
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-1996

Supporting search for reusable software objects
T. ISAKOWITZ

Robert J. Kauffman
Singapore Management University, rkauffman@smu.edu.sg

DOI: https://doi.org/10.1109/32.508314

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Numerical Analysis and Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ISAKOWITZ, T. and Kauffman, Robert J.. Supporting search for reusable software objects. (1996). IEEE Transactions on Software
Engineering. 22, (6), 407-423. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2153

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/32.508314
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996 407

Supporting Search
for Reusable Software Objects

Tomas lsakowitz and Robert J. Kauffman

Abstract-Prior research has shown that achieving high levels of software reuse in the presence of repository and object-based
computer-aided software engineering (CASE) development methods presents interesting human, managerial and technical
challenges. This article presents research that seeks to enhanced software development performance through reuse. We propose
automated support for developers who search large repositories for the appropriate reusable software objects. We characterize
search for repository objects in terms of a multistage model involving screening, identification, and the subsequent choice between
new object construction or reusable object implementation. We propose automated support tools, including ORCA, a software
Object Reuse Classification Analyzer, and AMHYRST, an Automated Hypertext-based Reuse Search Tool, that are based on this
model. ORCA utilizes a faceted classification approach that can be implemented using hypertext. We also describe an aspect of
AMHYRST's architecture which can automatically create hypertext networks that represent and link objects in terms of a number of
distinguishing features. We illustrate our approach with an example drawn from a real world object repository.

Index Terms-Classification, CASE, computer-aided software engineering, development environments, hypertext, object
repositories, object search, repository evaluation, reuse, software development.

1 INTRODUCTION
OFTWARE development methodologies that emphasize S reuse are increasingly recognized by senior manage-

ment in terms of the value they deliver in helping firms
achieve higher levels of software development productivity
and reduced software costs [l], 121, 1211, 1231. Although
software reuse is unlikely, by itself, to forestall the software
development crisis, the recent attention that it has received
is warranted. If firms are able to reduce the proportion of
new code that must be constructed from 70% to 100% of the
total, as in traditionally developed applications, to between
just 30% and 40%-as we personally have observed in
software development projects using CASE-the process of
software development will improve significantly. To ac-
complish this, however, capital investment in tools that
promote software reuse must occur.

A key ingredient for promoting software reuse in re-
pository-based CASE environments is providing support
for software developers who wish to search the repository
to locate suitable software objects for reuse. This article ex-
plores conceptual and architectural bases for specifying a
repository search tool which automates the process of re-
pository search for a software object that is appropriate for
a developer to reuse in a given situation. The tools that we
propose combine two different capabilities: ORCA, the Ob-
ject Reuse Classification Analyzer, and AMHYRST, the Auto-
mated Hypertext Reuse Search Tool.

T . lsakowitz is with the Department of lnformation Systems, Stern School
of Business, New York University, 44 West Fourth Street, New York, NY

R.]. Kaufhan is with Information Systems and Decision Sciences, Carlson
School of Management, University of Minnesota, 271 19th Avenue South,
Minneapolis, M N 55455. E-mail: rkauffman~csom.umn.edu.

10012. E-mail: tisakowi~stern.nyu.edu.

Manuscript received Nov. 15,1993; accepted Apr. 22,1996.
Recommended for ucceptance by D. Perry.
For information on obtaining reprints of this article, please send e-mail to:
tvansse~computer.or~, and reference IEEECS Log Number S95417.

The conceptual basis of this work is a descriptive model
that represents how software developers search a repository
to find reusable software. From this perspective, classification
and search represent activities that software developers cur-
rently perform without automated support. Classification
approaches to promote software reuse have been proposed in
earlier work, (for example, see [26]), however, there remains
the need for additional research to address the challenges of
CASE development. The architectural basis of our solution
takes advantage of recent developments in hypertext tech-
nology. Hypertext applies well to domains where relation-
ships among domain elements are important [201. This is the
case with software engineering, especially in CASE environ-
ments, where software artifacts, such as code, documentation
and designs, are structured. (For example, programs call one
another, programs use files, files and programs have docu-
mentation, etc.) Thus, when developers search for reusable
software in a CASE environment they do so over a repository
whose elements are related according to formal guidelines,
for example, through a repository metamodel. This makes a
hypertext-based solution suitable.

The meaning of the word object in the repository-based
integrated CASE environment that we examine in this pa-
per differs from the meaning it takes on in object-oriented
environments, such as SMALLTALK or C++. In our con-
text, the term object is used to denote elements of the soft-
ware repository that are predefined in terms of the general
functionality that they can provide. There are a limited
number of object types, and they tie in closely with the
manner in which the CASE tool enables software applica-
tions to be developed. In an object-oriented environment,
an object represents a domain entity encapsulating data and
functionality. As such, we follow Booch 191 in referring to
our research environment as an object-based software devel-
opment environment.

0098-5589196505.00 0 1 9 9 6 IEEE

Published in IEEE Transactions on Software Engineering, 1996 June, Volume 22, Issue 6, Pages 407-423
https://doi.org/10.1109/32.508314

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

This article is organized as follows. Section 2 reviews
background literature that provides motivation and
evaluative guidance for the alternative approaches that are
available to support developer search for reusable reposi-
tory objects. Section 3 describes the Integrafed CASE Enui-
ronmen t (ICE) that is the testbed for our research. It also
describes prior research conducted in this environment that
explains why effective reuse search support is a pre-
condition for further improvements. Section 4 introduces a
multistage conceptual model of the search process for reus-
able objects. The primary argument is that search involves
different activities: identification of potentially reusable
objects and functionality screening. A related argument is
that each activity needs to be supported in a different man-
ner to maximize effectiveness. Then, in Sections 5 and 6,
drawing on what we learned in structured interviews with
ICE developers at two large firms, we show how a combi-
nation of object classification and search mechanisms can
provide improved support for reusable object search. We
illustrate these concepts with a realistic example that in-
cludes ICE objects similar to those that might be included in
a customer service application at the research sites. The
paper concludes with a discussion of a prototype imple-
mentation of the proposed tools.

2 ALTERNATIVE APPROACHES TO SUPPORT
REPOSITORY SEARCH FOR REUSABLE OBJECTS

In this section, we begin by contrasting managerial and
technical approaches to supporting repository search. We
then evaluate the strengths and weaknesses of alternative
technical approaches as a basis for crafting automated re-
pository search support tools. A study of representation
methods for software components conducted by Frakes and
Pole [13] showed that there are no significant differences in
search effectiveness among the methods, and that none of
them provides adequate support for understanding the
software objects to be reused. Two of the four methods cov-
ered in the study, faceted classification and keywords, are
also discussed. Based on our observations and on Frakes
and Pole’s findings, we conclude that hypertext-based ap-
proaches offer a number of conceptual and technical fea-
tures that are well-matched to the problem domain we are
investigating.

erial versus Technical Support
Approaches

There are managerial and technical approaches to support
developers’ search for reusable software objects. A managerin1
support approach can take the form of a group of reusability
experts who advise project managers about the contents of
the repository so that they can plan software applications to
maximize reuse. A related approach is to appoint a person to
manage the repository. Similar to the role of a database ad-
ministrator with respect to data definitions and data quality,
the role of a repository administrator involves screening ob-
jects to be stored in the repository to enforce quality, and de-
fining the requirements for a set of widely reusable objects. A
repository administrator can also act to minimize redun-
dancy by preventing the addition of objects with overlapping

functionality. These managerial approaches to search have
been adopted with varying degrees of success.

By contrast, a technical support approach applies comput-
erized tools to assist developers in identifying and retriev-
ing objects that are suitable for reuse. An example of such
work is Henninger’s CodeFinder, which recognizes the dif-
ficulties that users often have in formulating queries for
reusable repository objects [18]. In the absence of a power-
ful tool to support developers in their search for reusable
repository objects, we expect that observed levels of soft-
ware reuse will underperform management’s expectations
for a productivity payoff. What might be the basis of a tool
that improves support for search? We next review four al-
ternative techniques that have been considered in prior re-
search for improving user support for a variety of search
techniques: keyword search, full text retrieval, structured
classification schemata, and hypertext.

