
ISSRE ‘98

The Ninth International Symposium on

SOFTWARE

RELIABILITY

ENGINEERING

Paderborn, Germany,
November 4-7, 1998

IEEE
Computer

Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/20075076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PERSONNEL IS-EFFORT COLLECTION IN INDUSTRIAL
ENVIRONMENTS

Thorsten Spitta1

University of Bielefeld / Germany

Abstract: The knowledge of development and maintenance effort is a necessary precondition for all
types of software management, IS-controlling, guidance of quality and effort estimation. Data collect -
ing systems seem to be widely used, but the data is said to be unsafe and firm-specific. This paper
presents a concept for the collection of personnel effort and for events (e.g. faults). The revised infor -
mal specification of this paper is based on experience with such a system used by 40 developers in
five locations for many years. Design and practical use of a system based on that concept allow the
collection of statistically valid effort data. This would only be possible if developers are sure to be
not supervised by their data, and if they don’t need to decide upon classifications during data-entry
time. Examples show applications of the data for project management, quality control and IS resource
management reporting from 6« years with overall 170 PYs.

1 Introduction

A great deal of software engineering techniques is based on the knowledge of effort data: Ef-
fort estimation, cost allocation, project management etc. ‘The Mythical Man Month’ [3],
‘Software Engineering Economics’ [1] are two examples of fundamental books which inten-
sively deal with the amounts and distribution of human effort in software development and
maintenance. But until now there has not been published a generalized concept of how to col-
lect the effort.

This paper describes such a concept. It has been empirically developed since 1987 in a medi-
um sized company that had five locations developing and three locations maintaining soft-
ware with about 40 developers. This means 30,000 to 50,000 data entries per year for those
40 persons, as demonstrated later. The data to be shown here is based on the experience of
the first 6« years. At that time the database contained 271,077 hours of effort, distributed on
22 large, 248 small projects and 461 maintenance activities with accounted effort and 106
canceled requirements with no effort (see details in table 4, section 5). Including service, the
database contained 169.4 PY (person years)2 of effort.

As realized by recent empirical investigations of the author [12] there are still few organiza-
tions collecting such data. The main arguments against effort collection are the validity of the
data and the effort of its collection. In detail:
· The lines between development, maintenance and service are not sharp enough. There

would be false attachments of data. This is the classification problem.
· Data has to be collected by programmers. It does not only show effort but also human be-

havior; therefore it may be falsified. You have to motivate people to collect correct data.
This will be discussed as the motivation problem.

1 Prof. Dr.-Ing. Thorsten Spitta, University of Bielefeld, Department of Economics, D-33501 Bielefeld, Ger-
many, Fax: 0049/521/1068013. Email: ThSpitta@wiwi.uni-bielefeld.de.

2 1 PY = 1,600 [h] with 200 working days of 8 [h].

111

· The effort of collecting data is too high. It consumes a relatively large amount of program-
mer’s productive time. This is called the effort problem.

The following paper first discusses general requirements for the data to be collected (sec-
tion 2). Section 3 and 4 discuss the data to be collected in detail and the operation conditions
of a data collection system with its social implications. They are not sufficiently respected by
the pure technical design. The concept in section 3 is a slight revision of the original one,
published when starting the system’s application (see [11, ch. 12]). The last section demon-
strates the multipurpose use of the model by examples of original data. They show that effort
collection is not only helpful for cost allocation and long-range IS-controlling but also in the
short run for project management.

2 Goals and Requirements

An effort collection system has to support multidimensional goals to justify the effort of the
collection process. It must support the information resource management, which contains
economic and technical elements. The goals in detail are managerial overviews about:

· Capital invested in software resources [7], [9]
· Structure, cost and trends of maintenance effort [5], [2]
· Project management, especially controlling external developers [8]
· Cost allocation of user department’s requirements [6]
· Plan/expenditure variances and other topics of IS-controlling [4], [10].

IS-controlling is not focused on the fiscal year. Data has to be observed for much longer peri-
ods. Therefore the main classifications of effort data must be stable for a long time. The sys-
tem has to store events and times (effort) of all systems over all effort classes. Specific re-
quirements have to serve four purposes:

(1) Project management
· State of each project at any time
· Effort of each project per period
· Pending projects (they have no effort in a period)
· Fault-types in systems during introduction phase, etc.

