not include UQCRC1, however, within 

the spot ‘323 Con’ an overlapping spot close to 323, TDP-43 had been identified as a low- 

ranking peptide. Therefore, since only UQCRC1 and not TDP-43 was identified in this re­

analysis, it is highly likely that there may have been a shift within the spots probably due to 

gel-gel run variability that may have led to a misidentification of this spot. In fact, other 

than UQCRC1, none of the other low-ranking peptides were identified in the re-analysis. 

Furthermore, in the other two spots, 140 and 300, new high-ranking peptides were 

identified, i.e. nuclear autoantigenic sperm protein (NASP) and nucleosome assembly 

protein 1 like-1 (NAP1L1) respectively, in which previously, albumin and a non­

significant result had been reported. The observed variability between the initial and



subsequent mass spectrometry analysis could points towards imperfect nature of image 

analysis.

Validation analysis of spot 308 (MDH1/U2AF1) has already been discussed in section 3 

while the genes UQCRC1 and ALB\ identified in spots 323 and 1404 respectively were not 

investigated further since they were not relevant to the study. UQCRC1 is a mitochondrial 

gene whereas ALB (bovine), a serum protein may have been a contaminant. With regards 

to spots 140 and 300, subsequent validation analyses of NASP and NAP 1 LI are discussed 

hereafter.

3.1.2.1. Spots 140 and 300 validation: the case ofNAPlLl and NASP

Validation analyses of spots 140 and 300 were performed initially by quantifying changes 

in transcript expression using q-PCR. The NASP transcript had a near five-fold increase in 

expression upon TDP-43 overexpression, which was the opposite of what was expected 

considering the decrease in spot intensity observed (Figure 3-6a, lower panel). On the other 

hand, the NAP1L1 transcript could not be quantified accurately and further primer 

optimisation was required. Alternatively, a Western blot analysis was used to detect 

changes in protein expression relative to TDP-43 overexpression. Immunodetection of 

NAP 1 LI protein identfied two isoforms, whose expression levels did not change upon 

TDP-43 overexpression and was thus not in agreement with the decrease in spot intensity 

observed for spot 300.
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Figure 3-6: Validation analyses for spots 140 and 300. (a) Real time PCR analysis o f NASP mRNA under 
physiological levels o f TDP-43 versus overexpression are shown in the upper graph. Fold differences in 
expression are representative o f three independent experiments. The lower panel graphs represent 2-DE 
differential spot intensities in the previously described cellular conditions, (b) Upper panel-W estern blot 
analysis o f NAP1L1 together with control checks o f endogenous TDP-43 levels and FLAG-TDP-43 
overexpression. Antibody against tubulin was used as a loading control. **p-value < 0.01.
Taken together, the validation analyses for spots 140 and 300 did not exhibit any

correlation with the changes in spot intensities observed.

Fundamentally, the 2-DE analyses did not reveal any real correlation between the observed 

differential spot intensities and the various levels o f  TDP-43 expression. An independent 

mass spectrometry analysis o f  some o f  the spots confirmed that this lack o f  correlation was 

not related to technical processing. The utilities and limitations o f  2-D E gels for global 

protein analyses have been discussed in depth in the discussion (Chapter 3). Several o ther 

more sensitive applications for 2-DE analyses exist and these could be em ployed in future 

work.

3.2. Splice Junction Microarray  Analysis

3.2.1 Sp lic ing  D ata  a n d  P a th w a y  A n a ly se s

Splice-sensitive microarrays have become a popular approach for global profiling o f  

alternative splicing events and gene expression changes (Blencowe et al. 2009; Shen et al.
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2010). To gain deeper insight into global transcriptome changes that are dependent on 

TDP-43, the splice-junction (H-JAY) Affymetrix microarray platform was utilised. 

Specifically, using HEK 293 stable cell lines previously described in the introduction 

section 1.6.1 and whose TDP-43 expression profile is shown in Figure 3-1, transcriptome 

changes resulting from four different cellular conditions were analysed: Group A in which 

cells were depleted of endogenous TDP-4 (siRNA-TDP-43), group B which consisted of 

cells that had endogeous TDP-43 silenced and simultaneously over-expressed the si- 

resistant form of wild-type TDP-43, and group C which similarly consisted of cells 

depleted of TDP-43 and simultaneously overexpressed si-resistant mutant (F4L) form of 

TDP-43, which is unable to bind RNA. The analysis of these cells under the various 

conditions were compared to a control group of cells that had been treated with 

siLuciferase (non-targeting siRNA) as has been shown in Figure 3-1. Furthermore, to 

ensure a uniform background induction media containing tetracycline was added to all 

groups of cells.

Total RNA was extracted from each set of samples prepared in triplicate and sent to 

Genosplice (Evry, France). Splice junction arrays contain probes on exons and exon-exon 

junctions which enable the identification of included and excluded exons in all known 

Jiuman transcripts. Splice junction arrays are also able to provide evidence of relative 

changes in transcript expression as determined by relative fluorescent intensities of the 

specific probes, with regards to different cellular conditions (Johnson et al. 2003). The 

analyses obtained from the Affymetrix data identified several genes that underwent TDP- 

43 dependent transcript level changes (Figure 3-7). Overexpression of wild type TDP-43 

was observed to affect transcripts to a greater extent compared to depletion (1099 vs. 483 

genes uniquely affected by either action, respectively). It is interesting to note that 

depletion, overexpression of TDP-43, and expression of the F4L mutant commonly affect a 

significantly large group of genes (2371), suggesting that alterations of TDP-43 levels act
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on similar pathways, irrespective o f  the proteins capacity to bind mRNA. Furthermore, 

expression o f  the TDP-43 F4L mutant shows that only 251 genes are additionally affected 

by the knockout o f  RNA binding capacity. Expression o f  this mutant TDP-43 protein 

modifies genes in a similar m anner to TDP43 wild-type overexpression than TDP-43 

depletion (506 vs. 91) i.e. higher number o f  genes. Given the significant role reported thus 

far for TDP-43 in regulation o f  RNA metabolism, validation experiments were centred on 

data obtained for alternative splicing events that appeared to be dependent on TDP-43.

TDP-43 depletion

Overexpression of 
TDP43WT

483

880 91

2,371

1,099 251
506

Expression of the 
F4L mutant

Figure 3-7: Venn diagram showing the distribution o f genes undergoing transcript level changes upon 
TDP-43 depletion, TDP-43 wild type over expression and TDP-43 F4L over expression. Each group o f 
genes was compared with the control (siLuciferase) reference set o f genes.

In keeping with this role for TDP-43, hits obtained for the alternatively spliced exons were 

grouped according to three types o f  alternative splicing events; differential cassette exon 

splicing, mutually exclusive exon splicing, and differential usage o f  5 7 3 ’ splice sites 

(Figure 3-8) below.

To improve the potential o f  identifying events that are directly dependent on TDP-43 

levels, genes that satisfied all three o f  the following criteria were considered: events that 

were altered following depletion o f  TDP-43 (Group A), that could be rescued by the 

induction o f  the flagged si-resistant TDP-43 W T (Group B), but which could not be 

rescued following induction o f  the fa g g ed  si-resistant TDP-43 F4L mutant (Group C).



Principally, this included 134 cassette exons, 16 alternative 5 7 3 ’ splice site selections and 

13 mutually exclusive exons. The full list o f  these genes can be seen in Figure 3-8 below.
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Figure 3-8: Hits obtained from the splice sensitive microarray analysis. Venn diagrams showing the 
distribution o f genes undergoing: (a) differential cassette exon splicing, (b) mutually exclusive exons and (c) 
alternative 3 7 5 ’splice site regulation in a TDP-43 dependent manner. Within the closed boxes are lists o f 
genes that satisfy the criteria o f being directly affected by TDP-43. Bold arrows indicate genes that were 
identified in this analysis, and that were already validated and shown to undergo alternative splicing 
following TDP-43 depletion by other studies {BIM/Bcl-2and POLDIP3/SKAR).

A Kyoto Encyclopedia o f  Genes and Genomes (K E G G ) pathway analysis o f  the 162 genes 

that fulfilled all three criteria as described previously, showed that they were mostly 

involved in regulating the alternative splicing profile o f  other factors involved in 

alternative splicing/RNA binding and phosphoproteins, (Figure 3-9). In addition, many 

genes present in this list were also involved in cell cycle control, Ubl (Ubiquitin)

conjugation, and apoptotic pathways that have previously been associated with TDP-43.
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Figure 3-9: Pie chart depicting percentages o f  genes involved in various pathways following a KEGG 
pathway analysis. Most genes were depicted as being involved in alternative splicing and phosphoproteins, 
cumulatively 52.6%.

3.2.2. Identifying genes whose splicing was directly affected by TDP-43

depletion

From the 163 candidate list o f  genes corresponding to the previously described criteria i.e. 

appeared to be altered directly by TDP-43 depletion, two genes, BIM/BCL-2  (Bcl-2 

interacting protein/B-cell lymphoma 2-like 11) and SKAR/POLDIP3, had previously been 

shown to undergo alternative splicing following TDP-43 depletion by others (Tollervey et 

al. 2011; Shiga et al. 2012; Fiesel et al. 2012). It was therefore o f  interest, as further 

validation o f  the experimental procedure in this study, to perform RT-PCR analysis o f  

BIM/BCL-2L11 confirming that depleting TDP-43 shifted the splicing profile o f  BIM/BCL- 

2L11 towards the increased expression o f  the pro-apoptotic BIMs isoform with respect to 

the anti-apoptotic isoforms BIM l/BIM el (Figure 3 - 10a, compare lanes 1 and 2). M ost 

importantly, this shift in splicing isoforms could be reverted in the cells that expressed the 

si-resistant wild-type FLAG-TDP-43 (lane 3) and no rescue could be observed in the cell 

lines expressing the mutant FLAG-TDP43 (F4L) RNA-binding mutant (lane 4). In keeping 

with this pattern, the same type o f  splicing effects could also be observed for 

SKAR/POLD1P3, where inclusion o f  exon 3 was abolished following endogenous TDP-43



depletion (Figure 3 - 10b, lane 2), rescued by the expression o f  the si-resistant FLAG- 

TDP43 W T (lane 3), and not rescued by the FLAG-TDP43 F4L mutant (lane 4).

BIM/Bcl-2

SKAR/Poldip3

Figure 3-10: Confirmation o f  previously reported TDP-43 dependent altered splicing profiles o f  
BIM/Bcl-2 and SKAR/POLDIP3. a) RT-PCR image showing alternative splicing o f exon 4 in BIM'Bcl-2 
and b) exon 3 in POLD/P3/SKAR under physiological levels o f TDP-43 (lane 1, sicont.), that are altered 
following depletion o f TDP-43 (lane 2, siTDP43), can be rescued by induction o f si-resistant FLAG-TDP-43 
WT (lane 3, siTDP43+TDP43-WT) but cannot be rescued with and overexpression o f mutant FLAG-TDP-43 
(F4L) (lane 4, siTDP43+F4L).

Having verified experimentally, that the data obtained from the microarray contained genes 

known to be affected by TDP-43 levels, from the initial candidate gene list o f  162, a list o f  

genes were selected based on their score (>2-fold change in splicing profile) for 

subsequent vadlidation. The splicing profiles o f  these selected genes was analysed by RT- 

PCR and are listed in table 3-2 below.



GENE

EXON A M PLIFICA TIO N CHANGES OBSERVED  

W ITH RT-PCR

SKAR/POLDIP3 3 ex 2-4 Yes

BIM/BCL2L11 3 ex 2-4 Yes

TBX19 7 ex 1-8 No

C14orf18 5 ex 3-7 No

STAG2 30b ex 29-32 Yes

GANAB 6 ex 4-9 No

C20orf24 3 ex 1-4 No

NLGN2 2 ex 1-4 No

FB X 018 2 ex 1-3 No

MADD 31 ex 30-32 Yes

ANKRD12 4 ex 1-2 No

BRD8 20 ex 19-21 Yes

FNIP1 7 ex 6-8 Yes

ALFY 45 ex 44-46 No

ERGIC3 3 ex 1-4 No

CASK 19 ex 18-20 No

CRAMP1L 15 ex 14-16 No

ZNF207 9 ex 8-10 No

BID 4 ex 3-5 No

Table 3-2: Genes chosen for validation of altered splicing profiles based on their predicted score. The
regions amplified and relevant exons are also shown below. Genes highlighted in red depict positive 
confirmations o f changes in splicing profiles, whereas those highlighted in green indicate changes that were 
observed in our list and that were previously published.
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TDP-43 dependent changes in splicing were confirmed in four (highlighted in red-T able  3- 

2) out o f  nineteen genes analysed: Stromal antigen 2 (STAG2), M AP-kinase activating 

death domain (M ADD), Folliculin interacting protein 1 (FNIP) and Bromo-domain 8 

containing protein (BRD8).

RT-PCR analyses were performed on endogenous transcripts using primers located in 

exons Ranking the relevant skipped/included exons (highlighted in red-Figure 3-11 below).

STAG2 FNIP1

MADD BRD8

F igure 3-11: Endogenous splicing profiles in HEK 293 cells o f  STAG2, MADD, FNIP I and BRD8 that 
were found to be TDP-43 dependent, (a-d) RT-PCR gel images depicting TDP-43 dependent alternative 
splicing in endogenous transcripts o f STAG2, MADD, FNIP I and BRD8. The relevant exons (highlighted in 
red) as well as flanking exons are shown (a-d).

In two o f  the genes identified, STAG2 and BRD8, depletion o f  TDP-43 led to an increased 

inclusion o f  the relevant exons, as observed by RT-PCR. Specifically, in STAG2, exon 30b 

was observed to undergo an increase in inclusion when TDP-43 was depleted in cells, 

which could be rescued when the FLAG-TD P-43 W T was over-expressed. Furthermore, 

over-expressing mutant TDP-43 (F4L) did not result in increased inclusion and in effect 

had a splicing profile similar to that observed when TDP-43 was silenced (Figure 3-1 la) 

i.e. increased inclusion signifying that TDP-43 binding capacity was essential for



inhibiting recognition of the normally excluded exon 30b of STAG2. In the BRD8 RT-PCR 

analysis, exon 20 was observed to undergo a significant increase in inclusion upon TDP-43 

depletion Figure 3-1 Id, which could be rescued with over-expression of the WT TDP-43 

but not the mutant form.