2.2 Keyword Search
Keyuiord search requires assigning to each software object a
number of relevant keywords or indices. As an example,
consider a firm that has developed a number of in-house
applications using a centralized repository. Within the gen-
eral ledger application there is a module entitled EDIT-
ENTRY that enables users to edit entries stored in a file.
The EDIT-ENTRY software object uses a buffer imple-
mented as a string of characters; and it accesses a file. The
following keywords can be associated with this object: ED-
ITING, BUFFER, STRING INSERTION, STRING DELE-
TION, STRING CHANGE, GENERAL LEDGER DIARY, EN-
TRY, ACCOUNTING, FILE I/O. Search for this object within
the object repository involves the specification of a number
of keywords, and the subsequent retrieval of matching ob-
jects. So, a developer looking to implement a module to edit
entries in an account receivables record could issue a search
on the keywords EDITING and ACCOUNTING. The EDIT-
ENTRY object would be retrieved because it has been in-
dexed with those keywords.

A common objection to the keyword method is the high
cost associated with manual indexing, which requires
skilled personnel. In software development settings, key-
word-based search would require developers to provide
appropriate keywords for every object in the repository.
However, we know well from prior research that software
developers do not willingly assign keywords to the soft-
ware objects they create: there is no perceived direct benefit
for the extra level of effort involved. Another objection to
the keyword method centers on the ambiguous nature of
keywords; substantial disagreement over the choice of
keywords can occur when different words mean different
things to different people 151, 1141. Therefore, keyword
search has been found to offer limited power or to be im-
practical in many kinds of applications.

2.3 Full-Text Retrieval
The high cost of manual indexing makes it attractive to
automate the indexing process. The simplest kind of auto-
matic indexing occurs in full-text retrieval systems. Such sys-
tems work on the basis of a mechanism such as the following:

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 409

Store the full-text of all documents in the collection in a com-
puter so that every character of every word in every sentence of
every object can be located by the machine. Then, when a per-
son wants information from that stored collection, the computer
is instructed to search for all documents containing certain
words and word combinations, which the user has specified.
U81, p. 289)

Full-text search works best for software objects that have
embedded or attached comments. Full-text retrieval sys-
tems preprocess stored data or documents and construct
index tables ahead of time. Then, user search is effected
through a table lookup, which is speedy and efficient.
Speed, however, is not the only relevant criterion. For ex-
ample, Blair and Maron [8] showed that for large textual
bases, full-text retrieval misses many relevant objects-as
many as 80% of them. One can imagine situations in which
full-text retrieval systems return too much information,
inundating the user with unusable data. As a result, this
search method applied in software engineering contexts
would represent a ”brute force” approach to the problem,
taking into account little of what is known about how full-
text retrieval fails to deliver in other search settings.

2.4 Structured Classification Schemata
Stvuctuved classification schemata use a fixed number of pre-
determined perspectives, or facets, for classification. Table 1
below contains sample entries from a library of software
routines using a six-facet classification schema due to Prieto-
Diaz [261. To search for a software routine, a developer issues
a query consisting of a sextuple of values that is compared to
values describing routines in the software library.

A common problem with this approach lies in mishan-
dling synonyms and misinterpreting words that have some
lexical ambiguity. Inadequate treatment of synonyms can
result in the retrieval of objects that are irrelevant to the
search. Related to synonyms is the problem of near matches.
These occur when software components are retrieved that
closely resemble, but do not exactly match the query. To
solve this problem, Prieto-Diaz proposed the use of a concep-
tual graph that determines a “distance” between near matches
and the desired object, in terms of their facet values. By as-
signing a number to represent this relative distance, one can
then rank the relevance of objects to a particular query. Lexi-
cal ambiguity, on the other hand, can cause low retrieval
rates when only a few possible meanings of a word are con-
sidered. It can also lead to the retrieval of irrelevant objects
when unintended word meanings are considered. A way of
addressing these issues is to limit the vocabulary for classi-
fying software components, and to only allow queries drawn
from this controlled vocabulary.

Although the faceted classification of Prieto-Diaz fits in
well with 3CLs, it does not exploit the characteristics of
CASE environments. CASE repositories contain a wider
variety of software objects, as well as more detailed infor-
mation about relationships among them than those consid-
ered in non-CASE software libraries. For example, Prieto-
Diaz’s classification does not consider repository informa-
tion. In the context of CASE development with Texas In-
struments’ IEF [19], for example, which includes many dif-
ferent kinds of objects that have different purposes, one

would need to make distinctions that are finer that those
contemplated in the classification schema shown in Table 1.
In addition, the higher levels of abstraction that CASE tools
enable, as compared to 3GL, render aspects of the Prieto-
Diaz approach obsolete. In this vein, the facets objects and
medium are unlikely to be relevant in many CASE envi-
ronments because objects are represented independent of
their implementation. However, as we will show in Sec-
tion 5, it is possible to adapt faceted classification in view of
the application metamodel that the CASE environment pre-
sents to a developer. (For additional information on meta-
models as specialized database schemas in this kind of
context, the interested reader should consult [29].)

Prieto-Diaz’s faceted classification is also somewhat in-
flexible in another respect: It requires all objects to be classi-
fied in terms of the same facets. By contrast, Snyder [28]
proposes a classification mechanism that allows for soft-
ware objects to be classified along specialized facets with-
out imposing them on all software objects. This approach,
based on semantic networks [31], can also be adapted to
CASE environments.

A disadvantage of structured classification approaches
compared to full-text retrieval is that they require manual
classification: automatically deducing software functional-
ity is by no means a simple task. In integrated CASE envi-
ronments, however, information available in the repository
can be exploited to automatically classify software objects.
Furthermore, the centralized software repository supports
access to software objects for inspection purposes. The po-
tential for automated classification and computerized sup-
port for access increases when the repository is organized
in accordance with a metamodel, as is the case with many
CASE environments. (Texas Instruments’ I E F is again a
good example.) Such environments provide the opportu-
nity to automatically classify software objects and to sup-
port exploratory activities for software reuse.

2.5 Hypertext
Hypevfext represents one of the newest forms of computer-
based support for organizing documents. Rather than being
constrained to the linear order of conventional documents,
users are able to move through a hypertext document by
following links represented on the screen by buttons or other
visual objects. The basic building blocks in hypertext are
nodes and links [17]. Each node is associated with a unit of
information, and nodes can be of different types. Node type
depends on various criteria, for example, the class of data
stored (plain text, graphics, audio or an executable program),
or the domain object it represents (diary entry, account, fi-
nancial statement). Links define relationships between source
and destination nodes, for example, a link can connect the
name of a customer in an invoice to a detailed customer pro-
file screen. Links are accessed from the source node and can
be traversed to access the destination node. (The interested
reader should refer to Conklin 1111 and Nielsen 1241 for in-
troductions to the capabilities of hypertext.)

Hypertext technology applies well to CASE environ-
ments because the information units (including software
objects, documentation, among others) exhibit relationships
among domain elements that are clearly defined. Hence, it

41 0 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

TABLE 1
FACETS IN THE CLASSIFICATION SCHEMA OF PRIETO-DIAZ [26]

is appropriate to represent them as hypertext links. Also,
the browsing capabilities of hypertext have the potential of
supporting developer discovery about the contents of the
repository. As developers become familiar with the reposi-
tory contents through hypertextual navigation, one expects
them to become more proficient in exploiting the available
opportunities to reuse software objects. Current hypertext
systems provide users with sophisticated user interface tools
that enable them to inspect node contents, and to flexibly
navigate through a network of nodes. For example, clicking
on the name of a customer will result in a display of a de-
tailed customer profile. Besides allowing users to traverse
links at their own discretion, hypertext systems provide users
with pre-defined paths through the network, and with the
ability to specify search conditions for the selection of nodes.
Their queries may be content-based (searching the content of
nodes, e.g., "all occurrences of the word print") or strucfural
(depending on the topography of the hypertext network, e.g.,
"all software objects that have a link labeled uses to the
module main program"). Because a major problem with hy-
pertext is the potential for users to get lost in the details of the
information that can be accessed [25], hypertext systems usu-
ally provide backtracking and other aids to navigation such
as maps, to help orient the user.

