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Abstract

This paper analyzes the stability of capital tax harmonization agree-
ments in a stylized model where countries have formed coalitions which
set a common tax rate in order to avoid the inefficient fully non-
cooperative Nash equilibrium. In particular, for a given coalition struc-
ture we study to what extend the stability of tax agreements is affected
by the coalitions that have formed. In our set-up, countries are sym-
metric, but coalitions can be of arbitrary size. We analyze stability by
means of a repeated game setting employing simple trigger strategies
and we allow a sub-coalition to deviate from the coalitional equilib-
rium. For a given form of punishment we are able to rank the stability
of different coalition structures as long as the size of the largest coali-
tion does not change. Our main results are: (1) singleton regions have
the largest incentives to deviate, (2) the stability of cooperation de-
pends on the degree of cooperative behavior ex-ante.
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1 Introduction

This paper studies the stability of capital tax harmonization agreements
in a model where countries have formed coalitions to avoid the inefficient
fully non-cooperative Nash equilibrium. As incentives for deviations from
the cooperative behavior continue to exist, we analyze the stability of any
given but arbitrary coalition structure by means of a repeated game setting
accounting for deviations by a whole subgroup of countries.

Capital tax competition has been the subject of increasing political and aca-
demic interest since the mid-1980s. Next to Wilson (1999) and Wilson and
Wildasin (2004) recent surveys of the literature are given by, e.g., Griffith
et al. (2008) and Keen and Konrad (2011). It is well established that the
structure of payoffs in a standard tax competition model resembles a classical
“prisoner’s dilemma”. In such a static, one-shot model the non-cooperative
Nash equilibrium of tax rates is inefficiently low compared to harmonized
tax rates. Therefore, a coordination of tax policies can avoid the negative
externality that is associated with mobile capital tax bases. For example,
the contributions by Zodrow and Mieszkowski (1986), Wildasin (1989), Bu-
covetsky (1991) and Wilson (1991) analyze if there are Pareto-improving
reforms which harmonize capital income taxes.
Given the high costs of tax competition, global tax harmonization is de-
sirable but very unlikely because some countries, e.g., tax havens, prefer
lower taxes for commercial reasons.1 From a political perspective, partial
harmonization among a subgroup of countries is therefore easier to achieve
(cf. Konrad and Schjelderup, 1999). This is what has been promoted by
a variety of policy efforts from several countries, economic unions and in-
ternational institutions. A very recent example is the announcement of the
Council of the European Union to reinforce fiscal stability as a response to
the financial crisis by the coordination of a common band of fiscal policy
measures, for instance, by the introduction of a common corporate tax base
(Council of the European Union, 2011). Other examples include the efforts
by the OECD’s Center for Tax Policy and Administration, for instance, the
list of harmful tax practices. In fact, even if no explicit agreements on the
political agenda have been made, there may well be implicit agreements be-
tween countries or federations that are linked via policies or institutional
arrangements in other fields in order to keep tax competition low (cf. Kon-
rad and Schjelderup, 1999).

1Other, well-known factors that add to the reluctance of countries concerning tax
harmonization efforts are asymmetries in, e.g., endowments or technologies.
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In this paper we abstract from the question how these cooperative agree-
ments have been made, although this is surely a related topic. Rather, we
focus on the stability of cooperation taking into account the particular in-
centives that fiscal spillovers and cooperation among subgroups of countries
induce in the long run. In the long run, i.e., if the tax game is played repeat-
edly, there are strong incentives to raise the tax rates above the inefficient
fully non-cooperative Nash equilibrium because deviations from cooperation
will be punished. This is what a number of recent studies, e.g., Cardarelli
et al. (2002), Catenaro and Vidal (2006) as well as Itaya et al. (2008) have
analyzed by applying repeated interactions to the capital tax competition
framework. This strand of the literature focuses on the question whether
fiscal coordination is sustainable among two asymmetric countries employ-
ing grim trigger strategies for the punishment phase of the game.2 However,
these papers deal with the sustainability of overall (global) tax coordination.
We analyze the sustainability of tax coordination when there are several tax
agreements co-existing, e.g., when there are larger and smaller groups of
countries that cooperate.
Konrad and Schjelderup (1999) argue that gains from tax harmonization de-
pend on the response from countries outside the harmonized area and on the
size of the tax harmonized area relative to the global economy. Accordingly,
they study whether a single subgroup of countries can gain from harmonizing
their capital income taxes provided that all other countries do not follow suit
by playing non-cooperatively. They show that tax harmonization is Pareto
improving for all countries if the tax rates are strategic complements. Itaya
et al. (2010) analyze the sustainability of this form of partial tax coordi-
nation (within a single subgroup of countries) in a repeated game setting.
Also here, all other countries not in the coalition behave non-cooperatively
but symmetrically and only singleton regions are allowed to deviate from
the cooperative behavior. The main finding of Itaya et al. (2010) is that
partial tax coordination is more likely to prevail if the number of regions in
the coalition subgroup is smaller and the number of existing regions in the
entire economy is larger.3

This paper investigates the more general case relaxing two constraints of

2Kiss (2011) adds to this literature by analyzing how the introduction of a minimum
tax affects the stability of cooperation among N symmetric countries. See also Kessing
et al. (2006) who analyze the effect of vertical tax competition on FDI. Here, repeated
interaction enables governments and firms to solve the hold-up problem.

3Note that, using a numerical analysis with imperfect capital mobility, Rasmussen
(2001) finds that the critical mass of countries needed for partial coordination to have a
significant impact is a large number of the overall number of economies.
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Itaya et al. (2010): First, we allow for any given coalition structure (not
only one single coalition). Second, we analyze coalitional deviations in the
repeated game, i.e., we analyze the incentives of sub-coalitions to deviate
from cooperation.

Let us elaborate on two related papers of the literature strand that ana-
lyzes the process or the impact of coalition formation or tax harmonization,
respectively.4

The process of coalition formation is analyzed by Burbidge et al. (1997). In
this fairly general model, different regions may form coalitions to capture
efficiency gains by tax rate harmonization. Joining a coalition implies first,
choosing a harmonized tax rate such that the coalition’s payoff is maximized,
and second, committing to a fixed division scheme for the gains from coop-
eration. Burbidge et al. (1997) study equilibrium coalition structures based
on the model of coalition formation from Hart and Kurz (1983) using the
concept of a coalition-proof Nash equilibrium (cf. Bernheim et al., 1987).
Their main finding is that the grand coalition is not necessarily the equi-
librium coalition structure in a setting with more than two regions. This is
illustrated by an example with three regions having asymmetric production
functions.
Bucovetsky (2009) considers a model of tax competition among regions of
different population size. The regions’ objective is to maximize the util-
ity of its inhabitants, which depends on the consumption of a private good
and the provision of a public good. Bucovetsky (2009) proves that any tax
harmonization by a group of jurisdictions benefits the residents of all juris-
dictions that are not in the group. He also demonstrates that harmonization
increases the average payoff of all regions harmonizing their tax rate. Most
remarkably, Bucovetsky (2009) finds that the “biggest threat to the grand
coalition” (p. 740) is the coalition structure where N − 1 regions cooper-
ate and the smallest region remains singleton. Bucovetsky’s (2009) work is
based on an earlier paper which is quite related to our framework (see Bu-
covetsky, 2005). For instance, we share the Leviathan type of government5

and have a similar production function in the one-period game.

In our model, we want to handle explicit solutions so we need to impose
specific assumptions: We postulate that (1) the aggregate supply of capital
is fixed; (2) each jurisdiction is inhabited by economically identical residents;

4Konrad and Schjelderup (1999) offer a brief discussion about the link between tax
harmonization and the literature on the profitability of mergers in industrial organization
(cf. the references given therein, in particular, Deneckere and Davidson, 1985).

5Also Kanbur and Keen (1993) use this kind of objective function.
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(3) output in each region is a quadratic function of capital employed. The
point of departure is that each region chooses a tax rate to levy on locally
employed capital to manipulate its tax base in form of capital movements.
Consequently, regions have an incentive to capture the benefits of policy
coordination. We allow for any coalition structure to form and derive the
equilibrium tax rates and equilibrium tax revenues for a given coalition
structure in a first step. In a second step we employ a repeated game
setting in order to analyze the stability of cooperation in terms of the related
discount factors.
To preview our main finding: We establish that singleton regions have the
highest incentive to deviate from the cooperative solution. Furthermore,
cooperation is easier to sustain if the environment was acting “more coop-
eratively” ex-ante.

This paper is organized as follows. In section 2 we set up the basic tax
competition model. In section 3, we introduce cooperation into the tax
competition model and derive the equilibrium tax rates and equilibrium tax
revenues for different coalition structures. In section 4, we introduce the
repeated game setting and study the dynamics, in particular, the stability
of coalitional equilibria in the tax competition game. Section 4.5 comments
on an extension concerning the region’s objective, while section 5 illustrates
our results by means of a numerical example. We conclude in section 6.

