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Abstract 20 

 21 

One model of signal evolution is based on the notion that behaviours become increasingly 22 

detached from their original biological functions to obtain a communicative value. Selection may 23 

not always favour the evolution of such transitions, for instance, if signalling is costly due to 24 

predators usurping signal production. Here, we collected inertial movement sensing data recorded 25 

from multiple locations in free ranging horses (Equus caballus), which we subjected to a machine 26 

learning algorithm to extract kinematic gestalt profiles. This yielded surprisingly rich and multi-27 

layered sets of information. In particular, we were able to discriminate identity, breed, sex and 28 

some personality traits from the overall movement patterns of freely moving subjects. Our study 29 

suggests that, by attending to movement gestalts, domestic horses, and probably many other 30 

group-living animals, have access to rich social information passively but reliably made available 31 

by conspecifics, a finding that we discuss in relation to current signal evolution theories.  32 

 33 

Keywords: Animal communication, movement gestalt, signal evolution, phylogenetic 34 

ritualization, horse cognition  35 
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Introduction 36 

 37 

Horses are well known for their highly developed perceptual abilities of processing movement 38 

patterns (Budiansky 1997; Murphy and Arkins 2007), an ability that may allow them to make 39 

inferences about the intentions and motivational states of conspecifics and, after domestication, 40 

their human caretakers (Pfungst 1907). We were interested in the origins of these advanced 41 

perceptual abilities in domestic horses. We reasoned that their evolution must have emerged from 42 

richly available postural information and movement gestalts, naturally produced by conspecifics 43 

during daily activities in this highly social species (Laidre and Johnstone 2013). To our 44 

knowledge, close to nothing is known about the kind of information naturally available from 45 

horses’ body movements, despite the likely importance of this channel of information for the 46 

evolution of perceptive abilities.  47 

 48 

In our study, we investigated whether and how intrinsic and context-unspecific movement 49 

patterns in freely moving domestic horses convey social information. Over evolutionary times, 50 

horses have presumably been exposed to high predation pressure, with no real antipredator 51 

strategies apart from rapid flight (McGreevy 2004). The ability to recognise and interpret others’ 52 

movement patterns may be particularly beneficial in such species due to the low signal-to-noise 53 

ratio and large variance in information content, a coding strategy that follows subtlety rather than 54 

conspicuousness (Laidre and Johnstone 2013). It is also likely that, for similar reasons, the 55 

evolution of a rich signal repertoire to coordinate social interactions was equally prevented to 56 

avoid attracting predators (Budiansky 1997), especially if alternative modes of information 57 

transfer were already effective. One hypothesis therefore is that natural selection has favoured 58 

alternative ways of enabling social coordination, bypassing the evolution of dedicated acoustic or 59 
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visual signals especially at close range, as commonly found in non-human primates (Arbib et al. 60 

2008; Budiansky 1997; Laidre and Johnstone 2013). This is not to say that horses do not have a 61 

rich communication repertoire, but they may not rely much on this ability when travelling or 62 

when exposure to predation is elevated for other reasons. 63 

 64 

We thus focused on information constantly available during natural movements of free-ranging 65 

horses. To this end, we recorded movement patterns of freely ranging horses via accelerometers 66 

mounted at different locations of their bodies. We temporally aligned the recordings from all 67 

sensors and randomly selected brief elements from these recordings for further analyses. This 68 

consisted of extracting statistical properties that we then classified using Support Vector 69 

Machines (SVMs). Classification was for the class labels identity, sex, breed and two behavioural 70 

traits (sensitivity, fearfulness). We first trained a SVM algorithm on a training set consisting of 71 

80% of the extracted feature vectors to create a model that best separated the classes (e.g. sex: 72 

‘mare’, ‘stallion’, ‘gelding’). We then used the remaining 20% of the extracted feature vectors as 73 

test samples to determine the percentage correct classification of all five categories: ‘identity’ 74 

(horse 1, horse 2, … horse n), ‘breed’ (warmblood, coldblood (Edwards 1994)), ‘sex’ (mare, 75 

stallion, gelding), fearfulness (four levels) and sensitivity (five levels).  76 

 77 

Accelerometers have already been used in studies of animal behaviour (Gerencser et al. 2013; 78 