(2) Maintenance and evolution management
· Number and distribution of user requirements in different departments
· Effort distribution of completed maintenance cases
· Effort of purchased systems, etc.

(3) Cost accounting
· Effort and cost per cost center
· External vs. internal personal effort, etc.

(4) Support
· PC-support effort per department
· Faults in network and PC-software, etc.

112

3 Data to be collected

In this section the general classifications for an implementation are discussed which will ap-
pear there as object types, attributes or attribute domains3.

We assume a dynamic life cycle model for software which is the generally accepted state of
the art (Figure 1). The implications of that model for data to be collected are:

· It describes the life cycle of a
system or part of a system which
has two states: development and
maintenance.

· Development is a sequence of
versions (or releases). The devel-
opment of a version is followed
by a period of operation with
maintenance activities. During
operation time new requirements,
based on the next version, are
collected. The process to produce
a first or new version is a project,
which must be attached to a sys-
tem. While two versions always
follow each other strictly sequen-
tially, it might be useful to divide

a project into part-projects which can be processed at the same time.
· The effort to be collected is working hours. In a project they can be attached to phases

which generally are (not in any detail!) sequential. There are two quite different attach-
ments to phases: phases of a whole project and phases of an activity. E.g. during the pro-
ject-phase introduction it might be necessary to specify some additional functions. Both
types of phases should be collected for project management purposes. The first type of
phase may only be booked by a project leader or manager while the developer decides
upon the second. This avoids classification errors in the area of phases.

· During phases there are types of methodological activities (functional/data design; coding,
testing etc.) which are performed simultaneously. The coding of these activity types would
cause classification errors in the data (and raise the collecting effort!). Although technical-
ly possible, activity types should not be coded. Coding of too much detail bothers people
with unsolvable classification problems, especially when coding effort, and enlarges errors
instead of improving precision.

· Details are written in free text, which contains important information for project manage-
ment, but not for classification.

· During maintenance, phases must not be coded.
· A project or a system is attached to a cost center. Because of today’s dynamics of enter-

prise structures, the attachment to a system is more stable than to a cost center. An applica-
tion system classification should not be firm-specific, but generalized within the subject of
the specific type of software dealt with. Table 4 in section 5 is an example for an industrial
environment. This is not only important for the comparison of data between firms, but also

3 See [13], where the exact data model is presented.

problem

goals

requirements

introduction

exitmaintenance

development
new version

etc.

Fig. 1: Dynamic life cycle model for software
(exit = end of operation)

113

for stability against changes in firms’ structures. A two-level hierarchy of such a classifica-
tion is necessary and sufficient. A more than two-level hierarchy makes the data difficult
to handle.

In addition to the life cycle of software with three effort classes (development, maintenance,
faults), there is a fourth effort class which is more dedicated to (personal) hardware than soft-
ware. This effort class is support which naturally has no phases and at first no cost centers
(but surely later!). All effort classes are events until something is done with that event (cor-
recting a fault, working on a project, extending purchased software). Events are booked by
managers not by developers. Events have small frequencies and may be checked in every case
for classification errors. Managers can be expected to be interested in correct classifications
because they are observed by users. This is the solution for the motivation problem with
events.

Table 1: Collection screen for a day-report after input before submission of the data

EFFORT-COLLECTION short
MeierC 05/22/89

Eff Sv Cost Phas Eff- Activity (short text)
Cls No Cent No Time .
 f 71 ___ _ 1.5_ fault search double book sales___
 f 71 ___ _ 0.5_ sort fault deliv. note___________
 m 70 ___ _ 1___ gen. probl.______________________
 s 72 812 _ 1___ div. probl. consignment note_____
 p 264 ___ 3 0.5_ discussion mobile order entry____
 m 315 ___ _ 0.5_ div. probl. inventory____________
 m 331 ___ _ 2.5_ tour-planning/customer data______
 _ ___ ___ _ ____ ______________________________________
 _ ___ ___ _ ____ ______________________________________

____--
 PF1= help PF3= back F12= end Return= NEXT
Legend: bold : Default data shown by the system. After ‘Return’ other default data (cost center and phase

number) are automatically filled in. The redundant input of effort class serves as a consistency
check if the correct service number is used.