In contrast, an increase in exclusion of exons 7 and 31 of FNIP1 and MADD respectively, 

was observed when TDP-43 was depleted from the cells. A partial rescue of these exons 

could be observed when FLAG-TDP-43 WT but not FLAG-TDP-43 F4L mutant was 

overexpressed.

Similar RT-PCR assays were performed in neuron-derived cell lines SH-SY-5Y and SK- 

N-AS, which are well-known in vitro models used to assess neuron function in studies of 

neurodegenerative diseases. As in HEK 293 cells, similar TDP-43 dependent alternative 

splicing profiles of exons 30b, 31, 7 and 20 of STAG2, MADD, FNIP1 and BRD8 

respectively, were observed in these neuronal cell lines (Figure 3-12b). In particular, 

following TDP-43 depletion an increase in STAG2 exon 30b and BRD8 exon 8 inclusion 

was observed, whereas for MADD exon 31 and FNIP1 exon 7, there was an increase in 

exclusion.
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Figure 3-12: Depletion o f  TDP-43 in neuroblastoma cell lines results in alterations in pre-m RNA  
splicing profiles that resemble those observed in HEK-293 cell lines, (a) Western blot showing efficiency 
of TDP-43 silencing in SH-SY-5Y and SK-N-AS neuroblastoma cell lines. An antibody detecting tubulin 
was used as protein loading control, (b) RT-PCR analysis o f all the selected genes performed in control 
(luciferase siRNA) and TDP-43 depleted cells with schematic representations o f the amplicons on the right, 
(c) Schematic representation o f the endogenous MADD gene spanning exon 30 to 32. The grey box shows the 
pseudoexon identified in the endogenous RT-PCR in these neuronal cells but not in the minigene analysis or 
in the endogenous profile o f HEK 293 cells. The lines stemming from the exon scheme depict both the 
intronic (lower case) and exonic sequences (upper case) including the pseudoexon sequence.

Interestingly, analysis o f  M A D D  exon 31 in SK-N-AS and SH-SY-5Y neuroblastom a cell

lines not only revealed a similar splicing profile as that observed previously in H E K  293,

in which depletion o f  TDP-43 resulted in increased exclusion o f  this exon (Figure 3-11)

but also showed an extra band (pseudo exon-PE), above the all-inclusive (inclusion o f  exon

31) band, that was present only when TDP-43 was depleted in the cell. Sequencing o f  this

extra band revealed that it consisted o f  exon 30, 31 and 32, as well as an additional exon

(identified as a pseudo exon (PE)) o f  115 bp intronic sequence (Figure 3 - 12b, second

panel) that was flanked by viable donor and acceptor splice sites. Under physiological

levels o f  TDP-43, the pseudo exon donor and acceptor splices sites are not normally

recognized which highlights a role for TDP-43 in repressing the recognition o f  this exon

(Figure 3 - 12c). A possible explanation for the presence o f  the pseudo exon in these
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neuronal cell lines and not in HEK 293 cells could be the difference in abundance levels of 

trans-acting factors that aid in the recognition of the pseudo exon splice sites. At the 

protein level, insertion of this sequence just upstream of exon 31 is predicted to introduce a 

premature stop codon (PTC) and could possibly lead to degradation of the transcript by 

nonsense mediated decay mechanisms.

Following the confirmation of TDP-43 dependent altered splicing profiles in STAG2, 

MADD, BRD8 and FNIP1, in both neuronal and non-neuronal cell lines, further 

characterisation of TDP-43 binding in these genes was performed.

3.2.3. MADD: Characterisation o f TDP-43 dependent alternative splicing o f

Exon 31

MADD plays an essential role in inhibiting the apoptotic pathway, and has been reported to 

have a neuroprotective role (Miyoshi & Takai 2004). In the splice-junction microarray 

analyses, MADD exon 31 was depicted to undergo TDP-43 dependent alternative splicing 

that was subsequently confirmed with an RT-PCR assay. In particular, depleting TDP-43 

in the cell, led to increased exclusion of exon 31, which could be rescued with 

overexpression of FLAG TDP-43 WT, as shown in Figure 3-1 lc. In addition, using 

Western blot analyses, the TDP-43 dependent alternative splicing of MADD exon 31 could 

also observed at the protein level following immunodetection of MADD protein (Figure 

3-13). In the western blot analysis, two bands are visible corresponding to inclusion or 

exclusion of exon 31 in the proteins, which differ in abundance in a manner identical to the

splicing profile observed in the mRNA when TDP-43 levels are altered (Figure 3-13).

Notably, in the control (siLUC) lane, the protein isoforms containing included (upper) and 

excluded (lower) exon 31 are expressed in almost equal proportions. In addition, there 

seemed to be an overall decrease in expression of the observed protein isoforms following 

TDP-43 depletion, which could not be restored even when wild type TDP-43 was



overexpressed (lanes 2-4, Figure 3-13). As has been mentioned previously, the skipping o f  

exon 31 following depletion o f  TDP-43 introduces a pre-mature termination codon, which 

could lead to a reduction in expression o f  the resulting isoforms due to non-sense mediated 

mechanisms. A poosible explanation for the observed decrease in expression o f  protein 

isoforms could be that protein recovery levels are lagging behind m R N A  recovery, as the 

M A D D has a high molecular weight (200 k D a ) .

Western Blot 

175 kDa —

55 kDa —

SiLuc
SiTDP43 - + -«- +
TET + + + +

Figure 3-13: TDP-43 dependent endogenous splicing profile o f  MADD exon 31 can be detected at the 
protein level. Western blot performed with anti-MADD/lG20 detected altered isoform expression that 
correlated with the mRNA splicing isoforms (see figure 3-11). Protein isoform expression in the control cells 
appeared to be much higher and o f equal ratio as opposed to the protein isoforms observed in the other three 
lanes that were depleted o f endogenous TDP-43. Anti-tubulin was used as a protein loading control.

3.2.3.1. Analysis o f  MADD exon 31 alternative splicing in a heterologous  
con tex t

A closer examination o f  intronic sequences surrounding M ADD  exon 31 identified a short 

TG stretch approximately 53 bp in the upstream intron, a putative TDP-43 binding site. 

Since TDP-43 is known to preferentially bind to TG stretches (m inim um  o f  six required; 

Buratti and Baralle, 2001), this was the starting point for m apping the TD P-43 binding site 

involved in the alternative splicing o f  exon 31. In order to characterize this interaction that 

results in the usual inclusion o f  exon 31 under physiological levels o f  TD P-43, 278 bp o f  

upstream and 263 bp o f  downstream intronic sequences together with 70 bp o f  exon 31 

were cloned into the pTB minigene (Figure 3-14). The pTB minigene is a hybrid 

expression plasmid that contains exons from a-globin and fibronectin under the a-globin 

promoter. The intronic region between the two fibronectin exons contains an Ndel

STAG 2

9- Tubulin



restriction site that facilitates the insertion o f  a single exon together with short intronic 

sequences that would enable distinction between excluded and included exons. This is 

performed by R T-PCR analysis using primers that are specific for the globin and 

fibronectin exons (Pagani et al. 2000).

pTB-MADD Ex 31

...tgtagctgggagagtgtgctgtgtggggcaggggtggagcctgtgggccttaccccggcc 
tccctccctctcttgcagGTTTT CATAGAGCT GAAT CACATTAAAAAGT GC 
AATACAGTTCGAGGCGTCTTT GT CCTGGAGGAATTT Ggtaattacact 
attttgctcttaggtctggactcacatggcagtaactcaaacctcggagctccagaggagggtct 
aggggcagggagaag...

Figure 3-14: Schematic diagram o f a hybrid pTB-M ADD-Ex 31 minigene containing exon 31 and 
flanking sequences. The a-globin, fibronectin and human MADD ex on 31 are shown as black, grey and red 
boxes, respectively. Intronic sequences are represented by lines connecting the exons. A zoomed-in view o f 
intronic sequences flanking exon 31 are shown with the upstream intronic sequence o f the short 1 2  nucleotide 
TG stretch highlighted in bold. Bold arrows indicate the location o f primers (Alfa 2, 3 fwd and Bra rev) used 
for amplification in the RT-PCR assay.

Following transient transfections o f  the hybrid pT B -M A D D -E x 31 m inigene under 

conditions in which TDP-43 was depleted and over-expressed, analysis o f  the splicing 

pattern resulted in a similar splicing profile as that observed in the endogenous transcript. 

Specifically, using primers specific for the hybrid minigene (bold arrows in Figure 3-14) 

three bands were visible from the R T-PCR analysis, two o f  which were relevant to the 

splicing profile (Figure 3 - 15a). The upper band, approxim ately 471 bp, labelled a hybrid 

exon (HE) (Figure 3-15 a&c) was identified as constituting o f  the EDB exon, M ADD  exon 

31 (70 bp) and downstream M A D D  intronic sequence cloned into the minigene, and 

interpreted as an artefact o f  the minigene system. Nonetheless, the intensity o f  this band 

was not altered with the changes in the levels o f  TDP-43 and was thus not considered 

significant for the M ADD  splicing profile analysis. The two other bands consisted o f  a 310 

bp band which was representative o f  exon 31 inclusion, and another o f  239 bp, which was



representative o f  exon 31 exclusion. The 239 bp band was faintly visible in cellular 

conditions o f  physiological levels o f  TDP-43 i.e. siLUC o f  TDP-43 (Figure 3 - 15a) whereas 

when TDP-43 was depleted from the cell, the intensity o f  the 239 bp band increased, 

signifying an increase in exclusion o f  exon 31, consistent with the splicing profile observed 

for the endogenous transcripts (Figure 3 - 15b).

Upon overexpression o f  FLAG-TD P-43 WT, the splicing profile o f  the hybrid pTB- 

M A D D -Ex 31 minigene exhibited a rescue o f  exon 31 inclusion resembling that o f  the 

minigene analysed under normal (siLUC) levels o f  TDP-43 (Figure 3 - 15c). In fact, from 

the minigene analysis, overexpression o f  TDP-43 seemed to result in an overall better 

inclusion o f  M ADD  exon 31 compared to physiological (siLUC) levels o f  TDP-43.

a) pTB-MADD ex31 b) Endogenous MADD ex31 c) pTB-MADD ex31 d) Endogenous MADD ex31
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Figure 3-15: The pTBP-MADD Ex 31 minigene recapitulates the endogenous MADD splicing profile, 
a) RT-PCR analysis and relative Image J quantification (below) o f the pTB-MADD-Ex 31 minigenes 
analysed under physiological levels o f TDP-43 expression and depletion, b) Depletion o f TDP-43 resulted in 
the increased exclusion o f exon 31 as observed in the endogenous MADD splicing profile, and which could 
also be recapitulated in the pTB-MADD-Ex 31 minigene when TDP-43 was depleted in the cells. A rescue o f 
exon 31 exclusion could similarly be observed in both the c) the pTB-MADD-Ex 31 minigene and in the d) 
endogenous transcript, when FLAG-TDP-43 WT was overexpressed. In fact, in the endogenous splicing 
profile exon 31 is 100% included upon TDP-43 overexpression. In addition, a hybrid exon (HE) that is not 
altered by the levels o f TDP-43 and determined to be an artefact o f the minigene system was observed only 
in the pTB-MADD-Ex 31 minigenes. Anti-TDP antibody was used to confirm the levels o f TDP-43 in the 
same cells i.e normal (siLUC) and knock-down (siTDP-43) and transgenic WT TDP-43 overexpression (tet 
induced). Anti-tubulin was used as protein loading control for the western blots.



The confirmation o f  a TDP-43 dependent inclusion and exclusion o f  M ADD ex on 31 in the 

minigene indicated that the sequence to which TDP-43 bound was present in the sequences 

cloned into the pTB minigene. Thus subsequent analyses aimed to determine whether the 

TG stretch upstream o f  exon 3 1, a likely binding site o f  TDP-43 was involved in the TDP- 

43 dependent alternative splicing o f  M AD D  exon 31.

3.2.3.2. Site directed m utagenesis o f  MADD TG stretch and EMSA analyses

The Human Splice finder (HSF) (http ://www .um d.be/H SF/) (Desmet et al. 2009), was used 

to analyse and identify sequences that would not create new splicing factor binding sites 

upon mutating the TG stretch. Following this analysis, the 5 ’-G T G T G C T G T G T G -3’ 

sequence present in the upstream intronic sequence o f  M A D D  exon 31 (bold and 

underlined in Figure 3-14) was mutated to 5 ’-A C A T A C C G C G A G -3’ in the minigene. A 

comparison o f  the wild type pT B -M A D D  Ex 31 minigene and pT B -M A D D  Ex 31 mutant 

minigene is shown in Figure 3-16 below.

pTB-M ADD Ex 31 Wild Type pTB-M ADD Ex 31 Mutant

90
G G G CA C A T A C C G C G A G

Figure 3-16: Chromatogram comparison o f  wild type and mutant pTB-MADD Ex 31 minigenes 
showing mutation o f TG stretch found in the upstream intronic region. The sequences o f  interest are 
delineated with red lines.

Analysis o f  both wild type and mutant minigenes splicing profiles was perform ed using 

R T-PCR analysis following transient transfections into HEK 293 cells. Com pared  to the 

pT B -M A D D  Ex-31 (wild-type) W T minigene, the splicing profile observed for the mutant

http://www.umd.be/HSF/


minigene exhibited increased levels of exon 31 skipping (approximately 12%) that were 

independent of the levels of TDP-43 (compare lanes 2 and 4, Figure 3-17a).

When comparing wild type and mutant pTB-MADD following knockdown of TDP-43, the 

mutant minigene had higher levels of exon 31 skipping (12% to 6%) (Figure 3-17a). This 

indicated that mutating the TG stretch in the upstream intronic region was more efficient at 

inhibiting TDP-43 mediated recognition of MADD exon 31, thereby resulting in increased 

levels of skipping. In contrast, the depletion of TDP-43 by siRNA targeted sequences did 

not result in complete depletion as observed in the Western blot analysis (lower panel, 

Figure 3-17) and thus the residual TDP-43 may have still been able to elicit an effect 

towards the recognition of exon 31, resulting in slightly lower levels (6%) of exclusion of 

exon 31 as compared to the mutant pTB-MADD Ex-31 minigene.