Graf et al. 2015). To our knowledge, however, previous studies have been based on data from 79 

one sensor only, which are unlikely to capture the complex nature of animals’ movement 80 

patterns. By positioning six inertial sensors at different body locations, we sought to collect data 81 

to determine more complex gestalt profiles, a holistic processing method common in studies of 82 

face perception (Dahl et al. 2007; Tanaka and Farah 1991), forensic analysis (Vogelsang et al. 83 
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2017) and Chinese character recognition (Mo et al. 2015). Accelerometers have also been used in 84 

horses to address a range of applied problems relating to health, anomalies and performance, such 85 

as to detect lameness (Keegan et al. 2002; McCracken et al. 2012; Starke et al. 2012; Thomsen et 86 

al. 2010), analyse rhythmical movements of horse and rider, jumping patters or gait (Burla et al. 87 

2014) (Barrey and Galloux 1997), compare hoof ground impact on different surfaces (Ryan et al. 88 

2006; Thomason and Peterson 2008) and horse shoes (Dyhre-Poulsen et al. 1994) and evaluate 89 

racing abilities (Leleu et al. 2005).  90 

 91 

Here, we were interested in a more basic scientific problem, that is, whether horses could extract 92 

social information from observing others’ movement patterns. We focussed on a few very basic 93 

social parameters, i.e., identity, breed, sex, fearfulness and sensitivity. Horses can individuate 94 

conspecifics from their signal production across domains (audio-visual) (Proops and McComb 95 

2012; Proops et al. 2009) and are sensitive to others’ facial expressions (Wathan and McComb 96 

2014; Wathan et al. 2016), but it is not known whether these abilities generalise to movement 97 

patterns. While we think it is likely that this is the case, the main purpose of our research is more 98 

to demonstrate a principle, which is that naturally available social attributes could be identified 99 

through movement patterns.  100 

 101 

 102 

Materials and Methods 103 

 104 

Subjects 105 

Subjects were 26 healthy horses of warm-blooded and cold-blooded breeds. We used 15 warm-106 

blood breed individuals (2 stallions, age range [years]: M = 13.5, min = 13, max = 14; 6 geldings, 107 
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age: M = 6.5, min = 5, max = 9; 7 mares, age: M = 7.43, min = 5, max = 17) and 11 cold-blood 108 

breed individuals (4 stallions, age: M = 7.5, min = 5, max = 11; 2 geldings, age: M = 8, min = 6, 109 

max = 10; 5 mares, age: M = 6.4, min = 2, max = 10). None of the individuals suffered from any 110 

orthopaedic or neurological disorders. 111 

 112 

Data collection 113 

Data were collected at the Swiss National Stud Farm in Avenches, Switzerland, in April and May 114 

2016. We used a horse-riding arena of 18 m diameter and sand-dirt footing, providing substantial 115 

cushion and traction. In each session we used one horse at the time. Each session contained (1) a 116 

preparation phase during which the horse was equipped with custom-made felt-pouches, 117 

providing accurate and comparable positioning of the sensors, (2) a habituation phase with the 118 

environment and equipment attached in preparation phase, (3) a sensor synchronization phase, (4) 119 

a sensor attachment phase, where sensors were placed into the pouches, and (5) a testing phase. 120 

 121 

Preparation phase: Horses were equipped with a bridle, a saddle girth (surcingle), custom-122 

designed bandage boots for the left foreleg and the left hind leg and a bandage at the tail. Prior to 123 

the start of the experiment, we mounted two pouches to the bridle, one at the centre point of the 124 

noseband (‘muzzle’) and one on the crownpiece (headpiece) at the horse’s ‘poll’. We also 125 

attached one pouch to the surcingle at the highest point, place right behind the withers (‘back’), 126 

and one to the dock of the tail wrapped with a bandage centrally placed at a position of 8 cm 127 

below the onset of the long, tick tail hair (‘tail’). Custom-designed bandage boots were placed at 128 

the foreleg on the ‘forearm’, just above the knee (carpus, carpal bone) and the chestnut, as well as 129 

at the hind leg on the ‘gaskin’ (‘second thighs’), above the point of hock (tarsal bones). Pouches 130 

were made of felt and of the following dimensions: length = 7 cm, width = 5 cm, height = 3 cm. 131 
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Using these pouches we could ensure that the data loggers were positioned at fixed anatomical 132 

positions. Further, the equipment did not cause any discomfort during locomotion.  133 

