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Abstract

We analyze the optimal behavior of a platform providing essential inputs to do-
wnstream firms selling a primary and a second complementary good. Final demand
is affected by consumer foresight, i.e., consumers may not anticipate the ex post sur-
plus from the secondary good when purchasing the primary good. We first set up a
reduced-form platform model and evaluate the effects of consumer foresight on the
platform’s optimal decisions. Then, we specialize the analysis in the context of ai-
rports, which derive revenues from both aeronautical and, increasingly, commercial
activities. An airport sets landing fees and, in addition, it chooses the retail market
structure by selecting the number of retail concessions to be awarded. We find that,
with perfectly myopic consumers, the airport chooses to attract more passengers via
low landing fees, and also sets the minimum possible number of retailers in order to
increase the concessions’ revenues. However, even a very small amount of anticipa-
tion of the consumer surplus from retail activities changes significantly the airport’s
choices: the optimal policy is dependent on the degree of differentiation in the retail
market. When consumers instead have perfect foresight, the airport establishes a very
competitive retail market. This attracts passengers and it is exploited by the airport
by charging higher landing fees, which then constitute the largest share of its profits.
Overall, the airport’s profits are maximal when consumers have perfect foresight.
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1 Introduction

The airport business is increasingly becoming a platform activity. Airports derive revenues

not only from the traditional aeronautical activities, but also from the commercial activi-

ties taking place at the terminals, such as shops, food and beverage and car parks. The

Economist (2014) refers to airport shopping as the ‘sixth continent’ to highlight its impor-

tance. According to industry reports, airports achieve at least 50% of their revenues from

non-aeronautical activities, with retail representing the main source (ACI, 2012; ATRS,

2014). Massive investments have supported this trend, with airports increasing their duty-

free space significantly. In 2008, the project at Beijing Airport T3 was completed with

the design of the star architect Norman Foster and a staggering floor space of 1,000,000

sqm. It was the largest terminal in the world, soon to be surpassed by Dubai International

Airport’s T3, which is twice as large.

To do their shopping at airports, passengers need to buy a flight ticket first. This

decision is influenced by airfares, which, in turn, are affected by the landing fee charged by

airports. A role is also played by the anticipation of the utility that can be derived from

shopping at the airport. Indeed, according to Mintel, about 20% of British and German

leisure travelers anticipate airport shopping. Asian-pacific international travelers are also

committed shoppers (Mintel, 2013). These are different from impulse buyers.

Thus, in general, aeronautical and commercial revenues are interdependent. Landing

fees generate aeronautical revenues but also have a sizeable external effect on the airport

retail activities by affecting the number of passengers making use of the airport facilities. An

increase in the landing fee may have a positive effect on the aeronautical revenues but, at the

same time, a countervailing negative effect on commercial revenues due to the reduction in

the number of passengers. On the other hand, when consumers anticipate airport shopping,

commercial activities can attract flyers and, therefore, increase aeronautical revenues.

We propose a model to study the optimal strategy of an airport platform that can ge-

nerate revenues both from traditional aeronautical activities and from non-aviation (retail)

activities. Should an airport use its market power to set high landing fees, even though

this may shrink the demand for commercial services? Should the airport allow for several

concessions for similar services, or should it instead limit within-airport competition by

awarding few concessions, thus enhancing the revenues that can be extracted from con-

cessionaires? The answer must lie in unraveling the extent to which a better customer

experience at the terminal can enhance the demand for flight services.

Our model introduces three important contributions to the airport literature. First,

we make explicit the one-way complementarity between the demand for air travel and

retail products. While this link is already present in other models, its role has not been
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investigated in depth. In our setting, air services are bought by consumers as a primary

product, while retail services play the role of the secondary product, being demanded

exclusively by those who consume the primary product. Second, we introduce what we call

the degree of consumer foresight, i.e., the extent to which passengers anticipate, at the time

of purchasing their flight, the retail surplus they will obtain at the terminal. Third, our

paper is the first to recognize the endogenous nature of the retail market structure, which

is determined by the airport.1

We derive the demand functions for air travel and retail services, where the demand

for air travel depends on the surplus that the consumer anticipates to obtain from the

consumption of the retail good. Then we perform a two-stage equilibrium analysis. In the

first stage, the airport sets the landing fee and chooses the number of retailers allowed to

operate concessions. In the second stage, retailers and airlines compete. We first look at

this problem in a general set-up in which we leave the modes of downstream competition

unspecified and impose minimal restrictions on consumer preferences; this analysis illus-

trates the general relevance of our approach. We then turn to analyze a specific model to

better illustrate the airport case.

Our main findings can be summarized as follows. In the presence of perfectly myopic

consumers, the airport chooses the minimum possible number of retailers and a landing

charge lower than the standard monopoly charge. The airport exploits the complementarity

between aeronautical and retail activities by attracting more passengers to the terminal by

setting low landing fees. Maximum retail profits are extracted, with no impact on the ex

ante demand for flights.

In the other extreme case with perfectly forward looking consumers, the relative impor-

tance of the two revenue sources is reversed. The airport chooses a very competitive retail

sector, which expands the demand for air travel since consumers anticipate the benefits they

will receive from purchases at the terminal. Thus, the airport can charge higher landing

fees and makes most of its profits from the aeronautical business.

In the case of limited myopia, the result depends on the degree of product differen-

tiation in the retail sector. When there is little differentiation, strong retail competition

makes the retail business less attractive to the airport, so that the airport prefers the most

concentrated retail structure, but it also raises the landing fee (as compared to the case

with perfectly myopic consumers) since some retail consumer surplus is now anticipated by

1Although the airport chooses the landing fee to be charged to airlines, it has a limited capacity
(sometimes no capacity at all) to determine the airline market structure. In Europe, airports have no
power to determine the airline market structure since the use of slots is based on rules such us ‘grandfather
rights’ (i.e., an operator which currently uses a slot can retain the slot each period) or ‘use-it-or-lose-it’
rules (i.e., airlines must operate slots as allocated by the coordinator at least 80% of the time during a
season to retain historical rights to the slots; see Gale and O’Brien, 2013).
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air travelers. When differentiation is large, the airport instead prefers not to derive pro-

fits from aeronautical services (thus setting landing fees to zero) and boosts the expected

consumer surplus by awarding a certain number of concessions to additional retailers.

In equilibrium, we find that the highest aggregate profits are obtained when consumers

have perfect foresight. As illustrated above, the balance of the airport’s aeronautical and

retail profits changes dramatically with the degree of consumer foresight.

Beyond airports: other platform settings. While airports represent the motivation

for our analysis of platform pricing, it is easy to think of other settings to which the model

could be applied, with suitable adaptations. In general terms, we consider an intermediary

supplier that derives revenues from a core good and a second strictly complementary good.

We describe a situation where the core good is more ‘salient’ in the initial purchasing

decision, compared to the side good’s consumption that can be decided after the initial

purchase. In the case of airports, the core good is a flight, while the side good is some retail

activity at the terminal; saliency here corresponds to our notion of consumer foresight.

The platform cannot control directly the price of these two goods, but it can influence

them. It affects the wholesale cost of the primary good and the intensity of competition

for the secondary good. If consumers’ purchase of the core good is inelastic with respect

to the price of the secondary good, the platform has an interest to extract as much profit

as possible ex post from the side good (by making the secondary market as concentrated

as possible), while the wholesale price for the core good should be kept down to attract

customers to the market. If the cross-price elasticity differs from zero, incentives change.

The secondary market should be made more competitive in order to expand demand for the

primary product. Then, the platform pushes up the wholesale price in the primary market.

The cross-price elasticity depends on consumers’ preferences and on their expectations

about future purchases of the secondary good. Our model aims at making these intuitive

and general arguments accurate, and derived from first principles.

The generality of this approach applies to many settings. People go to shopping malls

for a primary activity (e.g., going to a movie theater) but may end up also purchasing a

secondary good (a meal, or some other shopping); hotels charge for rooms, but may also

additionally sell in-room services (telephone calls, laundry, meals) that are not necessarily

anticipated when booking a room; videogame consoles are bought based also on some

predictions that consumers make about games that will be developed for those consoles.

In these examples, the degree of vertical integration and delegation varies (e.g., for

hotels, most secondary goods are directly supplied by the supplier of the primary product)

but the question of market structure is still of general interest. For shopping malls, the

setting for the secondary product is very close to ours: the mall chooses the type of retailers,
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but cannot determine directly their price. Fittingly, game console makers price their core

platform good to encourage adoption while trying to manage the market structure of game

developers around their platform. Generally, platform providers have to decide whether to

make their platform open (which makes entry of side goods easier, leading to competitively-

priced secondary products) or closed (in which case the platform would try to share the rents

that could eventually accrue to the side good providers, e.g., by proposing exclusivity fees).

While each setting would have its distinguishing features, our model is useful generally to

think about these other environments too.

The paper is organized as follows. In Section 2 we relate our paper to the existing lite-

rature. In Section 3 we abstract from the specificities of airports, and study a reduced-form

model of a platform that derives profits from two complementary goods. In Section 4 we

present a more specific airport model and derive the demand functions for air travel and

for retail services. Then in Section 5 we perform the equilibrium analysis, distinguishing

between the cases of perfectly myopic consumers, almost myopic consumers, and forward

looking consumers; also, we examine the airport’s profits and derive managerial implicati-

ons. Finally, Section 6 concludes. Proofs are provided in the Appendix.

2 Literature review

The two-sided platform nature of airports is often cited (Zhang and Zhang, 1997; Starkie,

2001; Wright, 2004; Czerny, 2006; Van Dender, 2007; Gillen and Mantin, 2012; and Ivaldi

et al., 2015), although few formal treatments exist.2 To our knowledge, this is the first

paper to study an airport’s optimal pricing strategy to both sides, including the optimal

retail market structure.