A helpful hypertext concept-one that we employ later
in this article-is that of a guided tour [16], [27]. In a guided
tour, navigation is usually constrained to a few choices. An
example would be when navigation can only proceed in
two directions: either backwards or forwards through an
ordered list of nodes. Although guided tours that are con-
strained in this manner would seem to limit the power of
hypertext, they actually help reduce the disorientation that
users experience when they confront a large number of
navigational possibilities. For example, the collection of all
software objects in a repository that implement a "customer
SQL-update" can be organized into a guided tour. System
developers seeking to implement SQL queries can navigate
among the various elements of the guided tour to locate the
ones that most closely match their needs.

Hypertext has been used previously to organize software
repositories. For example, Garg and Scacchi's Document
Integration Facility is a hypertext system that supports the
development, use and maintenance of large-scale systems
and their life cycle documents [15]. Bigelow and Riley's
Dynamic Design is a hypertext-based repository that organ-
izes relationships between various kinds of software, in-
cluding specifications, design documentation, program
documentation, user documentation, source code, object
code and symbol tables 171. Beckman et al.'s ESC project
organizes software sources and documentation as a hyper-
media encyclopedia to foster reuse. ESC can integrate dis-
tributed repositories by communicating with servers across
a telecommunication network [6] . Creech, Freeze, and Griss

describe KIOSK, a hypertext system to access a structured
library of software components [lo]. KIOSK supports mul-
tiple views of the library that correspond to the various
roles of those involved in software development (e.g., de-
velopers, designers, users). Finally, Kerola and Oinas-
Kukkonen have proposed the use of intelligent agents to
facilitate interaction within a CASE environment through
hypertext 1221.

Except for ESC [6] and KlOSK [lo] little research has
been performed on the potential of hypertext to directly
support search for reusable software objects. As Creech,
Freeze, and Griss report [lo], KIOSK'S success was limited
because developers were not willing to spend the extra time
required to learn to use the new facility. Similar difficulties
arose within the scope of the ESC project.

The structured nature of repositories in CASE environ-
ments also provides opportunities to incorporate hypertext
facilities in applications developed with CASE. For exam-
ple, Chen [121 discusses extending repository-based CASE
environments used to construct executive information sys-
tems (EIS). The extension includes models of the informa-
tion systems being developed and of the organizations that
use them. The resulting EISs provide users, mainly business
executives, with graph-based user-interfaces to guide their
navigation in search for information.

We have reviewed four methods used to support search
reuse. The first three, keyword search, full-text retrieval,
and structured classification schemata, represent ap-
proaches that are based on a classification of repository
objects. Based on a navigational metaphor, hypertext repre-
sents a fourth approach that can be implemented in con-
junction with a variety of methods to give users the ability
to navigate the space of repository software objects at their
own will. Hypertext also opens up the possibility for a de-
veloper to refine the repository query strategy to reflect an
evolving understanding of how the query ought to be for-
mulated [25]. In this article we present a proposal to com-
bine automated classification and hypertext in a tool that
provides navigational capabilities for repository objects. We
now turn to a more detailed description of the software
engineering environment that forms the testbed for our
work.

3 ICE-AN INTEGRATED CASE ENVIRONMENT
The Integrated CASE Environment (ICE) is a computer-aided
software engineering tool set enabling software developers
to write applications using a fourth generation language,
yet it buffers them from the complexities of the multiple
languages and diverse hardware platforms encountered in
modern client-server system development. Creation of this
environment initially was undertaken at a large New York
City-based investment banking firm which believed that it

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 41 1

Object Type
BUSINESS PROCESSES

was mission-critical to refocus the firm's software devel-
opment strategy to emphasize software reuse [2]. The intent
was to speed software delivery and shorten the cycle time
needed to put software support into place for new financial
products. Since its initial deployment in the latter part of
the 1980s, the capabilities of ICE have been expanded con-
siderably. The tools have been commercialized and are now
used in over 100 large firms around the world.

3.1 Definitional Considerations: Software Objects

When we refer to software objects in ICE, we recognize
their basis in the entity-relationship model, rather than in the
more general paradigm of object-oriented software. Appli-
cation functionality derives from the interplay of repository
objects organized into an application hierarchy. Each object
can perform different functions, depending on the kind of
object it is, and what a software developer programs it to
do. Because ICE is also repository-based, software developers
rely on the repository as the single store for all the pieces of
software that make up the firm's applications.

The repository stores objects of different types in pre-
specified templates that indicate their type. Table 2 pro-
vides definitions for the set of ICE repository objects. ICE
object repositories can be organized with hypertext tech-
nology because each of the ICE object types relates to the
other object types in a pre-specified and structured manner.
Fig. 1 illustrates the relationships among them, and can be
considered a metamodel for all application development in
ICE. The only aspects of the metamodel that we do not de-
pict are that multiple RULE SETS combine to form the
software support for a BUSINESS PROCESS, and that a
comprehensive set of repository BUSINESS PROCESS ob-
jects make up the entire inventory of CASE-developed ap-
plications of the firm.

The reader should think of the different object types in
terms of corresponding 3GL constructs. RULE SETS, collec-
tions of individual ICE RULES, form application proce-
dures. (Hereafter, we refer to RULE SETS simply as
RULES.) RULES typically contain the instructions that

in ICE

Description
High level objects that act as the top of the hierarchy of an ICE application and
that define the software support available for a specific business process or sub-

software developers would associate with "the program."
RULES use other RULES and COMPONENTS; RULES cre-
ate REPORTS which consist of REPORT SECTIONS; and,
RULES access DATA TABLES and interact with WINDOW
DEFINITIONS, enabling an application developer to create
a user interface. A REPORT can be thought of as a means of
formatting data that result from queries on an application
database. Fig. 2 presents an example of a simple ICE IIULE
that performs DATA TABLE deletion.

RULE SETS

3GL COMPONENTS

RULE SETS

create ---

process.
Procedures written in a 4GL language supported by ICE that perform most of the
traffic control and processing associated with ICE application software.
Reusable modules of 3GL code that are stored outside the ICE reuositorv. but are

U

VIEWS DOMAINS include

REPORTS and REPORT SECTIONS

DATA TABLES
VIEWS

WINDOW DEFINITIONS

DATA DOMAINS and INSTANCES
WITHIN DATA DOMAINS
DATA ELEMENTS

+ - I

callable from within it.
A repository representation of a physical report, including application output.
REPORTS consist of multiple REPORT SECTIONS, each with its own data re-
quirements and format.
Relations that can be accessed using SQL queries.
Objects that mediate the interactions that occur among RULE SET and DATA
ELEMENT objects, especially when data stored in TABLES are required to popu-
late a user WINDOW.
A logical definition, stored as a template, of an on-screen image in the form of a
window.
These ICE objects work together to specify the range of values that DATA ELE-
MENTS can take on when they are delivered to WINDOWS and DATA TABLES.
The smallest unit describing data items, such as customer name or product price,
that are used to define DATA TABLES.

I REPORT ~ L-Fl
which are built from ELEMENTS DOMAINS

SECTIONS

Fig. 1. The Repository Metamodel for ICE software applications. Note:
3GL COMPONENTS are available for use by RULES, however, they
are not stored in the repository. All other object types are organized
within ICE applications according to the structure described in this
figure. The reader should recognize the well-defined relationships and
syntax. These features enable us to navigate ICE repositories with the
node and link paradigm that characterizes hypertext.

SQL ASIS
DELETE FROM WP-PARTNER WHERE

WP-PARTNER-ID =
:WP-PARTNER-SQL-DEL-ID
ENDSQL
"> If a contact is deleted then you must also delete

all information ownedhelated to that contact<"

Fig. 2. Sample 4GL code for an ICE RULE.

TABLE 2
REPOSITORY OBJECTS IN THE INTEGRATED CASE ENVIRONMENT

41 2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

3.2 Observations About Software Reuse Related to

Software reuse in ICE is accomplished when an application
object makes a call to an object that already exists in the
repository. Thus, reuse results when an object that was de-
veloped specifically for an application is called multiple
times. Another instance of reuse occurs when a developer
designs an ICE application to make a call to an object that
was developed in the context of another ICE application,
and, as a result, has been stored in the repository. Although
ICE supports other kinds of reuse, for example, during the
design, testing, and production phases of the software de-
velopment life cycle, our research focuses exclusively on
reuse that occurs during software construction, where
software developers experience the greatest difficulties in
finding reusable software objects.