Table 1 shows the online form of the normal case of effort collection for one working day
with authentic data. The reader can see that very few items have to be collected for one ac-
counting position. This prototypical design is one part of solving the motivation and also the
effort problem. Programmers want the data entry to be efficient. Until now (1998) it cannot
be recommended to collect effort via a graphical user interface because this is ineffective.

It is self-evident that classifications of new staff have to be watched and that each manager
discusses faulty classifications with his people.

The classification problem focuses on the point that
· as few classifications as possible have to be made by the staff itself while col-

lecting data.

4 Operation conditions

Because one main problem of data collection systems is validity, everything that can be for-
mally checked should be done so by implemented integrity constraints. Errors within the nor-

114

mal margins of error only cause a statistical variance. Because there are about 1000 accounted
records per PY, the law of the large numbers holds for that type of data. Merely individual
differences compensate each other, if more than five developers are booking.

The remaining point to be discussed is the motivation problem. What can be done to avoid
systematic falsification of the mass data (effort) by the developers?

It is evidently not useful and also virtually impossible to supervise each developer. The only
way to avoid falsification is to insure that no developer should have any motive to fake the
data. If supervision is not a solution then only a trusting working atmosphere can help. There
are four conditions to produce this climate that makes falsifications improbable. When start-
ing our system, checks were made which showed the effectiveness of these conditions.
1. Personal responsibility. Each person books his/her own data online. No other person can

create or change personal data. The database is locked against free SQL-updates and can
only be manipulated by the booking programs.

2. Transparency. Everyone of the staff booking is allowed to read (only online!) all book-
ings. This promotes an open atmosphere between developers, managers and teams. Not
only staff but also middle management collects his/her effort.

3. No supervision. Evaluation of programmers should by no means be conducted in this con-
text, neither their effectiveness nor their errors. This applies to employees. Because IS-
staff knows that this is technically possible this is a very important point in using an effort
database. If the staff realizes that persons are measured by the data (e.g. by checking the
productive times per PY) they might fake it. By contrast, the system should be used to
protect the staff’s working places against questions like: ‘What are these many expensive
people really doing?’ In this context plan-/expenditure comparisons might be mentioned
as problematic with respect to the correctness of the expenditure data. If people are mea-
sured by the variances, they will try to reach good values.

4. Instruction and Information. New staff and new external developers have to be in-
formed about the goals and the rules of the system. This is best done with examples of re-
ports as shown in section 5 below. All booking persons have to be informed what is done
with their data.

The remaining two points are useful for the correctness and usability of the data too, but do
not influence motivation as strongly as the points above.
5. Completeness. A person should either collect data for all productive work or no data at

all. Developers, support staff and project managers belong to the first class; operators, net-
work specialists etc. to the second. This avoids a shifting of effort between activities or ef-
fort classes or the omission of effort. It is a means to solve the classification problem.

6. Actuality. The latest day to collect data is the end of a week. Only recent data are useful
for project management and only they are not based on human memory.

The motivation problem summarizes that
· a minimum of effort data items should be required of developers and middle

management
· only a trustful atmosphere will avoid systematic falsification.

115

5 Examples of data from 6 years

The following examples of original data show that an effort collection system is useful for
more than one purpose, that is project management (steering and reporting), quality and reli-
ability engineering (maintenance effort and system’s evolution) and information resource
management. The multidimensional use of the data is the solution of the effort problem.

5.1 Project management

Table 2 shows three days of effort for a project. The project is in phase 5 (implementation),
while there are several activities in a phase < 5 (3= specification). Only one of the four devel-
opers (D) has worked on one day (2/4/92) exclusively for this project (light shadow). The re-
port gives the project leader hints - not more - that the additional specifications should be
checked. Are these activities a) necessary and b) agreed upon, or are they c) ‘subversive’? A
second glance shows that developer B obviously works on extensions, while the system is in
test (dark shadow).