2 The Tax Competition Model

We employ a standard tax competition framework with N identical regions,
indexed by i ∈ N = {1, ..., N}. Each region is characterized by a regional
government, a representative household and a single firm. The household
(labor) is supposed to be immobile, whereas capital is perfectly mobile.
Both capital and labor are input factors for the production of a single ho-
mogeneous good. The overall capital stock is given by K which is equally
distributed in the regions. Hence, each region owns k = K/N units of
capital. The production is described by a constant-returns-to-scale type of
production function following, e.g., Bucovetsky (1991), Bucovetsky (2009),
Grazzini and van Ypersele (2003), Haufler (1997) or Devereux et al. (2008).
The production function of region i ∈ N is f(ki) = (A− ki)ki, where A > 0
is the level of productivity, and ki the per capita amount of capital employed
in region i. We assume A > 2ki for all possible ki ≤ K̄. This means that the
level of productivity A needs to be sufficiently large such that the equilib-
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rium interest rate is positive.6 Public goods are financed by a source-based
unit tax on capital τi for region i.7 As firms behave perfectly competitively
the production factor prices equal their respective marginal productivity

r = f ′(ki)− τi = A− 2ki − τi (1)

wi = f(ki)− kif ′(ki) = k2i (2)

where r is the net return on capital and wi is the region-specific wage rate.
The no-arbitrage condition in equilibrium for capital is f ′(ki) − τi = r =
f ′(kj)− τj for all regions i, j where i 6= j. The demand function for capital,
depending on the arbitrage-free interest rate r and the regional tax rate
τi, is then given by ki = A−r−τi

2 . To determine the equilibrium interest

rate, capital demand need to equal capital supply,
N∑
i=1

ki = Nk. Let τ =

(τ1, ..., τN ) be the vector of tax rates chosen by the regions. We obtain the
equilibrium interest rate r∗(τ) by

r∗(τ) = A− 2k − τ (3)

where τ =

N∑
h=1

τh

N is the average capital tax of all regions. Combining (1) and
(3) yields the capital demand in equilibrium for region i:

k∗i (τ) = k +
τ − τi

2
(4)

The effects of a changing tax rate on equilibrium capital demand and the
equilibrium interest rate are as follows:

∂r∗(τ)

∂τi
= − 1

N
< 0 (5)

∂k∗i (τ)

∂τi
= −N − 1

2N
=

1

2N
− 1

2
< 0 (6)

∂k∗j (τ)

∂τi
=

1

2N
> 0 (7)

6The given level of productivity needs to be sufficient large to ensure capital levels to be
strictly smaller than the capital level at which the production function has its maximum.

7Lockwood (2004) has shown that in the (standard) tax competition model by Zodrow
and Mieszkowski (1986) there are different Nash equilibria in capital taxes depending on
the structure of taxes, i.e., ad-valorem or unit taxes. For the sake of readability of our
results we employ the unit tax.
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for all regions i, j ∈ N and i 6= j. When a region i augments its own tax rate
τi, the equilibrium interest rate r∗(τ) and the capital demand k∗i (τ) of this
country decreases. However, if another country j increases its tax rate, this
has a positive influence on the equilibrium capital demand k∗i (τ) of country
i. Note that we have the following effect

∂k∗i (τ)

∂τi
= −

∑
j 6=i

∂k∗j (τ)

∂τi
= −N − 1

2N
.

The objective of the regional government is to maximize its tax revenue
given by

τik
∗
i (τ). (8)

Tax revenues are entirely used to finance public goods. Alternatively, tax
revenues could be directly transferred to the representative household. In
either case—in contrast to Edwards and Keen (1996)—the Leviathan type
of government here does not produce a “waste of resources”. A change of
the tax rate affects the tax revenue in two respects: First, there is the direct
effect of the change in the tax rate itself and second, there is the indirect
effect because the equilibrium capital demand responds.
With every region pursuing to maximize its own tax revenue, potential gains
of cooperation are ignored. In the next section, we extend the model such
that cooperation between the regional governments is allowed for. The stan-
dard model will be a special (benchmark) case of this more general setting,
namely where regions act as a singleton.

3 Cooperative Behavior

Now, we modify the tax competition framework allowing regions to build
any form of coalition structure. For such a given coalition structure, we
determine the tax rate, the capital demand and the tax revenues in equilib-
rium.8 Before, we have a few words on the concept of a coalition structure
and the notion of coalitional equilibrium.
A coalition structure is a partition of the set of players, more precisely a set
of coalitions {S1, ...,SM} such that their pairwise intersection is empty, Sm∩

8Here, we adopt the same view as Konrad and Schjelderup (1999) who justify the
omission of the analysis of the coalition formation process as follows: “the formation of
a given coalition may .. be founded on historical, social, political, and economic factors
outside the model.” (p.160)
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S` = ∅ for all m 6= `, and such that their union equals the grand coalition,⋃M
m=1 Sm = N. For instance, for three regions we have five possible coalition

structures, whereas for five regions we already have 52 possible coalitions
structures.9

As regions are symmetric, the different coalition structures depend on the
number of regions in one coalition and on the overall number of coalitions.
Thus, if we consider a specific coalition structure, it is enough to know
how many regions there are in which coalition. Therefore, our succeeding
analysis depends on the sizes of the coalitions. We can associate a coalition
structure {S1, ...,SM} to a vector indicating the sizes of the coalitions in
the following way: Coalition S1 consists of regions 1, ..., S1, coalition S2 of
regions S1 + 1, ..., S1 + S2 and so on. We (usually) denote in non-bold the
size of coalition, Sm, and in bold coalition, Sm, containing Sm regions.

The equilibrium concept

The ability of regions to form coalitions implies that we assume regions to be-
have cooperatively and symmetrically within a coalition but non-cooperatively
across coalitions. Our analysis is based on the notion of a “coalitional equi-
librium”.10 In our setting, we assume that by forming a coalition the mem-
bers of this coalition behave symmetrically and agree to set a common tax
rate maximizing the coalitional tax revenue.

Definition (symmetric coalitional equilibrium). Given a coalition struc-
ture {S1, ...,SM} an action profile of tax rates (τS1 , ..., τSM

) is a symmet-
ric coalitional equilibrium if for no coalition Sm in the coalition structure
{S1, ...,SM} there is a choice of a common tax rate τ̃Sm , symmetric within
coalition Sm, that strictly increases the individual tax revenues of all mem-
bers of the coalition Sm.

Consequently, here, a symmetric coalitional equilibrium is a Nash equilib-
rium of the game where the different coalitions are interpreted as individual
players (maybe differing in a size factor) maximizing joint revenue of the
coalition’s members. We assume that a coalition sets the tax rate and each

9To determine how many coalition structures for a given number of players, N , exist is
a combinatorial question. The number of ways a set of N elements can be partitioned into
non-empty subsets is the “Bell number”. The Bell numbers can be recursively determined
by Bn+1 =

∑n
k=0

(
n
k

)
Bn where B0 = B1 = 1. The first few Bell numbers for n =

1, 2, 3, 4, 5, 6, 7, 8, ... are 1, 2, 5, 15, 52, 203, 877, 4140, ... .
10The formal definition of this idea can be found in Ichiishi (1981), Zhao (1992), Ray

and Vohra (1997) or later on Ray (2007). A recent, different application of the coalitional
equilibrium can be found in, e.g., Biran and Forges (2011).
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region gets an equal share of the tax revenues. This is a reasonable assump-
tion as all regions are symmetric: By agreeing on a common tax rate within
the coalition there are no differences in the allocation of capital between the
regions in this coalition.

Coalition structures with at least two coalitions

Having defined the equilibrium concept, we analyze a given coalition struc-
ture, denoted by {S1, ...,SM}, which consists of at least two coalitions,
M ≥ 2. This includes—as a special case—the fully non-cooperative be-
havior where the number of coalitions is M = N . This excludes, however,
the grand coalition {N} which is the efficient outcome from an economic per-
spective for a tax revenue maximization objective. For the grand coalition
there are no external effects in terms of capital movements and all available
production is absorbed as tax revenues. From a political perspective, how-
ever, this scenario is a minor interesting case since an overall (worldwide)
harmonization of tax rates is unrealistic.11

The regional governments of each coalition maximize the sum of the mem-
bers’ regional tax revenues by choosing a common tax rate within the coali-
tion: ∑

h∈Sm

τhk
∗
h(τ) =

∑
h∈Sm

τSm

(
k +

τ − τSm

2

)
= SmτSm

(
k +

τ − τSm

2

)
For given tax rates of the other coalitions the first order condition for coali-
tion Sm is

Sm

(
k +

τ − τSm

2

)
+ SmτSm

(
Sm
2N
− 1

2

)
= 0. (9)

The best response function for coalition Sm reads:

τSm =
N

N − Sm
k +

1

2

∑
` 6=m

S`τS`
N − Sm

(10)

11There is an additional technical restriction as the joint tax revenue of all regions
have no inner solution for the grand coalition. If all regions cooperate, they will choose a
boundary solution for the tax rate so that there is no capital movement across the regions.
Thus, the tax rate of the grand coalition is equal to A− k.
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Appendix A.1 shows the computations. Note that the tax rate and with
that the capital demand and the tax revenue depend on the given coalition
structure. For the ease of notation we omit this dependence in the notation
for this section.

The existence of a Nash equilibrium is guaranteed due to the linearity of the
best response functions and the fact that their slope is strictly smaller than
one:12

∂τSm

∂τS`
=

1

2

S`
N − Sm

< 1.

For the ease of notation define

α :=
M∑
`=1

S`
2N − S`

∈
(

1

2
, 1

)
. (11)

We can associate a specific α to every coalition structure depending on the
sizes of the coalitions. In Lemma 1, later on, we analyze this factor in more
detail. Before, we determine the optimal tax rates:

τSm =
2Nk

2N − Sm
+

2Nk

(2N − Sm)

α

(1− α)
= 2Nk

(
1

1− α

)(
1

2N − Sm

)
(12)

The computation can be found in Appendix A.2.
The average tax rate is given by

τ =

M∑̀
=1

S`τS`

N
= 2k

(
α

1− α

)
(13)

and equilibrium capital demand by

k∗Sm
(τ) = k +

τ − τSm

2
=

k

1− α

(
N − Sm
2N − Sm

)
.