Experimental development of a number of small, but re-
alistic repository object-based ICE applications indicated
that two of every three application object calls were deliv-
ered through reuse [21, [3]. Later, in large-scale software
development projects at an investment bank and at a large
national retailer, this level of object reuse was often ex-
ceeded. It is especially interesting to note that the firms at
which these observations were made did not have explicit
incentives in place to promote reuse, other than the moti-
vation that a developer would have to improve her own
performance. Nor were there especially powerful tools in
place to encourage reuse. In fact, at the time, we speculated
that the observed reuse levels were a conservative estimate
of what could actually be achieved if additional technical
support features and new developer incentives were im-
plemented in the presence of a mature repository [4].

However, reuse levels did not exhibit significant in-
creases even as new applications were developed and de-
velopers became better at using the CASE tool. Anecdotal
evidence that was obtained as we debriefed project manag-
ers on our results pointed to weaknesses in the support
mechanism that inhibited less experienced developers from
identifying opportunities to reuse existing repository soft-
ware objects, especially those created in other projects. For
instance, we learned that 60% of software reuse involved
objects written and reused by the same developer, and 85%-
90% of software reuse involved objects constructed by
members of a project team within the same application.

Corroborating evidence in a different development envi-
ronment was obtained by Woodfield, Embley, and Scott
[301, who examined the performance of programmers that
were relatively untrained in reuse. Although they only
looked at reuse of abstract data types stored in a software
library, their results suggested that individual assessment
of what elements are thought to be important in identifying
targets for reuse will constrain performance. They also re-
ported that if the effort to reuse was perceived to be less
than 70% of the effort to build similar functionality, then an
attempt would be made to actually reuse existing software;
otherwise, new code would be constructed. These findings
prompt us to consider the nature of a technical solution to
improve developers’ search for reusable repository objects
as a means to improve their performance in software reuse.

ICE Development
4 A MULTI-STAGE MODEL FOR REUSABLE OBJECT

SEARCH
A key determinant of success in promoting more software
reuse is understanding the process that software developers
engage in that leads to reuse. We conceptualize repository
search as a set of related activities, each of which places
somewhat different demands on developers with varied
levels of knowledge of a repository’s contents. This con-
ceptual model is depicted in Fig. 3.

Stage 1 is screening. It involves the purposeful evaluation
of a large set of object reuse candidates from the entire re-
pository of software objects to determine a subset of near
matches for further investigation. One would expect varia-
tion in software developers’ ability to screen for relevant
objects, based on a number of factors that constrain their
knowledge of the repository. Such knowledge includes the
developer’s experience with ICE tools and the object re-
pository, the overall skill level as a software engineer, ap-
plication domain-specific experience, the maturity and
contents of the repository, and individual efforts to learn
about potentially reusable objects.

During Stage 2, identification, developers closely examine
the subset of objects assembled during screening to deter-
mine if any of its objects provides the desired functionality.
A number of factors are likely to influence a developer’s
performance in identifying objects with appropriate func-
tionality. These include the nature of the software devel-
opment environment and the extent to which it has been
crafted to emphasize reuse, the repository or application
metamodel or structure, the kind of application object that
is sought (general or highly specific in function), the kind of
satisficing metric that a software developer applies to de-
termine if an object will deliver the necessary functionality,
and the presence of a reusable object search support facility.
Stage 3 is a decision phase which completes the process. A
developer must decide whether to implement a reusable
repository object, or scratch build a new one. We do not
consider the decision phase in the present research.

The underlying idea of the model is that a developer’s in-
volvement in the screening process should purposely be kept
to a minimum. With a large number of objects to screen-the
relevant objects like needles in a haystack-it is unlikely that
a developer will be able to locate the requisite functionality in
Stage 1. On the other hand, we would expect the developer to
be more proactive in Stage 2, where identification occurs
from among a smaller number of objects.

5 A CONCEPTUAL BASIS FOR EUSABLE OBJECT
CLASSIFICATION

We conducted a set of structured interviews in field studies
of ICE development practice at two large organizations, an
investment bank and a specialized software development
consultancy. The interviews were aimed at discovering a
classification schema for ICE repository objects. In these
interviews, we learned about key issues that a solution
would need to address and the demands that would be
placed on a classification mechanism for repository objects.

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS

Environment Types

" Appircation Satisficing
Objects Metrics

* Repository * Reuse Search
Structure Facihty

Predictors of Screening
Udent f ica t ion Phase Success

41 3

, , ,

I

Screening and Identification
Phase Constraints

* Specific * T"
Objects

* Apphcafion * Skill-level
Experience

* Individual * Famiharity with
Knowledae ob/ects

I , NEW OBJECT , I CONSTRUCTION I

fl IMPLEMENTATION

Fig. 3. A multistage descriptive model of search for reusable software objects

5.1 Interviews with Software Developers

Preliminary Interviews. The purpose of the preliminary
interviews was to establish a structured format for the sub-
stantive interviews that would enable us to specify a reus-
able object classification. Three software developers partici-
pated. These interviews reinforced what we learned in prior
research about reuse of ICE repository objects: developers
reported that reuse of RULES was less than what might be
expected. They reported difficulties with the keyword-
based repository search facility that was then available as a
part of the ICE tool set. Developers also indicated that reuse
of RULE objects, not surprisingly, would yield the highest
payoffs by reducing overall costs in the construction phase.
They suggested to us that a good first step in improving the
support for repository search would be to pilot a facility
that improved their ability to search for RULE objects. In
response, we decided to limit the scope of our investigation
in later interviews to the reuse of RULE objects only. As a
result, the illustration that appears later in this article will
be limited to ICE RULES only.

Interviews to Establish a Repository Object Classifica-
tion. Seven developers participated in taped interviews of
one hour or more. The subjects included two experts who
had more than twelve years of general software engineer-
ing experience each, two novices with about one year of
experience, and three people with five to eight years of ex-
perience. The interviews had two parts. The closed-ended
portion of the interview attempted to elicit information
about the kinds of information that would be necessary to
exhaustively classify ICE repository objects. The classifica-

tion task focused on repository RULES, and developers'
responses suggested a strong awareness of the ICE meta-
model. We asked them to choose 10 objects from a reposi-
tory that they knew well, and develop a classification
scheme with as many as eight dimensions. They were also
asked to estimate the extent to which these objects were
reused. The open-ended portion of the interview was in-
tended to reveal issues that the developer thought were
important, either to clarify responses to the closed-ended
questions or to explore other related issues that might have
a bearing on the feasibility of specifying a workable classifi-
cation mechanism.

Developer exposure to the ICE environment varied, with
less than one year at the low end and approximately four
years (the age of the tool set at that time) at the high end.
Participants also were asked to estimate how many objects
they were familiar with in their development environ-
ments. Expert developers indicated a knowledge of or ex-
perience with between 5,000 and 10,000 repository objects
based on three to four years experience with ICE. Novices
knew much less about the repository, reporting familiarity
with an average of about 300 objects. Other developers in-
dicated knowledge of between 1,000 and 3,000 objects, with
an average of about 1,500. Awareness of object reuse levels
varied, with experts indicating more awareness of the po-
tential for a given object to be reused.

5.2 A Classification Schema for RULE Objects in an

The most important finding in the interviews was that it
was possible to construct a robust classification schema for

ICE Repository

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

ICE repository objects. ICE software developers classified
RULE objects in terms of the three facets: vepository, func-
tionality and domain. Table 3 presents this classification
schema.’ This general approach is applicable to other ICE
objects, and, in principle, to other repository-based CASE
environments, too.