As compared to other platforms, airports have their own peculiarities derived from

the one-way complementarity between the demand for air services (primary good) and

retail services offered at the terminals (secondary good). In our model, at the moment

of purchasing the flight ticket, consumers may not fully anticipate the surplus they will

obtain from the retail good once at the airport. This incomplete anticipation may be

the result of several phenomena. First, consumers may suffer from myopia that makes

them unable to take into account future purchases when buying the primary good. This

is in line with a number of studies studying the issue of limited rationality in solving

consumption problems (Busse et al., 2013). Second, rational consumers purchasing more

than one product may not be fully informed on the terms prevailing in all the markets

2There is instead a different literature on airport congestion pricing that we do not review here for lack
of space. The first papers to study two-sided markets are Caillaud and Jullien (2003), Armstrong (2006),
and Rochet and Tirole (2003).
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(Lal and Matutes, 1994; Gans and King, 2000). For instance, Hagiu and Halaburda (2014)

consider a two-sided platform connecting developers and users (e.g., videogame consoles),

where developers have full information about all prices and users may be either informed

(i.e., holding responsive expectations) or uninformed (i.e., holding passive expectations). In

the latter case, uninformed users rely on external information to form expectations about

the number of developers and do not adjust them in response to changes in platform prices.

A further source of imperfect anticipation of the retail surplus could be due to the fact

that, before arriving at the terminal, consumers are assumed not to know for certain their

preferences for the retail good. This feature of our model is also shared in other contexts.

For instance, in behavioral economics, there are papers where uninformed consumers do

not know their ideal taste ex ante and, thus, they are uncertain as to which product they

will finally buy (Heidhues and Köszegi, 2009; and Karle and Peitz, 2014).

A large body of literature has studied markets with primary and secondary goods (or,

with alternative definitions, markets with aftermarkets, or markets for standard goods and

add-ons). This issue has been tackled by Oi’s (1971) classic study of two-part pricing by

a Disneyland monopolist, where he concludes that the firm can extract completely the

consumer surplus with the fixed admission fee, while setting the price of rides at marginal

cost. Although we obtain a similar result when consumers are sufficiently forward-looking,

this result breaks down as consumers exhibit a certain degree of myopia. Our model departs

from this literature in three ways. First, prices for the secondary good are not set by the

monopolist, but are determined by independent retailers. The only way the airport has to

affect retail prices is via the number of concessions. Second, the surplus consumers derive

from the secondary goods does not depend only on their prices, like in Oi, but also on the

number of varieties (i.e., concessions) and, therefore, on product differentiation. Third, we

study explicitly the role of consumer foresight, which is not part of Oi’s analysis.

Some studies have looked at the problem of primary and secondary products with diffe-

rent consumer types (Ellison, 2005; and Gabaix and Laibson, 2006). Two general findings

should be recalled. First, the distortion on prices is larger the lower is the degree of demand

complementarity, the less able are the consumers to forecast future prices, and the more

different are the consumers’ types. Second, the platform’s profitability is higher the less

able are the consumers to anticipate the net benefits they obtain from the secondary good.

Our problem shows similarities with the vast literature on shopping malls (see Carter,

2009, for a survey). Part of this literature is concerned with the instruments to internalize

the externalities between the different outlets within a shopping mall, and between the

shopping mall and the neighboring activities/properties. The most commonly investigated

instruments are the composition of the commercial outlets (Hagiu, 2009), the nature of

the contracts between the landlord and the commercial outlets (Miceli and Sirmans, 1995;
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Pashiman and Gould, 1998), the allocation of space within the shopping mall (Brueckner,

1993), and its geographical locations (Carter and Vandelland, 2006).

Our paper can also be linked to the literature on platforms studying when technological

hubs should be open (Boudreau, 2010) or when additional content should be given for free

(Hagiu and Spulber, 2013). We share the view that retail activities can be made more or

less competitive, which is equivalent to making the platform more ‘open’ to complementary

products. The difference is that, in our setting, the consumer purchases only one retail

product ex post and, therefore, there is not a demand-expansion channel for the platform

leading to an increased retail activity because customers purchase more products. Instead,

in our model, retail activities can affect ex ante consumer surplus from expected retail

prices.

3 A general platform model with complementary goods

and consumer foresight

The purpose of this section is to analyze the effect of consumer foresight on a platform’s de-

cisions in a general setting with complementary goods. Let us consider the related markets

A (a mnemonic for air travel) and R (a mnemonic for retail), where A is a core good and

R is a side good that can only be consumed once the core good has been purchased. The

platform operates in both markets, in which downstream firms sell to final consumers at

prices pA and pR, with corresponding quantities denoted by QA and QR. We first describe

consumer preferences and demand and then examine the platform’s optimal choices.

The consumer problem. We consider a representative consumer with a quasi-linear

utility over a core and a side good (full details in Appendix B). R’s demand is assumed to

be proportional to the one for A, so that

QR = y (pR)QA, (1)

where y(pR) denotes the proportion and satisfies y′(pR) < 0. The optimal choice of QR can

be embodied in the consumer problem, who then chooses QA to maximize a utility function

g(QA) +QA [δCS(pR)− pA] , (2)

where g(·) is the stand-alone utility from consuming the core good, with g′ > 0 and g′′ < 0,

and CS(pR) denotes the consumer surplus from the side good per unit of the core good,

with CS ′(pR) = −y(pR). The parameter δ ∈ [0, 1] tells how much the consumer takes into
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account the utility derived from the consumption of the side good when purchasing the core

good. If δ = 0, the core good is bought based on the utility the consumer derives strictly

from it. Instead, if δ = 1, the consumer fully anticipates the utility derived from the side

good. Values between 0 and 1 denote intermediate cases.3

The first-order condition with respect to QA yields

g′(QA) + δCS(pR)− pA = 0. (3)

Expressions (1) and (3) implicitly define total demand for the core and the side good.

By totally differentiating them with respect to pA and pR, we obtain

∂QA

∂pA
=

1

g′′ (QA)
< 0 and

∂QA

∂pR
=
δy (pR)

g′′ (QA)
6 0, (4)

which allows us the compute and sign the following elasticities

εA ≡
∂QA

∂pA

pA
QA

=
pA

g′′ (QA)QA

< 0 and εAR ≡
∂QA

∂pR

pR
QA

=
δy (pR) pR
g′′ (QA)QA

6 0. (5)

The platform’s optimal choices. The platform employs different instruments in each

market. While it sells the input at a linear unit price ` in market A, it sets the number

nR of firms in market R and extracts their profits, e.g., by means of a first-price auction

among a large number of identical firms. The marginal cost of the input sold in market A

is denoted by c, while the access cost to market R is normalized to 0.

To study the platform behavior, we set up a two-stage game. First, the platform chooses

` and nR. Second, there is downstream competition in each market. Let pR(nR, `) and

pA(`, nR) be the second-stage equilibrium prices. Consistent with reasonable models of

competition, we posit ∂pR
∂nR

< 0 and ∂pA
∂`

> 0, i.e., more competition pushes prices down

in market R and a higher input cost pushes up the final price in market A. As to the

cross-market effects, their signs depend on the nature of the interaction between markets A

and R. We assume ∂pA
∂nR
> 0 and ∂pR

∂`
6 0, so that downstream firms react by pushing down

their own price when the complementary good is more expensive. However, both effects

vanish when consumers are perfectly myopic. Hence, ∂pA
∂nR

∣∣∣
δ=0

= 0, because the market for

the side good does not affect the demand for the primary good; and ∂pR
∂`

∣∣
δ=0

= 0, because

R is a replica market with a proportional demand and y (pR) is not affected by changes in

3Notice that we are silent as to whether (2) represents the actual utility or the perceived utility of
a consumer, as a function of δ. This distinction does not matter for the positive analysis we develop in
this paper, but it would once one tackles welfare and regulatory questions. Developing a non-paternalistic
method of welfare analysis in behavioral models is an open challenge (see Chetty, 2015).
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quantities of the core good.4 At this point, it is useful to define

σA` ≡
∂pA
∂`

`

pA
> 0; σR` ≡

∂pR
∂`

`

pR
6 0; σAn ≡

∂pA
∂nR

nR
pA
> 0; σRn ≡

∂pR
∂nR

nR
pR

< 0. (6)

The first two expressions are pass-through coefficients expressed in elasticity form, which

illustrate the sensitivity of the price in the final market to a change in the input cost in the

core good market. A similar interpretation can be given to the last two expressions where,

however, the varying parameter is the number of downstream firms.

In the first stage, the platform anticipates the equilibrium in the downstream markets

and chooses nR and ` to maximize its profits Π. Using (1), this problem becomes

max
`,nR

Π = [`− c+ pRy (pR)]QA (7)

s.t. pR = pR (`, nR) and pA = pA (`, nR) ,

and the first-order conditions yield

∂Π

∂`
=

(
∂QA

∂pA

∂pA
∂`

+
∂QA

∂pR

∂pR
∂`

)
[`− c+ pRy (pR)] +QA

[
1 +

∂pR
∂`

[y (pR) + pRy
′ (pR)]

]
,

(8)

∂Π

∂nR
=

(
∂QA

∂pA

∂pA
∂nR

+
∂QA

∂pR

∂pR
∂nR

)
[`− c+ pRy (pR)] +QA

∂pR
∂nR

[y (pR) + pRy
′ (pR)] . (9)

Next, we analyze and compare these two conditions first in the case of fully myopic consu-

mers and then when consumers are foresighted.

Fully-myopic consumers (δ = 0). In this case, the cross-price effect ∂QA

∂pR
is equal to zero;

also, ∂pA
∂nR

= ∂pR
∂`

= 0, as the decisions of the platform in one market have no effect on the

other. Using (5) and (6), the above first-order conditions simplify to

`− [c− pRy(pR)]

`
= − 1

εA σA`
, (10)

∂pR
∂nR

[y (pR) + pRy
′(pR)] < 0, (11)

and give rise to the following observation.

Claim 1. When consumers are fully myopic, the platform sets ` below the standard mono-

poly price and nR as low as possible.

