
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

6-2014

BOAT: An Experimental Platform for Researchers to BOAT: An Experimental Platform for Researchers to

Comparatively and Reproducibly Evaluate Bug Localization Comparatively and Reproducibly Evaluate Bug Localization

Techniques Techniques

Xinyu WANG
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA
Zhejiang University

Xingen WANG
Zhejiang University

Pavneet Singh KOCHHAR
Singapore Management University, kochharps.2012@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Xinyu; LO, David; XIA, Xin; WANG, Xingen; KOCHHAR, Pavneet Singh; TIAN, Yuan; YANG, Xiaohu; LI,
Shanping; SUN, Jianling; and ZHOU, Bo. BOAT: An Experimental Platform for Researchers to
Comparatively and Reproducibly Evaluate Bug Localization Techniques. (2014). ICSE Companion 2014:
Proceedings of the 36th International Conference on Software Engineering: May 31-June 7, Hyderabad,
India. 572-575. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2178

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xinyu WANG, David LO, Xin XIA, Xingen WANG, Pavneet Singh KOCHHAR, Yuan TIAN, Xiaohu YANG,
Shanping LI, Jianling SUN, and Bo ZHOU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/2178

https://ink.library.smu.edu.sg/sis_research/2178

BOAT: An Experimental Platform for Researchers
to Comparatively and Reproducibly Evaluate

Bug Localization Techniques

Xinyu Wang1, David Lo2, Xin Xia1, Xingen Wang1, Pavneet Singh Kochhar2, Yuan Tian2

Xiaohu Yang1, Shanping Li1, Jianling Sun1, and Bo Zhou1

1College of Computer Science and Technology, Zhejiang University, China
2School of Information Systems, Singapore Management University, Singapore
{wangxinyu,xxkidd,newroot,yangxh,shan,sunjl,bzhou}@zju.edu.cn,

{davidlo,kochharps.2012,yuan.tian.2012}@smu.edu.sg

ABSTRACT
Bug localization refers to the process of identifying source
code files that contain defects from descriptions of these de-
fects which are typically contained in bug reports. There
have been many bug localization techniques proposed in the
literature. However, often it is hard to compare these tech-
niques since different evaluation datasets are used. At times
the datasets are not made publicly available and thus it is
difficult to reproduce reported results. Furthermore, some
techniques are only evaluated on small datasets and thus it is
not clear whether the results are generalizable. Thus, there
is a need for a platform that allows various techniques to be
compared with one another on a common pool containing
a large number of bug reports with known defective source
code files. In this paper, we address this need by propos-
ing our Bug lOcalization experimental plATform (BOAT).
BOAT is an extensible web application that contains thou-
sands of bug reports with known defective source code files.
Researchers can create accounts in BOAT, upload executa-
bles of their bug localization techniques, and see how these
techniques perform in comparison with techniques uploaded
by other researchers, with respect to some standard eval-
uation measures. BOAT is already preloaded with several
bug localization techniques and thus researchers can direct-
ly compare their newly proposed techniques against these
existing techniques. BOAT has been made available online
since October 2013, and researchers could access the plat-
form at: http://www.vlis.zju.edu.cn/blp.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

General Terms
Experimentation

Keywords
Bug Localization, Benchmark, Experimental Platform, BOAT

1. INTRODUCTION
Bugs are inevitable during software development and main-

tenance. To improve the reliability of software systems,
many software projects allow end users to report bugs that
they encounter. For a large software system, the project
team can receive hundreds of bug reports every day [1]. Once
a bug report is received, a developer often needs to spend
much effort to locate the defective program code and fix it.
To reduce this effort, a number of techniques have been pro-
posed to automatically return program files that are likely
to contain defects given a bug report [8, 3, 6].

Despite advances in bug localization studies, there are a
few challenges that potentially hamper the development of
this field:

1. Many bug localization techniques are tested on dif-
ferent datasets and thus it is hard to compare their
effectiveness.

2. To make matter worse, at times the datasets used are
not publicly released, e.g., [8], and thus it is hard to
replicate the results of the study.

3. Furthermore, a number of techniques have only been
tested on small number of bug reports (less than 50),
e.g., [5]. Thus it is not clear if the results reported for
these techniques are generalizable across a wide variety
of projects and bug reports.

Based on these observations, there is a need for a platfor-
m that researchers can use to compare various techniques,
replicate the results of various techniques, and reduce the
threats to external validity. In this work, we provide such
platform named Bug lOcalization experimental plATform
(BOAT). This web-based platform allows researchers to u-
pload their bug localization techniques, check the effective-
ness of their techniques on a large bug report dataset, and
compare the effectiveness of their techniques with other tech-
niques. Currently, BOAT contains thousands of bug reports

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591066

572

and the implementations of several popular bug localization
approaches.