Taken together, the observed lack of change in the splicing profile of the mutant pTB- 

MADD Ex-31 minigene i.e. constant higher levels of exon 31 exclusion that were 

independent of physiological or depleted levels of TDP-43 in the cell, strongly indicated 

that the TG stretch previously identified, may be involved in binding TDP-43 and aid in 

the recognition and inclusion of MADD exon 31. Similarly, overexpression of FLAG-TDP- 

43 WT TDP-43 did not lead to inclusion of exon 31 in the mutant minigene and there were 

still high levels (16%) of exon 31 exclusion compared to the wild type pTB-MADD Ex-31 

minigene (Figure 3-17b).
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F igure 3-17: C om parative analysis o f  pTB-M ADD Ex 31 wild type and m u tan t m inigenes indicates 
involvement o f  TG stretch in b ind ing  TDP-43 (a) RT-PCR analysis o f wild type and mutant pTB-MADD 
Ex 31 minigenes under physiological and depleted levels o f TDP-43, showed that there was increased 
exclusion o f MADD exon 31 in the mutated minigene, irrespective o f TDP-43 levels. The splicing profile o f 
the wild type pTB-MADD Ex 31 minigene in lane 1 showed that under physiological levels o f TDP-43 exon 
31 is recognized and included, whereas depletion o f TDP-43 resulted in increased exclusion o f this exon, (b) 
Overexpression o f FLAG-TDP-43 WT in mutant pTB-MADD Ex 31 minigene did not significantly alter 
exclusion o f exon 31 indicating that the TG stretch is involved in binding TDP-43 to result in the usual 
recognition o f this exon. This observation was in contrast to the adjacent splicing profile observed for wild 
type pTB-MADD Ex 31, which contains the TG stretch and in which exon 31 was included. The hybrid exon 
(HE), an artefact o f this minigene is indicated with the arrows labelled HE. Anti-TDP-43 was used to confirm 
levels o f TDP-43 and anti-tubulin was used as a loading control.

To further demonstrate that the effect o f  TDP-43 on M AD D  exon 31 splicing was indeed 

occurring due to the protein binding to this TG stretch, an electrophoretic-mobility shift 

assay (EM SA) was performed. The EMSA analysis was performed using an oligo that 

consisted o f  the twelve nucleotides o f  the TG stretch (M A D D  TG) (see underlined 

sequence in Figure 3-14) in the upstream intronic sequence o f  M A DD  exon 31.



POS (UG)p; MADD TG NEG CON

GST TDP-43 - + - + + + -  +

Unbound
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Figure 3-18: MADD EM SA analyses using two different oligos and a known binder o f  TDP-43 (UGe) 
used as a positive control. EMSA performed with this oligo containing just the TG stretch revealed an 
increase in signal intensity with increasing amounts o f GST-TDP-43.

The M AD D  TG oligo as well as an oligo consisting o f  six UG repeats (UG6) that is known 

to bind TDP-43 (Bhardwaj et al. 2013) were kinase end-labelled and used in a binding 

reaction together with purified recombinant TD P-43, (see materials and m ethods section 

2.2.7). EM SA performed with the M A D D  TG oligo, revealed a gradual increase in signal 

intensity o f  the observed band shift, with increasing amount o f  G ST-TD P-43. This analysis 

confirmed that TDP-43 did indeed bind to this TG stretch. Furthermore, binding o f  TD P- 

43 to the TG stretch was validated by cold competition analyses, in which 10-20 fold m olar 

excess concentrations o f  cold (un-labelled) M A DD  TG oligo were used in direct 

competition with the labelled M ADD TG oligo (Figure 3 - 19a) or the UG6 oligo (Figure 

3 - 19b). Particularly, cold competition between labelled and cold M A D D  TG oligo revealed 

a decrease in signal intensity with increasing concentrations o f  the cold oligo, however,



since the signal was quite weak, the disappearance o f  the signal appeared to be immediate 

( ‘cold madd T G ’-second lane) (Figure 3 - 19a). Similarly, binding competition between the 

labelled UG6 (positive control) and un-labelled M A D D  TG oligo revealed a gradual 

increase in displacement, with increasing concentrations o f  the cold oligo (Figure 3 - 19b) as 

determined by the increase in signal intensity o f  un-bound oligo.

MADDTG
. PO S(UG 6) 'COLD'MADDTG g tg tgc tg tg t

GST-TDP-43 -_____ +_____ -_____ +_____ + + + GST-TDP43 " + + + + +

Figure 3-19: Cold com petition EM SA analysis confirm s TDP-43 binding to  MADD TG stretch  Cold 
competition EMSA with (a) labelled and un-labelled MADD TG oligo showed an immediate decrease in 
signal intensity with increasing concentrations o f the un-labelled oligo. (b) In addition, in competition EMSA 
with labelled UG 6, which is known to bind TDP-43, there was a gradual increase in displacement o f un-bound 
UGe with increasing concentrations o f un-labelled MADD TG oligo, further confirming that the TG sequence 
did indeed bind TDP-43.

Consequently, TDP-43 interaction with the alternatively spliced M A D D  exon 31 was 

mapped to a stretch o f  TG repeat sequences in the upstream intronic region o f  M A D D  

exon 31, using a mutation analysis which revealed that the TG stretch upstream o f  M A DD  

exon 31 was involved in aiding recognition o f  this exon, and an EM SA analysis that

confirmed direct TDP-43 binding to this sequence.



3.2.4. STAG2; Characterization o f TDP-43 dependent alternative splicing

o f exon 30b

Another gene observed to undergo TDP-43 dependent alternative splicing was STAG2, in 

which exon 30b was observed to undergo increased inclusion upon depletion of TDP-43. 

This increase in inclusion of STAG2 exon 30b could similarly be reversed with 

overexpression of si-resistant wild type FLAG-TDP-43 as depicted in lane 3, Figure 3-1 la. 

Furthermore, analysis of STAG2 exon 30b TDP-43 dependent alternative splicing profile 

in neuron-derived cell lines (SK-N-AS/SK-SY-5Y) (Figure 3-12a) revealed splicing 

profiles similar to those observed in the HEK 293 cells.

Analysis of the STAG2 protein isoforms by immunodetection showed that this variation in 

mRNA levels could also be observed at the protein level (Figure 3-20). Indeed, the 

increased inclusion of exon 30b, upon depletion of TDP-43 resulted in the appearance of 

an extra protein band, which was not visible in the control (Figure 3-20). As with the 

mRNA (Figure 3-1 la), overexpression of wild type FLAG-TDP-43 but not mutant FLAG- 

TDP-43 (F4L) in the endogenous TDP-43 depleted background, reverted the ratio of both 

protein bands (compare lanes 3 and 4, Figure 3-20) to levels comparable to the ratio 

observed in the splicing profile of the endogenous transcript under the same conditions of 

TDP-43 expression in the cells.
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F igure 3-20: TDP-43 dependent alternative splicing o f STAG2 in HEK 293 cells can be detected at the 
protein level. Immunodetection o f STAG2 detected changes in protein isoforms similar to those observed 
for the mRNA (see Figure 3-1 la) that were dependent on the levels o f TDP-43. At the protein level 
depletion o f TDP-43 led to the appearance o f an extra band that was abolished when wild type FLAG-TDP- 
43 was overexpressed. Expressing mutant F4L FLAG-TDP-43 resulted in a similar protein isoform 
expression as that observed in TDP-43 depleted cells. Cells were treated with siTDP-43 and tetracycline to 
provide a uniform background. Tubulin was used as a protein loading control. It should be noted that the 
STAG2 antibody is specific for total STAG2 and does not cross-react with other STAG (STAG1/STAG3) 
proteins.

As TDP-43 dependent alternative splicing o f  STA G 2exon  30b was visible both at the RNA 

and protein level, further characterization was performed to map the region in which TDP- 

43 was binding. As an initial step towards the characterization o f  the TD P-43 interaction 

with exon 30b o f  STAG2, it was necessary to determine w hether the endogenous 

alternative splicing profile was reproducible in a heterologous context.

3.2.4.1. Analysis ofSTAG 2 exon 30b alternative splicing in a heterologous  

con text

In order to identify which sequences proximal to exon 30b o f  STAG2  bound TDP-43 to 

elicit a preferential exclusion (under physiological levels o f  TDP-43), I constructed a 

hybrid pTB minigene consisting o f  only exon 30b, and subsequently both exons 30 and 

30b. However, following transfection and RT-PCR, both minigenes could not recapitulate 

the endogenous splicing profile, and in both cases exon 30b was not recognized and 

excluded (Appendix 1-6). A possible explanation for this observation may be that in many



minigenes, for successful reproduction of splicing patterns observed in the endogenous 

transcript, it is necessary to maintain as much as is possible of the original genomic 

environment. RT-PCR analyses from these minigenes can be found in the Appendix Figure 

1-6. Thus, a three-exon minigene (Figure 3-2la) was constructed that included exons 30, 

30b and 31 together with significant portions of intronic sequences, as depicted in the 

schematic representation, cloned into a pcDNA3 vector backbone as described in section 

2.2.4 of materials and methods.

Transient transfection in HEK 293 cells followed by RT-PCR analysis of the pcDNA- 

STAG2-Ex 30-30b-31 minigene showed that although exon 30b (seen as a band of 461 bp) 

inclusion was much higher than that observed in the endogenous transcript (compare lanes 

1 and 2 Figure 3-2lb and c) the knockdown of TDP-43 recapitulated the endogenous 

scenario with an increase in the inclusion of the exon. Indeed, TDP-43 depletion resulted in 

the 350 bp band corresponding to exon exclusion to decrease in intensity from 10%-2.8% 

(Figure 3-2lb) signifying an increase in inclusion of exon 30b. In the endogenous 

transcript (Figure 3-2 lc), depletion of TDP-43 resulted in a 23% increase (19%-42%) of 

the transcript including exon 30b. Overexpression of TDP-43 resulted in a 6% (7.8%- 

13.8%) increase in exclusion of exon 30b in the pcDNA-57]4(72-Ex 30-30b-31 minigene 

(Figure 3-2Id) as determined by quantification of the lower 350 bp band, indicating that 

TDP-43 promotes exclusion of exon 30b. An increase in exclusion of exon 30b was also 

observed in the endogenous transcript (Figure 3-2 le), where overexpression of wild type 

FLAG-TDP resulted in lower (19%-l 1%) levels of the upper 506 bp band that included 

exon 30b.
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Figure 3-21: Depletion o f  TDP-43 results in an increased inclusion o f exon 30b. (a) Schematic diagram o f 
the STAG2 sequence cloned into pcDNA3. (b) STAG2 RT-PCR gel images in different cellular contexts o f 
TDP-43 levels. The three-exon minigene showed higher starting levels o f included exon 30b and therefore 
levels o f TDP-43 dependent inclusion o f exon 30b were measured by estimating exclusion levels. On the 
other hand, the endogenous splicing ratio was referred to as percentage o f exon inclusion. Quantification was 
performed using Image J program on three independent experiments. Depletion o f TDP-43 in cells 
transfected with the three-exon-minigene led to a 7% increase in inclusion (10%-2.8%) o f exon 30b. (c) In 
the endogenous transcript, TDP-43 dependent inclusion o f exon 30b increased from 19%-42%. 
Overexpression o f WT-TDP-43 resulted in higher exclusion levels o f both the (d) minigene (7% -13%) and 
the (e) endogenous transcript (reflected in decreased inclusion from 19% to 11%) thereby determining a 
TDP-43 dependent alternative splicing o f exon 30b. Western blot analysis using anti-TDP antibodies were 
used to verify depletion and overexpression o f TDP-43 whereas anti-tubulin was used as a protein loading 
control.

The recapitulation o f  the endogenous STAG2 splicing profile in a TDP-43 dependent 

manner indicated that within the pcD N A -STA G 2 Ex 30-30b-31 minigene, there were 

sequences that could bind TDP-43, thus necessitating further characterization.

3.2.4.2. STAG2 EMSA and deletion constructs analyses

In contrast to MADD , in which the strategy for m apping the TDP-43 binding site involved

analysis o f  a TG stretch, the sequences (both exonic and intronic) surrounding exon 30b o f

STAG2, did not contain any obvious TG repeats. As such, in order to identify the TDP-43

binding site, the entire region spanning exon 30 to exon 31 that was cloned into pcD N A 3
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was divided into five fragments, that were subsequently used as probes in EM SA binding

analyses (Figure 3-22). The fragments were created by PCR amplification and subsequent

products used as templates for in vitro RNA transcription as described in section 2.1.1.2

(materials and methods).

CTGAAGAAAGTAGTAGTAGTGACAGTATGTGGTTAAGCAGAGAACAAACA 
CTGCACACCCCTGTTATGATGCAGACACCACAACTCACCTCCACTATTAT 
GAGAGAGCCCAAAAGATTACGGCCTGAGGATAGCTTCATGAGTGTTTATC 
CAATGCAGACTGAACATCATCAAACACCTCTTGATTATAAgtaagtacat _  
ttgatcattttctgtactataactttattaattacatagaaaaagttaag 
ttaaaagagqaataaaattctccttgaagCACGCAGGTAACATGGATGTT 
AGCTCAAAGACAACAAGAGGAAGCAAGGCAACAGCAGGAGAGAGCAGCAA 
TGAGCTATGTTAAACTGCGAACTAATCTTCAGCATGCCATgtaagtgaga 
gtgccttattgtctgagtctaggaagttcactaattcattttaacatttt 
aatgtgtgccttatctaaaaatttcagcaaactctctagagtaacctaag 
ctgaaataatcaaggaactaaaaattggtctttccaacagaaaagcaaaa 
tattttaattaaaatactacctagttagccaaaggaccaatcttaggttg 
atctgttggaaaagtttaaatatcaatccttgtttattttggtacacagc 
attaaaaatacagttgtgttacatcctaattgattttcccaacttagttc 
aggccctcatctctcacctgaactattgtattagctttctaactggtttt 
cttccctcaaatctcccatttattttctcaccaaacctctcccttcaccc 
cccgctccatcattcacaccaccatcaagaattactattctagaataaaa 
atcttaccatgtaactcttacttaaaacctttctgtggctccccattgtc 
acattttgtcataattaattgtttatctctgtttgccatggtagactgta 
agctccttgagggcaggaatcatgtcttagtcttattcatcttttttttt 
tttttttttttaacatccataqqacacaqtaqaaqcctqtcacqtaqtaq 
qcattqtqtqaqtqaqtqcqcqcatqcctqqtacacattaqqtactqaat 
gaatgagqqagtgatgatqqgtaaaattagcattatatattgatqaaaat 
atatgttttctgaaaatgtcatttttttggtctctqttttatqtttgttt 
attaatttgtaccctgcctactttcaaaaagqatttgaggtatcttgtat 
qttcccatgtqggaaattctcattqaaccttgtatatgqqatatcaqaac 
tataaaqctaaatgtactqaagtaatgtagaataaacataactccttagc 
atttttagacaagtaaacattqqqttttqatatcattgatgacataatca 
atqcctaatcattctccctqacctttaattccatcattttccattatact 
tgaatatagagagccacatactgctgcctagatattaatagtcacgacat 
tagttcagatcttgactttgttttatatttctctagTCGGCGTGGCACAA 
GCCTAATGGAAGATGATGAAGAGCCAATTGTGGAAGATGTTATGATGTCC 
TCAGAAGGGAGGATTGAGGATCTTAATGAGGGAATGGATTTTGACACCAT 
GGATATAGATTTG

Figure 3-22: STAG2 fragmentation for EMSA analysis with the various fragments highlighted in 
greyscale. The shortest fragment (4), highlighted in bold underlined letters was obtained from part o f the 
sequence in fragment 3 and has not been highlighted for visibility.