4In the Online Appendix, we analyze the case of heterogeneous consumers with correlated preferences,
so that ∂pR

∂` Q 0 can be observed for any value of δ. We thank the Co-Editor and a referee for suggesting
this extension to our analysis.
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Expression (10) shows that the platform sets an almost standard monopoly price in

market A, choosing a mark-up inversely related to the superelasticity εA σA`, which illus-

trates the effect on QA of a change in ` through pA. The feature that distinguishes this

expression from a standard mark-up is the term pRy (pR) in the left-hand side, which pus-

hes down the marginal cost in recognition of the higher profits a lower ` induces in market

R because of the proportional expansion of demand. Hence, the platform sets a price `

below the standard monopoly price in the primary market and, possibly, below cost. In the

secondary market, (11) implies that the monopolist sets nR as low as possible (achieving

the most concentrated market structure), since y (pR)+pRy
′ (pR) > 0 captures the marginal

revenue in the secondary market with respect to pR.5

Foresighted consumers (δ > 0). In this case, using (5) and (6), (8) becomes

`− [c− pRy(pR)]

`
= − 1

εA σA` + εAR σR`

[
1 +

∂pR
∂`

[y (pR) + pRy
′(pR)]

]
︸ ︷︷ ︸

>0 for a sufficiently large demand expansion effect

, (12)

where the novelties with respect to (10) are i) the superelasticity of demand for QA with

respect to `, which now incorporates the effect on QA of change in ` also through pR

(εAR σR`), and ii) the expression
[
1 + ∂pR

∂`
[y (pR) + pRy

′(pR)]
]
, which illustrates the effect

on the revenues from the side good when ` changes. Since ∂pR
∂`

< 0 and εA σA` ≶ εAR σR`, the

entire right-hand side can be of either sign. An increase in ` reduces pR and the revenues

from the side market, but also triggers an increase in the surplus that can be expected

in market R, thus pushing up demand (and price) in market A (as given by εAR). This

demand expansion effect becomes more significant the larger are ∂pR
∂`

and εAR (in absolute

terms), where the latter increases with the degree of consumer foresight (see (5)). From

these findings, we derive the next observation.

Claim 2. The larger is the degree of consumer foresight, the larger is the demand expansion

effect that makes the platform choose ` above its adjusted marginal cost.

Substituting (12) into (9) and using (5) and (6), the first-order condition in (9) becomes

∂pR
∂nR

[y (pR) + pRy
′(pR)]︸ ︷︷ ︸

<0

− `

nR

εA σAn + εAR σRn
εA σA` + εAR σR`

[
1 +

∂pR
∂`

[y (pR) + pRy
′(pR)]

]
︸ ︷︷ ︸

>0 for a sufficiently large demand expansion effect

6 0, (13)

where the novelty with respect to (11) is found in the second term. This term includes

a ratio between superelasticities that captures the effect on QA of a change in nR in the

numerator and that of a change in ` in the denominator. As in (12), when ∂pR
∂`

and εAR are

5Similar results are found in Nocke et al. (2007) and Hagiu (2009).
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large (in absolute terms), a change in ` has a significant positive impact on A’s demand, i.e.,

the demand expansion effect is large. When this effect is sufficiently large, the whole second

term becomes positive, inducing the platform to set nR above its minimum value. Since

the demand expansion effect increases with δ, the following observation can be formulated.

Claim 3. The larger is the degree of consumer foresight, the larger is the demand expansion

effect that makes the platform choose a more fragmented market structure for the side good.

In conclusion, when consumers are myopic, the platform chooses a concentrated side

good market structure and an input price ` lower than the standard monopoly price. Ho-

wever, a sufficiently large degree of consumer foresight triggers a demand expansion effect

that makes the platform choose optimally a higher input price ` along with a more frag-

mented side-good market structure (i.e., a larger nR).

Having identified the key mechanisms, which are independent of modeling assumptions,

the section that follows puts more structure on the model. We propose an airport-specific

model, where A and R denote the aeronautical and retail businesses. The advantage is that

some clear analytical solutions can be derived directly from first principles.

4 A specific platform model of an airport

An airport provides both aeronautical and retail services. Aeronautical services are sold to

nA airlines competing à la Cournot; airlines pay a per-passenger landing fee ` to the airport

for the use of the infrastructure. The airport also chooses the number of concessions nR to be

awarded to retailers that trade in the airport commercial area. Retailers are symmetrically

located along a Salop circle of unit length and compete by setting prices.

Passengers derive their utility from the consumption of flights and retail goods. Their

decisions are made in a two-step process: first, they purchase their flight tickets; second,

they make their retail purchases once at the airport. Hence, only passengers who fly may

also buy the retail goods (but not vice versa).

We consider a two-stage game model with the following timing. In the first stage, the

airport sets a landing charge and selects the number of retailers. In the second stage,

airlines compete by choosing simultaneously and non-cooperatively their quantities, and

retailers simultaneously and non-cooperatively set their prices. Once these decisions are

made, passengers make their flight and retail purchases, and payoffs are collected. We

analyze a game of full information and use subgame perfection as the equilibrium concept.

Air travel demand. Each passenger is characterized by a parameter, z, which illustrates

the utility she derives from consuming the (homogeneous) air service. The utility of a

10



potential passenger is U(pA,pR; z, δ) = z + δCS (pR) − pA, where pA is the airfare and

pR = (p1, p2, ..., pnR
) is the vector of prices set by the nR retailers; z is the benefit a

passenger receives when traveling, uniformly distributed over the support [−a, 1], with unit

density.6 Note that CS (pR) is the expected retail surplus that the consumer anticipates to

derive from the consumption of the retail good (to be discussed later).7 As in the general

model in Section 3, δ ∈ [0, 1] tells how much the consumer takes into account the utility

derived from the consumption of the retail good when making her flight purchase decision.

Each consumer purchases at most one flight ticket, as long as her net utility is non-

negative, i.e., U (·) > 0. Let z̃ be the flight utility parameter of the consumer that is just

indifferent between flying and not flying. Then, the aggregate demand for flights (i.e., the

number of passengers traveling from the airport) is

QA(pA,pR; δ) = 1− z̃(pA,pR; δ) = 1− pA + δCS (pR) , (14)

whenever this is positive.8

Retail market demand. The nR retailers sell an homogeneous good and are symmetrically

distributed on a Salop circle of length 1, with nR > 2.9 Since access to the retail market is

only available to passengers, the mass of potential consumers is QA(pA,pR). Each consumer

has a unit demand and a taste parameter x for the retail good, which is uniformly distributed

over the support [0, 1] and is taken to be her position along the circle.10

For a consumer located at x, retail utility when buying from the nearby retail firm

located in xi is u = v − pi − t|x− xi|. We assume that v is always sufficiently high so that

6The lower bound of the support, a, is assumed to be large enough so that the passengers’ market is
never fully covered and airlines demand is elastic.

7It is possible to imagine a different nature of the consumer’s expectations with respect to the retail
surplus. For instance, following Hagiu and Halaburda (2014), consumers could have passive expectations
about retail prices that are fulfilled in equilibrium. In this alternative set-up, most of our results would
carry over. Details are available from the authors upon request.

8Alternatively, we could have considered an heterogeneous population with a fraction η of perfectly
foresighted consumers and a fraction (1− η) of perfectly myopic consumers. The cut-off utility parameter
z̃(·) would become pA−CS (pR) for foresighted consumers and pA for myopic ones. The aggregate demand
for flights would become QA(pA,pR; δ) = η [1− pA + CS (pR)] + (1− η) (1− pA) = 1 − pA + ηCS (pR),
identical to (14), where η can be reinterpreted as the average degree of foresight. Therefore, as long as
both types of consumers are served, this approach would be equivalent to our representative consumer
specification. The advantage of our approach is to avoid having to look at the uninteresting extreme cases
whereby only one type of consumer is targeted.

9We could allow for a monopolist retailer, but the monopoly price would be analytically different from
the one in case of 2 or more firms. Having nR > 2 avoids this case distinction, not central for our analysis.

10We consider a retail market in which all retailers offer goods which are substitute to one other. In
reality, one may find many non-substitutable products at any airport terminals, like food and clothing. A
simple way to include this feature in our model would be to imagine several Salop circles, each one for
retailers selling goods which are substitute to one other but not to goods offered by other retailers located
on a different circle. In this case, we could easily endogenise the number of non-competing varieties (i.e.,
the number of circles). This extension would magnify the effect of the retail activities in our model.
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the market is fully served. As it will become clear at a later stage, this implies

v >
5

8
t. (15)

Retailers’ demand and profits are derived in the standard way.11 Focus on retailer i,

assumed w.l.o.g. to be located at 0, and consider that all rivals are symmetrically located.

The marginal consumer between firm i and one of its nearest rivals, say firm j, is x̃ij =
1

2nR
+

pj−pi
2t

. Assuming symmetry in the prices set by all the rival firms to firm i, the demand

for i becomes Xi(pi, pj;pR) = 2x̃ij (pi, pj)QA(pA,pR). After normalizing retailers’ costs to

0, retailer i’s profits are

πi = piXi(pi, pj;pR) = pi

(
1

nR
+
pj − pi
t

)
[1− pA + δCS (pR)] . (16)

The above expression makes it clear that retail profits depend on the number of passengers

which, in turn, depends on their retail surplus expectation.

When deciding whether or not to buy the flight ticket, consumers are not yet aware

of their taste parameter (the location x on the unit circle). In other words, a passenger

does not know in advance whether she will want, say, to spend time in a restaurant for a

meal or simply go to a bar for a coffee, as this depends on contingencies that cannot be

foreseen when booking the flight. Only on the day of the flight, this will be revealed. Still,

a passenger may anticipate she will want either a coffee or a meal on the day she flies.

Therefore, passengers are able to form an expectation of the surplus they will be able to

enjoy. Passengers’ priors consider that each location along the Salop circle is equally likely.

Hence, the value of the expected surplus when one retailer charges pi and all other retailers

charge symmetrically pj (let pj denote the vector of these prices) is

CS
(
pi,pj

)
= v − pj −

t

4nR
+
pj − pi
nR

+
(pj − pi)2

2t
. (17)

This is the value that passengers may anticipate, according to their degree of foresight, δ,

when booking a ticket.