 134 

Habituation phase: The horse was free to explore the arena and habituate to the new environment 135 

for about 5 to 10 minutes. It also served the purpose to establish initial contact between the horse 136 

and the experimenter. 137 

 138 

Sensor synchronisation phase: We first initiated data logging by turning on the individual 139 

sensors. We then placed them into a box, aligned according to one predefined dimension, and 140 

shook rapidly in each direction for a couple of seconds. This procedure was simultaneously 141 

filmed and marked the onset of data recording across loggers to ensure accurate alignment in the 142 

data post-processing. 143 

 144 

Sensor attachment phase and experiment initiation: We activated sensors that were placed into 145 

the pouches on the horse (Supplementary Figure 1AB). Right after the sensor attachment phase, 146 

we initiated the experiment by exercising the horse. Recording samples can be seen in 147 

Supplementary Figure 1CD. Since the horses were moving freely without a lunge rein, a strict 148 

protocol of behaviour was not possible and not desired. We aimed at natural movement patterns 149 

of horses and tolerated character specific behavioural responses. In general, we let the horses 150 

walk, trot and canter/gallop for 30 minutes in total, covering both the right as well as the left 151 

sides. Commands were given by the handler to encourage the horse during trot and gallop. The 152 

amount of time per each gait was not pre-determined, but logically horses tended to walk longer 153 

than trot, canter or gallop. Gait frequency, however, did not influence the analysis, since the 154 

training and testing samples were selected with equal probabilities from each gait. Additionally, 155 
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we five-fold cross-validated the analysis procedure, including the selection of training and testing 156 

samples.  157 

 158 

Data analysis 159 

We collected inertial data via custom-made miniature loggers, allowing to record tri-axial 160 

accelerometer, gyroscope and magnetometer data. For the analysis we focused solely on the 161 

accelerometer output (+/-8g, 16bit, +/-4800 LSB/g (accel sensitivity)). Sensors were factory-162 

calibrated. Inertial sensors were controlled by Arduino Pro Mini 328, 5V/16MHz micro-163 

computers. Data loggers were temporally aligned by manually moving them rapidly in directions 164 

of all three axes and simultaneously filming them. In addition, we read out time stamps via a real 165 

time clock. We read out data at 128Hz onto a SD card and later downloaded data files onto a PC 166 

for analysis.  167 

 168 

Data pre-processing and feature extraction: We first applied feature scaling to the raw values of 169 

each sensor and each axis by bringing all values into a range of [0,1]. We then aligned these 170 

values and merged them to one file per individual, representing the unity-based normalized 171 

acceleration values of all sensors and all axes as a function of time. For each individual we 172 

extracted 100 non-overlapping segments at random points in time. Each segment consisted of 256 173 

samples, equivalent to 1 second. For each of these segments and on all axes (ax, ay, az, ax/az, ¦a¦) 174 

we extracted statistical features as follows: (1) standard deviation, (2) mean, (3) min, (4) max, (5) 175 

root mean square (rms), (6) auto-correlation: height of main, height and position of second peak, 176 

(7) spectral peak features: height and position of first six peaks, (8) spectral power features: 177 

power of five adjacent frequency bands (edges: .5, 1.5, 5, 10, 20 kHz), (9) skewness, and (10) 178 

peaks: number, std(width), std(prominence). Importantly, the ax/az component reflected the 179 
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tangent of the cranio-caudal direction relative to the ground. The acceleration magnitude (¦a¦) was 180 

equal to the sqrt(x2 + y2 + z2). In total, we calculated 105 features for each sensor, hence 630 181 

features for each one-second segment. All features were normalized to a range of [0 to 1] 182 

(Supplementary Figure 1E). A similar approach on feature extraction has been used in 183 

quantifying movement of freely ranging dogs (Gerencser et al. 2013). 184 

 185 

Classification algorithm: We used Support Vector Machine (SVM), a supervised learning 186 

algorithm, to classify these segments. A SVM classification routine encompasses a training 187 

phase, during which a model will be derived that best separates samples of two classes, and a 188 

testing phase, during which the model will be evaluated by determining the performance on novel 189 

samples. We used the libsvm toolbox (Chang and Lin 2011) for implementing the SVM 190 

algorithm. Inputs to the SVM algorithm were predetermined 630-element feature vectors, as 191 

described above, split into 80% (160) training and 20% (40) testing samples. In the SVM 192 

algorithm we used a radial basis function (RBF) Kernel. The two unknown parameters, the soft 193 

margin (C) and the kernel parameter (gamma) (Cortes and Vapnik 1995), were determined in a 194 

five-fold cross-validation procedure on dedicated smaller numbers of samples, trading 195 

classification errors penalty for stability and thus leading to a higher degree of generalization 196 

rather than over-optimization. C and gamma were determined individually for each comparison. 197 