Table 2: Booking of a project for several days

Project: P475 ApplSyst: L.LGB CostCtr: 800
Accounting from: 02/04/92 - 02/06/92

Date User
ID

Effort
[h]

Phas
No

Activity

02/04/92 A 1.0 3 discussion actitivities with PL (=Proj. leader)
B 1.0 3 disc. activities LGB 1.HY
B 2.5 5 programmg. automatic stock-change
C 1.0 5 maint. activity plan
C 5.0 5 date executive board
D 1.5 5 LGB2942P test listprint
D 3.0 5 LGB2105P (online) worked over
D 3.0 5 actualization list of listprints

02/05/92 B 1.0 5 extend. stock places
B 3.5 5 new progr. LG-withdraw-voucher
D 3.0 5 work over LGB2105P (online) and test

02/06/92 A 0.4 5 change prog QBE750A
B 1.1 3 extending autom. stock-change
B 1.5 5 extend print DelivNote foreign Order-No
D 3.0 5 tested LGB2105P and put in TEST
D 1.0 5 tested LGB2927P: charge missing

Figure 2 shows aggregated effort for external staff in large projects over six quarters. The
view of a financial accounting department would be focused on the cost structure: ‘External
costs are relatively constant (on a high level)’. From the project management view the situa-
tion is quite different: The sales&delivery projects are just before the introduction phase. A
rise in the last quarter (integration test) is normal. The production project has an ideal course:
It has been in the introduction phase since I/91. The effort is continuously decreasing. How-
ever, the logistic project shows an alarmingly ascending course. The curve seems to be a
demonstration of Brook’s ‘law’: Adding people to a late project makes it later.

116

Aufwand [Std] je Anwendungsgebiet
Quartal Projekte

AnwGebiet IV/90 I/91 II/91 III/91 IV/91 I/92 = fehlt in der Grafik

sales&deliv. 456 1557 1611 1682 1292 1745 Aufträge, Versand
logistics 2070 1787 1533 2258 2548 2786 Bestände, Artikeldaten
production 2511 2102 1916 1664 1362 839 PPS-System
information 421 441 227 97 195 136 90/91: PC-Vernetzung

** 5458 5887 5287 5701 5397 5506
Admin. 107 82 195 150 76 127 überw iegend SAP
Wartung* 90 29 78 12 50 180 *= ad hoc - Wartung

effort of large projects in quarters

0

500

1000

1500

2000

2500

3000

IV/90 I/91 II/91 III/91 IV/91 I/92

quarter

e
xt

e
rn

al
 e

ff
o

rt
 in

 [
h

]

sales&deliv.

logistics

production

information

Fig. 2: External personal effort over 6 quarters for large projects

The second field of the database is quality and reliability engineering.

5.2 Quality and reliability engineering

Maintenance effort can tell more about quality than development effort. Figure 3 shows the
evolution of some systems and their accumulated maintenance efforts.

Aufwand [MT] /Version u. Wartung
Projekt Vs1 Vs2 Vs3 Vs4 Maint seit
SAP Finance 478 241 282 Okt 91 Wartung für RF und RA
sales info 165 218 0
bonus salesmen 276 39 Jul 89
tour plan 440 230 16 132 Dez 89
sales plan 72 96 158 65 0
MobileOrdEntry 97 62 Aug 87
SEDAS 16 210 Okt 87

maintenance and version effort

0 200 400 600 800 1000 1200

SAP Finance

sales info

bonus salesmen

tour plan

sales plan

MobileOrdEntry

SEDAS

A
p

p
lS

ys
te

m

e ffort in [PD] (person days)

Maint

Vs4

Vs3

Vs2

Vs1

Fig. 3: Maintenance effort and effort of evolutionary versions of application systems

In order to interpret each effort value correctly it might be necessary to know the time distri-
bution of the projects and the organizational context of the data. There are only a few inter-
pretations of three of the systems in figure 3:

SEDAS is a preliminary national German version of the international standard EDIFACT. The
system was implemented under high pressure of an important customer in a ‘quick and dirty’
manner in 1987. The very large maintenance effort proves that there must be quality prob-
lems, although the system is a rather simple batch interface. On the other hand, MobileOrder-
Entry was a complex and ambitious project for 140 salesmen, introduced in 1988. The main-
tenance effort of about 70% of the development effort within 5 years seems to be a sign of
good quality. Sales plan was evolutionarily developed. The four versions without stable

117

maintenance can be an indicator for either a very ‘creative’ user department or a ‘creative’ de-
veloper who follows each technical fashion4.