The Repository Facet. This describes how a RULE re-
lates to other objects. For example, a RULE may call or be
called by another RULE, and is classified as a DRIVER or a
SUB-RULE, as a result. A RULE that enables user interac-
tion via a WINDOW is classified as an INTERACTION. It
also is possible for a RULE to be classified under many
categories. For example, referring to Table 3, a RULE can be
a ROOT and a DRIVER, a SUB-RULE, and a DRIVER, or a
DRIVER and an INTERACTION-all at the same time. We
believe that the repository facet emerged as a result of de-
velopers’ awareness of the repository object metamodel.
Developers work within the context of this metamodel, so
their mental model reflects the repository structure. Hence,
they classify RULES in terms of their relationship to other
repository objects.

The Functionality Facet. This facet describes the kind of
processing that the RULE implements, e.g., calculations, da-
tabase access, security, etc. It is possible to further refine the
classification shown in Table 3, e.g., by specifying the kind of
SQL operation in terms of a ”CRUD matrix, involving ac-
tions to create, retrieve, update, or delete. This facet also oc-
curs in other CASE environments. For example, in Texas In-
struments’ IEF [19], Process Action Diagrams (PADS) pro-
vide the processing logic for an elementary process that al-
ways has at least one CRUD operation against one or more
entity types. Common subroutines are called Process Action
Blocks (PABs), and Procedure Action Diagrams (PRADs)
start interaction screens. Thus PAD corresponds to SQL, PAD
to SUB-RULE, and PRAD to INTERACTION.

The Business Domain Facet. We also learned that devel-
opers classify software objects in terms of the general domain
in which the objects are used. In ICE, as in other CASE envi-
ronments, software objects form part of larger applications
that support operations in specific business domains. Exam-
ples of such applications involve customer support, salesper-
son contacts, and pretrade analysis of financial instruments.
The corresponding business domains are CUSTOMER,
CONTACT, and PRODUCT MASTER. The business domain
facet of a RULE records the domain of the application to
which the rule belongs. However, if a RULE is reused in
more than one application, there will be multiple entries.

5.3 Classification Illustration
To illustrate these findings, we consider the schema’s abil-
ity to classify members of a set of ICE RULES that might be
encountered in a prototypical customer account applica-
tion, as shown in Table 4. Table 5 shows how these RULES
would be classified in terms of the repository, functionality
and domain facets.

1. The reader should recognize that this categorization is not exhaustive;
it is merely illustrative. We currently have research underway that aims to
elicit a more complete characterization of the classification schema that
software developers use in this context.

Some explanation regarding the values for the function-
ality facet may help readers understand the example better.
The classifiers in the table are DISPLAY, ERROR, SEARCH,
SECURITY, SQL, THREAD, and UTILITY. DISPLAY
RULES present information to and elicit information from
users. By definition, a RULE is a DISPLAY RULE if it inter-
acts with a window. ERROR RULES perform error-checking
routines, such as displaying an error message. SEARCH
RULES perform select queries on a database. SECURITY
RULES deal with password and other kinds of protection.
SQL RULES, as the name indicates, perform SQL queries.
Some more specialized SQL RULES have more definite
classifiers, like SEARCH, already mentioned, and
THREAD. THREAD RULES implement linked lists. For
example, linking a customer record to all the customer’s
account activity records. Finally, UTILITY RULES perform
general utilities that are used in multiple settings, such as
transforming dates into text. Experienced developers un-
derstand these facet values and are readily able to apply
them to describe the object. Novices obviously would need
to be trained to understand how to distinguish among the
facet values to adequately describe a repository object.

6 A HYPERTEXT-BASED ARCHITECTURE TO
SUPPORT REUSE

Hypertext has the potential to provide a more powerful
search capability than existing approaches offer. Our goal
in this section is to illustrate how hypertext can be brought
to bear on the different problems that developers face in
Stages 1 and 2 of the reusable object search process.

6.1 Stage 1-Support for Screening
Using our classification schema, the user would specify the
functionality to be implemented via an interactive screen in
which descriptors, belonging to the various facets, are elic-
ited. Screening consists of retrieving from the repository a
set of objects that belong to the classification specified by
the developer. The objective during this stage is the re-
trieval of a manageable set of candidates for reuse. By the
end of screening, a sizable set of potentially relevant ob-
jects-the set of candidate objects for reuse-will have been
extracted from the repository. Some of the retrieved objects
may not be completely relevant to the task to be imple-
mented, but most of the relevant ones ought to be included.
It would be too labor-intensive to individualIy examine
each of them at this point: there will still be too many. In-
stead, the candidate objects need to be organized to facili-
tate inspection during the identification stage.

Next, the set of candidate objects that is obtained can be
structured as a network of hypertext guided tours accord-
ing to the classification schema. Although the creation of
the hypertext guided tours is transparent to developers,
they will use it in Stage 2 to inspect objects for reuse. Fig. 4
illustrates the use of guided tours to interweave related
software objects.

The objects shown in the figure all have the same value f
for facet F. Construction of the guided tours is based upon
the following algorithm:

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS

Functionality
Classifier

SECURlTY

CALCULATlON

CLlE NT/S E RVE R

DIALOG

ERROR MES-

41 5

Description
passwords, etc.

numeric
calculations

communication
protocols
interaction with
user
displays error

I Repository

CUSTOMER

FINANClA L

FIRM

GENERAL

PARTNER

Classifier

buyer firms

financial
instruments
general aspects
of a company
applies to all
domains
firm specifics

NTERACTION

ROOT

SUB-RULE
SAGER

Description
calls other RULES

uses other objects
such as VIEWS,
WINDOWS and
other RULES
is not called by
any RULE
is at the tor, of the

I ,

messages

calling hierarchy
is called by

SQL

THREAD
SEARCH

UTILlTY

another RULE

ria
database
operations
links objects
seeks and
locates
general
functionality,
e.g., get date

TABLE 3
A CLASSIFICATION SCHEMA FOR ICE RULES

RULE Name Description

APPROV-FRONT-CHK
COMMENT-DETAIL

RETXIEVE retrieve based

account number
Checks whether the ID entered by the user matches the terminal ID.
Lets user type in free-form text and stores i t in the

I I on input crite-

PMUXXX
PRODUCT-DETAIL
SALESMAN-NAME
SAVE-DATA

Driver rule for product manager add
Display product detail
Display salesman name listbox Calls retrieval rule
Displays a message asking whether to save the data or not

Domain

STORE-SQL-ERRORS
SUBORDI-CUST-LINK
WP-CONTACT
WP-PARTNER-DYN-SQL-FET
WP-PARTNER-FIRM-SQL-FET
WP-PARTNER-SQL-SEL

Classifier Description
COMM-REC I commercial

Processes SQL error, puts table, displays message
Displays customer children in a listbox
Calls other rules to display customer contact information
Populates a listbox based on input criteria.
Fetchlloin WP-FIRM and WP-PARTNER
Select from WP-Partner

CONTACT contact person
within a
customer’s firm

other instruments MASTER

ACCOUNT-LINK(#l)
ACCOUNT-LINK(#2)

I Links and displays all accounts available for a given customev.
I Displays all accounts for a given customer given the account name or

41 6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

APPROV-FRONT-CHK
COMMENT-DETAIL

TABLE 5
RULE CLASSIFICATION: AN ILLUSTRATION

THREAD FINANCIAL
DRIVER SECURlTY CUSTOMER
DRlVER DISPLAY, THREAD, CUSTOMER

Repository I Functionality I Domain RULE Name
ACCOUNT-LINK(#l) I INTERACTION I DISPLAY, SEARCH, I CUSTOMER 1 THREAD I FINANCIAL
ACCOUNT-LINK(#Z) I INTERACTlON I DISPLAY, SEARCH, I CUSTOMER

Fig. 4. A guided tour, GT,, connecting objects a,, a2, ..., a,, with facet value f.

If al, a2 ..., an are all the objects obtained from screening with a
value off for facet F, they are collected into a guided tour GT f =
[al, a2, _.., an). First the objects are arranged in lexicographic
order by rule name.’ Then links labeled f a r e created to connect
a special start node labeled GT to node al, node al to node a2,
node a2 to node a3, and so on, closing the list by linking node
an back to the start node GT

6.2 Stage 2-support for identification
Now, a developer can proceed to explore the set of candi-
dates during the identification step using a hypertext-based
tool that enables inspection of various objects by navigating
from object to object, within the set of candidates for reuse.
The navigational capabilities of hypertext facilitate rapid tra-
versal of the network to locate target objects for reuse. Navi-

f

f
gation is helpful in zeroing in on the requisite functionality

2. The ordering criteria can reflect more specific information, such as ob-
ject similarity, if this is available.

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 41 7

because the links are set up according to a classification
schema that reflects the organization of the repository.