In order to determine which fragments (Figure 3-22) were able to bind TD P-43, cold 

competition EM SA analyses using cold STAG2  RNA fragments were performed against a 

known binder o f  TDP-43, the UG6 oligo, as previously described in the M A D D  EM SA 

analysis. The competition EM SA revealed TDP-43 binding in fragments three and five 

(Figure 3-23, red rectangles) as determined by an increase in intensity o f  free (un-bound) 

probe, which indicated increased displacement o f  the UG6 oligo.
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u g 6
COLD COLD COLD
FRAG.l FRAG.2 FRAG.3 UG,

COLD COLD 
FRAG.4 FRAG.5

GST-TDP43 + + + + + + +

F r e e  (U G )6

Figure 3-23: STAG2 fragm ents th ree  and  five b ind to  TDP-43. Cold competition EMSA against UG6  

showed increased displacement for fragments three and five (red rectangles) as a consequence o f binding to 
TDP-43.

To further validate the capacity o f  fragments 3 and 5 to bind TDP-43 EM SA  analysis was 

performed using radioactively labelled fragments three and five and recom binant G ST- 

TDP-43. As can be seen in Figure 3-24 a shift was only observed in fragm ent five. In this 

case, the EM SA  showed an increase in intensity o f  the band shift signal with increasing 

amounts o f  TDP-43 as shown in Figure 3-23a. In addition, the band shift signal could be 

eliminated with 20-fold excess molar amounts o f  cold RNA fragment five (Figure 3-24b).



STAG2 Frag. 5
b)

STAG2 F rag. 5

GST TDP-43
COLD F’robe +  -F 4- +

m

STAG2 F rag. 3

F igure 3-24: Fragment five o f  the STAG2 three-exon minigene binds to TDP-43 but not to fragment 
three, (a) EMSA performed with radio-labelled fragment five showed an increase in band shift intensity with 
increasing concentrations o f TDP-43, and vice versa in a (b) competition EMSA performed with the cold 
fragment, (c) EMSA performed with radio-labelled fragment three in which no discernible band shift could 
be observed.

In contrast, for fragment three (Figure 3-24c), no distinct band shift was observed with 

increasing concentrations o f  TDP-43, despite the displacement observed previously in the 

cold competition EM SA against the UGb oligo.

To further investigate if  fragments three and five played a role in the observed effect o f  

TDP-43 levels on STAG2 exon 30b alternative splicing, a series o f  minigenes were 

constructed in which both these regions were deleted. These minigenes were then 

transfected and analysed by RT-PCR in HEK 293 cells under varying conditions o f  TD P- 

43 levels i.e. physiological, depletion or overexpression o f  TDP-43 (Figure 3-25 & Figure 

3-26).
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RT-PCR analyses o f  the pcDN A 3-ST/tGL? minigene with fragment five deleted 

schematically depicted in Figure 3-25a , resulted in increased inclusion o f  exon 30b 

(Figure 3-25b) which was independent o f  the levels o f  TDP-43 in the cell. In fact, the 

increase in inclusion o f  exon 30b (as determined by the decrease in intensity o f  the lower 

band) o f  the STAG2  deletion mutant, was similar (approximately 2%) to that o f  the W T 

minigene (2.6%) when TDP-43 was silenced or depleted in the cells. Furthermore, 

overexpressing TDP-43 did not result in increased exclusion (Figure 3-25c) with respect to 

the wild type minigene. Consequently, the above observations further indicated that 

fragment five was involved in binding TDP-43.

pcDNA-STAGex 30-30b-31

pcDNA 3 Ex 3 0 bEx 3 0 Ex 3 1
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C -T  i f

4 ^  4 *  5

^

SiTDP43
25-i

20-
c:OMIS­
TS
UJ 10-
%

0
|

S ^ L
siL U C  siL U C  siT D P  siT D P  
13.2±3.5 1.9+0.5 2.6±0.03 2.3±1.2

c)
500 bp — - 5 00 bp —

---------££---------- ^—

4 0 0  bp — mmm m m m  m m
4 0 0  bp — wm mm

300  b p ----- 3 00  bp —

+T et +  Tet  
9.7±3.8 1.3±0.8

4 3 k D a — m m  m m
—  endo TDP43

4 5 k D a —
m m m

55kD a - —  —  -  —
— Tubulin

55kD a — — mmm

— FL-TDP43 
— en d  TD P43
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Figure 3-25: Deleting fragment five from the STAG2 three-exon minigene results in increased 
inclusion o f exon 30b that is not altered with varying TDP-43 levels, (a) Schematic representation o f the 
pcDNA-STAG2-Ex30-30b-3l A5 minigene, (b) RT-PCR comparison analysis o f the wild type and deletion 
mutant minigenes showed similar levels (2.6-2.3%) of exon 30b exclusion, when TDP-43 was depleted in 
the cells. Furthermore, analysis o f the deletion mutant minigene showed increased inclusion o f exon 30b that 
was independent o f TDP-43 levels, (c) On the other hand, overexpressing TDP-43 did not result in increased 
exclusion o f exon 30b, as there was no increase in intensity o f the lower band in the deletion mutant STAG2 
minigene.



As EM SA analysis o f  fragment three was found to have binding capacity through 

displacement o f  the UG6 oligo, but not with the direct EM SA analysis with labelled 

fragment three oligo, assessment o f  w hether this fragment might also be playing a role in 

the inclusion o f  exon 30b was performed by constructing a minigene lacking fragments 

three to five (pcD N A -ST A G 2E x 30-30b-31-A3-A5) (Figure 3-26).

pcDNA-STAGex 30 -30b-31
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Figure 3-26: Deletion o f fragments three and five in the STAG2 three-exon minigene results in an 
increased inclusion o f exon 30b. (a) Schematic representation of pcDNA3-STAG2A3-A5 minigene 
depicting the deleted regions, (b) RT-PCR comparison analyses o f wild type and deletion minigenes under 
phyisiological and depleted levels o f TDP-43 show a constant increase in inclusion in the deletion minigene 
indicating that fragments three and five do play a role in the recognition of this exon (c) In fact, 
overexpressing TDP-43 did not result in increased exclusion o f exon 30b, as there was no increase in 
intensity o f the lower band in the deletion mutant pcDNA3-STAG2A3-A5 minigene. In the bottom panels, 
image J quantifications and verification o f cellular TDP-43 levels by western blot analysis are shown. 
Tubulin was used as a loading control.

RT-PCR analysis o f  this double deletion minigene resulted in a further increase in 

inclusion o f  exon 30b, as determined by the decrease in intensity o f  the 350 bp band from 

11% - 1.2% compared to the wild type plasmid (Figure 3-26a). Com parison o f  the splicing



profiles between the pcDNA3-A7]4G2A5 and pcDNA3-5X4G2A3-A5 results in a better 

inclusion of exon 30b for the minigene lacking fragment three and five suggesting that the 

ameliorated effect was conferred by the additional deletion of fragment 3. Notwithstanding 

the conflicting data regarding the ability of this fragment to bind TDP-43, and since both 

deleted fragments were quite large (Figure 3-23) with no typical TDP-43 binding sites (TG 

stretches) overtly visible, TDP-43 binding in this case may be linked to the secondary 

structure of the RNA. Similar levels of a decrease in band intensity were also observed in 

the wild type minigene (1.6%) when TDP-43 was depleted. Furthermore, overexpressing 

FLAG-TDP-43 wild type did not change the exclusion levels in the double deletion mutant 

minigene (Figure 3-26c). Analysis of a construct lacking only fragment three was not 

performed since direct binding could not be determined in EMSA, and since the overall 

difference in exclusion levels of exon 30b observed in these minigenes are quite small, it is 

likely that the contributory effect of fragment three was catered for in the minigene with 

both fragments deleted.

3.2.5. BRD8 and FNIP1: TDP-43 dependent alternative splicing o f exons 20

and 7 respectively

In addition to MADD and STAG2, BRD8 and FNIP1 were also found to undergo TDP-43 

dependent splicing. Specifically for BRD8, exon 20 (45 bp) was found to undergo 

increased inclusion when TDP-43 was depleted, which could also be reverted with 

overexpression of wild type FLAG- TDP-43 but not with the mutant form of TDP-43 that 

is unable to bind RNA. At the protein level and unlike MADD and STAG2, western blot 

analyses could not sufficiently detect protein expression and was thus not useful in 

analysing altered splicing changes at the protein level.

Interestingly, within both the upstream and downstream intronic sequences surrounding 

exon 20 of BRD8, TG stretches were present, with the downstream intron containing the



longest stretch Figure 3-27a. As had been performed for the other genes, to enable the 

characterisation of the interaction between TDP-43 and exon 20 in BRD8, it was first 

necessary to determine whether the endogenous splicing was reproducible in a 

heterologous context. Consequently, a region consisting of exon 20 together with 250 base 

pairs each of upstream and downstream intronic sequence was cloned into the pTB hybrid 

backbone (Figure 3-27a) and analysed by RT-PCR analysis following transient transfection 

in HEK 293 cells.

RT-PCR analysis of the pTB-BRD8 minigene in HEK 293 cells revealed an increase in 

inclusion of exon 20 (Figure 3-27b) when TDP-43 was depleted. This increase in 

inclusion, indicated by an approximately 50% (7%-4%) decrease in the intensity of the 

lower band was similar, (although to a lower extent) to that observed in the endogenous 

BRD8 transcript when TDP-43 was depleted. Similarly, overexpressing TDP-43 resulted in 

increased exclusion of exon 20, in both the minigene and endogenous transcript (Figure

3-27d-e). However, in the endogenous transcript, the recovery was more pronounced 

(approximately 80%) (Figure 3-27e) compared to the profile observed with the minigenes. 

This could be due to the insufficient inclusion of BRD8 exon 20 flanking sequences cloned 

in the minigene. It is also likely that in this minigene, some other TDP-43 binding sites 

responsible for finer definition and recognition of BRD8 exon 20, are not included.
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tcttgttcttgaqttttaaaattttqtccttqtqtqtqtqqtqcttqt 
gtctctgtcctgaggtttggggtgcttgtggctgagagtttctgtgga 
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cagagggaaatccaacatgcagctgtggcagtgtcttgaacttctgtt 
tattcaggtcattgaataagaaactcttttcttctgcattcctgtctt 
tctqcatqtqtqtqtqtqtqtqqqctqqqtaqgqactgtttttgagat 
cac...

b) pT B -B R D 8 e x  2 0 C )  E n d o g e n o u s  BRD8

2 8 4  bp 

2 3 9  bp

■ Ex 2 0  

Ex 2 0

SiLuc +

siTD P
25-

20-

15-

10-

5-

0 - 1

SILuc +  

siTD P -

siLU C siT D P
6.7 ±0.4 3.8 ±0.05

4 3 k D a —  

5 5 k D a

u-Io i
siLUC siTDP 

48.0 +0.5 76.2 ±9.1

X

E n d o . T D P 43  

T ubulin

d )  pTB-BRD8 ex  2 0

-+  Ex 2 0  

-  Ex 2 0

Tet
25-.

20-

Ci  15-3
iS 10

m
-Tet + fe t

6.7 ±0.4 7.0 ±1.8

4 5 k D a —

5 5 k D a

—  FL-TDP43  
E n d o . T D P 4 3

e )  E n d o g e n o u s  BRD8

-+  Ex 2 0  

■ - Ex 2 0

+ Ex 2 0

Ex 2 0

-Tet +Tet 
45.5 ±3.3 18.5 ±5.9

T ubulin

Figure 3-27: Depletion o f TDP-43 results in the increased inclusion o f  BRD8 exon 20 that can be 
rescued with over expression o f  WT TDP-43. (a) Schematic diagram o f  the pTB-BRD8 minigene construct. 
The a-globin, fibronectin EDB and human BRD8 exon 20 are shown as black, grey and red boxes 
respectively. Putative TDP-43 binding sites are highlighted in bold and underlined, (b) RT-PCR analysis 
showing increased inclusion o f exon 20 (50% (7-4%) decrease in lower exon) following depletion o f TDP- 
43, resembling the (c) endogenous splicing profile o f BRD8 showing increased inclusion o f exon 20 upon 
TDP-43 depletion (d) Overexpression o f TDP-43 results in exclusion o f exon 20, reverting the splicing 
profile i.e similar to the profile observed when there are normal levels o f TDP-43. (e) In the endogenous 
transcript, a more pronounced (ratio 80:20%) exclusion o f exon 20 is visible.Western blots detecting anti- 
TDP-43 were performed to verify physiological levels o f TDP-43, depletion and overexpression o f the 
transgenic WT TDP-43. Anti-tubulin was used as a loading control

Thus, future work in characterising TDP-43 dependent exon 20 inclusion in BRD 8  will 

include mutagenesis or deletion o f  the observed TG stretches to distinguish which 

sequence interacts with TDP-43.