5 Equilibrium analysis

In this Section, we first analyze the second-stage equilibrium in which retailers and airlines

choose their prices and quantities, respectively. Then, we consider the first-stage equilibrium

11Condition (15) is needed to ensure that an equilibrium in pure strategies with a fully covered market
exists. Our results are also robust to the introduction of random outside options that make consumption
of retail products at the airport optional. Details are available from the authors upon request.
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in which the airport chooses landing charges and the number of retail concessions.

5.1 Second-stage equilibrium

In this Subsection, we solve for the second-stage equilibrium, when retailers and airlines

simultaneously choose their prices and quantities, respectively.

Retail market. Each retailer chooses its price to maximize its profits given in (16), where

CS (·) is as in (17). Formally,

max
pi

πi
(
pi,pj

)
= pi

(
1

nR
+
pj − pi
t

)
×

[
1− pA + δ

(
v − pj −

t

4nR
+
pj − pi
nR

+
(pj − pi)2

2t

)]
. (18)

Then the following Proposition can be formulated.

Proposition 1. The optimal retail price is given by

pR(pA) =
tδ (4 + 3nR) + 4γn2

R −
√

16tδn2
R (tδ − γnR) + [tδ(4 + 3nR) + 4γn2

R]
2

8δn2
R

, (19)

where γ ≡ 1 − pA + vδ. When δ > 0, this optimal retail price is always below the Salop

equilibrium price, i.e., pR(pA)|δ>0 < pR(pA)|δ=0 = t
nR

.

This Proposition characterizes the optimal retail price as a function of the airfare, pA.

In case of perfectly myopic consumers (δ = 0), (19) reduces to pR = t/nR, the standard

Salop symmetric equilibrium price. In this limiting case, there is no interaction between the

airline and the retail markets: retail competition does not affect the demand for air travel,

since passengers do not anticipate any surplus from retail activities. By contrast, when

consumers are forward looking (δ > 0), they set a lower price as compared to the myopic

price to increase the number of travelers, which in turn affects positively their profits.

The results in the Proposition put us now in the position to justify our parametric

restriction (15). Since pR 6 t/nR and nR > 2, the restriction ensures that consumers

always enjoy a strictly positive surplus in the retail market (i.e., CS (pR) > 0 from (17)).

Airline market. Airlines compete by choosing simultaneously and non-cooperatively their

quantities, denoted as qk for the generic k-th airline.12 In line with the literature, ae-

12Cournot behavior is often taken in the literature as a proxy for airline competition with limited
capacity; see, for instance, Zhang and Zhang (2006) and Brueckner and Proost (2010).
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ronautical services are sold to airlines at a uniform per-passenger landing fee `.13 All

other costs are normalized to 0 without further loss of generality. Airline k’s profits are

πk = [pA(qk, Q−k)− `] qk, where Q−k denotes the sum of quantities offered by the other

nA − 1 firms. Inverting (14), we can write the maximization problem for airline k as

max
qk

πk = [1 + δCS (pR)− qk −Q−k − `] qk (20)

where we suppress the vector notation in CS(·) due to the symmetry of equilibrium retail

prices. Differentiating with respect to qk and exploiting symmetry at equilibrium, we obtain

the equilibrium airline quantity

qA(pR) =
1− `+ δCS (pR)

nA + 1
. (21)

This is a standard Cournot equilibrium quantity for a linear demand with nA firms and

marginal cost equal to `, plus a term δCS (pR) that acts as a demand shifter and depends

on the extent to which retail surplus is internalized by passengers when booking tickets.

Finally, the inverse demand function for flights is given by pA = 1−nAqA (pR)+δCS (pR),

where CS (pR) = v − pR − t
4nR

(which comes from (17) after applying symmetry). Using

(21), we finally obtain the optimal airfare

pA(pR) =
nA`+ 1

nA + 1
+ δ

v − pR − t
4nR

nA + 1
. (22)

As before, the first term is the standard equilibrium price in a Cournot model. The second

term is the retail consumer surplus, weighted by the foresight parameter δ. The higher are

the expected surplus and the consumer’ foresight, the greater is the outward shift of the

demand curve and, therefore, the equilibrium price.

Properties of second-stage equilibrium. Using (19) and (22), it is possible to solve for the

second-stage equilibrium airfare and retail price. As the resulting expressions are rather

cumbersome and not needed for the analysis that follows, we do not present them here.14

Some useful comparative statics results are shown instead in the following Proposition.

Proposition 2. In the second-stage, the equilibrium retail price varies as follows with

13Landing fees depend in the real world on many factors, the most important being aircraft weight and
capacity. A linear per-passenger landing fee is usually assumed in the literature to capture the idea of
heavier and larger aircraft being charged higher landing fees (see, e.g. Zhang and Zhang, 2006; Czerny,
2006 and 2013; and Haskel et al., 2013).

14The explicit expressions can be found in the proof of Proposition 5.
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respect to the landing charge and the number of retailers:

∂pR
∂nR

∣∣∣∣
δ=0

< 0;
∂pR
∂nR

∣∣∣∣
δ>0

≶ 0;
∂pR
∂`

∣∣∣∣
δ=0

= 0;
∂pR
∂`

∣∣∣∣
δ>0

< 0.

When passenger are myopic, the retail price is t/nR (as in the standard Salop mo-

del) and decreases with the number of competing retailers. This feature typically carries

over also to the case of forward looking consumers, despite a countervailing force due to

the market expansion effect when consumers anticipate retail surplus. It is only under

particular circumstances that this intuitive result may be reversed. A necessary, but not

sufficient, condition to obtain the counterintuitive result that the retail price increases with

the number of retailers, is that δ is very large, and nA and v are very small.

As for the landing fee, the retail price decreases with the landing fee for any δ > 0. An

increase in ` causes directly an increase in the airfare and passengers reduce their demand

both for services; then retailers try to counteract this effect by decreasing their prices.

5.2 First-stage equilibrium

In the first stage, the airport sets the landing fee and chooses the number of retailers allowed

to operate in its terminals. Concessions are assumed to be awarded competitively, e.g., by

means of a first-price auction, to many identical firms bidding non-cooperatively, so that

the airport is able to fully extract retail profits.15 Then, the airport’s profits are

Π(`, nR) = nAqA(`+ pR), (23)

where we assume no airport costs, so that landing fees can be interpreted as unit margins

over positive and constant marginal cost, and pR and qA are given by (19) and (21). The

first-order conditions are

∂Π

∂`
= qA

(
1 +

∂pR
∂`

)
+

(
∂qA
∂`

+
∂qA
∂pR

∂pR
∂`

)
(`+ pR) , (24)

∂Π

∂nR
= qA

∂pR
∂nR

+

(
∂qA
∂nR

+
∂qA
∂pR

∂pR
∂nR

)
(`+ pR) , (25)

where qA =
1+δ

(
v−pR− t

4nR

)
−`

nA+1
,∂qA
∂`

= − 1
nA+1

, ∂qA
∂pR

= − δ
nA+1

, and ∂qA
∂nR

= δt
4(nA+1)n2

R
, while ∂pR

∂`

and ∂pR
∂nR

are as characterized in Proposition 2. The solution to this maximization problem is

complex in general, as the Hessian matrix of the profit function is not negative semi-definite

15This hypothesis implies and takes to the extreme a profit-sharing contract between the airport and
the concessionaires, in which the sharing rule leaves the retailer’s incentives unaffected. A different sharing
rule would scale down the airport’s retail profits, with no qualitative effect on our results.
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everywhere. Still, we can go a considerable way by looking first at analytical solutions in

some important limiting cases.

Perfectly myopic consumers (δ = 0). In this case, there is no interaction between airport

and commercial services, and the cross effects ∂qA/∂pR, ∂qA/∂nR, and ∂pR/∂` all simplify

to zero. The first-order conditions (24) and (25) reduce to

∂Π

∂`
= 1− 2`− t

nR
= 0, (26)

∂Π

∂nR
= − nAt (1− `)

(nA + 1)n2
R

6 0. (27)

From (14), it is immediate to see that ` cannot exceed 1, given that pA > `. Hence, (27)

is non-positive and the airport chooses to award a number of concessions resulting in the

maximum admissible concentration, which is nR = 2. An interior solution for ` is instead

possible, depending on the value of t. This is formalized in the following Proposition.

Proposition 3. Let `∗|δ=0 and n∗R|δ=0 be the equilibrium landing fee and number of retailers

respectively, when consumers are perfectly myopic. Then

i) `∗|δ=0 =

{
1− t

2

2
if t < 2,

0 if t > 2,

ii) n∗R|δ=0 = 2.

The airport chooses the lowest possible number of retailers and a landing charge strictly

lower than 1/2, the standard monopoly level in a model with linear demand and unit

intercept. This result is easy to interpret. First, with perfectly myopic passengers, retail

profits are maximized with fewer retailers, and this does not backfire as passengers do not

foresee the resulting higher retail price when booking their flights. Second, the airport

can exploit the complementarity between aeronautical and retail activities by reducing `,

thereby attracting more passengers that will purchase a certain amount of retail goods at the

terminals. If t is sufficiently high (that is, the only two retailers are highly differentiated),

the landing fee can even be set at 0: the airport prefers in this case to make no profits from

airlines and extract as much as possible from the retail side.16

Almost myopic consumers (δ → 0). We now investigate the effect on `∗ and n∗R of an

infinitesimal increase from 0 of δ. Our results are summarized in the following Proposition.

16Our interpretation of landing fees as unit margins over marginal cost, together with a non-negativity
constraint on landing fees, prevents us from looking at the conditions under which the airport finds it
optimal to set ` below cost. This, however, does not alter significantly our results. Indeed, with myopic
consumers and a positive marginal cost equal to c for the airport, the equilibrium number of retailers is

always equal to 2, while the landing fee is zero when t > 2(1 + c) and equal to
1+c− t

2

2 otherwise, being
below cost if t > 2(1− c).
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Proposition 4. Let `∗|δ→0 and n∗R|δ→0 be the equilibrium landing fee and number of retailers

when δ is positive but infinitesimally small. Let also t1 ≡ 8(1+δv)
4+5δ

and t2 ≡ 4nA(1+δv)
δ(3+8nA)

. Then

i) `∗|δ→0
∼=


1− t

nR

2
+ δ

2

(
v − 5t

4nR

)
if t 6 t1,

0 if t > t1,

ii) n∗R|δ→0
∼=

 2 if t < t2,
5δtnA+

√
δtnA[25δtnA+48(nA+1)(1+δv)]

4nA(1+δv)
if t > t2.