The network of interconnected links obtained from the
screening phase gives developers additional capabilities to
learn about related software functionality in the repository.
Fig. 5 shows a portion of two intersecting guided tours, one
linking RULES classified under the facet value INTERAC-
TION (including RULES 7, 8, 10, 11, and 12), and the other
linking RULES classified as SQL (RULES 7,12, and 15).

It is possible to use techniques other than hypertext to
implement the identification stage of search. In lieu of hy-
pertext network navigation, one could use keyword search
or full-text search. However, we have argued that there are
persuasive reasons that explain why these techniques are
unlikely to achieve the desired results. Hypertext, by con-
trast, offers significant advantages. Fiust, developers can
actively refine their search by inspecting software objects
and by deciding the direction for further navigation. This
ensures that developers are in control of the identification
process, and, as a result, are likely to conduct a more thor-
ough search. Second, the active nature of hypertext network
navigation and object inspection will result in an increased
awareness of repository contents. Hypertext-supported
repository search, therefore, enables developers to become
more familiar with the repository, which, in turn, reduces
future search costs. Third, hypertext enables the exploration
of a relatively large set of objects, and so the initial screen-
ing does not need to be very precise. The benefits of the
navigational aids provided in typical hypertext tools are,
therefore, likely to have a favorable impact on overall
search costs, and, thus, improve the potential for reuse.

When identification concludes, the developer will have
located and retrieved a small set of applicable objects that
can be reused. More importantly perhaps, this process will
yield information about whether there are objects with the
appropriate functionality that are in the repository. This
knowledge will assist the developer in coming to the right
decision about whether to scratch build an object.

The ambiguity problems we referred to in Section 2
prompt additional discussion. Lexical ambiguity can be
minimized by implementing a controlled vocabulary. When
developers select search criteria they do so by picking from
a set of given classifiers-a pull-down menu incorporating
the feasible choices is a practical approach to communicate
this constraint. Hypertext capabilities are also geared to
enable developers to resolve the related problem of near
matches. The various guided tours group together objects
when they have similar functionality. Developers can easily
inspect similar objects by following these guided tours.

6.3 Hypertext Illustration
Imagine a developer who is working with an ICE reposi-
tory that contains the sample ICE RULES presented earlier.
Further suppose that the developer needs a high level
RULE to produce a report on the current status of all ac-
counts for a given customer. To start the process of building
the RULE, the developer engages in the screening phase by
issuing a request to retrieve all RULES belonging to the
CUSTOMER domain. The resulting sixteen RULES are
shown in Table 6.

Screening concludes with the creation of hypertext
guided tours linking the various rules. For each facet value
that is shared by more than one RULE, a guided tour is cre-
ated. The resulting eleven guided tours are shown in Table 7,
where numbers refer to the RULE numbers as they appear
in Table 6. Fig. 6 shows portions of guided tours GT-I, GT-3,
GT-6, and GT-10.

Next comes identification. Each of the guided tours cre-
ated at the end of the screening step enables a developer to
explore similar RULES, i.e., those that share the same classi-
fier in a given facet. Because some of the guided tours inter-
sect with each other, there are opportunities for a developer
to move among exploration paths at intersection points.
Fig. 7 depicts a portion of the derived hypertext network
that shows the intersection of guided tours at RULE CUST-
ACCOUNTS (RULE 7). Upon reaching that RULE, a devel-
oper has the ability to continue exploring along any of the
three guided tours, i.e., move directly to RULE 8 (via GT-1
or GT-10), to RULE 12 (via GT-3) or to RULE 16 (via GT-6).

As we see in Fig. 6, RULE 7, CUST-ACCOUNTS, is re-
lated to RULE 16, SUBORDI-CUST-LINK, via GT-4,
which groups THREAD RULES. RULE 7 is connected to
RULE 8 via two links, representing the INTERACTION (GT-1)
and CUSTOMER (GT-10) guided tours. RULE 7 is also con-
nected to both RULE 12 via the S Q L rules guided tour and
to RULE 16 via the THREAD RULES guided tour.

A software developer can become disoriented if the re-
sulting hypertext network is too complex. There are two
potential sources of complexity: Either there are too many
intersecting guided tours, or too many candidates for inspec-
tion (each candidate can spawn a guided tour). The first case
only occurs if there are RULES that are classified under a
large number of criteria. An inspection of Table 5 reveals that
in our illustration the highest such number is five, which is
manageable. Moreover, our interviews with developers indi-
cated that rules classified under more than five categories
could not exhibit sufficient modularity to be reusable’. The
only remaining potential source of complexity is a large can-
didate pool. However, the size of the candidate pool can be
controlled during screening by specifying precise search pa-
rameters. Thus, the useh can control the complexity of the
hypertext network. In addition, a reuse tool can monitor the
results of screening and advise a software developer when
search criteria are vaguely specified.

Our illustration demonstrates how to construct a hyper-
text network to support reuse from a classification of soft-
ware objects. It is also readily automated: most of the in-
formation needed to classify ICE RULES is present in the
repository. Thus, we have shown how the principles of fac-
eted classification and hypertext can be merged into an
automated software tool to better support reusable object
search.

3. We also deduce from this the inadequacy of a classification schema
where objects are classified under a large number of categories.

418

14
15
16

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

SAVE-DATA

SUBORDI-CUST-LINK
STORE-SQL-ERRORS

Fig. 5. Intersecting guided tours

TABLE 6
RESULTS FROM SCREENING

CUST-INFO-UPD ATE

CUST-NAME-ADDR

CUST-EXCPTN-SUMRY

TABLE 7
HYPERTEXT GUIDED TOURS GENERATED BY USING THE FACETED CLASSIFICATION

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 41 9

RULE 12 RULE 7 RULE 12 RULE 7

. . .

Fig. 6. Four guided tours containing RULE7

Fig. 7. A portion of the derived hypertext network

7 THE PROTOTYPE
A prototype reuse search support system to operate within
ICE object repositories was built with the assistance of ex-
perienced software engineers. The prototype is the result of
an ongoing collaborative corporate and university research
effort to extend ICE’S repository evaluation and software
development tool set. The repository object search support
facility is intended to run in client-server environments un-
der OS/2, however, the prototype was built to run off a
development repository stored locally on the client. It was
implemented using ICE, and its objects were added to the
local development repository.

7.1 ORCA and AMHYRST
Reflecting the conceptual basis of our model for reusable
object search, the system consists of two primary tools, as
shown in Fig. 8, that perform object classification and
screening.

The first tool, called ORCA for Object Beuse Classification
- Analyzer, implements screening by combining an automated
repository classifier and a query processor. This tool en-
ables system developers to specify repository queries based

on classification criteria that they supply. The classification
is performed automatically by using information present
within the ICE repository. Thus, developers are not re-
quired to manually classify the RULES. The second tool,
AMHYRST, which stands for AutoMated E p e r t e x t Reuse
- Search Tool, organizes the query results into a hypertext
network and enables developers to inspect the query results
via a hypertext engine.

7.2 Prototype Operation
We now depict a sample session with ORCA and AM-
HYRST, by presenting three screens that correspond to
what the user sees when using the tools. The developer
starts by selecting facet values from the three list-boxes
shown in Fig. 9. Each list-box corresponds to one of the
three classification criteria discussed earlier. The use of list-
boxes ensures that developers choose valid classifiers,
thereby eliminating word choice problems, and spelling or
typing errors. In this example, the user has specified a
search for RULES classified as LEAF and SQL in any busi-
ness domain.