We then fed all training samples as well as their labels, the correct classification outputs, into the 198 

SVM algorithm to generate the best fitting model. All testing samples, i.e., unknown, novel 199 

inputs, were then fed into the model, predictions obtained by the model and compared to the 200 

desired output.  201 

 202 
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We applied this principle to the following class labels: ‘identity’ (‘horse 1’, ‘horse 2’,… horse n), 203 

‘breed’ (‘cold-blooded’, ’warm-blooded’), ‘sex’ (‘mare’, ’stallion’, ’gelding’), ‘fearfulness’ 204 

(three classes of varying degrees, see below) and ‘sensitivity’ (four classes of varying degrees, 205 

see below).  206 

 207 

We obtained performance scores for all attribute labels as described above in a pairwise fashion, 208 

i.e. always two class labels (Fig. 1). Figure 1 shows the performance scores as percentages of 209 

prediction. For example, assuming the actual outcome (y-axis) was ‘warmblood’ (WB) as the 210 

type of horse ‘breed’ (Fig. 1C), then 80.5% were correctly predicted (x-axis) and 19.5% were 211 

incorrectly predicted. Importantly, for classes with more than two labels, the chance level was 212 

still 50% due to the pairwise comparisons of SVM.   213 

 214 

Feature selection: It is important to note that classification performance is generally influenced by 215 

the number of feature dimensions. Therefore, in a second step, we aimed at optimizing the model 216 

by reducing the feature dimensions to avoid overfitting to irrelevant dimensions (noise), save 217 

storage space and reduce computation time. We therefore implemented two methods: (1) Feature 218 

selection using a filter approach: with this approach we relied on the statistical features of our 219 

data by calculating t-tests for each feature between the samples of the two classes of interest 220 

(Jafari and Azuaje 2006; Liu et al. 2004). This procedure resulted in p-value for each feature 221 

dimension reflecting the effectiveness of features for those two classes. (2) Sequential feature 222 

selection: on top of a selected subset of features individual feature dimensions was added 223 

(forward search) until there was no further improvement or a maximum of 20 features was 224 

reached (Li et al. 2004; Ressom et al. 2005). We use a hybrid-method by combining these two 225 

approaches by first selecting statistically important feature dimensions and then sequentially 226 
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searching for the best combinations of features (Fig 2A). In this training period, we also applied a 227 

five-fold cross-validation routine. Figure 2A shows the means of all features (grey dots) and the 228 

20 most discriminative features (blue circles) of two horses (ID1 vs ID2). As can be seen, the 229 

features selected deviated strongly from the diagonal line, indicating different expressions of 230 

those particular features for the given classes. 231 

 232 

Control condition: We also calculated a performance baseline, which was determined by random 233 

labelling of training samples, while maintaining the remaining processing routine as described 234 

above. Reported in Figure 1 are the performance scores after the hybrid-method for feature 235 

selection. We further calculated the probability of statistical feature types among the selected 236 

features as a function of attribute (‘identity’, ‘breed’, ‘sex’, ‘sensitivity’, ‘fearfulness’) and 237 

anatomical sensor position (‘forearm’, ‘gaskin’, ‘back’, ‘tail’, ‘muzzle’, ‘poll’). To calculate 238 

whether correct classification occurred more often than incorrect classification, we used χ2-tests 239 

of independence. We therefore compared the correct classification (observed values, see 240 

diagonals in Fig. 1 A,C,E,G,I) with an expected outcome of 50%. We calculated proportional 241 

contribution of features for each attribute and each anatomical location (Fig. 3A-E) and used a 242 

hierarchical clustering algorithm to illustrate the similarity of gestalt profiles (Fig. 3F). 243 

 244 

Statistical tests: We used Chi-Square tests of independence to evaluate whether there was a 245 

significant association between the correct and incorrect classifications for all attributes. 246 