Then, the tax revenue is

RSm = τSmk
∗
Sm

(τ) = 2Nk
2 (N − Sm)

(1− α)2(2N − Sm)2
. (14)

It is immediately clear:

12According to the definition in Konrad and Schjelderup (1999, p.163) equilibrium tax

rates are strategic complements, as
∂τSm
∂τS`

> 0.
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Proposition 1. Coalitions of the same size in the same coalition structure
set the same tax rate and have the same tax revenue.

This result is not surprising as all regions are economically identical. More-
over, we obtain:

Proposition 2. Given a coalition structure {S1, ...,SM} with 2 ≤M ≤ N .
The larger a coalition in this coalition structure, the higher its equilibrium
tax rate and the smaller its equilibrium tax revenue.

Proposition 2 shows that cooperation induces higher tax rates. However,
taking externalities in form of capital movements into account, the equilib-
rium tax revenues are lower for larger coalitions. Consider a specific coalition
which is relatively large in comparison to the other coalitions. In equilib-
rium this coalition coordinates on a relatively high tax rate which leads to
an outflow of capital given that there are smaller coalitions who coordinate
on a relatively low tax rate. This is in line with the findings of Wilson
(1991, Proposition 2) for two countries and has been extended by Bucovet-
sky (2009, Lemma 1) to N countries in a related setting where regions differ
in population size.

Proof. For a fixed coalition structure the equilibrium tax rate of the coali-
tions differ in the factor

N

2N − S`
for ` = 1, ...,M . This factor increases if the coalition size increases. Hence,
the larger the coalition the higher the equilibrium tax rate.
Similarly, for the equilibrium tax revenue we have to look at

N − S`
(2N − S`)2

for ` = 1, ...,M . Taking the derivative with respect to S` gives

∂
(

N−S`
(2N−S`)2

)
∂S`

= − S`
(2N − S`)3

< 0.

Hence, the larger the coalition the smaller the equilibrium tax revenue.

Let us re-consider α in detail.

Lemma 1. Given a coalition structure {S1, ...,SM} with 2 ≤M ≤ N . If two
coalitions decide to merge, then α, given by

∑M
`=1

S`
2N−S` , strictly increases.
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The factor α is a measure of concentration for coalition structures. It rep-
resents the level of cooperation between regions and therefore reflects the
intensity of capital tax competition. Moreover, α is related to the index of
capital tax competition as defined in Bucovetsky (2009).

Proof. Assume two coalitions merge. Without loss of generality suppose
coalition SM−1 and coalition SM decide to form one coalition. We show
that α strictly increases. To see this it is sufficient to compare the last two
summands of α given by

SM−1
2N − SM−1

+
SM

2N − SM

and

SM−1 + SM
2N − SM−1 − SM

.

Subtracting the two terms

SM−1 + SM
2N − SM−1 − SM

− SM−1
2N − SM−1

− SM
2N − SM

yields

(4N − SM−1 − SM )SM−1SM
(2N − SM−1)(2N − SM )(2N − SM−1 − SM )

> 0.

It follows that

SM−1 + SM
2N − SM−1 − SM

>
SM−1

2N − SM−1
+

SM
2N − SM

.

So, α strictly increases if two coalitions merge.

Some further results on the equilibrium tax rate and equilibrium tax rev-
enues can be found in Appendix B, which we illustrate in section 5 in an
example.

4 Dynamic Stability of Cooperation

4.1 The setting

In what follows, we analyze under which conditions coalitional equilibria can
be sustained as a sub-game perfect equilibrium of the repeated game. Let
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δ ∈ [0, 1) denote the common discount factor. Regions have either implic-
itly or explicitly agreed to choose their tax rates cooperatively within their
coalitions. We assume that the coalition structure {S1, ...,SM} is given.
Following the trigger strategies as introduced by Friedman (1971), first of
all, each region in each coalition sets the equilibrium tax rate, i.e., all regions
act cooperatively within their coalitions if they do not observe any deviation
from this behavior. In case a sub-coalition of regions “defects” by breaching
the cooperation agreement this will be public information because the equi-
librium tax revenues of all regions are affected through capital movements.
Define a deviating sub-coalition of regions as follows:

Definition (sub-coalition). Given a coalition S` of size S` ≥ 2. We define
SD
` ( S` with 1 ≤ SD` < S` as a sub-coalition of S`.

13

The reaction to deviation of all coalitions is to resort to the punishment
strategy in the period after the deviation has occurred. This punishment
ends up in the fully non-cooperative Nash equilibrium. Here, a word about
the punishment strategy is in order.
First of all, the threat which triggers cooperation needs to be sufficiently
severe and it is not necessarily restricted to a single political dimension.
Within a federation or an economic union, like the EU, there are several
ways to punish a defection since countries are linked via (other) common
policies and institutional arrangements (cf. Konrad and Schjelderup, 1999).
This implies that the threat of punishment can be really high if it also affects
other political dimensions.
Second, given that a subset of regions may deviate from its coalition, one
could ask why all coalitions adopt the fully non-cooperative strategy al-
though the deviation might come from another coalition. Suppose, only the
coalition where the deviation has occurred employs the fully non-cooperative
strategy. Then, there still exist substantial incentives to deviate from any
other cooperative agreement in all other coalitions (as the succeeding analy-
sis shows). These incentives continue to exist until —ultimately— all regions
play fully non-cooperatively.
The chosen punishment strategy that we adopt here constitutes a sub-game
perfect Nash equilibrium of the repeated game. It satisfies the condition

13This definition of a deviating sub-coalition reflects the idea of “internal blocking”
used by Ray and Vohra (2012). In their model, that combines the coalition formation and
the blocking approach, they assume that “[...] blocking is internal: only subcoalitions of
existing coalitions are permitted to make further ‘moves’.” (p. 32) Note that our definition
also accounts for deviations of singleton regions and they will be of particular importance
in the course of our analysis.
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that the threat which triggers cooperation must be sufficiently severe and
the punishment strategy must be sub-game perfect. We nevertheless provide
a discussion of alternative punishment strategies at the end of this section.

Denote by SD` the size of a deviating sub-coalition, SD
` , from coalition S`,

where the superscript D indicates deviating behavior. Figure 1 summarizes
the structure of the repeated game.

{S1, ...,SM}

All regions play symmetrically and cooperatively within the coalitions
and non-cooperatively across coalitions by setting the equilibrium tax

rate.

↓

{S1, ...,S` \ SD
` ,S

D
` , ...,SM}

Sub-coalition SD
` (from coalition S`, with S` ≥ 2, 1 ≤ SD` < S`) deviates.

All other regions continue with cooperative behavior but observe the
deviation of sub-coalition SD

` .

↓

{ {1} , ... , {N} }

All other regions play fully non-cooperative “Nash” as a reaction to the
deviation of sub-coalition SD

` .

Figure 1: Structure of the Repeated Game.

To judge if a deviation is profitable or not, sub-coalition SD
` needs to com-

pare the discounted payoffs for deviating vs. for playing cooperatively. Let

the subscript of the tax revenue R
SD`
S`

indicate the coalition from which the

sub-coalition SD
` has deviated and let the superscript refer to the size of

the deviating sub-coalition SD` . Deviating implies that each region in sub-

coalition SD
` receives a payoff of R

SD`
S`

once. From the next period onwards
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until infinity the payoff is then

RP
SD
`

= 2Nk
2 (N − 1)

(1− α̃)2(2N − 1)2

with α̃ =
SD`

2N−1 +
N−SD`
2N−1 = N

2N−1 . This means the total payoff from deviating
is given by

R
SD`
S`

+
∞∑
t=1

δtRP
SD
`

= R
SD`
S`

+
δ

1− δ
RP

SD
`
.

If sub-coalition SD
` does not deviate, every region i ∈ SD

` will receive a payoff
of RS` from now, in t = 0, until infinity. The total payoff from not-deviating
is given by

∞∑
t=0

δtRS` =
1

1− δ
RS` .

If the following condition holds, no sub-coalition SD
` has an incentive to

deviate from the coalitional equilibrium in the infinitely repeated game:

1

1− δ
RS` ≥ R

SD`
S`

+
δ

1− δ
RP

SD
`
. (15)

In order to sustain a coalitional equilibrium in the dynamic tax competition
game we need to find a discount factor that satisfies inequality (15). Such a
discount factor δ ∈ (0, 1] is “non-trivial” for a payoff structure which satisfies

R
SD`
S`
≥ RS` ≥ R

P
SD
`
. (16)

4.2 Cooperation and punishment tax revenues

First, let us establish the second inequality in (16). By means of Lemma
1 the following proposition establishes that gains from cooperation always
exist.

Proposition 3. Given a coalition structure {S1, ...,SM} with 2 ≤M ≤ N .
We have

RS` ≥ R
P
SD
`
.