In the remainder of this paper, we first describe the details
of our platform in Section 2. We describe the datasets con-
tained and techniques implemented in the current version of
BOAT in Section 3. Next, we describe related work in Sec-
tion 4. We conclude and describe future work in Section 5.

2. BOAT PLATFORM
Figure 1 presents the architecture of BOAT. BOAT con-

tains 3 components: data collection component, local de-
bugging component, and remote execution component. The
data collection component analyzes software projects to find
bug reports, the code before the corresponding bugs are
fixed, and the corresponding buggy files that get fixed. The
local debugging component supports researchers during the
development of BOAT -compatible executables of their bug
localization techniques in their own local environments. Its
goal is to reduce the debugging effort when researchers even-
tually upload their executable files in BOAT. The remote
execution component runs the uploaded executables of bug
localization techniques against the dataset that are extract-
ed by the data collection component and returns the results
to developers. In the following paragraphs, we describe the
details of these 3 components.

Data Collection
Component

DevelopersDevelopers

Data Store

Local Debugging
Component

Remote Execution
Component

Figure 1: The Architecture of BOAT.

The data collection component processes software projects
and for each project it analyzes its bug tracking system (e.g.,
JIRA, Bugzilla, etc.) and version control system (e.g., git,
SVN, etc.). BOAT extracts commit logs from the version
control system. For each log, it analyzes whether the corre-
sponding commit fixes a bug report. BOAT performs regular
expression checks to identify whether a bug report identifi-
er exists in the log. If there is an identifier, BOAT would
get the details of the bug (i.e., a bug report) with that i-
dentifier from the bug tracking system. BOAT would group
commits that fix a defect reported in the same bug report.
From these pieces of information, for each bug report whose
identifier exists in the commit logs, BOAT recovers the code
before the fix, and the files that are changed or deleted to
fix the bug. These extracted data is stored in a database
to be used by the other components of BOAT. Note that
there is no need to process a huge number of projects at
once. BOAT ’s administrators can incrementally add more
bug reports and their corresponding buggy files. Thus, over
time BOAT would contain more and more reports.

1: public static void main(String[] args) {
2: if (args.length < 4) {
3: System.err.println("Invalid options.");
4: System.err.println("<url> <user> <password>

<project root>");
5: System.exit(2);
6: }
7: String url = args[0];
8: String user = args[1];
9: String password = args[2];
10: String project = args[3];
11: BugLocationService service= setupService(url, user,

password);
12: for (String bug : service.listBugs(project)) {
13: Map<String, Object> objMap = (Map<String, Objec-

t>) service.useBug(bug);
14: List<String> relevantFileLists = ser-

vice.getBugLocation(bug);
15: List<String> fileList = predictBugs(objMap, new

File(project));
16: ...
17: }
18: }

Figure 2: Sample Java Code for Local Debugging.

Using the local debugging component, researchers can in-
teract with BOAT in their own local environments. BOAT
allows registered researchers to fetch a limited number of bug
reports (with the contents of all their fields), the code before
these bugs are fixed, and the defective source code files via
a restful web service. This web service can be accessed by
programs written in many programming languages and thus
BOAT does not put much restriction in the environment
in which researchers can develop their own bug localization
techniques. Figure 2 presents an example of Java code that
interacts with BOAT ’s local debugging component. At Line
11, the code creates a connection to BOAT ’s local debug-
ging component. At Lines 12-14, the code iterates through
the bug reports, code before the bugs are fixed, and the cor-
responding buggy files that BOAT ’s local debugging com-
ponent allows researchers to fetch.

Figure 3: An Example Working Directory.

Figure 4: An Example Configuration.

After a researcher completes the development of a bug lo-
calization technique, he/she can upload the executable of the
technique to BOAT via BOAT ’s web interface. Each reg-
istered researcher is given a working directory which con-

573

tains executables that he/she uploads and data collected
by BOAT ’s data collection component. An example of a
working directory is shown in Figure 3. In the figure, un-
der “projects” subfolder is collected bug reports, and under
“programs” subfolder is uploaded executables. Researcher
can then set some configuration options that would gov-
ern how BOAT runs the uploaded executables. Figure 4
presents an example of a configuration setting. In this con-
figuration, several jobs are specified. Each job specifies a
bug localization algorithm that would be run and a soft-
ware project whose bug reports would be used to evaluate
the algorithm. After a configuration is specified, the remote
execution component would then run selected executables
against bug reports from selected projects. An email would
be sent to the researcher to inform whether each of the jobs
is successful or not. If a job fails, the researcher could find
a detailed information of the failure in an execution log file
that is sent with the email. If a job is successful, the remote
execution component evaluates the ranked lists of potential-
ly buggy files returned by the bug localization algorithm in
terms of standard measures such as: recall-rate@11 (top1),
recall-rate@5 (top5), recall-rate@10 (top10), mean recipro-
cal rank (mrr) and mean average precision (map) – c.f., [8, 3,
6]. The experiment results are displayed in the researcher’s
dashboard in BOAT ’s web interface. Figure 5 shows an ex-
ample experiment results that is displayed in a researcher’s
dashboard.