 247 

Personality traits 248 
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Aside from the intrinsic information (‘identity’, ‘breed’, ‘sex’) we included two personality traits 249 

(‘sensitivity’, ‘fearfulness’) in our analysis. These traits were measured in separate experimental 250 

sessions and are parts of the Complete Personality Tests (CPT) (Lansade et al. 2016).  251 

 252 

Tactile sensitivity: The tactile sensitivity test describes the degree to which an individual 253 

responds to tactile stimulation, reflecting a basic sensory disposition to environmental 254 

stimulation. The underlying assumption is that responsiveness toward tactile stimulation 255 

generalizes to other sensory domains. The testing procedure is as follows: The horse was held 256 

immobile in hand. Filaments (Frey nylon filaments of 0.008g, 0.02g, 1g and 300g, Stoelting, IL 257 

USA) were individually perpendicularly applied to the base of the withers. Constant pressure was 258 

applied to the filament until it bent. The procedure was repeated for all filaments alternating the 259 

left and right sides of the withers. A natural response of the horse is to shiver the platysma 260 

muscle to a perceived tactile stimulation. The response ratio describes the tactile sensitivity. 261 

 262 

Fearfulness: A critical aspect of this test is the suddenness of a stimulus occurring. The horse was 263 

held in hand via a long rein, while a second person was positioned at given distance (first trial at 264 

5m, second trial at 2m) in front of the horse. The second person then rapidly opened and closed a 265 

black umbrella and put it down on the floor in front of herself. The evasion away from the 266 

umbrella was quantified via video recordings and averaged across trials (2 and 5m distances). 267 

 268 

 269 

Results 270 

 271 
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Our model was able to classify ‘identity’ at 95.8% (Fig. 1A), ‘breed’ at 82.9% (Fig. 1C) and ‘sex’ 272 

at 86.9% (Fig. 1E) correct classifications. The two personality traits ‘fearfulness’ and ‘sensitivity’ 273 

were classified correctly at 81.2% (Fig. 1G) and 86.5% (Fig. 1I), respectively. We contrasted 274 

these classification results with a randomly expected outcome (Control condition). The randomly 275 

expected outcome was 50% correct classification due to SVM’s pairwise comparisons. The actual 276 

performance of the control model were as follows: ‘identity’: 49.8% (Fig. 1B); ‘breed’: 52.6% 277 

(Fig. 1D); ‘sex’: 50.8% (Fig. 1F); ‘fearfulness: 46.3% (Fig. 1H); ‘sensitivity’: 51.4% (Fig. 1J). 278 

We found that, in all test runs, occurrences of correct classifications (i.e. when the predicted 279 

outcome matched the actual outcome) were significantly higher than incorrect classifications (i.e. 280 

when the predicted outcome did not match the actual outcome) (Table 1). This was not the case 281 

in the control conditions, as expected, ruling out idiosyncratic response patterns in the test runs 282 

not due to the attributes under investigation. The largest portion of misclassification was in the 283 

attribute ‘sex’, where geldings and mares were mutually misclassified more often than expected. 284 

We found a difference in geldings being more often misclassified as mares (11.9%), and vice-285 

versa (10.8%), compared to the expected level of misclassification (7.85%, 7.65%): (χ2 (1, N = 286 

100) = 13, p = 0.001).  287 

 288 

How is information conveyed? 289 

To determine which of the extracted features accounted for the high classification rates, we 290 

analysed the outcome of the feature selection procedure prior to classification (see Methods and 291 

Fig. 2A, B). We were interested in the explanatory power of the statistical features with regard to 292 

attributes and anatomical locations (Fig. 3D). Overall, the means of the signal elements in any of 293 

the three axes as well as the spectral peaks and spectral power played the most crucial roles (Fig. 294 

3B, C), as visualized by the size of the circles. The importance of these features, however, 295 
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slightly varied depending on the attribute (Fig. 3A, B). While ‘identity’ could be explained to a 296 

large degree by variances in the means of the signal elements, ‘sex’, ‘fearfulness’ and 297 

‘sensitivity’ could be best explained by a combination of spectral features and statistical means 298 