Similarly, the FNIPI gene was analysed for TDP-43 dependent alteration in the splicing o f  

exon 7 in a heterologous context. Typically, exon 7 (84 bp) together with a 241 bp o f  

upstream and 251 o f  downstream intronic sequences were cloned into the pTB hybrid 

minigene in an effort to reproduce the alternative splicing profile observed in the 

endogenous transcript. Following transient transfection, RT-PCR analysis o f  this minigene
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showed a single band o f  239 bp representative o f  exon 7 exclusion, which was independent 

o f  the levels o f  TDP-43 in the cell (Figure 3-28b).

a)

...gtttaaaagtttccatccatatttgttggtctgctcttgtgctgccttagctcaccttttttcc
ctgacgcattgtggcttctctaacagtcctctttcatgtgtattttacgtttttgccatgtagG
T CTTTCAC AGTT CT GCAGCCCCAGGCGGGCATT CTCT GAG
CAGGGTCCGCTCCGCCTGATCAGGAGCGCCTCTTTCTTT
GCAGgtttgcgatgtgctgtgtgggtagactagttggtgtgccccaacggctagaat
ctgtagttaagctgtggaaacaagagagtagatgaatgcagttggtgaggttgtggtta
agaaaacattgc...
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F igure 3-28: FNIP1 Exon 7 is not recognised in the pTB-FNIPl minigene, (a) Schematic diagram o f the 
pTB-FNIPl minigene, depicting sequences cloned into the minigene, a-globin, fibronectin and human FNIP1 
exon 7 are shown as black, grey and red boxes, respectively. Putative TDP-43 binding sites are highlighted in 
bold and underlined.(b) RT-PCR analysis o f the minigene depicted 100% exclusion o f exon 7 (239 bp) in the 
minigene in both siLUC and siTDP compared to the (c) endogenous wherein depletion o f TDP-43 resulted in 
50% increase, (d) Overexpressing WT-TDP-43 did not change the splicing profile o f the minigene, contrary 
to the endogenous transcript wherein there was a rescue o f  exclusion to increased inclusion i.e similar levels 
(27%) to siLUC. Verification o f TDP-43 levels in the cells were analysed using anti-TDP-43 western blots 
anti tubulin as a loading control.

In contrast, in the endogenous transcript, depletion o f  TDP-43 resulted in increased 

exclusion o f  TDP-43 (approximately 71%). Overexpressing TDP-43 did not have any 

effect on the pTB -FNIPJ splicing profile i.e. 100% exclusion o f  FN IPI exon 7 com pared 

to the endogenous transcript, wherein there was a rescue to increased inclusion o f  exon 7 to 

similar levels (decrease in exclusion band from 71%  to 27% ) as observed in siLUC

(normal levels o f  TDP-43).



An in depth analysis of the flanking intronic sequences, identified a short six base pair TG 

stretch (3 TG repeats) (Figure 3-28a) in the downstream intron that were seemingly not 

sufficient to bind TDP-43 in the context of the minigene. This corresponds with previous 

work, in which a minimum of six repeats was found to be required for TDP-43 binding 

(Buratti and Baralle, 2001). Thus, similar to the STAG2gen&, the reproduction of the TDP- 

43 dependent endogenous splicing of FNIP1 exon 7 requires a broader context, which will 

be addressed in future work. Further investigation of whether this altered splicing profile is 

also translatable to the protein level will also be assessed.

3.3. Analysis o f altered splicing o f the MADD, STAG2, BRD8 and 

FNIP1 genes using a TDP-43 loss o f function model.

Currently, the two main schools of thought on the pathogenesis of TDP-43 are centred on 

the loss of function or gain of function hypotheses. As described previously, in patients, 

TDP-43 is reported to be sequestered in the cytoplasm and is the main component of the 

prototypical intra-cellular inclusions or aggregates (see chapter 1; section 1.2).

Considering the involvement of TDP-43 in neuropathology it was of interest to investigate 

whether the same alterations found in the stable HEK-293 cell lines could also be observed 

in a cellular aggregation model that results in TDP-43 loss-of-function developed in our 

laboratory (Budini, Romano et al. 2014). Briefly, this system is based on the expression of 

12 tandem repeats of the Glutamine/Asparagine (Q/N) rich region of TDP-43 (residues 

342-366) fused to the full length TDP-43 protein sequence tagged with FLAG. This 

transgene was stably transfected into HEK 293 cells using the Flp-In T-Rex recombination 

system. Expression of this effector following tetracycline induction results the formation of 

aggregates that co-localize with endogenous TDP-43 Figure 3-29a. In addition, cells 

expressing a mutant form of TDP-43, with the four phenylalanines (F4L) in RRMs 1 and 2 

mutated, has also been constructed. The F4L mutations render TDP-43 unable to bind
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RNA, thus allowing the discernment o f  whether the loss o f  function is a result o f  

aggregation or RNA binding capacity o f  the protein. As can be seen in Figure 3-29, 

expression o f  this mutant form o f  TDP-43 fused to the 12Q/N repeats, is also able to form 

aggregates that sequester the endogenous TDP-43.

The aggregates formed by expressing wild type TDP-43- 12Q/N (Figure 3-29a) appeared to 

be smaller and diffuse in nature whereas those formed by mutant (F4L) TD P-43-12Q /N  

appeared bigger and more localised (Figure 3-29b). Since the only difference between the 

two forms o f  TDP-43 is the mutation o f  the four phenylalanines o f  the mutant, it could 

point towards the involvement o f  the RNA binding capacity o f  the protein in aggregates 

formation.

Anti-Flag 
(Flag-TDF 12xQ N)

Anti-TDP-43 
(Flag-TDP-12xQ/N and 
endogenous TDF-43)

WT T D P 12Q /N

Anti-Flag 
(Flag-TDP- 12xQ N)

Anti-TDP-43 
(Flag-TDP-12xQ/N and 
endogenous TDP-43)

F4L MUT TD P12Q /N

Figure 3-29: Induced expression o f  transgenic TDP-43-12XQ/N results in aggregate formation that co- 
localizes with endogenous TDP-43. Expression of aggregate inducing transgenic TDP-4312XQ/N was 
detected using immunoflourescence after 72 hr induction. Flag-tagged TDP-43 was labelled with Alexa 
(Red) and endogenous TDP-43 labelled with FITC (green). In the upper panel, aggregates formed from 
expression o f (a) WT FL-TDP-12XQ/N are shown whereas those formed by expression o f the mutant form 
(b) F4L TDP-4312XQ/N are shown in the lower panel. Scale bar 20pm.
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Taking advantage o f  these cellular aggregate models, RT-PCR assays were used to analyse 

the genes identified from the splice-sensitive microarray study, to determine w hether the 

sequestration o f  TDP-43 within the aggregates had a functional effect on the RNA targets 

o f  TDP-43.
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Figure 3-30: The TDP-43 cellular aggregate model has a similar effect to silencing TDP-43 on genes 
identified from the Affymetrix analysis. RT-PCR o f endogenous transcripts analysed in the (a) 
WT12XQ/N and (b) mutant (F4L12XQ/N) aggregation models compared to (c) cells in which TDP-43 was 
depleted. The red rectangle highlights the pseudoexon in both WT and mutant F4L aggregation model cells 
and which was also detected in neuronal ells (See figure 3-12b).

Specifically, for the genes validated from the Affymetrix study, the TDP-43 dependent 

increase in inclusion o f  exons 30b and 20 in STAG2  and BRD8  was observed, as well as 

exclusion o f  exon 3 in POLDIP3  and exon 7 in FN IPI  (Figure 3-31). However, for the 

M ADD  alternative splicing profile, in both the wild type and mutant cellular aggregate 

models, apart from the exclusion o f  exon 31, an extra band (Figure 3-30 a&b, red 

rectangle) above the normally observed 227 bp band representative o f  the inclusion o f  

exons 30, 31 and 32 was observed. This extra band that was 115 bp larger had not been



observed previously in HEK293 cells depleted o f  TDP-43, but was present in the SH-SY- 

5Y and SK.-N-AS cell lines (Figure 3 - 12c).

As previously determined for M ADD  and STAG2  (Figure 3-13 & Figure 3-20), TDP-43 

dependent alternative splicing profiles were analysed at the protein level in these cells. 

Immunodetection o f  STA G2 and M A DD  was performed in un-induced and induced (plus 

tetracycline) cells (Figure 3-31).

WT- TDP-43 12Q/N F4L MUT-TDP-43 12Q/N 

Tet + +
1 7 5 k D a —

STAG 2

MADD

1 7 5  kDa -

Figure 3-31: TDP-43 dependent alternative splicing in STAG2 and MADD is detectable at the protein 
level in the TDP-43 aggregate model. Antibodies against STAG2 (155 kDa) and MADD (200 kDa) western 
blots in (-Tet) and (+Tet) induced cellular aggregate models with WT TDP-43-12XQ/N and F4L TDP-43- 
12XQ/N, showing the appearance o f an extra band upon aggregate induction.

Western blot analyses showed changes in the ratio o f  the proteins in the lanes with induced 

(+ Tet) samples as had previously been observed. For the STAG2 protein, depletion or loss 

o f  TDP-43 results in increased presence o f  the larger protein isoform in both cell lines 

correlating with the increase in the inclusion o f  exon 30b observed at the RNA level and 

the density ratio (Figure 3-31).

Similarly, for the M A D D  protein, two isoforms were visible in both induced and un ­

induced cells. In un-induced W T-TD P-4312X Q /N  cells, the upper band appeared to be 

denser, and upon induction, there was a density shift to the lower band having slightly 

higher intensity. The same shift in density was also observed in the F4F-T D P-43-12X Q /N

cells. Protein analyses o f  both STAG2 and M A D D  in the TDP-43 cellular aggregate
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models reflect those observed in HEK 293 cells that were transiently silenced using siTDP - 

43.

Consequently, the TDP-43 cellular aggregate models confirmed TDP-43 dependent 

alteration in splicing by recapitulating a ‘knock-down’ effect in the genes identified from 

the Affymetrix microarray study. In the cellular aggregate models, TDP-43 was shown to 

be sequestered within aggregates and was no longer able to perform its nucleo-cytoplasmic 

functions, thereby supporting a role for the loss of function hypothesis in TDP-43 

proteinopathies. In addition, the similarity in alterations of splicing profiles observed in 

both wild-type and mutant TDP-43 models emphasizes the significance of aggregate 

formation rather than the RNA binding capacity of the protein in pathogenesis.

3.3.1. MADD alternative splicing in the TDP-43 cellular aggregate model

As described previously (results section 3.3), RT-PCR analyses of the MADD splicing 

profile in the cellular aggregate models revealed an extra band approximately 115 bp 

higher (342 bp) than the all-inclusive (including exons 30,31 and 32) band of 227 bp. A 

comparative analysis of the MADD splicing profile in HEK 293 cells depleted of TDP-43 

and in the TDP-43 aggregate cell lines, revealed this band to be present only in the 

aggregate cell lines, suggesting a link with the aggregate formation.

To better understand the reasons for the appearance of this extra amplicon, this band was 

extracted from the gel and sequenced. This showed that it resulted from the inclusion of a 

pseudo exon, located in the intronic region between exons 30 and 31, 340 bp downstream 

of exon 30 (Figure 3-32b). An in silico splice site strength analysis using MaxEntScan for 

both the 5’and 3’ splice sites of the pseudoexon scored the 5’ splice site at 10.28 and 

3’splice site at 10.0 (Yeo & Burge 2003). Interestingly, from the RT-PCR comparative 

analysis in the aggregate cell lines, there was a preferential inclusion of the pseudo exon
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rather than the exclusion o f  exon 31 (157 bp), since the presence o f  the lower band 

signifying the exclusion o f  exon 31 was very faint (Figure 3-32c). Furthermore, analysis o f  

the M ADD  exon 31 splicing profile in a preceding aggregate model i.e cells expressing 

G FP12X Q /N  upon tetracycline induction, did not detect an extra band (Figure 3-32d). In 

fact, in these cells, only the un-spliced band (exons 30, 31 and 32) o f  227 bp is observed, 

independent o f  the presence or absence o f  aggregates (Figure 3-32d).
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Figure 3-32: The inclusion o f  a pseudo exon in the MADD alternative splicing profile in TDP-43 linked 
aggregates. Comparative RT-PCR analysis o f the M A D D  splicing profile in ‘em pty’ HEK 293 cells and 
HEK 293 cells stably expressing TDP-12XQ/N. (b) The sequence shown in yellow represents the pseudo 
exon band in (a), (c) RT-PCR analysis o f the MADD splicing profile in HEK293 cells inducibly expressing 
wild type TDP-43 12XQ/N (left panel) and mutant F4L TDP-43- 12XQ/N (right panel), (d) MADD splicing 
profile in a prototypical aggregation model, in which no changes were observed.

Similar to the TDP-43-12X Q /N  aggregate model, cells expressing G FP-12X Q /N  cells form

aggregates, with some co-localization with the endogenous TDP-43 protein observed

(Budini et al. 2012), and as such, not sufficient to elicit a functional effect. Therefore, as

expected, there was no alteration in the M A D D exon 31 splicing profile, which indicated

that the inclusion o f  the pseudo-exon previously observed was not an artefact o f
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aggregation caused by the 12Q/N repeats, but rather linked to the combination of full 

length TDP-43 and aggregates in the TDP-4312XQ/N aggregate models.

Further analysis is required to try and understand whether this differential MADD splicing 

profile between TDP-43 depleted cells and cells with the TDP-43 12XQ/N aggregates is 

due to a finer depletion of the protein from the cellular environment or due to the 

sequestration of other yet un-identified factors. Since no appearance of the pseudoexon 

was observed in HEK293 cells following treatment with two different and very efficient 

siRNAs against TDP-43 (data not shown), the second hypothesis described seems to be the 

most likely. Under normal conditions, the un-identified factors together with TDP-43 could 

be playing a role in the definition of the pseudo exons. Furthermore, since the pseudo exon 

was also detectable in the neuronal cell lines (Figure 3-12b), this may indicate that these 

yet un-identified sequestered factors could be naturally less abundant in these cells.
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4. DISCUSSION

The reclassification of amyotrophic lateral sclerosis (ALS) and a sub-set of fronto- 

temporal lobar degeneration (FTLD-U) as TDP-43 proteinopathies, and the subsequent 

discovery of TDP-43 in other neurodegenerative diseases (although to a lower extent) such 

as Alzheimer’s and hippocampal sclerosis, revolutionised the field in terms of 

understanding the pathological mechanisms underlying these diseases (Da Cruz & 

Cleveland 2011; King et al. 2012). In ALS specifically, over 90% of the accumulated 

protein observed within the aggregates is TDP-43 (Ling et al. 2013), which presents a 

unique opportunity for gaining insight into pathological mechanisms, without other 

confounding factors e.g. the presence of other proteins. In addition, it has become evident 

that RNA-binding proteins (RBP) are central to disease pathogenesis in cases such as 

Spinal Muscular Atrophy (SMA), Fragile-X Syndrome (FXS) and Spinocerebellar Ataxia 

type II (SCAII) amongst others, and given the cellular roles played by these proteins, 

current pathogenesis hypotheses have converged on altered RNA metabolism as a key 

process in disease (King et al. 2012; Hanson & Tibbetts 2012).