The names of all the RULES satisfying the criteria are
retrieved into the screen shown in Fig. 10. The classification
boxes shown enable the user to carefully define the objects
to be explored. For example, by selecting F I R M , and click-
ing on the right (left) arrow, the developer is presented
with the next (previous) F I R M RULE from the list. The
guided tours to traverse are selected by clicking on a classi-
fication box, and the arrows determine the direction of
navigation within the guided tour (recall that rules are or-
der lexicographically within a guided tour). The developer
can inspect a RULE more closely by double clicking on its
name. This brings up the detailed screen as shown in Fig. 11.

The prototype system contains an algorithm that classi-
fies objects based on information available in the repository.
With each classifying facet for an ICE object, we associate
a value that determines its membership in a given class.

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

n ORCA

L
3

ICE REPOSITORY 0
AMHYRST

Select searen Query Processor

Network of
Candidates

candidate pool
Navigation

m

Legend,
rectangle-processing function
oval-database function
hexagon-ICE repository
rectangle with rounded corners-input screen function

Fig 8. An architecture for the prototype reuse search tool

-
- Reuse Query Help

Please select classification criteria,

Repository Functionality Domain
- - -- ~

DRIVER CALCULATION CGHTACT

IHlERACTIGH DISPLAY FIHAHCIAL

F I R M

S U B R U L E YALIDATIOW

- -

Fig. 9. Screen used to enter criteria for search.

I

Fig. 10. RULES satisfying the search criteria.

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 421

' DELETE FROM WP-PARTNER

~ DWP-PARlNER-SQL-DEL-I WP-PARlNER-I

j EMDSQL
I

WHERE WP-PARlMER-ID =

'> I f acont-t 1s deleted, then ,vu nust also

<*
*> delete all infomation ownedlrelated to him
<*
*> *ole5 <*
> -language profiles <
> 15sue5 asaocmed with this <
*> -do we delete the contact's firm [probably
no] <*

*) not sure how to delete all records -4th a
condition <*

Return to Index... - _ .

Rnce5,iog

Repofiory

Fig. 11. Hypertext navigation to inspect contents of a RULE.

Table 8 shows a number of the classification methods that
were used to implement the repository, business process
and domain facets in the prototype. The criteria that are
listed under "Method are experimental; they are currently
being refined by ICE developers. The automated classifier,
ORCA, uses these methods to produce a set of inverted
tables, one per classifier, containing all the RULES that fall
under a classification. When a developer selects criteria for
search using the classification screen, an SQL query is fired
against these internal tables. Then, the results are retrieved
into a temporary area that is used by AMHYRST to pro-
duce the hypertext network. Finally, a hypertext engine
allows the developer to browse the network of guided tours
to identify an appropriate rule for reuse.

7.3 Implementation Considerations and Limitations
Two important implementation concerns became evident
through the development of the prototype. First, the criteria
for object classification are likely to evolve over time, as the
repository grows and the CASE tool set changes. As a result,
ORCA will eventually need to accommodate changes in the
classification schema. In the prototype, the criteria for classi-
fication were hard-coded, offering insufficient flexibility to
address this problem. Adding new classifiers requires re-
compilation of significant portions of the prototype system.
To overcome this limitation, we contemplate using a classifi-
cation table with the format shown in Table 8. This would be
used as an input parameter to ORCA, enabling it to be fine-
tuned as useful new classifications are discovered. It will also
be helpful to have facilities that enable this table to be edited.
Second, we learned from the reactions of people who evalu-
ated the prototype that fast response times are essential in
true client-server ICE development. For example, slow re-
sponse times for the classification of a server-based reposi-
tory will lead developers to perceive excessive search costs.
They then would be reluctant to use the search facility. A

compromise that we are exploring is to have ORCA classify
the repository off-line, on a periodic basis, so that the last
classification can be accessed immediately. A second ap-
proach that we are exploring is to classify the repository in-
crementally. The benefits of fast access are perceived to out-
weigh the disadvantages of not including recently created
RULE objects in the search process.

Currently, the prototype has limited hypertext naviga-
tional facilities, and is restricted to RULE objects and to a
small set of classifiers. In spite of these restrictions, the
prototype demonstrates the applicability of our reuse
search model. It also demonstrates the feasibility of speci-
fying an automated classification algorithm. Based on our
experience, a reusable object search tool that does not in-
corporate this feature will be very inefficient to use. An-
other limitation of our prototype is that it places no struc-
ture on Stage 3, the decision phase. An important step to-
wards' improving a developer's ability to decide whether to
build a new object is to provide an estimate of what it
might cost to build an object with relatively similar func-
tionality. For this reason, we are conducting additional re-
search to determine standard costs for various kinds of re-
pository object types, and how such costs could be esti-
mated from existing repository information.

7.4 Contributions
The contributions of this research are threefold. We have
proposed and illustrated an approach to automating classi-
fication of object repository objects in an integrated CASE
environment. We have shown that hypertext technology, in
conjunction with an repository-based application meta-
model, provides a useful set of capabilities to expand de-
velopers' capabilities to search for reusable software ob-
jects. And, we have demonstrated how these observations
can be used to design working reuse search support tools
for real world software development.

422

SUB-RULE

LEAF-RULE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

SELECT FROM RULE-RULE Look up TABLE RULE-RULE if
the RULE is used by another RULE WHERE INSTANCE-A = rule-id

SELECT FROM RULE-RULE Look up in TABLE RULE RULE
if the RULE does not use another WHERE INSTANCE-B = rule-id

TABLE 8
STORAGE OF CLASSIFICATION METHODS IN ICE TABLES

DISPLAY

WHERE ENTITY-TYPE-B = RULE
AND INSTANCE-E = rule-id

SELECT FROM RULE-WINDOW
WHERE ENTITY-TYPE-B = RULE RULE-WINDOW

Look up RULE in the TABLE

ACKNOWLEDGMENTS
The authors wish to acknowledge Marc Baric, Gene Bedell,
Tom Eichner, Gig Graham, Tom Lewis, Richard Mosebach,
Michael Oara, Tom Robben, Cecelia Poppleton, Vivek
Wadwha, and Charlie Wright for the access they provided
us to data on software development projects and manager’s
time tliroughout our field study of software reuse in CASE
development at Kidder Peabody and Seer Technologies. We
also thank the software developers and managers for par-
ticipating in interviews that enabled the research results on
which we report here. We also thank Tony Phillips, Allan
Rosenstein, and Howard Sloan for developing the proto-
type system. Finally, we wish to acknowledge Michael Bie-
ber, Minder Chen, Hank Lucas, and Dani Zweig, whose
comments influenced earlier drafts of this paper. All errors
are the responsibility of the authors.

I11

121

131

141

151

161

REFERENCES
U. Apte, C.S. Sankar, M. Thakur, and J. Turner, ”Reusability
Strategy for Development of Information Systems: Implementa-
tion Experience of a Bank,” MTS Quarterly, vol. 14, no. 4, pp. 421-
431, Dec. 1990.
R.D. Banker and R.J. Kauffman, ”Reuse and Productivlty: An
Empirical Study of Integrated Computer-Aided Software Engi-
neering (ICASE) Technology at the First Boston Corporation,”
MIS Quarterly, vol. 15, no. 3, pp. 375-401, Sept. 1991.
R.D. Banker and R.J. Kauffman, ”Measuring the Development Per-
formance of Integrated Computer-Aided Software Engineering
(ICASE): A Synthesis of Field Study Results from the First Boston
Corporation,” Analytical Methods for Softzuare Eng. Econoinics I , T.
Gulledge and W. Hultgren, eds. New York Springer-Verlag, 1993.
R.D. Banker, R.J. Kauffman, and D. Zweig, ”Repository Evalua-
tion of Software Reuse,” I E E E Trans. Soffzuare Eng., vol. 19, no. 4,
pp, 379-389, Apr. 1993.
M.J. Bates, “Subject Access in On-Line Catalogs: A Design Model,”
1. Am. Soc. lnforniation Sciences, vol. 37, no. 6, pp. 357-376, Nov. 1986.
B. Beckman, W. Van Snyder, S. Shen, J. Jupin, L. Van M7arren, B.
Boyd, and R. Tausworthe, “ESC: A Hypermedia Encyclopedia of
Reusable Software Components,” Jet Propulsion Laboratory, Cali-
fornia Inst. of Technology, Pasadena, Sept. 1991.