(Fig. 3A, B). The attribute ‘breed’ was best described via contributions of the means, spectral 299 

features and the statistical mean of the squares of the signal elements (RMS). Importantly, for 300 

each attribute a combination of distinct locations (sensors) contributed to correct predictions (Fig. 301 

3A, D). While ‘identity’ could be best accounted for by a combination of sensors at all 302 

anatomical locations, ‘breed’ and ‘sex’ were predominantly described by the poll and the tail in 303 

combination with other locations of minor importance. The personality trait ‘fearfulness’ was 304 

best detectable via the gaskin, the poll and the tail, depicting a different configuration of 305 

anatomical locations than ‘sensitivity’, which mainly differentiated via the sensors at the head 306 

(poll and muzzle), the back and the tail. The importance of the sensory configuration is further 307 

highlighted in Figure 4A.  308 

 309 

We further compared the resulting gestalt profiles by calculating a hierarchical cluster tree (Fig. 310 

3F). It turned out that ‘breed’ and ‘fearfulness’ built one pair of close similarity and ‘sex’ and 311 

‘sensitivity’ built another. ‘Identity’, however, due to a more equal contribution of all anatomical 312 

location, fell into its own class. In the next step we determined the degree to which each of the 313 

anatomical location differed from a random allocation of features to the six locations (Fig. 3E). In 314 

other words, do contributions of individual anatomical locations to the classification outcome 315 

deviate from a random distribution of features where all locations contribute equally? We found 316 

that all (but two) locations were significantly different from the random distribution at a 317 

significance level of 5% (Fig. 3E: two standard deviations of random distribution shown in grey). 318 

Importantly, each attribute showed a set of locations that was over-represented (above the grey 319 
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vertical bars in Fig. 3E), hence contributing positively to the classification outcome, and another 320 

set that was under-represented (below the grey vertical bars in Fig. 3E), hence being an unreliable 321 

source of information for that attribute. Figure 4B shows the under- (green circles) and over-322 

represented locations (red circles) visually.  323 

 324 

 325 

Discussion 326 

 327 

One evolutionary model of communication is that both fixed cues and flexible signals originate 328 

from more basic, biologically functional processes by a process of ritualization. An interesting 329 

problem therefore is under what conditions such processes can evolve into communication 330 

signals and how this happens. One way by which selection favours the evolution of signals is by 331 

increasing the contrast, amplitude, or conspicuousness of an already existing behaviour.  332 

 333 

In this study, we were interested whether movement gestalts of free-ranging horses contained 334 

social information potentially relevant for others, which would provide the breeding ground for 335 

signal evolution. Our  learning algorithm classified signaller attributes from kinematic movement 336 

patterns with high accuracy. Information about identity was most accurate, resulting in correct 337 

classification of 96%, while breed, sex, and personality traits ranged somewhere between 80 to 338 

90% correct classification, significantly higher than if randomly assigned to training samples. 339 

Our results thus highlight the information power of movement patterns, irrespective of gait, 340 

context or other external factors. The level at which the model derived information of complex 341 

attributes was intriguingly accurate, highlighting the advantage of machine learning approaches 342 

over classic ethological methodology. 343 
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 344 

Another main finding in our study was that, by combining the results of distinct anatomical 345 

locations, classification was especially successful. For instance, the attributes ‘sex’, ‘breed’, 346 

‘sensitivity’ and ‘fearfulness’ was best discriminated by head movements (determined at the poll 347 

and muzzle) in combination with movements of the tail. For identity, the most successful 348 

combination was between movements of the gaskin, tail and back, further highlighting the gestalt 349 

nature of feature discrimination. Interestingly, misclassifications in ‘sex’ resulted in mares and 350 

geldings being often confused, reflecting the effects of castration of stallions, which tends to alter 351 

their behaviour towards a quieter, more easily-controllable, well-behaving and tractable 352 

“working” horse (Kiley 1976). 353 

 354 

Is movement perceived as information? 355 

Our analyses have shown that natural movement patterns can contain rich sets of information, but 356 

are they also processed by recipients? Experimental testing on the discrimination abilities of the 357 

different attributes would be a considerable challenge. 358 

The following theoretical arguments, however, suggest that horses are expected to access 359 

information generated by movement patterns. First, movement patterns are readily available in 360 

this species, regardless of context. Information can thus be produced at virtually no extra costs, 361 

much in contrast to ritualised signals, and this may also provide less of a demand on receiver 362 

cognition. Second, feral horses are adapted to open grassland habitats, where the visual domain 363 

plays an important role, in contrast to visually dense forest habitats. Indeed, the acoustic 364 

repertoire of horses is relatively small, consisting of mainly four types of vocalizations (whinny, 365 

nicker, squeal, and roar) (Kiley 1972). Visual cues, such as facial expressions (Wathan and 366 