In keeping with this view, efforts aimed at elucidating pathological mechanisms involving 

TDP-43 have confirmed that alterations in TDP-43 expression levels, both in a positive and 

a negative manner, can lead to several changes in the general RNA and protein expression 

profile (Buratti et al. 2010; Tollervey et al. 2011; Fiesel et al. 2012). Although many of 

these reported events/targets have shown a high degree of variability, depending on which 

tissue/cells were analyzed (Buratti et al. 2013), they have all supported the hypothesis that 

defects at the RNA processing level, may considerably explain the role played by TDP-43 

in disease (Polymenidou, Lagier-Tourenne, Hutt, et al. 2012; Ramaswami et al. 2013). Still 

lacking, however, is a clear understanding of which of these changes are directly connected 

with TDP-43, as opposed to simply reflecting secondary changes due to a general 

dysregulation. Consequently, one of the main issues in current pathogenesis research



efforts is to determine the major RNA metabolism altering events that are directly 

regulated by TDP-43 and whether these events, could similarly be affected at the neuronal 

level in addition to aggregation. At present, a well described example of a target of TDP- 

43 in neuronal and non-neuronal cells that is modified according to TDP-43 expression 

levels in a significant manner is the SKAR/POLDIP3 gene (Shiga et al. 2012; Fiesel et al.

2012). Work emanating from these studies has shown that a knockdown of TDP-43 can 

significantly shift the expression of SKAR-a to SKAR-p, which results in a more efficient 

activation of ribosomal protein S6 kinase 1 (S6K1), and consequently an increase in global 

protein translation. Thereby, suggesting that when TDP-43 is sequestered within insoluble 

aggregates, a general alteration in protein homeostasis may also contribute to disease 

pathogenesis.

Nonetheless, although TDP-43 has broadly been linked to the altered splicing of several 

genes, the full extent or consequence of TDP-43 expression or lack thereof, in these genes 

is still not known. In addition, the majority of current research is skewed towards the role 

of TDP-43 in relation to altered splicing profiles and only few studies have focused on 

protein-protein interactions or changes in protein expression that are affected by the levels 

of TDP-43. In fact, these few studies include the discovery that TDP-43 interacts with 

other hnRNPs (Buratti et al. 2005), regulates HDAC6 levels (Fiesel et al. 2010), and 

broadly, other splicing factors, as well as proteins involved in the translational machinery 

(Freibaum et al. 2011). Thus, given that TDP-43 interacts with several other proteins, a 

feature typical of other hnRNPs, it is likely that changes in the expression levels of TDP-43 

can alter the expression of these interactors, directly or indirectly (Buratti & Baralle 2012).

In an effort to gain insight into cellular events that were directly regulated by TDP-43, this 

study utilised two main approaches, one at the proteomic and one at the transcriptomic 

level, incorporating 2-DE analyses and Affymetrix splice junction arrays, to determine 

TDP-43 dependent global changes.
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4.1. Identification o f differential protein expression linked to TDP-
43

Two-dimensional electrophoresis (2-DE) analyses are well-known and established assays 

for separating proteins based on their isoelectric points and subsequently molecular weight. 

Coupled with protein stains for visualisation, differential protein expression can be 

determined based on spot intensity that has a linear correlation with the abundance of 

protein (Ong & Pandey 2001; Gauci et al. 2011). In this manner, 2-DE analyses provide an 

un-matched methodology for the separation and detection of complex proteins (Ong & 

Pandey 2001; Gauci et al. 2011). In this study, global differential protein expression that 

was dependent on TDP-43 expression levels was analysed using 2-DE, in four different 

cellular conditions consisting of a control group (siLUC), cells depleted of TDP-43 

(siTDP-43), cells overexpressing transgenic wild-type FLAG-TDP-43 with the endogenous 

protein silenced and a fourth group expressing a mutant (F4L) transgenic form of FLAG- 

TDP-43 that cannot bind RNA with the endogenous protein silenced.

Following densitometric analyses that determined fold differences in spot intensities, a list 

of the most variable spots was obtained, which were selected for mass-spectrometry and 

subsequent secondary validation analyses (Table 2-1). The initial strategy for the 

secondary validation consisted of quantifying mRNA expression levels of genes identified 

from the mass spectrometry, by means of qPCRs, to determine if the observed expression 

changes correlated with the differential spot intensities at each of these spots. This strategy 

was further reinforced by the observation that current literature supports a role for TDP-43 

in mRNA regulation through a variety of mechanisms, including alternative splicing and 

translation regulation (Emanuelle & Baralle 2010). In addition, a quick and simplistic 

analysis was performed by comparing transcript changes in control (siLUC) and FLAG- 

TDP-43 overexpressing cells.
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To begin with, genes matched to peptides within spots 308 ( U2AF1 & MDH1), 413 

(HSPA9 & CCTS) and 421 (EEF2), were analysed for changes in transcript expression. 

This analysis revealed transcript expression changes that correlated with spot intensity, in 

spots 308 and 421. Interestingly, in spot 308, the two genes U2AF1 and MDH1, with high- 

ranking matches from the mass spectrometry analysis, both exhibited an increase in 

transcript expression, under conditions of wild-type FLAG-TDP-43 overexpression. Both 

U2AF1 and MDH1 were particularly interesting candidates as U2AF1 is a known splicing 

factor that forms part of the U2-snRNP complex (Wahl et al. 2009) and MDH1 (a 

metabolic enzyme) was previously identified in two separate studies as being relatively up- 

regulated in the prefrontal cortex of FTLD-U patients (Martins-de-Souza et al. 2012), and 

motor neurons of presymptomatic and symptomatic mice with a SOD-1 fALS mutation 

(Ferraiuolo et al. 2007). In spot 421, the gene EEF2 was found to undergo a decrease in 

transcript expression that correlated with the decrease in spot intensity observed at this 

spot, when FLAG-TDP-43 was overexpressed.

For spot 421, the validation strategy involved analysis of the EEF2 transcript in cells 

depleted of TDP-43 versus cells overexpressing TDP-43. Contrary to the previous qPCR 

analyses, EEF2 was found to undergo an increase in expression, when FLAG-TDP-43 was 

overexpressed relative to when TDP-43 was depleted in cells. Despite the overall trend in 

differential spot intensity suggesting a direct correlation with TDP-43 levels, i.e. 

knockdown of TDP-43 resulted in an increase in protein expression (spot intensity) 

whereas overexpression resulted in a decrease in spot intensity, EEF2 expression did not 

reflect these changes at the mRNA level. Thus, it was speculated that another gene, not 

identified by the mass spectrometry analysis may have effected the observed changes.

Secondary validation of spot 308 was performed using northern blot analysis, which ruled

out U2AF1 as a candidate target of TDP-43, as no correlation to spot intensity was

observed. In fact there appeared to be a decrease in transcript abundance (Figure 3-5). In
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contrast, MDH1 mRNA showed an increase in transcript abundance. However, this 

increase in transcript expression could not be detected at the protein level with western 

blots. In fact, MDH1 antibody detected two isoforms of the protein, presumably the native 

and phosphorylated forms, none of which corresponded to an increase in expression as 

determined by differential spot intensity analysis.

Taking into consideration the fact that no positive correlation had been observed with the 

genes previously identified, a mass-spectrometric re-analysis of spots 140, 300 and 1404 

initially identified as undergoing significant variability, and for which no proteins had been 

identified (only albumin contaminants), was performed. In addition, previously analysed 

spots (308 and 323) were included to verify the reproducibility of the analysis. This re­

analysis identified two new high-ranking peptides matching NASP and NAP 1 LI in spots 

140 and 300 respectively. Both NAP 1 LI and NASP are nuclear proteins involved in 

cellular proliferation and have been reported in previous high-throughput analyses, 

reviewed in Buratti et al. (2013). In addition, within spot 308 and 1404, U2AF1/MDH1 

and ALB were identified again as high-ranking matched peptides, which corroborated the 

previous mass spectrometry analysis. However in spot 323, in which peptides matching 

TDP-43 had previously been identified, UQCRC1 came up as high-ranking peptide. 

UQCRC1 had been identified in a proximal overlapping spot (323 Con) and may reflect a 

shift in this region, possibly due to run-run variation. The results obtained from the mass 

spectrometric re-analysis reflect an inherent inconsistency in the gel analysis that may have 

skewed the correct identification of spots and subsequent analyses.

As with the previous validation analyses, a positive correlation could not be observed for 

NASP mRNA analysed by qPCR or the NAP 1 LI protein analysed by Western blot.

The lack of correlation between the 2-DE results and the validation analyses reflect 

potential errors that may have been inherent in the analytical processing of the gels.
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Indeed, despite being a useful tool for global proteomic analyses that can relatively be 

automated by the use of analytical software, operator-dependent steps, such as gel- 

scanning and image warping present opportunities for errors (Ong & Pandey 2001; Berth 

et al. 2007). In addition, errors introduced by the limited sensitivity of the protein-staining 

dye Coomassie Brilliant Blue (CBB), may have resulted in inaccurate normalisation, and 

consequently inaccurate fold differences in spot intensities. Coomassie staining is reported 

to be less sensitive as a densitometric dye compared to its counterparts (Fluorescent dyes) 

(Gauci et al. 2011). This limitation was further supported by the observation that the 

Coomassie stain was only able to detect the transgenic wild-type TDP-43 and not the 

endogenous, which is a highly abundant protein. Given this observation, it is a distinct 

possibility that the normalisation of spots was inaccurate, as overly abundant protein (high 

concentrations) may also exceed the limits of the linear dynamic range (linear relationship 

between protein quantity and staining intensity) of the dye (Gauci et al. 2011). In this 

study, silver staining was not used as an alternative to Coommassie, as it is reportedly not 

compatible with downstream mass spectrometry analyses and has a low dynamic range 

(Gauci et al. 2011).

In addition, gel-gel variability introduced by the different runs, lysate compositions, or 

differences in resolution of the immobilized pH gradients (IPG) cannot be ruled out, 

notwithstanding that these differences were in part accounted for by triplicate gels of each 

specific cellular condition, and image analysis software. It could also be possible that in 

some cases, the effect of TDP-43 on target proteins was limited to translation level changes 

that could not be detected at the mRNA level. Nonetheless, since this would have involved 

the extensive use of various anti-bodies, the validation strategy was limited to changes that 

directly correlated at the mRNA and protein level.

Consequently, no meaningful correlation was obtained from the 2-DE analyses and in

future, more sensitive methods, incorporating fluorescent dyes or pulse-labelling could be
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employed to depict more accurate global proteomic changes that are dependent on TDP- 

43.

4.2. Altered mRNA splicing profiles o f several genes are dependent
on TDP-43

In an additional and complementary manner, analysis of global changes in gene expression 

that were dependent on levels of TDP-43 was performed using Affymetrix splice junction 

arrays. Aside from detecting general changes in transcript expression, splice-sensitive 

arrays are also able to detect alternative splicing events that occur under various cellular 

conditions. In this study, splice-sensitive arrays were particularly relevant, given the well- 

characterised role of TDP-43 in splicing (Buratti et al. 2001; Tollervey et al. 2011; Fiesel 

et al. 2012).

Consequently, several genes (2371) were shown to be influenced by TDP-43 levels in the 

cell, with the interesting observation that overexpression of TDP-43 uniquely affected a 

higher number (1099) of genes compared to the depletion (483) of TDP-43. To our 

knowledge this is the first study to include an analysis of the consequences of TDP-43 

over-expression in cells (HEK 293) using microarray studies. Moreover, this observation 

may have been related to the fact that overexpression of TDP-43 in several disease models 

is reported to be toxic (Tsao et al. 2012; Romano et al. 2012) and more recently in cells 

(SH-SY5Y) (Yamashita et al. 2014). We focused on alternative splicing events that 

exhibited a clear correlation with TDP-43 cellular levels i.e. events that were altered upon 

TDP-43 depletion, could be rescued/reverted by overexpression of wild-type TDP-43, but 

not with the mutant (F4L) TDP-43, thereby signifying a direct consequence of TDP-43 

RNA binding capacity. The number of genes that matched these criteria was 162. 

Interestingly, when compared to other studies that have examined the effects of a loss of 

TDP-43, there was some overlap, albeit little, in the number of genes identified (Figure

4-1), which appears to be representative of these kinds of screens. Furthermore, amongst
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these four studies analysed, there was also very little or no overlap. This discrepancy seems 

to be a confounding trend, not only across microarray studies but in other high-throughput 

methodologies that analyse global cellular phenomena, including methods such as CLIP 

and RIP-Chip which examine single RBPs (Buratti et al. 2013). Several reasons exist for 

this observation, such as differences in tissues analysed and technical processing o f  

samples, which also includes analytical methods (Buratti et al. 2013).

List o f  co m m o n  g e n e s  
KhP3

ADAM9

List o f  co m m o n  g e n e s  (3) Polymenidou
664

Colombrita
206

Ayala
684This work

162 g e n e s  (5)

Fiesel
397

List o f  co m m o n  g e n e s  (1)

Figure 4-1: Venn diagrams showing the overlap between the genes detected in this screening and the 
ones reported in other studies. Each coloured circle represents a set o f genes detected in different studies in 
which TDP-43 was depleted in different cell types (Ayala and Fiesel circles), in mouse brain (Polymenidou 
circle) or immunoprecipitated for a RIP-chip analysis (Colombrita circle). In the closed boxes are listed the 
overlapping genes with this Affymetrix splicing array.

O f  the 162 genes, genes predicted to have a two-fold or higher splicing score were chosen 

for validation analyses. Thus, 19 genes were analysed for TDP-43 dependent changes 

using RT-PCR assays, o f  which 6/19 genes were confirmed to undergo TD P-43 dependent 

alternative splicing in non-neuronal (HEK 293) and neuronal (SK -N -SH /SK -SY 5Y ) cells 

alike. These six genes, included POLDIP3 , BC L2L11, STAG 2 , M ADD , BRD8  and FN IPL  

Two genes, POLDIP3 and BCL2L11 were already known and validated exam ples o f  genes
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shown to undergo TDP-43 dependent alternative splicing (Tollervey et al. 2011; Fiesel et 

al. 2012). For the four other genes, depletion of TDP-43 was found to result in the 

increased inclusion of exons 30b and 20 in STAG2 and BRD8 respectively, and the 

exclusion of exons 31 and 7 in MADD and FNIP1. This is consistent with TDP-43 

promoting both exon inclusion and exclusion of alternative exons, depending on the 

position in which it binds. In addition, TDP-43 dependent alternative splicing of exons 

30b and 31 in MADD and STAG2, could also be observed at the protein level (see figure 2- 

13 & 2-20).