Proposition 3 establishes the well-known inefficiency of the fully non-cooperative
Nash equilibrium. When departing from the fully non-cooperative solution
by forming coalitions every region is better off.
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Proof. Let α =
∑M

`=1
S`

2N−S` ∈
(
1
2 , 1
)
. The equilibrium tax revenue of the

coalition structure {S1, ...,SM} with 2 ≤ M ≤ N − 1 is given by equation
(14),

RS` = 2Nk
2 (N − Sm)

(1− α)2(2N − Sm)2

for m = 1, ...,M .
The equilibrium tax revenue of the punishment is

RP
SD
`

=
2Nk

2

N − 1

for i = 1, ..., N . To prove that gains from cooperation exist it is enough to
show

(N − 1) >
(1− α)2(2N − Sm)2

(N − Sm)
.

We know that α strictly increases if two coalitions merge. Moreover, the
right-hand side decreases if α increases. Thus, considering the coalition
structure with coalition Sm and the remaining regions as singletons we ob-
tain a lower bound for α given by

α ≥ Sm
2N − Sm

+
N − Sm
2N − 1

.

This is equivalent to

1− α ≤ 1− Sm
2N − Sm

+
N − Sm
2N − 1

=
(N − Sm)(2N + Sm − 2)

(2N − 1)(2N − Sm)
.

The claim follows if we take this upper bound for 1− α and establish

(N − 1) >
(N − Sm)(2N + Sm − 2)2

(2N − 1)2
.

We obtain

(2N − 1)2(N − 1)− (N − Sm)(2N + Sm − 2)2

= (Sm − 1)
(
(3Sm − 1)(N − 1) + S2

m

)
> 0.
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4.3 Deviation tax rates and tax revenues

The next step is to compute the revenues from deviation: We allow one sub-
coalition SD

` ( S` to change its tax rate while all other regions remain acting
cooperatively in the period where the deviation occurs. Assume from now
on S` ≥ 2 and let τ denote the average tax rate for the coalition structure
{S1, ...,SM} where each region in each coalition sets the equilibrium tax
rate. Sub-coalition SD

` optimally sets the deviation tax rate

τ
SD`
S`

=
Nk

N − SD`

(
2N − S` − SD`

2N − S`

)(
1

1− α

)
and obtains a tax revenue of

R
SD`
S`

=
Nk

2

2(N − SD` )

(
2N − S` − SD`

2N − S`

)2(
1

1− α

)2

.

The computation can be found in Appendix A.3.

Proposition 4. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
Fix a size of a sub-coalition. The larger the coalition from which a sub-
coalition with fixed size deviates, the smaller the deviation tax rate and the
smaller the deviation tax revenue.

This suggests that sub-coalitions which belong to relatively small coali-
tions have a higher incentive to deviate from cooperation compared to sub-
coalitions in relatively large coalitions. From Proposition 2 we know that
larger coalitions set higher tax rates but obtain less tax revenues than smaller
coalitions. Therefore, in order to make deviating from a larger coalition with
relatively low tax revenues profitable, a deviating sub-coalition needs to un-
derbid the remaining regions more than when deviating from a relatively
small coalition.

Proof. For a fixed coalition structure the deviation tax rates of the coalitions
differ in the factor

2N − S` − SD`
2N − S`

for ` = 1, ...,M . The derivative of this expression with respect to S` is

∂
(
2N−S`−SD`

2N−S`

)
∂S`

= −
SD`

(2N − S`)2
< 0,
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i.e., the larger the coalition the smaller the deviation tax rate.
Similarly, for the equilibrium tax revenue we have to look at

(2N − S` − SD` )2

(2N − S`)2

for ` = 1, ...,M . This factor decreases if the size of the coalition increases,
i.e., larger the coalition, from which a sub-coalition (of fixed size) deviates,
the smaller the equilibrium tax revenue.

Proposition 5. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
The deviation tax rate of sub-coalition SD

` ( S` is strictly smaller than the
tax rate of regions in coalition Sm if and only if

Sm(2N − S` − SD` )− SD` (2N − 2S`) > 0.

Moreover, the deviating sub-coalition always strictly underbids its own coali-
tion.

Note that for SD` = 1 the above inequality is always satisfied.14

The deviating region acts optimally given the cooperative behavior in the
coalitional equilibrium of all other regions. To attract the maximal amount
of capital the deviating region certainly needs to underbid the tax rate of its
own previous coalition. For all other coalitions it depends—inter alia—on
their coalition sizes.

Proof. The tax rate for the deviating sub-coalition SD
` is given by

τDS` =
Nk

N − SD`

(
2N − S` − SD`

2N − S`

)(
1

1− α

)
and for the remaining regions by

τSm = 2Nk

(
1

2N − Sm

)(
1

1− α

)
.

We need to establish that

τDS` < τSm ,

14This can be seen as follows: Sm(2N −S`−SD` )−SD` (2N −2S`) = (N −S`)(Sm−2)+
Sm(N−1) > 0. For Sm ≥ 2 this is true. For Sm = 1 we obtain: −(N−S`)+(N−1) = S`−1.
This expression is strictly greater than 0 as the coalition S` consists of at least two regions.
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which is equivalent to

1

N − SD`

(
2N − S` − SD`

2N − S`

)
< 2

(
1

2N − Sm

)
.

Manipulating yields

(2N − S` − SD` )(2N − Sm) < 2(N − SD` )(2N − S`)
⇔ 0 < Sm(2N − S` − SD` )− SD` (2N − 2S`).

It is easy to find a counter example for which the right-hand side is negative,
this is the case for, e.g., N = 10, S` = 5, SD` = 3 and Sm = 1. Therefore,
the inequality does not hold in general. Nevertheless, for Sm = S` we get

S`(2N − S` − SD` )− SD` (2N − 2S`) = (2N − S`)(S` − SD` ) > 0.

This proves the claim.

The following Proposition establishes that the sub-coalition SD
` indeed has

an advantage from deviating from the cooperative behavior.

Proposition 6. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
The deviating sub-coalition SD

` ( S` realizes a higher one-period deviation
revenue than it would obtain from cooperation in S`. We get

R
SD`
S`

> RS` .

Proof. We consider

Nk
2

2(N − SD` )

(
2N − S` − SD`

2N − S`

)2(
1

1− α

)2

> 2Nk
2 (N − S`)
(1− α)2(2N − S`)2

which is equivalent to(
2N − S` − SD`

)2
> 4(N − S`)(N − SD` ).

After some algebraic manipulation we obtain

(S` − SD` )2 > 0

which is per assumption on the sizes of the coalitions S` and SD
` always

true.
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The deviating sub-coalition sets a relatively low tax rate and by that un-
derbids the tax rate from the coalitional equilibrium. The lower tax rate is
accompanied by an increase of the tax base. These two effects pointing in
opposite directions result in an overall positive effect for the tax revenues,
as Proposition 6 shows. Therefore, deviating is profitable in the short run
meaning that no coalition structure can be considered as stable, in general.
Non-trivial deviations are always profitable and there is no coalition struc-
ture that is absorbing in the sense that it leads to high tax revenues and no
incentives to deviate.

4.4 The discount factor

In this section we determine the discount factors needed to sustain a coali-
tional equilibrium. It is clear that the severity of punishment determines the
stability of cooperation. Although we study stability with respect to a fixed,
jointly committed form of “institutional constraints” concerning the punish-
ment, we can characterize coalition structures according to their degree of
stability in the long run by comparing their respective discount factors.
Note that the minimum discount factor is obtained by rewriting equation
(15),

δ
SD`
S`

=
R
SD`
S`
−RS`

R
SD`
S`
−RP

SD
`

=
(S` − SD` )2(N − 1)

(2N − S` − SD` )2(N − 1)− 4(2N − S`)2(1− α)2(N − SD` )
. (17)

See Appendix A.4 for the computation.

Let us first study the impact a sub-coalitional deviation on the discount
factor.

Proposition 7. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
Fix a coalition S` with S` ≥ 2. The larger the deviating sub-coalition SD

` (
S` is, the smaller the minimum discount factor δ

SD`
S`

.

Proof. We consider the discount factor δ
SD`
S`

from equation (17) as a function

of the size of a deviating sub-coalition, SD` . We take the first derivative with
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respect to SD` to determine extremal points.

∂δ
SD`
S`

∂SD`
= −

2
(
S` − SD`

)
(N − 1)

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

−

(
S` − SD`

)2
(N − 1)

(
4(1− α)2(2N − S`)2 − 2 (N − 1)

(
2N − S` − SD`

))
(

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

)2
The first order condition is

− 2
(
S` − SD`

) (
(N − 1)

(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

)
−
(
S` − SD`

)2 (
4(1− α)2(2N − S`)2 − 2 (N − 1)

(
2N − S` − SD`

))
= 0

Solving for SD` we get two solutions, namely SD` = S` and SD` = 2N − S`.
As we require SD` < S` we concentrate on SD` = S`. The second derivative

of the discount factor δ
SD`
S`

with respect to SD` is

∂2δ
SD`
S`

∂SD`
2 =

2 (N − 1)

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

+
4
(
S` − SD`

)
(N − 1)

(
4(1− α)2(2N − S`)2 − 2 (N − 1)

(
2N − S` − SD`

))
(

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

)2
−

2
(
S` − SD`

)2
(N − 1)2(

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

)2
+

2
(
S` − SD`

)2
(N − 1)

(
4(1− α)2(2N − S`)2 − 2 (N − 1)

(
2N − S` − SD`

))2
(

(N − 1)
(
2N − S` − SD`

)2 − 4(1− α)2
(
N − SD`

)
(2N − S`)2

)3
Evaluating this expression at SD∗` = S` we obtain

2 (N − 1)

(N − 1) (2N − 2S`)
2 − 4(1− α)2 (N − S`) (2N − S`)2

.