5.3 Information management and IS-controlling

The database also allows for a long range view on IS software resources. Table 3 shows a re-
porting of projects for the sales&delivery department. In this case an attribute strategicRele-
vant? is used to separate large and important from small projects. The reader can see that
there is a large ratio of abandoned small projects. The same report for maintenance or faults
would show the ‘pipeline’ of events with PhaseNo = 0.

The list of projects also shows some aspects of strategic information management. In addition
to planned projects new problems appear during the analysis of strategic projects, which
should be handled as separate part-projects. E.g. the base article data are in a wrong state and
have to be renewed (ProjNo 323) and to be re-specified (ProjNo 260), in order to make the

strategic project (No 371) a success.
On the other hand, there are reactive
projects like the ‘green point’ (Pro-
jNo 680) forced by a new bill passed
in Europe in 1991. Other reactive
projects are forced by important cus-
tomers.

Table 4 shows an aggregation of the
complete database for the first 6«
years as a distribution of IsService
events over the application structure.
The application system classification
was stable over long periods al-
though in this case the firm’s organi-
zational structure completely
changed twice, also causing a change
of the cost center structure. Table 4
shows that already the classification
of IsService events is a good tool of
information and project management,
without regarding effort values. Two
facts in table 4 will be discussed: The
large number of canceled and aban-
doned activities and the number of
actual projects in work in different
application areas. The indicator func-

tion of such aggregated views for IS-controlling is evident.

Table 4: Total number of IsService events over 6« years

4 The technical base of the system was a PC. The 4th version was not yet finished at the time of extracting the
data.

Table 3: Project status for one user department (sales&delivery)

date: 03/31/1992
strategic projects

IsServ
-Nr

Subject Effort
[h]

Phase

154 sales info article/salesman 714 +
281 tour planning 1,558 +
340 customer orders/delivery 11,300 5
348 integration old system food sales 6,477 +
579 accounting food sales new 1,259 +
680 ‘green point’ 69 3

*** sales&delivery 21,308
260 definition article structure 1,777 +
323 restoring article data 1,071 +
371 article/BOM/working schedules 19,031 6

*** base data 21,879
misc. projects

301 detachment accounting nonfood 65 +
335 contribution margins 97 !
355 shipment-change division B 158 +
361 gross demand 742 +
439 restoring accounting old system 140 !
518 change region-/district -key 18 !

*** sales&delivery 1,220
374 integration coding tables 280 +
405 color-bundle 3 pieces 21 !

*** base data 301
legend: underlined: additonal ~, italic: reactive project

118

Number of IsService events in 6,5 years: 01/01/1987 - 06/30/1993
SvCls fault+supp+maint projects total Sum

Application c ! i.w. "+" c ! i.w. "+" c ! i.w. "+"
administration 12 4 6 64 4 4 8 25 16 8 14 89 127
information 5 0 9 48 4 2 5 23 9 2 14 71 96
logistics 7 1 7 48 11 15 19 24 18 16 26 72 132
production 3 1 6 26 6 2 31 19 9 3 37 45 94
sales&deliv. 31 20 19 202 23 14 28 51 54 34 47 253 388

total 58 26 47 388 48 37 91 142 106 63 138 530 837

details for IS-controlling: (las t half year)

production (+) (-) "1-6" "0" totl
maint. 3 3 3 6
project 4 3 25 3 31

total 7 3 28 6

legend: c: cancelled, ! : broken

sales&deliv. (+) (-) "1-6" "0" totl (+): finished since 01/01/93

maint. 19 3 16 19 (-): in introduction

project 9 2 8 18 28 "1-6" in w ork (i.w .)

total 28 2 11 34 "0" registered ('pipeline')

Especially in medium-sized enterprises, there is a culture of very flexible reactions on the
market. This causes spontaneous requirements in the IS-area. If this dynamic process is not
guided, there could be a waste of IS-capacities and an erosion of strategic projects.