At the translation level, TDP-43 dependent inclusion of exon 30b in STAG2 and exon 20 

in BRD8 result in the in-frame insertion of extra amino-acids in their respective proteins 

(Appendix, Figure I-la; Figure I-4a), as well as in FNIP1 where the exclusion of exon 7 

was also predicted to be in-frame. On the other hand, TDP-43 dependent exclusion of exon 

31 in MADD, results in an out-of-frame insertion of seven amino acids and the introduction 

of a premature termination codon (Appendix, Figure I-2a). A deeper look at the regions 

surrounding the alternatively spliced exons and flaking introns, high nucleotide 

conservation could be observed for the eight vertebrate species analysed, with long introns 

separating exons.

In the characterization of the interaction of TDP-43 with the above genes, it was interesting 

to note that unlike in MADD, where a short TG stretch upstream of exon 31 was identified, 

no TG repeats were present in the mapped TDP-43 binding region of STAG2. As has been 

mentioned previously, TDP-43 preferentially binds TG repeats and it was therefore not un­

expected that the short TG repeat upstream of MADD exon 31 was involved in enhancing 

the inclusion of exon 31 under physiological levels of TDP-43 expression. On the other 

hand, the intronic region mapped to TDP-43 binding in STAG2, was located much further 

in the downstream intron, in a region that was relatively well conserved, suggesting a

functional significance in this region (Figure I-lb). TDP-43 binding in transcripts with
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long introns, has previously been described in Polymenidou et al. (2011) and has been 

reported to maintain the levels of long pre-mRNAs. Therefore, a similar mechanism could 

be at play for the STAG2 exon 30b identified in this study. In addition, relative to the 

positioning of the TDP-43 binding site in STAG2, Tollervey et al. (2011) have shown that 

TDP-43 binding further downstream of alternatively spliced exons, is associated with 

silencing/repression of these exons. Indeed, under physiological levels of TDP-43, exon 

30b of STAG2 is normally silenced or excluded, and a shift towards increased inclusion is 

observed when TDP-43 is depleted in cells. Interestingly, in the same iCLIP study 

performed by Tollervey et al (2011), MADD, STAG2 and BRD8 were also identified, 

although the identified alternatively spliced exons were different. These previously 

reported alternative exons were not analysed in this study.

For the BRD8 gene, despite TDP-43 dependent inclusion of exon 20 recapitulated in the 

pTB-minigene, mapping of the TDP-43 binding site could not be performed due to time 

constraints and this will be followed up in future work. Lastly, for FNIP1, TDP-43 

dependent exclusion of exon 7 could not be reproduced in the minigene and further work is 

required in terms of expanding the context that would enable better recognition of this 

exon in the minigene.

The TDP-43 dependent changes in the four genes identified and validated from the 

microarrays analysis is summarised in Table 4-1 below.



Gene
A lternatively Spliced 

Exon
Loss of TDP-43 

consequence
Proteom ie consequence

STAG2 Exon 30b Inclusion ln-frame insertion o f 36 extra AA

MADD Exon 31 Exclusion Frameshifit insertion o f 7 AA and a 
PTC

BRD8 Exon 20 Inclusion In-frame insertion o f 15 AA

FIS IP 1 Exon 7 Exclusion In-frame insertion o f 24 AA

Table 4-1: S um m ary o f genes identified from  the m ic ro array  studies confirm ed to  undergo  TDP-43 
dependent alternative splicing. AA (amino acid) and PTC (Premature termination codon).

4.2.1. TDP-43 dependent alternative splicing in STAG2, MADD, BRD8 and 

FNIP1: link to pathological mechanisms

O f  the four genes analysed in detail in this study, it was o f  specific interest and relevance 

that M ADD  and BIM /BCL2L11, known to be involved in apoptotic pathways were found to 

undergo alternative splicing in a TDP-43 dependent manner. In fact, together with 

BIM /BCL2L11 initially described by Tollervey et al. (2011) (and confirmed in this work), 

these two genes are important in ensuring cellular survival. BIM /BCL2L11 is reported to be 

important in the induction o f  neuronal apoptotic m echanisms in response to nerve growth 

factor deprivation (Putcha et al. 2001; Kristiansen et al. 2011). On the other hand, M ADD  

is implicated in cancer cell survival and apoptosis (Kurada et al. 2009), and can be spliced 

to yield at least six different splice variants, o f  which four are expressed more ubiquitously  

(M AD D, D EN N -SV , IG20pa, IG20-SV2) (M iura et al. 2012). Furthermore, 

M A D D /D EN N  is thought to play a dual role in neurotransmission and neuroprotection 

(Miyoshi & Takai 2004), down-regulation o f  this protein has been reported in hippocam pal 

regions o f  A lzheim er’s patients (Villar & Miller 2004). The connection with A lzhe im er’s 

is particularly interesting given that TDP-43 proteinopathy has been observed in patients 

(Amador-Ortiz et al. 2007). In addition, the expression o f  these splicing variants has 

previously been found to be affected in neuronal cell lines exposed to high concentrations 

o f  the Amyloid-beta peptide (M o et al. 2012), further supporting the importance o f  this



gene in neuronal survival. Accordingly, in this study, the changes observed in MADD 

expression suggest that there is not only a change in the level of expression of these 

isoforms, but also that the TDP43-induced depletion can lead to a general decrease in 

protein expression protein level (see figure 2.13). Further investigation is required to 

determine the correlation between depletion of TDP-43 and reduction in MADD protein 

expression, since overexpression of wild type FLAG TDP-43 could not restore protein 

expression levels to those observed in control cells with physiological levels of TDP-43 

expression. A possible explanation could be that since MADD is a high molecular weight 

protein, recovery of exon 31 inclusion at the protein level lags behind that of the mRNA.

In a similar manner, the functional role of STAG2 (also known as SA2/SCC3) in the 

mitotic cell cycle, as a component of the cohesin complex involved in the cohesion of 

sister chromatids during replication (Hagstrom & Meyer 2003), could be important for 

cellular survival as perturbations of check points could induce cellular apoptosis. 

Interestingly, both overexpression and silencing of TDP-43 expression have been reported 

to be capable of affecting cell cycle progression. Initial observations by Ayala et al. (2008) 

showed that TDP-43 silenced in U20S cells displayed alterations in cell cycle progression, 

with a 60% decrease in cells at the G0/G1 phase, and a corresponding increase in cells at 

the S and G2/M phases (Ayala, Misteli, et al. 2008). More recently, Yamashita et al. 

(2014) have reported that in SH-SY-5Y cells overexpressing full length wild type TDP-43 

fused to GFP, there was an accumulation of cells in the G2/M and sub-Gl phase, reflecting 

growth arrest and apoptosis respectively. In addition, Lee et al. (2012) showed that 2- to 5- 

fold overexpression of wild type TDP-43 in HeLa cells was also capable of inducing 

partially, p53-dependent G2/M arrest and p53-independent cell death. Nonetheless, in none 

of these cases, was the direct connection between TDP-43 and cell cycle affecting proteins 

identified. In this work, some evidence that at least some of the observed effects of TDP- 

43 could directly be mediated by altering the pre-mRNA splicing profile of STAG2, an
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important component of the cohesin complex, is provided.

The finding that TDP-43 can affect STAG2 splicing also offers a novel connection towards 

reports that implicate a possible role of TDP-43 in tumorigenesis, as recent cancer 

genomics analyses have reported a rather large number of somatic mutations at the level of 

the core cohesin factors (SMC1A, SMC3, RAD21, and STAG 1/2), in a particular subset 

of human tumors including Ewing sarcoma (Solomon et al. 2014). It is also interesting to 

note that a recent genome-wide association study (GWAS) study aimed at identifying risk 

factors for Ewing sarcoma has found a significant decrease in TDP-43 expression in tumor 

material from patients (Postel-Vinay et al. 2012). With regards to neurons, although known 

to be post-mitotically quiescent, a mechanism of apoptosis that involves re-entry into the 

cell cycle has been proposed in Alzheimer’s (Currais et al. 2009), and could similarly 

apply to other neurodegenerative diseases. Furthermore, mechanisms involved in the 

maintenance of gene expression of neural specific factors after differentiation, could 

contribute to pathological mechanisms if their expression is perturbed by age-related 

cellular inefficiency (Deneris & Hobert 2014).

Finally, in the cases of FNIP1 and BRD8, whose splicing profile was considerably altered 

by TDP-43, literature that could suggest a connection with observed consequences of TDP- 

43 depletion from cells is limited. BRD8 appears to have a number of functions ranging 

from thyroid hormone co-activator to being an accessory protein in histone-modifying 

complexes, as well as playing a role in cancer survival, where elevated levels of the protein 

have been reported (Yamada & Rao 2009). On the other hand, FNIP1 and FNIP2, together 

with folliculin have been shown to physically interact with adenosine monophosphate 

kinase (AMPK), and affect mammalian target of rapamycin (mTOR) activities during 

cellular differentiation, thus representing a possible connection with cancer (Rosner et al. 

2008). A role for mTOR in neuronal atrophy has been described in Alzheimer’s disease 

(Chano et al. 2007) as well as in fragile-X syndrome through a perturbation in FMRP (and
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RNA binding protein) translational repression of mTOR (Darnell & Klann 2013).

4.3. Analysis o f  TDP-43 dependent alternative splicing in a TDP-43 
cellular aggregate model; Evidence for loss o f function

In this study, the depletion of TDP-43 was found to alter the splicing of STAG2, MADD', 

BRD8 and FNIP1. In an effort to gain better insight into the mechanisms underlying TDP- 

43 pathology, we subsequently hypothesised that if indeed, aggregates were sequestering 

endogenous TDP-43, as had been reported in a recent cellular model of aggregation 

(Budini, Romano et al. 2014), then the splicing profiles of the above genes, would be 

similar to those observed when TDP-43 was silenced or depleted.

Thus, the endogenous splicing profiles of previously identified and validated genes from 

the microarray study were analysed in a TDP-43 cellular aggregation model, following 

induction of the aggregation effector i.e. transgenic full length FLAG-TDP-43 fused to 

12Q/N repeats. As expected, the splicing profiles of all four genes was similar to the 

profiles observed when TDP-43 cellular levels were depleted using siRNA in HEK 293 

cells (Figure 3-11), with the exception of MADD, in which a pseudo-exon was also 

identified. This similarity in splicing profiles observed provided conclusive evidence for a 

loss of function of endogenous TDP-43 and consequently substantiating the loss of 

function hypothesis in TDP-43 proteinopathies.

Therefore, the observation that changes in the alternative splicing of MADD, STAG2, 

BRD8 and FNIP1 in the aggregate model mimic those observed in cells transiently 

depleted of TDP-43, suggests that an important mechanism of disease involves the full 

length TDP-43 protein. Indeed, Budini et al. (2014) have shown that the N-terminal 

domain of TDP-43, although not necessarily involved in the formation of aggregates, is 

necessary for the sequestration of endogenous TDP-43 that results in loss of function. In 

relation to aggregation, and given the involvement of TDP-43 in stress granule formation, 

it is plausible that the initial trigger of aggregation results from a lack of dissipation of
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stress granules that transform to mature aggregates (Parker et al. 2012; Vanderweyde et al.

2013). Furthermore, stress granules are known to be associated with several RBPs 

(Hanson & Tibbetts 2012; Vanderweyde et al. 2013), which could contribute to a general 

loss of function of these proteins, leading to a perturbation of homeostatic mechanisms in 

both the proteome and RNA metabolome.

Interestingly in this work, the MADD splicing profile observed in the TDP-43 cellular 

aggregate model included the appearance of a pseudo-exon, a unique feature in these cells. 

The appearance of this pseudo exon following TDP-43 depletion was also observed in 

neuronal (SK-N-SH/SK-SY5Y) cells. A possible explanation for this could be that the 

aggregates sequester other factors, probably other hnRNPs, in addition to TDP-43 that are 

normally important for the definition of this exon. This is plausible given that RNA 

granules and aggregates contain numerous RBPs (Hanson & Tibbetts 2012). In addition, 

the observation that this splicing profile was present in neuronal cells and not HEK 293 

highlights a role for the combinatorial definition of exons that could involve several factors 

and which provides other avenues for future research. Furthermore, RBPs are normally 

present in differing abundances that are cell-type specific, thus, it is also possible that 

within the neuronal cell lines, the relative abundance of these factors is naturally lower 

than in HEK 293 cells where this pseudo-exon was not detected.
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5. CONCLUSIONS AND FUTURE PROSPECTS

The main aim of this study was to identify and characterize RNA targets of TDP-43 using 

a variety of global analytical techniques; 2-DE and microarray analyses that were designed 

to provide a global and complementary picture of changes that were dependent on TDP-43. 

With regards to the 2-DE studies, several limits of processing and analytical methods were 

highlighted from the results, as no positive correlation was achieved with the genes 

identified, and the observed differential spot intensities. Going forward, such a study 

would require the use of much more sensitive dyes such as fluorescent labelling, which 

apart from being more sensitive could partially reduce user-dependent analytical 

processing through automated analyses, thereby reducing opportunities for errors such as 

2-D difference gel electrophoresis (DIGE), that allow for multiple samples to be run in a 

single gel. However, fluorescent labelling as a means of detecting differential protein 

intensity is also in part limited by the higher signal to noise ratio. Thus, in these types of 

analyses, a careful consideration of the possible limits of each reagent in relation to the 

research question should be performed.

On the other hand, validation and characterization of data obtained from the splice- 

sensitive arrays revealed that in conditions of TDP-43 depletion, the splicing profile of 

several important genes could be altered, in both neuronal and non-neuronal cell lines. 

Mapping of the TDP-43 binding site could be achieved in two of the genes (MADD and 

STAG2), however, due to time constraints could not be performed for FNIP1 and BRD8. 

Thus, future work will aim to map the TDP-43 binding sites in BRD8 and widen the 

minigene context of FNIP1 to enable the recognition of exon 7, using methods described in 

this study.

Essentially, the genes identified and validated from the microarray in this study, indicate a 

general trend towards TDP-43 dependent altered splicing in genes linked to cellular
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apoptotic and survival mechanisms. This could have interesting implications in terms of 

understanding neurodegenerative mechanisms, especially in relation to apoptosis.

The observation that these alterations can also occur in non-neuronal cell lines, and the 

recapitulation thereof in cellular models mimicking TDP-43 aggregation, could present a 

strategic starting point for biomarker analysis in monitoring disease onset/progression. 