To find out whether SD∗` = S` is a minimum or a maximum we determine
the sign of this expression. It is straightforward to see that the numerator is
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strictly positive. To show that the denominator is strictly positive, as well,
we use that

(1− α)2 ≤
(

1− S`
2N − S`

− N − S`
2N − 1

)2

=
(N − S`)2(2N + S` − 2)2

(2N − 1)2(2N − S`)2
.

Hence we show

(N − 1)(2N − 1)2 − (N − S`)(2N + S` − 2)2 > 0.

This inequality holds true which can be seen by writing the left hand side
as

(S` − 1) [(N + S`)(S` − 1) + 2S`(N − 1) + 1] .

Therefore, the discount factor δ
SD`
S`

as a function of the size of the deviating

sub-coalition, SD` , attains at SD∗` = S` a local minimum. Thus, in the region

SD` < S` the discount factor δ
SD`
S`

must be decreasing in SD` . This proves the
claim.

Proposition 7 shows that deviations of single regions require a higher min-
imum discount factor than deviations of sub-coalitions. Hence, it is more
attractive for single regions to deviate than for sub-coalitions. The smaller
the deviating sub-coalition the higher the minimum discount factor neces-
sary to sustain cooperation. Therefore, we define the minimum discount
factor of a coalition to be the one of singleton deviations,

δS` := max
{
δ
SD`
S`
|SD` < S`

}
= δ1S` .

Now, in order to sustain a coalitional equilibrium , no region is allowed to
have a profitable deviation no matter to which coalition this region belongs.
Therefore, given the coalition structure {S1, ...,SM} we need to take the
maximal minimum discount factor δ over all coalitions and all possible de-
viations of sub-coalitions. For all discount factors larger or equal than δ no
region has an incentive to deviate from the cooperative behavior. The next
Proposition helps us to determine the maximal minimum discount factor δ.

Proposition 8. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
The larger the size of a coalition S` from which a sub-coalition SD

` (of fixed

size) deviates, the larger the minimum discount factor δ
SD`
S`

.
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Proof. We consider the minimum discount factor δ
SD`
S`

as a function of the
coalition size S`. The numerator of the minimum discount factor δS` given
by

(S` − SD` )2(N − 1)

is increasing in the coalition size S`. Thus, if we are able to show that the
denominator given by

(2N − S` − SD` )2(N − 1)− 4(2N − S`)2(1− α)2(N − SD` )

is a decreasing function in S`, we are done. To see this we take the derivative
of the denominator with respect to S` and obtain

−2(2N − S` − SD` )(N − 1) + 8(1− α)2(2N − S`)(N − SD` ).

Note that we regard the coalition structure hereby as fixed, so the factor
α is considered fixed as well. If this derivative is strictly negative, the

denominator of δ
SD`
S`

is a decreasing function of S` and hence δ
SD`
S`

is increasing
in the coalition size. To see this we show:

(2N − S` − SD` )(N − 1)− 4(1− α)2(2N − S`)(N − SD` ) > 0.

By Lemma 1 we have that α increases if two coalitions merge and so (1−α)2

decreases. It is sufficient to take the upper bound for (1− α)2 which is the
lower bound for α and corresponds to the case where the regions outside the
coalition S` react non-cooperatively. Thus,

(1− α)2 ≤
(

1− S`
2N − S`

− N − S`
2N − 1

)2

=
(N − S`)2(2N + S` − 2)2

(2N − 1)2(2N − S`)2
.

Hence, for our claim we require:

(2N − S` − SD` )(N − 1)(2N − 1)2(2N − S`)− 4(N − S`)2(2N + S` − 2)2(N − SD` ) > 0.

Expanding the expression on the left-hand side yields

8SD` N
4 + 16S`

2N3 − 12SD` S`N
3 − 16S`N

3 − 16SD` N
3 + 4N3 − 8S`

3N2 − 12SD` S`
2N2

− 8S`
2N2 + 40SD` S`N

2 + 12S`N
2 + 6SD` N

2 − 4N2 − 4S`
4N + 8SD` S`

3N + 16S`
3N

− 11S`
2N − 27SD` S`N + 4S`N + 2SD` N + 4SD` S`

4 − 16SD` S`
3 + 16SD` S`

2 − S`2 − SD` S`.
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This is equal to

(N − S`)
[
8SD` N

2(N − 2) + 5SD` (N − S`) + 11S`(N − SD` ) + SD` N
]

+ (N − SD` )(N − S`) [8S`(S`N −N − S`) + 4S`(S` − 2)(N + S`)]

+ 4S`(S` − SD` )(N − 2)N2 + 4N
[
(N − 1)N − (SD` − 1)S`

]
+ S`

[
N(N − SD` )− S`

]
+ SD` (N − S`) + SD` N.

This last expression is strictly positive as the assumptions on the coalition
structure imply N ≥ 3 and S` ≥ 2. This proves the claim.

Allowing for deviations of sub-coalitions of arbitrary size using Proposition
7 and Proposition 8 we get immediately:

Proposition 9. Given a coalition structure {S1, ...,SM} with 2 ≤M < N .
The maximal minimum discount factor is given by

δ = δSmax = δ1Smax
=

(Smax − 1)2

(2N − Smax − 1)2 − 4(2N − Smax)2(1− α)2

where Smax is the size of the largest coalition, denoted by Smax, in the
coalition structure {S1, ...,SM}.
Consequently, in order to determine the maximal minimum discount factor
for a given coalition structure it suffices to know the size of the largest
coalition. All other coalition sizes have no direct impact on the sustainability
of the coalitional equilibrium, except for the fact that the discount factor
depends on the ex-ante level of cooperation through the factor α.

Let us remark that combining Proposition 7 and Proposition 8 yields an-
other result: For example, if we only allow for deviations of sub-coalitions
with a lower bound on the minimal size, then these two Propositions tell
us how to determine the discount factor in order to sustain a coalitional
equilibrium within a given coalition structure. For example, even if institu-
tional or political reasons (outside our model) require deviations of at least
two countries to make defection “effective” we know what the respective
discount factor is.

In the following we compare the maximal minimum discount factor between
different coalition structures in each case allowing for deviations of sub-
coalitions of arbitrary size.

Proposition 10. Given a coalition structure {S1, ...,SM} with 2 ≤M < N
let Smax be the size of the largest coalition, denoted by Smax. Assume that
coalition Sm 6= Smax splits up into smaller coalitions Sm1 , ...,Smk

with k ≥
1. Then, the maximal minimum discount factor increases.
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Obviously, the discount factors coincide if the given coalition structure con-
sists of one coalition and singletons. Otherwise the increase of the maximal
minimum discount factor is strict as shown in the proof:

Proof. From Proposition 9 we know:

δ = δ1Smax
.

The general expression for the discount factor is given in (17). It depends
in particular on the size of the coalition and the factor α. Per assumption
the sizes of the largest coalition in the two coalition structures coincide,
which makes α the crucial difference in the discount factor. From Lemma
1 we know that α strictly increases if any two coalitions merge. Therefore
if a coalition splits up into smaller coalitions α strictly decreases. In this
case (1 − α)2 strictly increases and so the denominator of the minimum
discount factor in equation (17) strictly decreases, so the discount factor
strictly increases.

Proposition 10 establishes that cooperation is easier to sustain if there is
ex-ante more “cooperative behavior” between the regions. For example,
compare an arbitrary coalition structure with Smax as the largest coalition
with a coalition structure with Smax and the remaining regions act fully non-
cooperatively (analyzed by Itaya et al., 2010). Then, the discount factor for
the second case (ex-ante less cooperative) is larger than for the first case
(ex-ante more cooperative).

Considering the situation in Proposition 10 from the reverse point of view
we obtain:

Proposition 11. Given a coalition structure {S1, ...,SM} with S2 = ... =
SM = 1 and 2 ≤ M < N . Suppose, some singleton regions start to form
new coalitions. As long as they do not form a coalition with a size strictly
larger than Smax, the maximal minimum discount factor decreases.

Proof. This can be shown by a similar argument as in Proposition 10.

Proposition 10 and Proposition 11 depart from two different points of view.
In Proposition 10 we study for an arbitrary coalition structure how the max-
imal minimum discount factor changes if every region outside the maximal
size coalition starts to act less cooperatively. In Proposition 11 we start
with a coalition structure with one “big” coalition and singleton regions and
analyze the influence on the maximal minimum discount factor when some
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singleton regions form new coalitions, whose size is no larger than the one
of the “big” coalition.

Finally, we briefly comment on the punishment, where the assumption, that
every region outside the deviating sub-coalition acts non-cooperatively, is
relaxed. Let α̂ refer to the coalition structure of the punishment. It needs
to be shown that the punishment tax revenue,

2Nk
(N − SD` )

(2N − SD` )2(1− α̂)2
,

resulting from a less cooperative coalition structure where coalitions outside
the deviating sub-coalition or the deviating sub-coalition itself are allowed
to continue to act cooperatively, is indeed lower than the tax revenue from
cooperation. This implies monotonicity in the tax revenues going from less
cooperative coalition structures to more cooperative ones. For this it is
necessary to establish the following inequality

(N − S`)(2N − SD` )2(1− α̂)2 − (N − SD` )(2N − S`)2(1− α)2 ≥ 0.