McComb 2014; Wathan et al. 2016), are visible only in close proximity, suggesting that 367 
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movement patterns may be more efficient for information transfer at large distances. In contrast 368 

to other ungulates, social dominance in horses is not determined by size or weight (Duncan 1992; 369 

Feh 1990), but by social factors, such as age and migration status (Monard and Duncan 1996). 370 

Overall, we find it plausible that movement patterns play a role in horse communication, a 371 

hypothesis that has already been put forward by early work on animal cognition (Pfungst 1907). 372 

 373 

In our study, we assumed that, similarly to face discrimination (Dahl et al. 2016; Fific and 374 

Townsend 2010), the neural machinery of kinematic gestalt processing in mammals processes 375 

limb movements in a non-linear space by which the relevant features are extracted from a high-376 

dimensional space and then processed in a parallel coactive fashion. This processing is a 377 

reasonable assumption to support the demand for efficient neural processing that can potentially 378 

allow for rapid decision making. One way to optimise the representational embedding of 379 

kinematic features is by reducing high dimensionality to a subspace that represents most 380 

kinematic variance. Reducing dimensionality, therefore, reduces processing time and storage 381 

space. To simulate this biologically plausible process, we optimised the feature selection process 382 

using a sequential feature selection approach, selecting the twenty features that sequentially add 383 

most of increment in correct prediction.  384 

 385 

Social information from movement 386 

Our choice of social attributes (identity, sex, breed and personality factors) was practically and 387 

not theoretically motivated, mainly due to ease of accessibility. Our goal was to demonstrate the 388 

principles of a new methodology, but we predict that social information contained in movement 389 

patterns goes beyond the small number of attributes we chose in this study. Nevertheless, the 390 

current attributes may have relevance in wild horses in the following ways. First, attributes such 391 



18 
 

as identity, sex or breed (representative of morphological features) may be important in rapid 392 

assessments by stallions in their attempts to monopolise a group of mares. While mares tend to 393 

lead social groups to resources, stallions tend to follow in the rear (Briard et al. 2017), suggesting 394 

that rapid identification at larger distances is essential for them. Similar arguments could be made 395 

for mares, if there is a danger of infanticide by out-group males. Further, personality traits, such 396 

as fearfulness, may be important in rapid assessments of unfamiliar rivals or sexual partners 397 

(Linklater et al. 2000; McDonnell and Haviland 1995; Miller and Denniston 1979)  398 

 399 

A quantitative approach to ethology  400 

Ethology aims to address biological questions about animal behaviour in natural conditions. The 401 

classic methodological approach has always been to first determine a species’ behavioural 402 

repertoire, the ‘ethogram’, in order to code behavioural elements according to different sampling 403 

regimes (Altmann 1974). Although this has been an extremely successful and productive 404 

approach, its main weakness is that behavioural elements are subjectively coded by human 405 

observers, rather than by objective measurements. The difficulties of this approach is well 406 

illustrated, for example, in ape gestural studies where observational studies on gesture repertoires 407 

of wild chimpanzees can generate wildly different results (N = 66 gestures (Hobaiter and Byrne 408 

2011; Hobaiter and Byrne 2014); N = 30 gestures (Roberts et al. 2012)), even if collected from 409 

the same community. Thus, the quest to standardize behavioural repertoires is a challenging task 410 

and recording the full behavioural repertoire of a species via traditional ethograms is nearly 411 

impossible, and even partial descriptions of repertoires are extremely time-consuming and highly 412 

subjective.  413 

 414 



19 
 

The advent of inertial sensor techniques in digital information processing provides a new and 415 

powerful tool to record continuous movement data from freely moving animals in their natural 416 

environment and, therefore, opens the doors to novel and more objective sampling regimes. 417 