Furthermore, these neuronal cells could be used as screening tools for therapeutic efficacy 

in the human context, for drugs aimed at restoring TDP-43 functional levels within cells.

With regards to the inclusion of a pseudo-exon in the MADD splicing profile that was 

observed in the neuronal cell lines and the aggregate cell model, it was evident that, other 

than the depletion of TDP-43, other unidentified factors also play a role in enhancing the 

recognition of this exon. Thus, future work would aim to identify these factors using 

techniques such as pull-down assays as well as determine whether these factors are also 

sequestered within aggregates. In a similar vein, the relative depletion (sequestration) of 

TDP-43 between these cell lines could be analysed using soluble/insoluble fractionation 

studies to determine if finer levels of depletion, contribute to the inclusion of this exon.

In conclusion, the data obtained in this study shows that a loss of TDP-43 can have several 

consequences, related to its role as a regulator of RNA metabolism. In addition, the roles 

played by the affected genes highlight complex, interacting pathways, that when perturbed 

could result in increased vulnerability to disease. Nonetheless, a clear pathological 

mechanism linked to TDP-43, still remains to be elucidated, as it appears, that an altered 

RNA metabolism, may not be the only ‘hit’ for the development of TDP-43 

proteinopathies.
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7. APPENDIX

A. Analysis of the consequences of alternatively spliced exons at the protein level and 
conservation status of surrounding regions

Secondary validation analysis of the genes identified in the Affymetrix microarray analyses 

confirmed POLDIP3, BCL2L11, MADD, STAG2, FNIP1 and BRD8 as undergoing TDP_43 

dependent alternative splicing (Table 2-2). As has been mentioned previously, two genes, 

POLDIP3 and BCL2L11 were already identified in previous work as undergoing TD-43 

dependent alternative splicing and for the purposes of this study, were not explored further. 

Following the confirmation of altered splicing profiles by means of RT-PCR, an analysis of 

the consequences of exon skipping or inclusion in the already identified genes was performed.

STAG2. Exon 30b of STAG2 was found to undergo increased inclusion when TDP-43 was 

depleted in cell. From the translation point of view, the inclusion of exon 30b results in the in­

frame insertion of 36 amino acid residues near the C-terminus of the protein. Analysis of exon 

30b from the UCSC genome browser, revealed that exon 30b is only included in two 

transcripts (UCSC; GRCh37/hgl9) with the region encompassing exon 30, 30b being highly 

conserved (Figure 1-1). Interestingly the intronic regions proximal to exon 30b and 31 also 

appear to be well conserved with the mid-section having a lower conservation of nucleotides 

(Figure I-lb), which could suggest functional significance for this intron. The region in which 

TDP-43 was found to bind (intronic region closer to exon 31) is also well conserved.
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a ) S T A G 2  E x  3 0 + 3 0 b + 3 1  (Ex 30b inclusion maintains reading frame)
CTGAAGAAAGTAGTAGTAGTGACAGTATGTGGTTAAGCAGAGAACAAACACTGCACACCC 
T — E — E —  S —  S— S —  S —  D— S— M— W— L — S— R — E — Q— T — L — H— T —

CTGTTATGATGCAGACACCACAACTCACCTCCACTATTATGAGAGAGCCCAAAAGATTAC 
p — y — M— M— Q— T —  P — Q— L — T — S —  T — I — M— R— E —  P —  K —  R— L —

GGCCTGAGGATAGCTTCATGAGTGTTTATCCAATGCAGACTGAACATCATCAAACACCTC 
R—P—E—D—S — F—M—S—V—Y—P—M—Q—T—E—H—H—Q—T—P—
TTGATTATAACACGCAGGTAACATGGATGTTAGCTCAAAGACAACAAGAGGAAGCAAGGC—1
L— D— Y— N— T — Q— V— T — W— M— L— A— Q— R — Q— Q— E — E — A— R —

\-  Ex30b
AACAGCAGGAGAGAGCAGCAATGAGCTATGTTAAACTGCGAACTAATCTTCAGCATGCCA
q — q — Q— E—R— A— A— M— S — Y—V—K—L—R—T—N—L—Q—H—A --------1

TTCGGCGTGGCACAAGCCTAATGGAAGATGATGAAGAGCCAATTGTGGAAGATGTTATGA 
I  —  R— R— G— T — S —  L — M— E —  D— D —  E —  E — P — I — V— E —  D— V— M—

TGTCCTCAGAAGGGAGGATTGAGGATCTTAATGAGGGAATGGATTTTGACACCATGGATA 
M— S — S — E — G— R — I  —  E — D— L — N— E — G— M— D— F — D— T — M— D—

TAGATTTG 
X— d — L -

b)
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Figure I-l: (a) Inclusion o f  exon 30b results in the addition o f 36 more residues closer to the C-terminus o f  
the protein, (b) A screen shot from the UCSC genome browser analysis o f the region surrounding MADD 
exon 30b showing high conservation o f both exons 30 and 30b. The proximal downstream intronic region 
also appears to be well conserved suggesting a functional significance.

MADD: As determined by RT-PCR analysis, exon 31 o f  the MADD  gene was found to 

undergo increased inclusion upon TDP-43 depletion. At the protein level, the skipping o f  exon 

31 introduces seven residues followed by a stop codon (Figure I-2a). Furthermore, exon 31 is 

highly conserved with islands o f  highly conserved nucleotides in both the upstream and 

downstream intronic sequences (Figure I-2b).
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M A D D  E x  3 0 + 3 1 + 3 2  (Ex 31 skipping introduces a stop codon)
3  )  GACCTGAATTGGGTGGCGAGTTCCCTGTGCAGGACCTGAAGACTGGTGAGGGTGGCCTGC p x o n

G—P—E—L—G—G—E—F—P—V—Q—D—L—K—T—G—E—G—G—L—

TGCAGGTGACCCTGGAAGGGATCAACCTCAAATTCATGCACAATCAGGTTTTCATAGAGC 
L—Q—V—T—L—E—G—I —N—L—K—F—M—H—N—Q—V—F—I —E—

Ex31
TG AA TCA CATTAA AAA GTGCA ATA CA GTTCGA GG CGTCTTTGTCCTG GAG GA ATTTGTTC 
L — N— H— I — K— K— C— N— T — V — R — G — V — F — V — L — E — E — F — V —

CTGAAATTAAAGAAGTGGTGAGCCACAAGTACAAGACACCAATG E x32
p — e — I — K — E — V — V — S — H— K— Y— K— T — P — M-

1
GACCTGAATTGGGTGGCGAGTTCCCTGTGCAGGACCTGAAGACTGGTGAGGGTGGCCTGC p x o g  
G— P — E — L — G— G— E — F — P — V— Q— D— L — K— T — G— E — G— G— L —

TGCAGGTGACCCTGGAAGGGATCAACCTCAAATTCATGCACAATCAGTTCCTGAAATTAA £ 5 ,3 0  L—Q—V—T—L—E—G—X—N—L—K—F—M—H—N—Q—F—L—K—L—
AGAAGTGGTGAGCCACAAGTACAAGACACCAATG 
K— K— W— * -

b)

Figure 1-2 : (a) Skipping o f  exon 31 results in the creation o f seven new amino acids and stop codon, (b) A 
screen shot from the UCSC genome browser o f MADD ex on 31 analysis showing high conservation for this 
exon, together with the proxim al upstream  and dow nstream  intronic that sim ilarly appear to be highly 
conserved.

FNIP1. FNIP1 exon 7 was found to undergo increased exclusion when TDP-43 was depleted.

The skipping o f  this exon is in-frame (Figure I-3a). Similar to previously analysed exons, exon

7 o f  FNIPI  is highly conserved. In addition, both immediate upstream and downstream

intronic regions surrounding exon 7 are similarly highly conserved (Figure I-3b). The

proximal upstream intronic region also has another area (further upstream) o f  high

conservation. In the analysis o f  TDP-43 dependent splicing in FNIPI using minigenes, no
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change in splicing profile was obtained. Furthermore, within the intronic regions surrounding 

FNIPI, there were no obvious TG stretches.

a ) FNIP1  E x  6 + 7 + 8  (Ex 7  sk ip p in g  m a in ta in s  r e a d in g  f r a m e )

GCTACAAGATAGTCTTGAATTCATCAATCAGGACAACAATACATTAAAGGCTGA E x6  
 1---- Q-----D--- S --- L.---- £ ----F---- X--- N--- Q----D-----N-----N----T-----1__ K----A--- D

TAATAACACAGTTAtTAATGGACTGCTTGGAAATATAGTTCACAGCAACCCAAT 
 re--- N-----X--- V--- I -----N----G----- 1----1----G----N----- I ---- V----H----S ----N----P---M Ex;
GCACATGCCTGOAAGAGAGCTCAATGAGCACAGAGACACTGGCATAGCACGCTC
 D M --P  G R E 1 N E D --R  D S  G I - - A  R S

TGC ATCTCTC AGC AGCTTGCTdATCACTCCATTTCCTTCCCCAAACTCCTCACT 
 A--- S -----L--- S ---S -----1----- 1----- X--- X--- P - - F -----P -----S ----P----N----S ----S ---X,

TACCCGAAGTTGTGCCAGCACCTACCAGCGACGTTGGCGACCCAGCCAAACAAC E x8  
 T -----R-------S -----C-----A------S ------S -------Y -----Q -----R------R --W ---------R------R------S ------Q-T - -T

AAGnTGGAAAATCGCGTATTTCCTAGATG

Your Sequence t

b) FNXPi <fnipi 43“FNIPi <¥r~
FNIPJ 4%- 

RePSea Genes -

R etrooosed Genes

Sequences
SNPS

GeneRevtews

MU*#An BRNAS -

s p »t ced ESTS

cooperative Genoa

ftefSea Series

Exon tony Human/House /Rat /Dog

rooosea  Genes vs, inc lud ing  rseudogenes

?. A lte rn a tiv e  Proaocer and S i s >la r  Events 
cassetteC xon 

c a tio n s : Sequences in S c ie n t if ic  A rt ic le s

>.-• . Click to  alter the display density

Human afiH ftsfroa  GenBank:

Human ESTs m a t  Have Been sp lice d

Affymetr »x Huaan Even A rray ProBes w>d P rooesets

■ M il Will mi,,; i *• auia a nuni■ in mu n  in inn  nun

Figure 1-3: (a) Translation o f the FNIPI amino acid sequence with exon 7 skipped is in-fram e, (b) A 
screen shot from  the UCSC genome browser depicting the highly conserved exon 7 and surrounding 
intronic regions.

BRD 8. Exon 20 o f  BRD8 was also shown to undergo TDP-43 dependent inclusion i.e 

depletion o f  TDP-43 resulted in increased inclusion (Figure I-4a). Interestingly, the region 

encompassing exon 20 and proximal intronic area is highly conserved, despite exon 20 being 

quite short (45 bp) (Figure I-4b).



a ) BRD8EX19+20+21 (Ex 20 inclusion maintains reading frame)
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Figure 1-4: (a) Inclusion o f BRD8 exon 20 does not change the reading fram e and  results in a slightly 
bigger protein, (b) A screen shot from  the UCSC genome browser depicting a highly conserved region 
encompassing exon 20 with upstream  and downstream  proxim al intronic regions.



B. Supplementary Figures
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Figure 1-5: RT-PCR analysis o f the rest o f genes validated by RT-PCR and not found to undergo TDP-43 
dependent alternative splicing in the relevant exons. Genes presenting more than a 2-fold change in their 
splicing profile were selected for subsequent validation. The putative alternative exon for each gene is 
highlighted in grey and indicated according to EnsembI nomenclature as well as the amplified exons in the 
RT-PCR analysis. Only 4 out o f the 19 genes analysed showed a change in alternatively spliced exons that 
matched the selection criteria.
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a )  pJB-STAG 2 Ex-30b m inigene

■ ■I
Ex 30b

Ndel Ndel

gtaagtacatttgatcattttctgtactataactttattaattacatagaaaaagtt aagttaaaag 
ggaataaaattctccctgaagCACGCAGGTAACATGGATGTTAGCTCA 
AAGACAACAAGAGGAAGCAAGGCAACAGCAGGAGAGAG 
CAGCAATGAGCTATGTTAAACTGCGAACTAATCTTCAGCA 
TG C C ATgtaagtgagagtgccttatcgtctgagtctaggaagttcactaattc attttaacatt 
ttaatgtgcgccttatccaaaaatttcagcaaactctctagagtaacccaagctgaaataatcaagg 
aactaaaaattggtctttccaacagaaaagcaaa atatttta

350bp

pTB-STAG2 Ex- 30b m inigene

+ Ex 30b

siLUC
siTDP

pTB-STAG2 Exon 30 -30b m inigene
pJB-STAG 2  Exon 30 -30b m inigene

Ex 30 30b

540bp -S* + Ex 30b

NdelNdel

CTGAAGAAAGTAGTAGTAGTGACAGTATGTGGTTAAGCAGAGAA si LUC
CAAACACTGCACACCCCTGTTATGATGCAGACACCACAACTCA
CCTCCACTATTATGAGAGAGCCCAAAAGATTACGGCCTGAGGAT siTDP - +
AGCTTCATGAGTGTTTATCCAATGCAGACTGAACATCATCAAAC 
AC CT CTT GATTATAAgtaagtacatttgatcactttctgtactataactttattaattacatagaa 
aaagttaagttaaaagaggaataaaattctccttgaagC AC G C AG GTAAC AT G GAT GTT 
AGCTCAAAGACAACAAGAGGAAGCAAGGCAACAGCAGGAGAGA 
GCAGCAATGAGCTATGTTAAACTGCGAACTAATCTTCAGCATGC 
C AT gtaagtgagagtgccctatcgtctgagtaaggaagttcacta attcattttaa cattttaatgtgtgcc 
ttatctaaaaatttcagcaaactctctagagtaacct aagctg aaataat caagga actaaaaattggtcttt 
ccaacagaaaagcaaaatatttta

Figure 1-6: Initial pTB-STAG2 minigenes used to analyse TDP-43 dependent inclusion o f exon 30b. No 
changes were observed with these minigenes and in fact in both cases exon 30b was 100% recognized and 
included. From  these minigenes it was evident th a t a wider context o f the sequences flanking exon 30b was 
necessary to determ ine w here TDP-43 was binding to result in the exclusion o f exon 30b under 
physiological levels o f TDP-43 expression.