It can be shown that all our previous results remain valid, if this inequality
is satisfied. Also section 5 indicates by means of a numerical example that
this kind of monotonicity in the tax revenues holds. Therefore, we expect
that our results can be generalized to other forms of punishment.
By the comparison of the maximal minimum discount factors of two al-
ternative punishment scenarios we immediately observe that changing the
punishment to a (maybe more realistic) less harsh scenario with R̃P

SD
`

≥ RP
SD
`

has of course an impact on the sustainability of cooperation: As the maxi-
mal minimum discount factor increases, it becomes more difficult to sustain
cooperation.

4.5 Welfare maximization

For the sake of readability of our results we have analyzed a model where
the region’s objective function is to maximize tax revenues. However, this
is not an innocent assumption since the objective function determines the
strategic game considerably. A more realistic assumption is to maximize
welfare consisting of the region’s consumption of a private and a public good,
which is financed by tax revenues. In Appendix C, we indicate how this can
be done in general. By an numerical example for five regions we find that the
equilibrium tax rates and tax revenues for the cooperative behavior seem to
follow a similar pattern as with the revenue maximization. The same holds
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true for the dynamic sustainability of cooperation. Overall, this indicates
that our results are likely to be generalized with welfare maximization.

5 Numerical Example

5.1 Equilibrium tax rates and tax revenues for five regions

In order to illustrate our results we introduce in this section an example,
where we compare the different coalition structures for five regions, N =
5. The number of possible coalition structures is 52 and Table 1 gives an
overview. We skipped most of the variations of the coalition structures due
to our symmetric setting and the fact that they can easily be obtained by
re-naming the players.

{1}{2}{3}{4}{5} {1}{2345} {12}{345} {12}{34}{5} {12}{3}{4}{5} {123}{4}{5} {12345}
{2}{1345} {13}{245} {13}{23}{5} {13}{2}{4}{5} {124}{3}{5}
{3}{1345} {14}{235} {14}{23}{5} {14}{2}{3}{5} {125}{3}{4}

...
...

...
...

...
...

...
...

...

α 0.55 0.77 0.68 0.61 0.58 0.65 1.00

Table 1: Coalition structures and corresponding α for N = 5

For the purpose of this example, it is sufficient to choose one coalition struc-
ture from every column of table 1 and compute the corresponding tax rate,
capital demand and tax revenue. The results of the equilibrium tax rates,
the capital demands and the equilibrium tax revenues are summarized in
Tables 2, 3 and 4 below.
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Coalition structure 1 2 3 4 5 τ

{{1} {2} {3} {4} {5}} 2.5k 2.5k 2.5k 2.5k 2.5k 2.5k

{{1} {2345}} 5k 7.5k 7.5k 7.5k 7.5k 7k

{{12} {345}} 3.89k 3.89k 4.44k 4.44k 4.44k 4.22k

{{12} {34} {5}} 3.21k 3.21k 3.21k 3.21k 2.86k 3.14k

{{12} {3} {4} {5}} 3k 3k 2.67k 2.67k 2.67k 2.8k

{{123} {4} {5}} 4.09k 4.09k 4.09k 3.18k 3.18k 3.73k

Table 2: Equilibrium tax rates for N = 5

Coalition structure 1 2 3 4 5

{{1} {2} {3} {4} {5}} k k k k k

{{1} {2345}} 2k 0.75k 0.75k 0.75k 0.75k

{{12} {345}} 1.17k 1.17k 0.89k 0.89k 0.89k

{{12} {34} {5}} 0.96k 0.96k 0.96k 0.96k 1.14k

{{12} {3} {4} {5}} 0.9k 0.9k 1.07k 1.07k 1.07k

{{123} {4} {5}} 0.82k 0.82k 0.82k 1.27k 1.27k

Table 3: Equilibrium capital demands for N = 5

Coalition structure 1 2 3 4 5
∑

{{1} {2} {3} {4} {5}} 2.5k
2

2.5k
2

2.5k
2

2.5k
2

2.5k
2

12.5k
2

{{1} {2345}} 10k
2

5.63k
2

5.63k
2

5.63k
2

5.63k
2

32.5k
2

{{12} {345}} 4.54k
2

4.54k
2

3.95k
2

3.95k
2

3.95k
2

20.93k
2

{{12} {34} {5}} 3.1k
2

3.1k
2

3.1k
2

3.1k
2

3.27k
2

15.67k
2

{{12} {3} {4} {5}} 2.7k
2

2.7k
2

2.84k
2

2.84k
2

2.84k
2

13.92k
2

{{123} {4} {5}} 3.35k
2

3.35k
2

3.35k
2

4.05k
2

4.05k
2

18.15k
2

Table 4: Equilibrium tax revenues for N = 5

Starting from the point of no cooperation, each region receives the lowest
values in absolute terms for both equilibrium tax rate and equilibrium tax
revenue. This observation refers to the well-known fact that any kind of
cooperation is profitable for all the regions. Clearly, this situation is the
“classical” tax competition dilemma where tax rates and tax revenues are
too low compared to a cooperative solution.
If two regions form a coalition while the remaining regions continue to act
non-cooperatively, such that the resulting coalition structure is for example
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{{12} {3} {4} {5}}, there is a Pareto-improvement for all regions in terms of
tax rates and tax revenues. As suggested by Proposition 2 we observe first,
that the coalition of the two cooperating regions sets a higher tax rate, 3k
vs. 2.67k, and becomes a capital exporter where capital demand is 0.9k.

Second, the tax revenue of this coalition {12} is 2.7k
2

and therefore lower

compared to the singleton regions with 2.84k
2
, but still strictly higher than

the non-cooperative payoff of 2.5k
2
.

As cooperation proceeds, for example coalition structure {{123} {4} {5}}
forms, we see that every coalition raises its tax rate, compare Proposition
12 in Appendix B. Looking at the capital demands we see that the coalition
{123} exports more capital than before, which results from an above average
increase of their tax rate. In addition, we observe that there is again a
Pareto-improvement for all regions. This includes the merging coalitions

{12} and {3} who get a tax revenue of 3.35k
2

compared to 2.7k
2

and 2.84k
2

before, as well as the singletons with 4.05k
2

compared to 2.84k
2
. This case

exemplifies that even the merging coalitions gain from cooperation which
was not clear in general. From Proposition 13 in Appendix B we know that
coalitions not merging benefit from the merger for sure.
As already discussed in Bucovetsky (2009) and also obtained here, coalition
structure {{1} {2345}} offers the highest tax revenues and tax rates which
can be received, apart from the grand coalition which would fully absorb
production output by taxes.

5.2 A repeated game with five regions

Now, we apply the repeated game to this example.
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coalition structure discount factor sum of tax revenues

{{1} {2345}} δ1{2345} = 0.5031 δ = 0.5031 32.5k
2

δ2{2345} = 0.3750

δ3{2345} = 0.1837

{{12} {345}} δ1{12} = 0.0443 δ = 0.2539 20.93k
2

δ1{345} = 0.2539

δ2{345} = 0.1019

{{12} {34} {5}} δ1{12} = 0.0972 δ = 0.0972 15.67k
2

δ1{34} = 0.0972

{{12} {3} {4} {5}} δ1{12} = 0.2195 δ = 0.2195 13.92k
2

{{123} {4} {5}} δ1{123} = 0.3306 δ = 0.3306 18.15k
2

δ2{123} = 0.1414

Table 5: Discount factors for N = 5.

This example illustrates one of our main result from Proposition 9, namely
that the discount factor associated to a coalition structure is the one for
singleton deviations from the largest coalition.
The comparison of the coalition structure {{12} {345}} with an ex-ante less
cooperative and hence more competitive environment, i.e., there is only
coalition {123} whereas coalition {4} and {5} act as a singleton, shows that
cooperation is more difficult to sustain. In Proposition 10 we established
that this observation holds true in general, so cooperation is easier to sustain
in a dynamic setting the more cooperative behavior exists ex-ante under the
assumption that the size of the largest coalition is fixed.
Lastly, note that according to Proposition 11 the maximal minimum dis-
count factor decreases from 0.3306 to 0.2539 going from coalition structure
{{123} {4} {5}} to coalition structure {{12} {345}} where the two singleton
regions decide to form a coalition.
Interestingly, a comparison of all possible coalition structures for N = 5
shows, that the most stable coalition structure, in the sense of the lowest
discount factor, is not the one with the largest sum of tax revenues.
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6 Conclusion

This paper has analyzed the stability of coalitional equilibria within repeated
tax competition. For any given coalition structure we have determined the
equilibrium tax rates and the equilibrium tax revenues. The main contribu-
tion of this paper is the analysis of sustainability of cooperative behavior by
means of a repeated game setting allowing for deviations of sub-coalitions.
We obtain the following results: First, the deviating sub-coalition underbids
the tax rates of other regions continuing to act cooperatively and benefits
from a one-shot deviation. Nevertheless, for a given form of punishment we
have found that there exists a critical minimum discount factor that makes
deviations unprofitable and sustains cooperation in the long run. Second, we
have established that for an arbitrary coalition structure the discount factor
needed to sustain a coalitional equilibrium crucially depends on the size of
the largest coalition in this structure and the deviations of singleton regions.
Third, the comparison of an arbitrary coalition structure where the largest
coalition consists of at least two regions with a coalition structure where
there is only the largest coalition and the remaining regions behave fully
non-cooperatively, or, in general, with a less cooperative coalition structure
but with the same coalition of maximal size, shows: Cooperation is easier
to sustain for the first coalition structure with an ex-ante more cooperative
behavior. Similarly, for a given coalition considering the behavior of the re-
maining regions, the discount factor needed to sustain cooperation decreases
as long as the remaining regions do not form a coalition larger than the given
one. This means, once cooperative behavior has been broadly established
it is easier to sustain. Remarkably, a comparison of all possible coalition
structures for five regions showed, that the most stable coalition structure,
in the sense of the lowest discount factor, is not the one with the largest
sum of tax revenues.
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A Appendix

A.1 Best response functions with coalition structures

We provide the computation of how the best response function for the re-
gional tax rate is determined. The characteristic feature of a coalition is
that they agree to set a unique tax rate within the coalition. The coalitional
revenue is distributed equally to its members. The objective function of the
coalition Sm is given by∑

h∈Sm

τhk
∗
h(τ) =

∑
h∈Sm

τSm

(
k +

τ − τSm

2

)
= SmτSm

(
k +

τ − τSm

2

)
.