These optimal choices are approximated values since they are obtained using the first-

order Taylor’s expansions around δ = 0 of (24) and (25). In the limiting case δ = 0, these

optimal choices become `∗|δ=0 and n∗R|δ=0; this can be seen by substituting δ = 0 into `∗|δ→0

and n∗R|δ→0 and noting that, when δ = 0, the threshold t1 equals 2 while t2 goes to infinity.

Proposition 4 illustrates that a very small degree of foresight can have a significant

impact on the airport’s choices. When t is sufficiently small, there is little differentiation

and possibly too strong competition among retailers, hence the airport chooses the most

concentrated retail market structure. However, as the retail surplus is partly anticipated by

passengers, there is an upward demand shift for flights that induces the airport to increase

its landing fee above the myopic landing fee (`∗|δ=0). Hence, `∗|δ→0 is strictly greater than

`∗|δ=0 and this fee can also be above the standard monopoly level. When instead t is high

enough, the airport sets the landing fee to 0, as in Proposition 3, and derives no aeronautical

profits. But, in order to attract more passengers, it boosts their expected retail surplus by

awarding concessions to additional retailers, so that n∗R > 2. While this has a depressing

effect on retail profits, the demand expansion effect of having additional passengers prevails.

Although we take the airline market structure as given, since it is not the main focus

of our attention, we observe from Proposition 4 that nA does not have an impact on the

landing fee with almost myopic consumers. Instead, the higher is nA, the lower is nR (as

long as t > t2): consumer surplus is already boosted by intense competition among airlines

and thus, ceteris paribus, there is a reduced incentive to award additional concessions.

Forward looking consumers (δ � 0). We can find full closed-form solutions when the

foresight parameter δ is large enough. When instead δ is not so large, we can obtain

analytical solutions only in implicit forms, and we resort to plots to illustrate that the

solutions’ features highlighted for very low and very large values of δ actually carry over

also for intermediate values of δ. We start by stating the following Proposition.

Proposition 5. Let `∗|δ> 4
5

and n∗R|δ> 4
5

be the equilibrium landing fee and number of retailers

respectively, when consumers are forward looking with δ > 4/5. Then

i) `∗|δ> 4
5

= 1
2

(1 + δv),

ii) n∗R|δ> 4
5
→∞.
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Panel A Panel B

Figure 1: Optimal number of retailers (panel A) and landing fee (panel B) for t = 1, t = 3,
t = 10, and t = 15 (when v = 10 and nA = 5).

The airport’s optimal solution now changes completely. When δ is very large, the airport

has an incentive to make the retail market as fragmented as possible, obtaining no rents, in

order to increase the retail surplus.17 Retail surplus goes up not only because retail prices

decrease down to marginal costs, but also because consumers find more product varieties,

thus reducing transportation costs. This expected retail surplus pushes up considerably the

demand for flights, and the airport can increase its profits by raising the landing fee.

To illustrate the optimal airport choices also for values of δ between 0 and 4/5, for

given combinations of the exogenous parameters nA and v, we plot the optimal values of

` and nR as a function of δ and t. These results are illustrated in Figure 1, together with

those already presented in the Propositions of this Section.18 Panel A of Figure 1 plots

the optimal number of retailers as a function of δ, for different values of t. We observe

that n∗R is always equal to 2 (i.e., its minimum value) when δ is sufficiently low, it then

becomes an increasing function of δ for intermediate values of δ, and it goes to infinity for

δ > 4/5, irrespective of t. For values of δ below 4/5, the optimal number of retailers is

always (weakly) monotonically increasing in t: this implies that the airport is prepared to

allow for less concentrated retailers as long as they do not compete too intensely.

The optimal landing fee is illustrated in Panel B of Figure 1, again as a function of δ,

and for different values of t. When δ > 4/5, the optimal landing fee, fully characterized

in Proposition 5, is shown in the Figure to be identical for all values of t and increasing

in δ. Below this threshold level of δ, the optimal landing fee depends on t. In particular,

17The limiting result n∗R →∞ comes from the assumption that there are no fixed (e.g., set up) costs for
retail activities. If we allowed for some fixed costs, clearly n∗R would converge to some finite value.

18The plot analysis is primarily meant to illustrate the smoothness and monotonicity of our results for
the range of δ for which we cannot derive explicit solutions.
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when t is sufficiently low, `∗ is always strictly positive and strictly increasing with δ because

retail competition is very strong even if the airport awards the minimum possible number

of concessions. Thus, the airport cannot extract high rents from the retail side and relies

mostly on aeronautical services via sufficiently high landing fees. Instead, for higher values

of t, the relative importance of the two sources of revenues is reversed and we can even

observe `∗ = 0 when δ is intermediate (and then it becomes increasing in δ). Retail

competition is now not very intense and high rents can be extracted from the retail sector.

The airport can therefore afford making little (even 0) money from the aeronautical sector

and concentrate on the optimal retail structure, which can include more than 2 retailers

when this boosts the ex ante demand for air travel. For the entire range of δ, the optimal

landing fee is (weakly) monotonically decreasing in t. We note again that the landing fee

can, in many instances, be set above 1/2 (the standard monopoly level), in particular when

δ is large or when t is small.19

5.3 Airport’s profits and managerial implications

We discuss how the airport’s profits vary with consumer foresight, which yields some clear

managerial implications. We not only look at the relationship between δ and the airport’s

aggregate profits, but also distinguish between the effect of δ on the relative profits from

retail and aeronautical activities.

Proposition 6. Let π∗, π∗R, and π∗A be the airport’s equilibrium profits from all, retail, and

aeronautical activities, respectively, with π∗ = π∗R + π∗A. Let also v1 ≡ t(9tnA+10nA+4t)
8nA(t+2)

and

v2 ≡ t(7nA+2)
8nA

. Then

i) Aggregate profits: π∗ is highest when δ = 1. Also, ∂π∗

∂δ

∣∣
δ=0

> 0 if and only if v > v1 when

t < 2 and v > v2 when t > 2;

ii) Retail profits: π∗R|δ=0 > 0 and π∗R|δ≥ 4
5

= 0. Also,
∂π∗R
∂δ

∣∣
δ=0

> 0 if and only if v > v2;

iii) Aeronautical profits: π∗A|δ=0 > 0 if and only if t < 2. Also,
∂π∗A
∂δ

∣∣
δ=0
> 0 for any v.

The Proposition shows that the airport’s total profits (almost) always increase with

the degree of consumer foresight, as illustrated by the solid lines in Figure 2 (drawn using

the same parameter values as in Figure 1).20 Consumer foresight has two direct effects

on the airport’s profits. First, it increases the retail profits, which are fully extracted by

19Our results can be reinterpreted along the lines of the literature on two-part tariffs and, in particular,
with reference to Oi’s (1971) classic study of a Disneyland monopolist. We obtain a result similar to Oi’s in
which secondary goods are priced at marginal cost, only when passengers are sufficiently forward-looking.
In this case, the number of retailers goes to infinity, the retail prices approach their marginal cost (0 in our
model), and transportation costs go to 0, so that ex post consumer surplus is maximized. However, this
result breaks down completely as consumers exhibit a certain degree of myopia.

20A similar result is found in Hagiu and Halaburda (2014).

19



the airport. This is because it gives the retailers an instrument to increase the number

of passengers/customers. Indeed, when consumers anticipate the benefit from the retail

market when buying the flight tickets, the optimal retail price is lower than in the case of

myopic consumers. This lower price increases the number of travelers (and thus the num-

ber of retail customers), which generates larger retail profits. Second, consumer foresight

increases the demand in the airline market, which yields larger airlines’ profits that are

(partly) appropriated by the airport by means of the landing fee. When consumers are

foresighted, their willingness to pay for flights increases. Hence, demand shifts outwards

and the equilibrium price (and airlines’ profit) increases. This allows the airport to use

the landing fee to extract airlines profits, which are now larger than in the case of myopic

consumers. Thus, foresight gives the airport not only a richer set of instruments to pursue

its profit-maximizing objectives, but also a larger amount of total profits (as generated in

the airline and retail markets) to appropriate.

The effects described above and the optimal combinations of landing fee and number of

retailers chosen by the airport change the relative profitability of the different components

of its business. These results are also illustrated in Figure 2, where retail and aeronautical

profits are illustrated by a dashed and a dotted line, respectively.

Looking at the evolution of aeronautical profits, at δ = 0, the airport only makes money

from the aeronautical business when landing fee is set above cost only when t < 2, as

formalized in Proposition 3 (Panel A). Elsewhere, the landing fee is set equal to cost and

the airport makes no money from the aeronautical business (Panels B-C-D). For higher

values of δ, aeronautical profits are zero when consumers are sufficiently myopic and t

is large enough, while, in all other cases, they are positive and increase with δ. Retail

profits are positive when consumers are perfectly myopic since the airport chooses the

most concentrated retail market, whereas they are equal to zero when δ is sufficiently high

since the airport prefers the most dispersed retail market (Panels A-B-C-D). The highest

aggregate profits are attained when δ is equal 1, i.e., when consumers have perfect foresight

(Panels A-B-C-D). Although, it can be observed that they typically increase with δ, this

is not a general result. For δ around 0, profits may locally decrease as δ goes up when t

is sufficiently large relatively to the other model’s parameters (or, equivalently, when v is

sufficiently small), as illustrated in Panel D.21

Notice finally that the shares of profits derived from retail and aeronautical activities

change with δ and also with t. More precisely, t plays a role in determining the relevance

of the two sources of profits only when δ is small or moderate. To see this, start with

21This result depends on the nature of the retail market. When t is small (or, equivalently, when v is
large), a small increase in δ from 0 has a positive effect on retail profits (see Panels A-B-C). Instead, when
t is large, a local increase in δ from 0 reduces the airport retail profits (see Panel D).
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Panel A: t = 1 Panel B: t = 3

Panel C: t = 10 Panel D: t = 15

Figure 2: Equilibrium profits (when v = 10 and nA = 5).

small or moderate values of δ. In Panel A, for instance, there is little differentiation among

retailers: the retail sector is concentrated, aeronautical profits are always positive for any

δ (the landing fee is always positive) and generally represent the biggest share of total

profits. Moving to Panels B-C-D, as retail differentiation increases, the airport awards more

concessions and we observe an increased importance of retail profits relative to aeronautical

profits for intermediate values of δ. Finally, as illustrated in Proposition 5, when δ > 4/5

the retail sector is always maximally fragmented, no profits are made from retail activities

and t is therefore irrelevant for the level of total profits.