A close look on activities in work of the departments production and sales&delivery (shad-
owed) shows some interesting details. Production has 25 projects in work. This seems to be a
sign of a chaotic project management. It is highly probable that most of these ‘projects’ will
be broken with their effort lost without any benefit. By contrast to that, sales&delivery gives a
very disciplined image. 19 maintenance activities and 9 projects have been finished within
the last half year. There is also a long pipeline of 19 maintenance and 28 development activi-
ties.

The effort problem can be answered from our data like this: 1.5 - 2% of the effort is collec-
tion effort. Part of this effort is the online collection by the developers themselves. This is, as
discussed in section 4, a good investment into the correctness of the data (responsibility and
actuality). Moreover, it can be supposed that the effect of transparency and cost responsibility
is higher than the expenditures for the collection process.

The effort problem solves like this:
· If effort data is used for several purposes, as shown here, its collection is

worth it. If it is used only for financial purposes, the effort is rather high.

6 Conclusion

It was shown how to specify a universal software for data collection which gains valid data
that is usable for managerial, technical and financial purposes. The technical design of the
system has to be combined with suitable operational conditions. These two parts of a data
collecting environment promote a climate of trust for the staff in order to obtain correct data.

119

With this data many IS management jobs can be done much better, as there are project man-
agement, cost accounting, quality engineering and IS-resource management. This justifies the
effort of the data collection itself.

To gather expenditure data is a means of building up a ‘corporate memory’ for IS resources
which was claimed by Boehm 17 years ago [1]. This will enable realistic planned data which
will have to be discussed elsewhere.

References

[1] Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs 1981.
[2] Boehm, B.W.; Papaccio, P.N.: Understanding and Controlling Software Costs. IEEE Transactions on Soft-

ware Engineering 14(1988) 10, 1462-1477.
[3] Brooks, F.P.: The Mythical Man Month, Addison-Wesley, Reading/MA 1975.
[4] Dué, R.T.: Determining Economic Feasibility: Four Cost/Benefit Analysis Methods. Journal of Information

Systems & Management 6(1989) 4, 14-19.
[5] Lehmann, M.M.: Programs, Life Cycles and Laws of Software Evolution. IEEE Proceedings 68(1980) 9,

1060-1076.
[6] Nolan, R.L.: Controlling the Costs of Data Service. Harvard Business Review 55(1977) 4, 114-124.
[7] Nolan, R.L.: Managing the Crisis in Data Processing. Harvard Business Review, March-April (1979), 115-

126.
[8] Page-Jones, M.: Practical Project Management. Restoring Quality to DP-Projects and Systems. Dorset, New

York 1985.
[9] Pfleeger, Sh., L.; Rombach H. D.: Measurement Based Process Improvement. Editorial to: IEEE Software,

11(1994) 4, 9-11.
[10]Segars, A.H.; Grover, V.: Designing Company-wide Information Systems: Risk Factors and Coping Strate-

gies. Long Range Planning 29(1996) 3, 381-392.
[11]Spitta, Th.: Software Engineering und Prototyping. Springer, Berlin - Heidelberg et al. 1989 (in German).
[12]Spitta, Th.: IV-Controlling in mittelständischen Industrieunternehmen - Ergebnisse einer empirischen

Studie. To appear: Wirtschaftsinformatik 40(1998) 5, (‘IS-Controlling in SME’s - Results of an Empirical
Investigation’, in German).

[13]Spitta, Th.: Data Collection of Development and Maintenance Effort - Data Model and Experiences. Uni-
versity of Bielefeld/Germany, Department of Economics, Working Paper No 401, August 1998. See
http://www.wiwi.uni-bielefeld.de/~spitta/index.html.

120

	1 Introduction
	2 Goals and Requirements
	3 Data to be collected
	4 Operation conditions
	5 Examples of data from 6 years
	5.1 Project management
	5.2 Quality and reliability engineering
	5.3 Information management and IS-controlling

	6 Conclusion