171

[8]

J. Bigelow and V. Riley, “Manipulating Source Code in Dynamic
Design,” Hypertext ’87 Proc., pp. 397-408, Chapel Hill, N.C., Nov. 1987.
D.C. Blair and M.E. Maron, ”An Evaluation of Retrieval Effec-
tiveness for a Full-Text Document-Retrieval System,” Comm.
ACM, vol. 28, no. 3, pp. 289-299, Mar. 1985.

[9] G. Booch, ”What Is and Isn’t Object-Oriented Design,” Ed Your-
don’s Soffzuare J., vol. 2, no. 7-8, pp. 14-21, Summer 1989.

[lo] M.L. Creech, D.F. Freeze, and M.L. Griss, “Using Hypertext in
Selecting Reusable Software Components,” Hypertext ’91 Proc.,
pp. 25-38. San Antonio, Tex., Dec. 1991.

[I1 J J . Conklin, ”Hypertext: An Introduction and Survey,” Computer,
vol. 20, no. 9, pp. 17-41, Sept. 1987.

1121 M. Clien, ”A Model Driven Approach to Accessing Managerial
Information: The Development of a Repository-Based Executive
Information System,” 1. Management Information Systems, vol. 11,
no. 4, pp. 33-63, Spring 1995.

[13] W.B. Frakes and T.P. Pole, ”An Empirical Study of Representation
Methods for Reusable Software Components,” I E E E Tyans. Soft-
zuare Eizg., vol. 20, no. 8, pp. 617-630, Aug. 1994.

[141 G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais, ”The
Vocabulary Problem in Human-System Communications,” Comm.
ACM, vol. 30, no. 11, pp. 964-971, Nov. 1987.

[15] P.K. Garg and W. Scacchi, ”A Hypertext System for Software Life
Cycle Documents,” I E E E Softwave, vol. 7, no. 3, pp. 90-98, May 1990.

[16] F. Garzotto, P. Paolini, and L. Mainetti, ”Navigation in Hypermedia
Applications: Modeling and Semantics,” J. Org. Comp., forthcoming.

[17] F.G. Halasz, “Reflections oii Notecards: Seven Issues for the Next
Generation of Hypermedia Systems,” Comnz. ACM, vol. 31, no. 7,

[18] S. Henninger, “Using Iterative Refinement to Find Reusable Soft-
ware,” I E E E Trans. S O ~ ~ Z U R W Eng., vol. 11, no. 5, pp. 48-59, Sept. 1994.

[I91 IEF Technical Description: Methodology and Technology Overview,
TI Part #2739900-8120, Texas Instruments, Plano, Tex., Aug. 1992.

[20] T. Isakowitz, “Hypermedia in Organizations and Information
Systems: A Research Agenda,” Proc. 26th Hazuaii Int’l Conf. Sys-
tems Science, vol. 3, pp. 361-369, Maui, Hawaii, Jan. 1993.

[211 J. Karimi, “An Asset-Based Systems Development Approach to
Software Reusability,” MIS Quarteuly, vol. 14, no. 2, pp. 179-198,
June 1990.

[22] 1’. Kerola and H. Oinas-Kukkonen, “Hypertext System as an In-
termediary Agent in CASE Environments,” The Impact of Computer
Supported Technologies on Information Systems Development, K.E.
Kendall, K. Lyytinen, and J. DeGross, eds., pp. 289-313. New
York: North-Holland, 1992.

[23] Y. Kim and E. Stohr, “Software Reuse: Issues and Research Direc-
tions,” Proc. 25th Hawaii Int’l Conf. Systems Science, vol. 4, pp. 612-
623, Maui, Hawaii, Jan. 1992.

pp. 836-852, July 1988.

ISAKOWITZ AND KAUFFMAN: SUPPORTING RESEARCH FOR REUSABLE SOFTWARE OBJECTS 423

[241 J. Nielsen, Hypertext and Hypermedia. New York: Academic Press,
1990.

P51 J. Nielsen, ”Navigating Through Hypertext,” Comm. ACM, vol. 33,
no. 3, pp. 297-310, Mar. 1990.

1261 R. Prieto-Diaz, “Implementing Faceted Classification for Software
Reuse,” Comm. ACM, vol. 34, no. 5, pp. 89-97, May 1991.

1271 R.H. Trigg, ”A Network-Based Approach to Text Handling for
the On-Line Scientific Community,” Computer Science Technical
Report no. TR-1346, Dept. of Computer Science, Univ. of Mary-
land, College Park, 1983.

1281 W. Van Snyder, ”Software Classification and Retrieval,” Technical
support package for NASA Technical Brief NPO-18530, NASA
Techical Briefs 17,8, Item 27, Aug. 1993.

[291 R.J. Welke, “The CASE Repository: More Than Another Database
Application,” Challenge and Strategies for Research in Systems Devel-
opment, B. Cotterman and J.A. Senn, eds., pp. 181-218. New York:
John Wiley, 1992.

[301 S.N. Woodfield, D.W. Embley, and D.T. Scott, “Can Programmers
Reuse Software?” IEEE Softzuare, vol. 4 no. 4, pp. 52-59, July 1987.

[31] W.A. Woods, ”What’s in a Link Foundations for Semantic Net-
works,” Representation and Understanding: Stndies in Cognitive Sci-
ence, D.C. Bobrow and A. Collins , eds., p. 82. New York Aca-
demic Press, 1975.

Tomas lsakowitz received his BSc in mathe-
matics at the Hebrew University of Jerusalem,
his MSc in mathematics at the University of
California at Santa Barbara, and his MEng and
PhD in computer science at the University of
Pennsylvania. He is an assistant professor of
information systems at New York University
Stern School of Business. His research interests
are hypermedia technology and its applications,
decision support and temporal databases. Pro-
fessor lsakowitz taught at New York University’s

Stern School of Business, the International University of Japan, and
the University of Pennsylvania, and was a visiting scholar at Stanford
Research Institute. Dr. Isakowitz’ software engineering research inter-
ests focus on exploring new paradigms and methodologies to facilitate
software development, encourage software reuse, and encourage solid
system construction. He is actively involved in hypertext research, and
has written extensively about the design and development of hyper-
texvhypermedia applications. His publications have appeared in the
Journal of Management Information Systems, Communications of the
ACM, Decision Support Systems, AGM Transactions on Database
Systems, ACM Transactions on Office Information Systems, Decision
Support Systems, and elsewhere. He currently serves on the editorial
boards of the Journal of Management Information Systems, the Journal
of Electronic Commerce, and as a special issue editor for the Journal
of Organizational Computing and the Communications of the AGM. Dr.
lsakowitz has worked as a consultant for several international, and is
actively involved in the academic and practical issues involving the
design of hypermedia applications.

Robert J. Kauffman (completed a PhD in nndus-
trial administration at Carnegie Mellon University,
and also holds degrees from Cornell University
and the University of Colorado, Boulder He is an
associate professor of information systems and
decision sciences at the Carlson School of Man-
agement, University of Minnesota. He taught at
New York University’s Stern School of Business
and the University of Rochester’s Simon Gradu-
ate School of Management, and was a visiting
scholar at the Federal Reserve Bank of Philadel-

phia. Dr. Kauffman’s software engineering research interests focus on
exploring new methods and perspectives for estimating software costs,
evaluating application performance, and understanding the leverage
that new software development techniques provide in maximizing the
value of the firm. His broader research agenda as a business tech-
nologist involves assessment of the value of information technology
investments and applications of information technology in the financial
services arena, using techniques from economics, finance, and man-
agement science His publications have appeared in Decision Science,
EFT Today, IEEE Transactions on Software Engineering, Information
and Management, Information and Software Technologies, Journal of
Management Information Systems, Journal of Strategic Information
Systems, MIS Quarterly, and elsewhere He currently serves on the
editorial boards of Information Systems Restoarch, the Journal of Man-
agement Information Systems and the Journal of Electronic
merce, and as a special issue editor for the Journal of Organiz
Computing and the Communications of the ACM.

Com-
ational

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-1996

	Supporting search for reusable software objects
	T. ISAKOWITZ
	Robert J. Kauffman
	Citation

	Supporting search for reusable software objects