Our results have some interesting implications for managers of an airport platform. In

particular, they inform managers on how to think about revenues from a primary good

(aeronautical services) and a second complementary good (retail services), when this se-

condary good may be more or less salient in the consumers’ initial choice, according to
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their degree of foresight. Given the optimal policies described in Section 5.2 and the evo-

lution of profits shown above in this section, a larger degree of consumer foresight has, in

most cases, a positive effect on aeronautical profits and a negative effect on retail profits.

When consumers are sufficiently myopic, the airport optimally charges a low landing fee to

attract consumers to the airport and derives most of its profits from the retail activities by

choosing a concentrated retail market. As δ becomes larger, the retail market becomes a

better instrument to induce consumers to purchase a flight ticket: the number of concessi-

ons awarded increases and consumers appropriate a larger share of the surplus created in

the retail activities. This leads to an increase in passengers, which benefits the airport as it

can charge higher landing fees and derive most, if not all, of its profits from the aeronautical

side alone.

A limit of our analysis is that the degree of consumer foresight is assumed to be exoge-

nous. We note, however, that it could be affected by the airport, for instance with appro-

priate informative campaigns, as it is often observed now in several airports.22 Actually, the

fact that airports do advertise their retail facilities is already an indication that, in practice,

δ cannot be zero, as otherwise there would be no reason to inform (or manipulate informa-

tion) about something that does not affect traveling demand in case consumers were fully

myopic.23 Hence our results on the relationship between the airport profits and the degree

of consumer foresight could not only inform managers on the most appropriate airport’s

choices on landing fees and retail market structure, but also determine their incentives to

engage in advertising campaigns on the retail activities available at the airport.

As profits may locally decrease as δ goes up (for δ around 0), small informative cam-

paigns may be counterproductive when the consumer foresight is very low and the retail

market is able to generate little profits because of the low consumers’ willingness to spend.

Yet, more ambitious (and costly) informative campaigns may actually be very profitable.

Of course, since we do not model the cost side of advertising campaigns and how they

relate to consumer foresight, we do not seek to characterize the optimal level of informative

advertising.24 We do however stress that it might be in the airport’s interest to increase

the degree of awareness of travelers about their retail experience while at the airport.

22In other non-airport settings, we often observe the symmetric problem of firms having to strategically
determine the extent to which they should shroud the product/add-on attributes or prices: see, e.g., Gabaix
and Laibson (2006) and Wenzel (2014).

23For instance, on the website of Dubai airport, you may read: “Dubai is a shopper’s paradise. And so
is our airport. From local delicacies to luxury brands, travel essentials to tempting indulgences, we offer
something for everyone” (www.dubaiairports.ae). Also, think of the iconic shopping slogan “See Buy Fly”
created by Amsterdam Schipol Airport, one of Europe’s largest hubs; see www.schiphol.nl.

24An interior solution to this optimal level of advertising could be granted by an increasing and suffi-
ciently convex advertising cost, and would be dependent on the cost function parameters.
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6 Concluding remarks and policy implications

Revenue at airports comes from two sources: aeronautical and retail activities. When

airports earn over 50% of their revenues from retailing, there is a need to understand the

implications of consumer behavior for airports’ business models. This paper provides a novel

framework to think about this problem. We argue that the relative importance of these

sources depends on the degree of consumer foresight about the ex post retail surplus when

purchasing a flight ticket. We identify a clear trade-off between the retail market structure

and the landing fee, depending on the degree of consumer foresight. When consumers are

myopic, the airport awards very few retail concessions that turn out to be very lucrative,

while landing fees are kept low to lure passengers in the airport terminal. As consumer

foresight increases, the optimal retail structure becomes more fragmented while the landing

fee increases, until the airport chooses to earn money only from aeronautical services.

While airports represent the motivation for our analysis, we argued that our model

of platform pricing could be applied (with suitable adaptations) to other settings where

an intermediary offers a primary and a secondary good. We provided, for instance, the

examples of shopping malls and of video game consoles. Indeed, the general model we

investigate shows that the main results of our analysis carry over to a more general, not

airport-specific, platform setting where the questions of consumer foresight and (secondary

good) market structure are present.

Although the analysis undertaken in this paper adopts a strictly positive perspective,

some normative implications can be directly derived. Given that there are no set-up costs

associated to retail activities and airlines compete imperfectly (in the absence of congestion),

the first-best solution would require the most fragmented market structure on the retail side

and the lowest possible landing fee (equal to zero) on the aeronautical side to minimize the

effect of airlines’ market power. In addition, a more thorough first-best analysis would

require to take a stance with respect to the socially optimal degree of consumer foresight,

a matter that is difficult to ascertain from first principles.

Therefore, comparing private and public incentives, we conclude that, as consumers’

foresight increases, the airport moves towards a socially-optimal fragmented market struc-

ture on the retail side, but this occurs at the expense of an inefficiently high landing fee.

Conversely, higher values of consumers’ myopia are associated with a more efficient landing

fee together with an inefficiently concentrated market structure in the retail sector.

Although we have dealt with an unregulated platform, some regulatory implications can

be derived from our results. With perfectly myopic consumers, our model provides some

support for the recent airport claims in favor of a deregulation of charges on the basis of the

two-sided nature of the airport business (Charles River Associates, 2013). This is because
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the airport’s incentive to reduce the landing fee is well aligned with the one of a benevolent

regulator with the same degree of myopia. However, when consumers are forward looking,

the landing fee may even exceed the monopoly price and, therefore, airport regulation

of landing fees may be socially beneficial. This is just an example of how our platform

approach can help analyzing the many regulatory questions still outstanding, such as single

vs. dual till regulation, and that we hope future research will address.
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Appendix A: Proofs

In this Appendix, we provide the proofs of all Propositions of Sections 4 and 5.

Proof of Proposition 1. First, notice that the value of the expected surplus when one

retailer charges pi and all other retailers charge symmetrically pj can be expressed as follows

CS
(
pi,pj

)
= 2

∫ x̃ij

0

(v − pi − tx) dx+ 2

∫ 1
nR

x̃ij

[
v − pj − t

(
1

nR
− x
)]

dx (A-1)

+
nR − 2

nR

(
v − pj −

t

4nR

)
.

The first term is the expected value of the consumer’s utility when she ends up being

located on the right-side (clockwise) of firm i and purchases from it; this is multiplied by 2

to include the same expectation on the left-side of firm i. The second term is the expected

value of the consumer’s utility when she purchases from the first retailer j on the right

of firm i (hence at a distance 1
nR
− x away from j); this is again multiplied by 2 for the

same argument. The last term represents the expected utility from purchasing with the

remaining nR − 2 symmetric firms. Using the definition of the marginal consumer and

evaluating the integral, the expected retail consumer surplus in (A-1) gives 17.

Turing now to retailer i’s problem, imposing symmetry (i.e., pi = pj = pR), the first-

order condition of its problem (18) is

∂πi
∂pi

=
tnR [4(1− pA + δv)− 3δpR]− 4n2

RpR (1− pA − δpR + δv)− t (4pR + t)

4tn2
R

= 0. (A-2)

First, we establish the optimal retail price in (19). Solving (A-2) with respect to pR and

using γ, we obtain two solutions

p′R, p
′′
R =

δt (4 + 3nR) + 4γn2
R ±

√
16δtn2

R (δt− γnR) + [δt(4 + 3nR) + 4γn2
R]

2

8δn2
R

. (A-3)

To select the correct solution, first rewrite the first-order condition (A-2) as follows

4δn2
Rp

2
R︸ ︷︷ ︸

Q(pR)

= −δt (4vnR − t)− 4tnR (1− pA) +
[
4n2

R (1− pA) + 4δt+ 3δtnR + 4δvn2
R

]
pR︸ ︷︷ ︸

L(pR)

.

(A-4)
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Figure A-1: The first-order condition of retailer i’s maximization problem

Figure A-1 illustrates that (A-4) is satisfied at the intersection between two functions of

pR, one quadratic, Q (pR), and one linear, L (pR). Note that L (pR) has a negative intercept

and that it is necessarily upward sloping. Notice also that, at the smallest solution in Figure

A-1, ∂Q(pR)
∂pR

< ∂L(pR)
∂pR

, while at the largest solution in Figure A-1, ∂Q(pR)
∂pR

> ∂L(pR)
∂pR

.

The second-order condition of problem (18) is given by

δnR (6pR + t)− 4n2
R (1− pA − δpR + δv)− 4δt < 0, (A-5)

which can be rewritten as

∂L (pR)

∂pR
− ∂Q (pR)

∂pR
> 2δnR [2 (t− nRpR) + 3pR] , (A-6)

where

∂L (pR)

∂pR
= −δt (4vnR − t)− 4tnR (1− pA) +

[
4n2

R (1− pA) + 4δt+ 3δtnR + 4δvn2
R

]
(A-7)

and
∂Q (pR)

∂pR
= −8δn2

RpR. (A-8)

Noting that the right-hand side of (A-6) satisfies 2δnR [2 (t− nRpR) + 3pR] > 0 because

pR <
t
nR

as long as δ > 0, one can conclude that, for (A-6) to be satisfied, ∂L(pR)
∂pR
− ∂Q(pR)

∂pR
> 0

must hold, which establishes that the smallest solution in Figure A-1 is the unique solution

to the maximization problem (18).