Inertial measurement units (IMU), routinely used in air- and spacecraft, log body-specific forces 418 

at high frequencies locally on a memory device (logger). Data logging via IMUs is an automated 419 

and entirely objective process, allowing measurements of animals in the wild, out-of-sight and in 420 

difficult terrain. With the novel technology, however, novel challenges rise, such as finding the 421 

right means of handling big data and algorithms for an automated classification of behaviour. 422 

Hence, new research routines ought to integrate methods of behavioural animal science and 423 

machine learning. Along the line of previous research programs (Gerencser et al. 2013; Graf et al. 424 

2015), we here present one way of combining the two fields. 425 

 426 

Conclusion 427 

In this study we showed that movement patterns of freely moving animals contain a large amount 428 

of socially relevant information, which potentially can be accessed by conspecifics. Information 429 

transfer via movement patterns therefore follows a principle of subtlety rather than 430 

conspicuousness, a principle of information transfer in animals which is largely unexplored.  431 

Further, our study offers a new tool to investigate behavioural patterns in a wide range of 432 

animals. Bio-logging via inertial sensor techniques replace video camera recording and its 433 

extensive analysis procedure. An expert system, as presented here, helps automating ethological 434 

investigations in that it classifies movement patterns of freely moving animals into meaningful 435 

classes. Future directions might incorporate unsupervised learning algorithms, implying that no 436 

a-priori assumption about attribute labels is required. 437 

 438 
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Figure captions 581 

 582 

Figure 1. Confusion matrices of classification outcome. Matrices A, C, E, G, and I show the 583 

actual test conditions for the attributes ‘identity’, ‘breed’, ‘sex’, ‘fearfulness’ and ‘sensitivity’. 584 

Matrices B, D, F, H and J show the control conditions. Each confusion matrix shows the ‘actual’ 585 

outcome (y-axis) against the ‘predicted’ outcome (x-axis). Percentage correct classifications are 586 

indicated on the diagonal line in each confusion matrix. Colour-codes indicate the percentage 587 

correct classification with 100% in black and 0% in white. 588 

 589 

Figure 2. Feature evaluation. A. Feature selection for classification of ID1 vs ID2. Grey dots 590 

illustrate the mean values of features for ID1 (x-axis) vs ID2 (y-axis). The blue circles mark the 591 

features selected by our hybrid feature selection procedure. B. Feature selection for classification 592 

of ‘Mare’ vs ‘Stallion’.  593 

 594 

Figure 3. Explanatory power of features and locations. A. Feature probabilities for each 595 

anatomical location (x-axis) and attribute (y-axis). Grey vertical lines separate the six locations 596 

(sensors). Each separation contains 105 features (see Methods). Probabilities are only implied. 597 

Black vertical lines indicate the cumulative probabilities across attributes. B. Probability of 598 

feature types (x-axis) by attributes (y-axis). Large circles indicate high probabilities, smaller 599 

circles low probability. C. Probability of feature types (x-axis) by anatomical locations (y-axis). 600 

D. Average feature probability per anatomical locations (x-axis) and attributes (y-axis). E. 601 

Contribution (feature probability) for each attribute (as in D) compared with random distribution 602 

(grey bars). Each bar shows the range of two standard deviations (95.4% of the variance). F. 603 
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Similarity of gestalt profiles. The heights of the inversely u-shaped elements in the tree indicate 604 

the Euclidean distance between the two profiles being connected.  605 

 606 

Figure 4. Gestalt profiles. A. The relative contribution of sensors at given anatomical locations is 607 

represented in the sizes of the circles, with increasing size indicating greater relative importance. 608 

Shown are the locations that together explain more or equal than 70% of the cumulative 609 

contribution of locations, starting with the location with the largest contribution. B. Each attribute 610 

is described by the locations (circles) that contributed more (red) or less (green) than expected by 611 

an equal contribution of all locations. Blue circles show the locations that fell into the expected 612 

range of equal contribution.  613 
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Tables 614 

 615 

Table 1: 616 

 χ-Test p-val Test χ-Control p-val Control DF 

Identity 7083.9 0.001 4.43 1 25 

Breed 125.58 0.001 0.71 0.40 1 

Sex 286.31 0.001 0.20 0.90 2 

Fearfulness 207.39 0.001 2.93 0.23 2 

Sensitivity 382.3 0.001 1.83 0.61 3 

 617 

 618 

 619 

Table caption 620 

 621 

Table 1: Statistical values for all attributes evaluated using Chi-Square tests of independence. 622 
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