The coalitional tax rate is chosen in such a way that this function is maxi-
mized. The derivative with respect to τSm is:

Sm

(
k +

τ − τSm

2

)
+ SmτSm

(
Sm
2N
− 1

2

)

= Sm

k +
1

2

∑
` 6=m

S`τS`
N

+

(
Sm
2N
− 1

2
+
Sm
2N
− 1

2

)
τSm


= Sm

k +
1

2

∑
` 6=m

S`τS`
N

+
Sm −N
N

τSm

 .

Equating this term to 0 leads to

τSm =
N

N − Sm
k +

1

2

∑
` 6=m

S`τS`
N − Sm

.
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A.2 Optimal tax rates with coalition structures

We compute the optimal tax rates in line with Bucovetsky (2009) as follows.
Given the coalition structure {S1,S2, ...,SM}, where form ≥ 2 the coalitions
Sm are singletons. From the first order condition in Appendix A.1 we have

Sm

(
k +

τ − τSm

2

)
+ SmτSm

(
Sm
2N
− 1

2

)
= 0.

The optimal tax rates are

τSm =
(
2k + τ

)( N

2N − Sm

)
.

Multiplying both sides with Sm, summing up over all coalitions and dividing
by N gives

M∑
m=1

SmτSm

N
=
(
2k + τ

)( M∑
m=1

Sm
2N − Sm

)
.

On the left-hand side we obtain the average tax rate τ . Solving for τ yields:

τ = 2k


M∑
m=1

Sm
2N−Sm

1−
M∑
m=1

Sm
2N−Sm


Defining α :=

M∑
m=1

Sm
2N−Sm the average tax rate can be written as

τ = 2k

(
α

1− α

)
.

Inserting this expression for τ into the optimal tax rates we get

τSm = 2Nk

(
1 +

α

1− α

)(
1

2N − Sm

)
= 2Nk

(
1

1− α

)(
1

2N − Sm

)
.
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A.3 Optimal tax rate and revenue under deviating behavior

Suppose a sub-coalition SD
` consisting of SD` regions (from coalition S`,

SD` < S`) deviates while all other regions continue to set the equilibrium
tax rate from the coalition structure {S1, ...,SM}. This means there are
S` − SD` regions setting the tax rate τS` and there are Sm regions setting
τSm for m 6= `.
The regions SD` maximize their joint tax revenue given by

SD` τSD`

k +
τ − SD` τS`

N +
SD` τSD

`
N

2
−
τSD`
2


by deviating. The derivative of the joint tax revenue is

k +
τ − SD` τS`

N +
SD` τSD

`
N

2
−
τSD`
2

+ τSD`

(
SD` −N

2N

)
= k +

τ

2
−
SD` τS`

2N
+ τSD`

(
SD` −N
N

)
.

Solving the first order condition we get the optimal deviation tax rate

τ
SD`
S`

=
N

N − SD`

(
k +

τ

2
−
SD` τS`

2N

)
.

Capital demand is given by

k +
τ − SD` τS`

N +
SD` τ

SD`
S`
N

2
−
τ
SD`
S`

2

The tax revenue is then obtained by:

R
SD`
S`

=
N

N − SD`

(
k +

τ

2
−
SD` τS`

2N

)(
k +

τ

2
−
SD` τS`

2N
− τD

SD`

(
N − SD`

2N

))
=

N

2(N − SD` )

(
k +

τ

2
−
SD` τS`

2N

)2

Using the definition of τS` from (12) and τ from (13) the tax rate and the
tax revenue can be further simplified to:
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τ
SD`
S`

=
N

N − SD`

(
k +

(
α

1− α

)
k −

(
SD`

2N − S`

)(
1

1− α

)
k

)
=

N

N − SD`

((
1

1− α

)
k −

(
SD`

2N − S`

)(
1

1− α

)
k

)
=

Nk

N − SD`

(
2N − S` − SD`

2N − S`

)(
1

1− α

)
and

R
SD`
S`

=
N

2(N − SD` )

(
k +

τ

2
−
SD` τS`

2N

)2

=
Nk

2

2(N − SD` )

(
2N − S` − SD`

2N − S`

)2(
1

1− α

)2

.
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A.4 Computation of the minimum discount factor

To compute the minimum discount factor we first look at the numerator and
obtain

R
SD`
S`
−RS` =

Nk
2

2(N − SD` )

(
2N − S` − SD`

2N − S`

)2(
1

1− α

)2

− 2Nk
2 (N − S`)
(1− α)2(2N − S`)2

=
Nk

2

(1− α)2(2N − S`)2

(
(2N − S` − SD` )2

2(N − SD` )
− 2(N − S`)

)
=

Nk
2

(1− α)2(2N − S`)2

(
(S` − SD` )2

2(N − SD` )

)
=

Nk
2
(S` − SD` )2

(1− α)2(2N − S`)22(N − SD` )
.

For the denominator we get

R
SD`
S`
−RP

SD
`

=
Nk

2

2(N − SD` )

(
2N − S` − SD`

2N − S`

)2(
1

1− α

)2

− 2Nk
2

N − 1

= Nk
2

(
1

2

(
2N − S` − SD`

2N − S`

)2(
1

N − SD`

)(
1

1− α

)2

−
(

2

N − 1

))

= Nk
2
(

(2N − S` − SD` )2

2(2N − S`)2(N − SD` )(1− α)2
− 2

(N − 1)

)
= Nk

2
(

(2N − S` − SD` )2(N − 1)− 4(2N − S`)2(N − SD` )(1− α)2

(N − SD` )2(2N − S`)2(1− α)2(N − 1)

)
=
Nk

2 (
(2N − S` − SD` )2(N − 1)− 4(2N − S`)2(N − SD` )(1− α)2

)
(N − SD` )2(2N − S`)2(1− α)2(N − 1)

.

Hence, the minimum discount factor is given by:

δ
SD`
S`

=
R
SD`
S`
−RS`

R
SD`
S`
−RP

SD
`

=
(S` − SD` )2(N − 1)

(2N − S` − SD` )2(N − 1)− 4(2N − S`)2(1− α)2(N − SD` )
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B Further Results

The equilibrium tax rates in equation (12) lead to another result:15

Proposition 12. Given a coalition structure {S1, ...,SM} with 3 ≤ M ≤
N . If two coalitions merge, all coalitions raise their equilibrium tax rate.
Moreover, the merged coalition raises its equilibrium tax rate above average.

If only two coalitions merge while all others remain unchanged, this has
a positive external effect on the tax rates of all coalitions due to a less
competitive environment. This effect also applies to the merging coalitions
but for them there is an additional, second effect because of their new, larger
size. The first effect, the influence of the competitive environment described
by the coalition structure, is given by the factor α, see Lemma 1. The second
effect is due to the change in the coalition size which only influences ceteris
paribus the merging coalitions. Therefore, the merging coalitions raise their
tax rate disproportionally, namely above average.

Proof. The equilibrium tax rates are given by

τSm = 2Nk

(
1

1− α

)(
1

2N − Sm

)
for m = 1, ...,M with α =

∑M
m=1

Sm
2N−Sm . The equilibrium tax rate depends

the size of the own coalition and the factor α. Without loss of general-
ity suppose coalition SM−1 and coalition SM decide to form one coalition.
Therefore, the equilibrium tax rates of regions 1, ...,M − 2 are only affected
by the change of the factor α. We have already shown that α strictly in-
creases if two coalitions merge (see Lemma 1). Moreover, note that for the
merged coalition SM−1 ∪ SM we have

N

2N − SM−1 − SM
>

N

2N − SM

and

N

2N − SM−1 − SM
>

N

2N − SM−1
.

Thus the coalition SM−1∪SM raises its equilibrium tax rate above average.

15This Proposition and the succeeding one are in line with Bucovetsky (2009).
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To sum up, the effect of regions forming coalitions is an overall increase
of taxes, i.e., the sum of the tax revenues for all regions increases. The
next proposition shows: If two coalitions decide to merge, then this has a
positive effect on the equilibrium tax revenues of all other regions, that are
not involved in the merger.

Proposition 13. Given a coalition structure {S1, ...,SM} with 3 ≤M ≤ N .
If two coalitions merge, the tax revenue of the regions outside the merging
coalitions increases.

Proof. The equilibrium tax revenues are given by

2Nk
2 (N − Sm)

(1− α)2(2N − Sm)2

for m = 1, ...,M with α =
∑M

m=1
Sm

2N−Sm .
Assume two coalitions merge. Without loss of generality suppose coalition
SM−1 and coalition SM decide to form one coalition. Similarly to the equi-
librium tax rate the equilibrium tax revenue depends the size of the own
coalition and the factor α. Hence, the tax rates of regions 1, ...,M − 2 are
only affected by the change of the factor α. Lemma 1 already establishes
that α increases if two coalitions merge.