We now turn to prove the inequality in the last part of the Proposition. First, note that

(A-2) evaluated at δ = 0 yields ∂πi
∂pi

∣∣∣
δ=0

= (1−pA)(t−nRpR)
nRt

= 0. Solving with respect to pR

gives pR(pA)|δ=0 = t
nR

, which is the standard price in a Salop model. Using pR(pA)|δ=0 = t
nR
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into (A-2) yields − tδ
n3
R
< 0, i.e., the first-order condition is always negative at the Salop

price. Therefore, pR(pA)|δ>0 will take a smaller value than t
nR

for any δ > 0. �

Proof of Proposition 2. Substituting the equilibrium airfare in (22) into the retail price

first-order condition in (A-2), we obtain

Ω ≡nA {tnR [4(1− `)− δ(3pR + 4v)]− 4n2
RpR (1− δpR + δv − `)− δt (4pR + t)}

4tn2
R (nA + 1)

− δpR
n2
R (nA + 1)

= 0. (A-9)

Implicitly differentiating it, we obtain

∂pR
∂`

= − ∂Ω/∂`

∂Ω/∂pR
=

4nAnR (t− nRpR)

−nA [4n2
R (1− 2δpR + δv − `) + 3δtnR + 4δt]− 4δt

, (A-10)

∂pR
∂nR

= −∂Ω/∂nR
∂Ω/∂pR

=
t {−2nA [δ(t− 2vnR)− 2nR(1− `)]− δpR [3nAnR + 8 (nA + 1)]}

nR {−nA [4n2
R (1− 2δpR + δv − `) + 3δtnR + 4δt]− 4δt}

.

(A-11)

As to (A-10), the numerator is positive since Proposition 1 establishes that pR < t
nR

when δ > 0. The denominator is negative because it is smaller than the second-order

condition in (A-5), which is negative after replacing the equilibrium airfare in (22).

As to (A-11), the denominator is again negative as in (A-5). The numerator is decreasing

in pR, hence it takes a lower bound at pR = t
nR

, in which case the numerator simplifies to

− t

nR
{8tδ + nA[8tδ + 5nRtδ − 4n2

R(1− `+ vδ)]}. (A-12)

When this last expression is positive, then (A-11) is negative overall. From (A-12), a

sufficient condition is therefore that

v > −1− `
δ

+
5t

4nR
+

2(1 + nA)t

nAn2
R

. (A-13)

This condition is always satisfied when δ is low enough. From (15), recall also that v > 5t
8

,

which ensures that v is always greater than the second term on the RHS of (A-13). Hence

we expect that ∂pR
∂nR

< 0 in most cases. However, the third term of the RHS of (A-13) is a

countervailing effect that may change the sign of ∂pR
∂nR

: a necessary (but still not sufficient)

condition for ∂pR
∂nR

to be positive overall is that δ is large, nA is small, and v is also small. �

Proof of Proposition 3. Directly in the text and therefore omitted. �

Proof of Proposition 4. Substituting the values of qA, ∂qA
∂`

, ∂qA
∂pR

, ∂qA
∂nR

, ∂pR
∂`

, and ∂pR
∂nR

into
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(24) and (25), we obtain

∂Π

∂`
=

(
1− 2`− t

nR

)
︸ ︷︷ ︸

A

+ 4nRnA (nRpR − t) Υ︸ ︷︷ ︸
B

+

[
t (4− δ)

4nR
+ δv − pR (1 + δ)

]
︸ ︷︷ ︸

C

= 0,

(A-14)

∂Π

∂nR
= − tnA (1− `)

(nA + 1)n2
R︸ ︷︷ ︸

D

+
tnA

(nA + 1)nR
Ψ︸ ︷︷ ︸

E

= 0, (A-15)

with Υ ≡
1−`+δ

(
v−2pR−`− t

4nR

)
nA[4n2

R(1−2δpR+δv−`)+3δtnR+4δt]+4δt
and Ψ ≡ 4(1−`)+δ(`+pR)

4nR
+Υ{8δpR+nA[2δ(4pR+t)

−nR(4− 3δpR + 4δv − 4`)]}.

From (26) and (27), we have that A = ∂Π
∂`

∣∣
δ=0

and D = ∂Π
∂nR

∣∣∣
δ=0

. Notice also that both

A and D do not depend on δ, so that ∂A
∂δ

= ∂D
∂δ

= 0. Also, we observe that ∂B
∂δ

∣∣
δ→0

= 0,

given that, for δ = 0, pR = t
nR

and the denominator of B takes on a strictly positive value.

Hence, ∂2Π
∂` ∂δ

∣∣∣
δ=0

= ∂C
∂δ

∣∣
δ=0

and ∂2Π
∂nR ∂δ

∣∣∣
δ=0

= ∂E
∂δ

∣∣
δ=0

.

Since our analysis is limited to δ infinitesimally close to 0, it is legitimate to approximate

the first-order conditions by their first order Taylor’s expansions. Hence, (A-14) and (A-15)

become

∂Π

∂`
∼=
∂Π

∂`

∣∣∣∣
δ=0

+ δ
∂2Π

∂` ∂δ

∣∣∣∣
δ=0

= A+ δ
∂C

∂δ

∣∣∣∣
δ=0

= 1− 2`− t

nR
+ δ

(
v − 5t

4nR

)
= 0, (A-16)

∂Π

∂nR
∼=

∂Π

∂nR

∣∣∣∣
δ=0

+ δ
∂2Π

∂nR ∂δ

∣∣∣∣
δ=0

= D + δ
∂E

∂δ

∣∣∣∣
δ=0

=
1

n2
R

{
−tnA(1− `)

(nA + 1)
+ δt

nA [n2
R(5`− 4v) + 2t(5nR + 6)] + 12t

4n2
R(nA + 1)

}
= 0. (A-17)

It is then immediate to see that (A-16) is negative when t > t1. When instead t 6 t1, solving

(A-16) with respect to ` gives the expression for the optimal ` given in the Proposition.

As to (A-17), solving it with respect to nR gives

n̂R =
5δtnA +

√
δtnA {25δtnA + [48(1 + δv − `)− 60δ`](nA + 1)}

nA[4(1 + δv)− `(5δ + 4)]
, (A-18)

where none of the other solutions is admissible. Notice that n̂R > 2 when t > t2.

It is easy to establish that t1 < t2, by simply checking for the sign of their difference

when δ goes to zero. Therefore, both in t2 and (A-18), it is possible to substitute ` = 0 to

obtain t2 and the expression for the optimal nR given in the Proposition; similarly, in t1, it
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is possible to substitute nR = 2 to obtain t1 given in the Proposition. �

Proof of Proposition 5. Let us initially assume nR → ∞. Then we can compute

explicitly the optimal landing fee, which is given by `∗|nR→∞ = 1
2

(1 + δv), as indicated in

the Proposition. Then the rest of the proof consists in showing that indeed it is optimal to

set nR →∞ for δ > 4/5.

Using (A-15), we compute ∂2Π
∂nR∂v

: this takes a long expression, omitted here for the sake

of brevity, which can be shown to be negative after substituting ` = `∗|nR→∞. Then, we can

compute ∂Π
∂nR

∣∣∣
v→∞

(using de l’Hôpital Rule), which constitutes a lower bound for ∂Π
∂nR

. More

precisely, ∂Π
∂nR

∣∣∣
v→∞

= δtnA(5δ−4)

8n2
R(nA+1)

, which is non-negative for δ > 4/5. Therefore, ∂Π
∂nR

> 0 for

δ > 4/5, which directly implies n∗R →∞.

When δ < 4/5, we first solve the system of equations given by (19) and (22) to obtain

the second-stage equilibrium retail and aeronautical prices. These are given by

p∗R =
4nAn

2
Rφ+ 3δtnAnR + 4δt(nA + 1)−

√
ψ

8δnAn2
R

, (A-19)

p∗A =
2nAn

2
R`(nA + 1)− 5δtnAnR − 4δt(nA + 1) +

√
ψ

8nAn2
R(nA + 1)

(A-20)

where φ ≡ 1 + δv − ` and ψ ≡ 16φ2n2
An

4
R − 40δtφn2

An
3
R + δtnAn

2
R [25δtnA + 32φ(nA + 1)] +

24δ2t2nAnR(nA + 1) + 16δ2t2(1 + n2
A + 2nA). These are then plugged into the airport’s

profit, which is maximized with respect to nR and `. The resulting analytical expressions

are not reported given their complexity. For a given constellation of parameter values, we

obtained the plots shown in the figures. We also checked that all the relevant non-negativity

constraints are met, namely for quantities in the airline market and for the consumer surplus

in the retail market. �

Proof of Proposition 6. From Proposition 3, π∗|δ=0 = nA(t+2)2

16(nA+1)
when t < 2, and π∗|δ=0 =

tnA

2(nA+1)
when t > 2. Similarly, from Proposition 5, π∗|δ> 4

5
= nA(1+δv)2

4(nA+1)
, which is clearly

increasing in δ. Comparing the two profits, it obtains that π∗|δ=0 > π∗|δ> 4
5

when v < t
2δ

(when t < 2) or v <
√

2t−1
δ

(when t > 2), where both limiting values are below the smallest

admissible value for v, which is 5t
8

, from (15). Hence the highest profit that can be achieved

is π∗|δ> 4
5
, in particular when δ = 1. Results on the absolute values of π∗R and π∗A follow

directly from Propositions 3 and 5.