Figure 5: An Example Experimental Results.

After a successful completion of a job, the remote execu-
tion component also computes/updates a list of top-10 re-
searchers with best performing bug localization techniques.
This list would be made available in the dashboards of reg-
istered researchers. With this list, researchers can compare
the performances of various bug localization techniques on
various datasets. Figure 6 shows a snapshot of BOAT’s in-
terface which shows lists of top-10 researchers (users) for
various datasets and various evaluation metrics (top1, top5,
top10, mrr, or map).

3. CURRENT DATASET AND TECHNIQUES
BOAT currently contains 6,080 bug reports and their cor-

responding fixes from 29 open-source projects. To ensure the
quality of the data, we have manually sampled a subset of
the bug reports (i.e., 300 bugs), and checked their corre-
sponding fixes. We find that these bug reports are of good
quality. Table 1 presents the statistics of bug reports collect-
ed from the projects. The columns correspond to the project
name (Project), the number of bug reports (# Bugs), the

1It is also known as top n rank in [8]

Figure 6: An Example Top 10 Users.

number of source code files in the projects (# Files), and the
time period of these collected bug reports (Time Period).

Table 1: Statistics of Collected Datasets.
Project # Bugs # Files Time Period

accumulo 181 1,376 2011.10 -2013.09
Activemq 175 1,580 2005.04 - 2007.12

any23 10 660 2012.01 - 2013.08
Bigtop 31 483 2011.08 - 2013.09
Camel 1,192 830 2007.08 - 2008.11

Couchdb 223 137 2008.03 - 2013.08
Crunch 92 292 2012.07 - 2013.02

deltaspike 41 135 2012.03 - 2013.05
Flume 281 557 2010.01 - 2012.05
Giraph 192 95 2011.08 - 2012.07

Isis 37 6,643 2010.12 - 2013.09
Kafka 209 428 2011.08 - 2013.08

Libcloud 25 117 2010.05 - 2013.08
logging-log4php 50 117 2010.05 - 2013.09

lucenenet 156 560 2007.09 - 2008.10
Mina 149 263 2005.12 - 2006.09

mina-asyncweb 4 218 2008.05 - 2009.01
mina-ftpserver 18 326 2008.01 - 2012.05

mina-sshd 29 137 2008.12 - 2011.05
mina-vvsper 27 308 2008.01 - 2013.01

Mrunit 25 44 2011.05 - 2013.04
Ode 145 1,725 2006.08 - 2013.09

Sgoop 96 405 2011.09 - 2013.09
tapestry-5 421 2,358 2008.09 - 2010.03

Thrift 331 596 2010.12 - 2011.05
trafficserver 551 1,775 2009.11 - 2012.01

trafficserver-plu 1 137 2012.02 - 2012.02
Whirr 8 159 2010.11 - 2012.08
Wicket 1,380 3,325 2007.09 - 2007.10

We have used BOAT to evaluate a popular and a state-
of-the-art bug-localization technique, namely VSM proposed
by Marcus et al. [4], and BugLocator proposed by Zhou et
al. [8]. BOAT runs these two techniques on the bug report-
s from various projects. Table 2 shows the recall-rate@1
(top1), recall-rate@5 (top5), recall-rate@10 (top10), mrr and
map of the two techniques for several projects as evaluated
by BOAT. The implementations of these two techniques are
made available in BOAT and researchers can easily com-
pare the effectiveness of their techniques against these two
techniques.

4. RELATED WORK
In this section, we first compare and contrast BOAT with

a related experimental platform and a related benchmark.

574

We then briefly describe some existing studies on bug local-
ization.

Table 2: Partial Results of VSM (V.) and BugLoca-
tor (B.) Tested using BOAT.
Project Algo. top1 top5 top10 MRR MAP

couchdb
V. 0.19 0.45 0.61 0.321 0.243
B. 0.24 0.54 0.69 0.377 0.297

Crunch
V. 0.10 0.36 0.51 0.228 0.139
B. 0.15 0.42 0.55 0.280 0.195

flume
V. 0.17 0.44 0.59 0.303 0.238
B. 0.21 0.52 0.67 0.360 0.282

giraph
V. 0.17 0.55 0.73 0.338 0.199
B. 0.24 0.55 0.76 0.375 0.233

libcloud
V. 0.24 0.56 0.68 0.401 0.276
B. 0.36 0.68 0.76 0.483 0.328

thrift
V. 0.09 0.30 0.41 0.195 0.146
B. 0.12 0.39 0.50 0.250 0.203

TraceLab proposed by Keenan et al. [2], is a traceabil-
ity experimental platform where researchers could design
and execute experiments in its visual modeling environmen-
t. The following are several differences between BOAT and
TraceLab:

1. Target Problem and Datasets: TraceLab is a plat-
form for generic traceability recovery focusing on link-
ing requirements to program code. Datasets that come
with TraceLab (e.g., eAnci, EasyClinic, eTour, and S-
MOS) are small-scale datasets containing textual re-
quirements and links between these requirements to
program code. On the other hand, BOAT focuses on
bug localization, and we collect thousands of bug re-
ports from 29 projects and their fixes.