While it is clear from Proposition 13, that all regions increase their tax
rates, it is not for sure that the merger of two coalitions ultimately benefits
the regions in the merging coalitions. However, all those regions which
are not involved in the merger gain from this process. As the sum of the
tax revenue increases over all regions, this might produce an incentive to
cooperate for the regions in the merging coalitions. At this point of the
model it is not yet clear if the members of the merging coalitions gain without
receiving a possible transfer from the other regions. This result is in line
with Bucovetsky (2009), Proposition 5. Note that he shows in Proposition
6 that, if regions of different size merge, only the smaller of those merging
regions definitely gains from cooperation.
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C Maximizing Welfare

The governments’s objective function determines the strategic game between
countries considerably. Therefore, the assumption that regions maximize tax
revenues is not innocent. In this section, we consider a numerical example
for welfare maximization to get an idea whether our main results hold.

C.1 Cooperative behavior

In line with Cardarelli et al. (2002), Itaya et al. (2008) or Devereux et al.
(2008) we assume that the regional government’s objective is to maximize
a linear utility function which depends on overall (private and public) con-
sumption in society: Private consumption for region i is given by the sum
of the labor income and capital income

Cprivatei (τ) = f(ki)− kif ′(ki) + rk.

Public consumption is given by the tax revenues

Cpublici (τ) = τiki.

In equilibrium, the welfare in region i is given by overall consumption (pri-
vate and public) in region i with a marginal cost of public funds γ > 1:

Wi(τ) = Cprivatei (τ) + γCpublici (τ)

= f(k∗i (τ))− k∗i (τ)f ′(k∗i (τ)) + r∗(τ)k + γτik
∗
i (τ)

= (k∗i (τ))2 + r∗(τ)k + γτik
∗
i (τ).

Given a coalition structure {S1, ...,SM} with 2 ≤M ≤ N . For coalition Sm

the objective function is given by∑
h∈Sm

Wh(τ) =
∑
h∈Sm

(k∗h(τ))2 + r∗(τ)k + γτSmk
∗
h(τ)

= Sm

((
k +

τ − τSm

2

)2

+
(
A− 2k − τ

)
k + γτSm

(
k +

τ − τSm

2

))
Taking the derivative with respect to τSm we obtain

Sm

(
2

(
k +

τ − τSm

2

)(
Sm
2N
− 1

2

)
− Sm

N
k + γ

(
k +

τ − τSm

2

)
+ γτSm

(
Sm
2N
− 1

2

))
= Sm

(
(γ − 1)k +

Sm +N(γ − 1)

2N
τ +

Sm(γ − 1) +N(1− 2γ)

2N
τSm

)
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Equalizing to 0 leads to

τSm =
2N

N(2γ − 1)− Sm(γ − 1)

(
(γ − 1)k +

Sm +N(γ − 1)

2N
τ

)
=

2N(γ − 1)k

N(2γ − 1)− Sm(γ − 1)
+

Sm +N(γ − 1)

N(2γ − 1)− Sm(γ − 1)
τ

Summing up over all coalitions and dividing by N gives

τ =
M∑
m=1

Sm2(γ − 1)k

N(2γ − 1)− Sm(γ − 1)
+

M∑
m=1

Sm(Sm +N(γ − 1))

N(N(2γ − 1)− Sm(γ − 1))
τ

τ can be computed as follows:

τ = 2k

∑M
m=1

Sm(γ−1)
N(2γ−1)−Sm(γ−1)

1−
∑M

m=1
Sm(Sm+N(γ−1))

N(N(2γ−1)−Sm(γ−1))

= 2k

∑M
m=1

Sm(γ−1)
N(2γ−1)−Sm(γ−1)

1−
∑M

m=1
Sm
N

Sm
N(2γ−1)−Sm(γ−1) −

∑M
m=1

Sm(γ−1)
N(2γ−1)−Sm(γ−1)

Define

α : =

M∑
m=1

(γ − 1)Sm
N(2γ − 1)− Sm(γ − 1)

,

β : =

M∑
m=1

Sm
N

Sm
N(2γ − 1)− Sm(γ − 1)

.

τ can be then be written in a more simpler way:

τ = 2k
α

1− α− β
.

Computing τSm we get

τSm = 2k

(
N(γ − 1)(1− β) + αSm
N(2γ − 1)− Sm(γ − 1)

)(
1

1− α− β

)
.

For the capital demand we get

k∗Sm
(τ) = k

1

1− α− β

(
Nγ(1− β)− (α+ (γ − 1)(1− β))Sm

N(2γ − 1)− Sm(γ − 1)

)
.
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C.2 Repeated interaction

Suppose sub-coalition SD
` ( S` considers to deviate from the coalitional

equilibrium. We determine the optimal deviation tax rate of region j and
the respective capital demand.
For the deviation tax rate observe that

∂
[
(k∗

SD
`

(τ))2 + r∗(τ)k + γτSD
`
k∗
SD
`

(τ)
]

∂τSD
`

= 2

k +
τ − SD` τS`

N +
SD` τSD

`
N − τSD

`

2

(SD` −N
2N

)
−
SD`
N
k

+ γ

k +
τ − SD` τS`

N +
SD` τSD

`
N − τSD

`

2

+ γτSD
`

(
SD` −N

2N

)

= (γ − 1)k +

(
SD` +N(γ − 1)

N

)(
τ

2
−
SD` τS`

2N

)
+

(
SD` +N(2γ − 1)

2N

)(
SD` −N
N

)
τSD

`
.

Solving the first order condition we get the optimal deviation tax rate given
by

τSD
`

=

(
2N

SD` +N(2γ − 1)

)(
N

N − SD`

)(
(γ − 1)k +

(
SD` +N(γ − 1)

N

)(
τ

2
−
SD` τS`

2N

))
=

(
N

N − SD`

)(
2N(γ − 1)

SD` +N(2γ − 1)
k +

(
2SD` + 2N(γ − 1)

SD` +N(2γ − 1)

)(
τ

2
−
SD` τS`

2N

))
.

Capital demand is given by

k +
τ − SD` τS`

N +
SD` τSD

`
N

2
−
τSD

`

2

=
SD` +Nγ

SD` +N(2γ − 1)
k +

Nγ

SD` +N(2γ − 1)

(
τ

2
− τS`

2N

)
.

The welfare can then be computed using the equilibrium tax rate and capital
demand. We will stick to a numerical example in what follows.

C.3 A numerical example for five regions

For the repeated game with five regions we employ different levels for the
marginal costs of public funds γ. Results are reported in Table 6.
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coalition structure discount factor overall welfare

γ = 1.1

{{1} {2345}} δ1{2345} = 0.6286 δ = 0.6286 5kA− 4.7370k
2

δ2{2345} = 0.6167

δ3{2345} = 0.5652

{{12} {345}} δ1{12} = 0.0729 δ = 0.3481 5kA− 4.8122k
2

δ1{345} = 0.3481

δ2{345} = 0.3062

{{12} {34} {5}} δ1{12} = 0.1478 δ = 0.1478 5kA− 4.8585k
2

δ1{34} = 0.1478

{{12} {3} {4} {5}} δ1{12} = 0.3713 δ = 0.3713 5kA− 4.8744k
2

{{123} {4} {5}} δ1{123} = 0.4734 δ = 0.4734 5kA− 4.8422k
2

δ2{123} = 0.4263

γ = 2

{{1} {2345}} δ1{2345} = 0.5648 δ = 0.5648 5kA+ 10.4000k
2

δ2{2345} = 0.5581

δ3{2345} = 0.5198

{{12} {345}} δ1{12} = 0.0567 δ = 0.2984 5kA+ 5.4000k
2

δ1{345} = 0.2984

δ2{345} = 0.2680

{{12} {34} {5}} δ1{12} = 0.1197 δ = 0.1197 5kA+ 2.8099k
2

δ1{34} = 0.1197

{{12} {3} {4} {5}} δ1{12} = 0.2819 δ = 0.2819 5kA+ 1.9401k
2

{{123} {4} {5}} δ1{123} = 0.3955 δ = 0.3955 5kA+ 3.8889k
2

δ2{123} = 0.3604

45



coalition structure discount factor overall welfare

γ = 10

{{1} {2345}} δ1{2345} = 0.5143 δ = 0.5143 5kA+ 255.8181k
2

δ2{2345} = 0.5107

δ3{2345} = 0.4822

{{12} {345}} δ1{12} = 0.0464 δ = 0.2618 5kA+ 164.3199k
2

δ1{345} = 0.2618

δ2{345} = 0.2387

{{12} {34} {5}} δ1{12} = 0.1010 δ = 0.1010 5kA+ 121.8140k
2

δ1{34} = 0.1010

{{12} {3} {4} {5}} δ1{12} = 0.2296 δ = 0.2296 5kA+ 107.7871k
2

{{123} {4} {5}} δ1{123} = 0.3418 δ = 0.3418 5kA+ 141.4286k
2

δ2{123} = 0.3147

Table 6: Discount factors for N = 5 with welfare maximization.

There is a good indication that the objective function that we have chosen
is not detrimental to our main results. Again, the comparison of all possible
coalition structures for N = 5 shows that the most stable coalition structure,
in the sense of the lowest discount factor, is not the one with the largest
overall welfare.
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