As for the results for δ around 0, using the envelope theorem, we simply take the de-

rivative of the airport’s profits with respect to δ, plug into it the optimal values `∗|δ=0

and n∗R|δ=0 and evaluate it at δ = 0. This gives ∂π∗

∂δ

∣∣
δ=0

= 8vnA(t+2)−t(9tnA+10nA+4t)
32(nA+1)

,
∂π∗R
∂δ

∣∣∣
δ=0

= t[8vnA−t(7nA+2)]
16(nA+1)

, and
∂π∗A
∂δ

∣∣∣
δ=0

= nA[(8v−5t)(2−t)]
32(nA+1)

when t < 2; and ∂π∗

∂δ

∣∣
δ=0

=
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∂π∗R
∂δ

∣∣∣
δ=0

= t[8vnA−t(7nA+2)]
16(nA+1)

and
∂π∗A
∂δ

∣∣∣
δ=0

= 0 when t > 2. Solving these expressions with

respect to v gives the critical values and the results in the Proposition. �

Appendix B: Proportional preferences in the general

platform model

In this Appendix, we make explicit the microeconomic foundations for the demand specifi-

cation we use in Section 3.

A representative consumer has a quasi-linear utility function U(QA, QR,m) = u(QA, QR)+

m, with u(QA, QR) = g (QA)+δΨ (QA, QR), where QA and QR are the quantities of the core

and the side good and m is the numeraire. The functions g(.) and Ψ(.) denote the utility

derived from the core and the side good, respectively. We assume g (0) = 0, g′ (QA) > 0,

and g′′ (QA) < 0. The function Ψ(.) satisfies Ψ(0, 0) = 0 and Ψ (0, QR) = Ψ (QA, 0) = 0.

We consider the consumption of the side good to be proportional to that of the core good,

an assumption that fits rather well with the nature of demand in the case of airports.

Following Czerny and Lindsey (2014), this feature is captured assuming Ψ (QA, QR) to be

homogeneous of degree one, so that it can be rewritten as Ψ (QA, QR) = QAh(QR/QA) with

h′(QR/QA) > 0 and h′′(QR/QA) < 0. Therefore, the consumer solves

max
QA,QR

g (QA)− pAQA + δ [QAh (QR/QA)− pRQR] , (B-1)

and the FOC with respect to QR yields pR = h′ (QR/QA). Define now the inverse function

y(pR) ≡ (h′)−1 (pR). Then, the above FOC becomes QR = y (pR)QA, as in (1); hence, the

demand for good R is proportional to the demand for good A, with y′ (pR) < 0.

Consumer’s total surplus from the side good is QAh (QR/QA) − pRQR, which can be

rewritten as QACS(pR), where CS(pR) ≡ [h (y (pR))− pRy (pR)] denotes the consumer

surplus per unit consumed of core good. Thus, the consumer problem in (B-1) becomes

max
QA

g(QA) +QA [δCS(pR)− pA] , (B-2)

which yields the first-order condition in (3).
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Online Appendix: The general platform model with

heterogenous consumers

In this Appendix we extend the model in Section 3 to account for the demand for good

R depending on consumers’ personal characteristics (i.e., we introduce consumer heteroge-

neity). Following Czerny and Lindsey (2014), we let θ denote the consumer’s type and we

reinterpret the optimal choice of QR derived in Section 3 as the individual demand for a

consumer of type θ. We now use small letters to denote individual quantities that depend

on the consumer’s type, while capital letters describe aggregate demand; we leave the rest

of the set-up of the section unchanged. Therefore, the demand for good R of type θ can be

written as qR(pA, pR; θ) = y(pR; θ)qA(θ), as in (1). Similarly, the optimal demand for good

A of type θ arises as the solution to

max
qA(θ)

g [qA (θ)] + qA (θ) [δCS (pR; θ)− pA] , (W-1)

which yields the following first-order condition

g′ [qA (θ)] + δCS (pR; θ)− pA = 0, (W-2)

that implicitly determines qA (pA, pR; θ). Then, the aggregate demand for good A is

QA (pA, pR) =

∫
θ

qA (pA, pR; θ)φ (θ) dθ, (W-3)

where φ (θ) is the frequency distribution of types. Weighted in terms of consumption of

good A, the average consumption of good R is

ȳ (pA, pR) =
1

QA (pA, pR)

∫
θ

qA (pA, pR; θ) y (pR; θ)φ (θ) dθ, (W-4)

which depends on pR (as before) but also on pA. Therefore, the demand of good R with

respect to good A becomes

QR (pA, pR) = ȳ (pA, pR)QA (pA, pR) . (W-5)

Turning now to the platform’s problem, in the first stage it solves

max
`,nR

[`− c+ pRȳ (pA, pR)]QA (pA, pR) (W-6)

s.t. pR = pR (`, nR) and pA = pA (`, nR) ,
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which yields the following first-order conditions (omitting the arguments of QA to simplify

notation)

∂Π

∂`
=

(
∂QA

∂pA

∂pA
∂`

+
∂QA

∂pR

∂pR
∂`

)
[`− c+ pRȳ (pA, pR)]

+QA

[
1 +

∂pR
∂`

(
ȳ (pA, pR) + pR

∂ȳ (pA, pR)

∂pR

)
+ pR

∂ȳ (pA, pR)

∂pA

∂pA
∂`

]
= 0, (W-7)

∂Π

∂nR
=

(
∂QA

∂pA

∂pA
∂nR

+
∂QA

∂pR

∂pR
∂nR

)
[`− c+ pRȳ (pA, pR)]

+QA

[
∂pR
∂nR

(
ȳ (pA, pR) + pR

∂ȳ (pA, pR)

∂pR

)
+ pR

∂ȳ (pA, pR)

∂pA

∂pA
∂nR

]
6 0. (W-8)

In studying these first-order conditions, notice first that heterogeneity in the consumers’

preferences implies that ∂pR
∂`
Q 0, since a change in ` can alter the composition of demand

in the side good market. Consider for instance a decrease in `. In this case, pA would also

go down (see (6)) and, therefore, the equilibrium QA would increase. However, the effect of

this increase in the demand for good A may have different effects on market R, depending

on the effect on R’s demand composition as a response to the lower `. For instance, the

case ∂pR
∂`

> 0 may be possible if the demand for side good goes down and translates into a

lower pR.

Using (5) and (6), equation (8) can be re-expressed as

`− [c− pRȳ (pA, pR)]

`
= − 1

εA σA` + εAR σR`
×[

1 +
∂pR
∂`

[
ȳ (pA, pR) + pR

∂ȳ (pA, pR)

∂pR

]
+ pR

∂ȳ (pA, pR)

∂pA

∂pA
∂`

]
︸ ︷︷ ︸

Ω

,

(W-9)

where the left-hand side and the first term on the right-hand side (containing the superelas-

ticities) are as in the representative consumer case. Similarly to the analogous expression

with a representative consumer, ȳ (pA, pR) + pR
∂ȳ(pA,pR)

∂pR
> 0 captures now the marginal

revenue in the secondary market with respect to pR, calculated at the average level of good

R. The main novelty with respect to the representative consumer case is the presence of the

term pR
∂ȳ(pA,pR)

∂pA

∂pA
∂`

, which captures the reaction of market R’s demand composition as a

response to a change ` and, therefore, has an indeterminate sign. This demand composition

effect in the side-good market also determines the sign of ∂pR
∂`

. Therefore, depending on the

signs of ∂ȳ(pA,pR)
∂pA

and ∂pR
∂`

, we may observe Ω ≶ 0 and different cases can be analyzed.

For instance, let us consider the case of a decrease in ` that pushes down pA (see (6))

W-2



and yields a higher equilibrium QA. If market R’s demand composition effect is such that

the demand for side good goes up in a less-than-proportional way, then we would obtain
∂ȳ(pA,pR)

∂pA
< 0 and ∂pR

∂`
< 0. If the combination of these effects is sufficiently large, then

Ω < 0. The other cases can be reasoned analogously.

Independently of the sign of Ω, it can be easily observed that the degree of consu-

mer foresight only affects (W-9) through εAR. As in the representative consumer case,

− (εA σA` + εAR σR`) < 0 is observed for a sufficiently high δ. Therefore, when Ω < 0, the

platform’s optimal choice of ` is increasing with the degree of consumer foresight. When.

instead, Ω > 0 is observed, the platform sets ` equal or below the adjusted marginal cost

and foresight has no effect. In conclusion, the effect of consumer foresight on the plat-

form’s optimal choice of ` will be either positive or inexistent, depending on the demand

composition effect in the side good market.

Substituting (W-9) into (W-8), using (5) and (6) and rearranging, one obtains

∂pR
∂nR

[
ȳ (pA, pR) + pR

∂ȳ (pA, pR)

∂pR

]
+ pR

∂ȳ (pA, pR)

∂pA

∂pA
∂nR

− εA σAn + εAR σRn
εA σA` + εAR σR`

`

nR
Ω 6 0.

(W-10)

The degree of consumer foresight only affects (W-10) through its last term and, as in

the representative consumer case, − `
nR

εA σAn+εAR σRn

εA σA`+εAR σR`
< 0 is observed for sufficiently high

levels of δ. In this case, when Ω < 0, the platform’s optimal choice of nR is increasing with

the degree of consumer foresight. Whenever Ω > 0 is observed, high levels of δ could yield

lower levels of nR.25

All in all, the presence of consumer heterogeneity turns the analysis more complicated

due to the presence of market R’s demand composition effect as a response to a change in

`. However, the effect of consumer foresight on the platform’s choices can still be analyzed.

We show that the results found with a representative consumer are partly confirmed with

consumers’ heterogeneity. Indeed, under both scenarios, consumers’ foresight pushes up

the price of the input in market A. On the other hand, no clear-cut conclusions can be

reached for the effect of foresight on the market structure of the side good. The driving

force leading to this indeterminate result is precisely the demand composition effect that,

with heterogenous consumers, may affect the demand for the core good in both directions.

25In the case of fully-myopic consumers (δ = 0), then ∂QA

∂pR
and ∂pA

∂nR
= 0 and, as a consequence, εAR = 0

and σAn = 0. Therefore, (W-10) reduces to ∂pR

∂nR

[
ȳ (pA, pR) + pR

∂ȳ(pA,pR)
∂pR

]
+ pR

∂ȳ(pA,pR)
∂pA

∂pA

∂nR
6 0, where

the first term is negative and the second one depends on the sign of the demand composition effect in the

side-good market through ∂ȳ(pA,pR)
∂pA

. In consequence, nR can be set either at its minimum level or at a

higher value.
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