2. Computing Resource Support: To use TraceLab,
researchers need to download and install it in their ma-
chine and use their own computing resources. On the
other hand, BOAT provides computing resources for
researchers and manages the execution of bug local-
ization techniques uploaded by researchers.

3. Intrinsic Support for Comparative Evaluation:
Researchers need to contribute to TraceLab to allow
other techniques to compare with their proposed tech-
niques. On the other hand, BOAT automatically com-
pares and contrasts the various techniques that are u-
ploaded by researchers and presents the top-10 regis-
tered researchers with the best techniques to all regis-
tered researchers.

To fill the need for a large scale feature location bench-
mark, Xing et al. propose the use of a Linux kernel based
benchmark [7]. The following are several differences between
our work and Xing et al.’s work:

1. Experimental Platform versus Benchmark: Dif-
ferent from Xing et al’s work, we not only provide a
benchmark, but also a platform to support researchers
to comparatively and reproducibly evaluate bug local-
ization algorithms.

2. Datasets: The Linux kernel dataset proposed by X-
ing et al. contains links between textual descriptions
of Linux kernel features and code. Our datasets are
bug reports and their fixes. To reduce the threat to
external validity, our dataset does not come from only
one software project, rather from 29 software projects.

There are a number of bug localization techniques. Poshy-
vanyk et al. propose a bug localization technique named

PROMESIR, which uses Latent Semantic Indexing (LSI)
and a probabilistic ranking technique to rank source code
files [5]. Lukins et al. locate defective source code files
by leveraging Latent Dirichlet Allocation (LDA) [3]. Rao
and Kak perform a comparative study of different bug lo-
calization techniques, such as Unigram Model (UM), Vector
Space Model (VSM), LSI, LDA, and Cluster-Based Docu-
ment Model (CBDM). They conclude that UM and VSM
achieve the best performance. Zhou et al. propose BugLo-
cator which ranks source code files based on textual similar-
ity between bug reports and files using revised Vector Space
Model (rVSM), and also based on similar bug reports which
are fixed before [8]. Our experimental framework makes it
easier for researchers to compare bug localization techniques
over a large number of bug reports and thus supports future
research in this area.

5. CONCLUSION AND FUTURE WORK
In this paper, we describe BOAT which is a web-based

experimental platform to enable researchers to compara-
tively and reproducibly evaluate the performance of bug
localization techniques over a large dataset of bug reports.
BOAT currently contains 6,080 bug reports from 29 projects
and the implementations of a popular and a state-of-the-art
bug localization technique. BOAT can be publicly accessed
from: http://www.vlis.zju.edu.cn/blp. In the future, we
plan to add more datasets into BOAT, implement more bug
localization algorithms, integrate more evaluation metrics,
support bug localization at additional levels of granularity
(e.g., method or basic block granularity), and organize a bug
localization competition using BOAT.

Acknowledgements. This research is sponsored in part by
NSFC Program (No.61103032) and National Key Technolo-
gy R&D Program of the Ministry of Science and Technology
of China (2014BAH24F02).

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In ICSE, 2006.

[2] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang,
Y. Shin, E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic,
J. Huffman Hayes, et al. Tracelab: An experimental
workbench for equipping researchers to innovate,
synthesize, and comparatively evaluate traceability
solutions. In ICSE, 2012.

[3] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug
localization using latent dirichlet allocation. Information
and Software Technology, 2010.

[4] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in
source code. In WCRE, 2004.

[5] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval. TSE, 2007.

[6] S. Rao and A. Kak. Retrieval from software libraries for
bug localization: a comparative study of generic and
composite text models. In MSR, 2011.

[7] Z. Xing, Y. Xue, and S. Jarzabek. A large scale
linux-kernel based benchmark for feature location research.
In ICSE, 2013.

[8] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be
fixed? more accurate information retrieval-based bug
localization based on bug reports. In ICSE, 2012.

575

	BOAT: An Experimental Platform for Researchers to Comparatively and Reproducibly Evaluate Bug Localization Techniques
	Citation
	Author

	/var/tmp/StampPDF/CuepkZpufN/tmp.1607332137.pdf.pk0Hb

