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Frogs and toads (Anura) exhibit some of the most diverse parental strategies in vertebrates. Identifying 1 

the evolutionary origins of parenting is fundamental to understanding the relationships between sexual 2 

selection, social evolution and parental care systems of contemporary Anura. Moreover, parenting has 3 

been hypothesized to allow the invasion of terrestrial habitats by the ancestors of terrestrial vertebrates. 4 

Using comprehensive phylogenetic analyses of frogs and toads based on data from over 1000 species that 5 

represent 46 out of 55 Anura families, we test whether parental care is associated with terrestrial 6 

reproduction and several life history traits. Here we show that both the duration of care and offspring 7 

protection by males and females have co-evolved with terrestrial reproduction. Sexual size dimorphism is 8 

also related to care, since large male size relative to female size is associated with increased paternal care. 9 

Furthermore, increased egg size and reduced clutch volume are associated with increased care in bivariate 10 

but not in multivariate analyses, suggesting that the relationships between care, egg size and clutch volume 11 

are mediated by terrestrial reproduction. Taken together, our results suggest that parenting by males and 12 

females has co-evolved, and complex parenting traits have evolved several times independently in Anura in 13 

response to breeding in terrestrial environments.14 
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1. Introduction 15 

Parental care is a highly diverse social behaviour that has evolved to increase offspring survival, 16 

although it tends to be costly to the caregiving parent [1–3]. Frogs and toads (Anura, hereafter frogs) are 17 

characterized by a remarkable diversity of care [4,5] that is rivalled among vertebrates only by the older 18 

and more speciose bony fishes [6]. Approximately 10–20% of extant frog species exhibit parental 19 

behaviour, with the duration of care, the sex of the care provider and the type of care all showing unique 20 

diversity and phylogenetic plasticity [5,7,8]. 21 

Understanding the evolutionary origin and maintenance of frog reproductive diversity is important 22 

for understanding the adaptive significance of parental care both on evolutionary and ecological time 23 

scales. Firstly, parental care tends to increase offspring survival especially in hostile environments 24 

[9,10], and thus, it may have played a key role in the colonization of terrestrial habitats, i.e. not only in 25 

the evolution of recent amphibians, but also in early tetrapods, opening the way to the subsequent 26 

radiation into terrestrial niches [11]. Because parenting is one of the traits linked to expansion into non-27 

aquatic niches [12,13], identifying correlates of care in extant taxa will help us to understand major 28 

transitions such as the occupation of terrestrial niches by early tetrapods. Secondly, parental care is an 29 

ideal system to understand interactions between individuals that has been extensively investigated in 30 

experimental and game-theoretic analyses of social interactions [14–16]. Since parenting influences 31 

offspring survival and reproduction, parental decisions often impact on reproductive success and 32 

population dynamics [14]. Third, phylogenetic comparative analyses are important to uncover ecological 33 

and life-history predictors of parenting: they add a time axis to social interactions and link ecological and 34 

evolutionary time scales [8,17,18], although these studies rarely cover a whole order of organisms [but 35 

see 19,20]. 36 

Frog parental care is immensely diverse, and it includes simple types of care such as 37 

constructing a foam nest or attending the eggs, as well as more elaborated forms such as internal 38 

brooding of offspring [4,5,12], or cooperation between parents to attend and provide food for the 39 

growing offspring [18]. Reproductive modes, i.e. the variation in nesting sites and the environment 40 

where tadpoles develop, are also linked to care [5,7,21], although it is not clear whether these 41 

associations hold for different care types, e.g. male-only, female-only and/or biparentally caring species, 42 

or are relevant only at certain stages of reproduction [13]. 43 

Terrestrial environments are hostile for anamniotic eggs, given the high risks of desiccation and 44 

exposure to diseases, parasites and predators although predation risk tends to be high in aquatic 45 

environments as well. Therefore, egg attendance and egg protection, including urination on the eggs to 46 

keep them moist, may considerably increase offspring survival in terrestrial environments [10,22]. In 47 
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addition, several frogs show extensive post-hatch care by carrying the tadpoles (or froglets) on their 48 

backs or in specialized brooding organs [21,23]. Terrestrially reproducing frogs may have endotrophic 49 

larvae that develop in a protected chamber, or directly developing embryos which skip larval phase and 50 

hatch as fully-developed froglets [5,13]. These offspring rely upon parental provisions until they reach 51 

the next stage of their development (e.g., metamorphosis, hatching or birth). Consequently, anurans 52 

may enhance offspring care by extending the duration of care, by providing more protection for the 53 

offspring and/or by increasing nutrient provisioning in nutrient-scarce environments. These behaviours 54 

enable the offspring to spend a longer period of their development in a safe place [18,24,25]. 55 

Here we investigate three hypothesized drivers of parental care. We focus on the evolution of 56 

care by scoring aspects of care on a finer scale and, to our knowledge, we present the most detailed 57 

phylogenetic analyses of parenting in any taxa. First, we test whether terrestrial vs aquatic reproduction 58 

relates to different care types, since caring is expected to provide protection against hostile 59 

environments [5,10,13]. Second, we investigate whether life history variables including egg size and 60 

clutch size correlate with the duration of care, protection and nourishment provided by any of the 61 

parents. Specifically, we hypothesize that large eggs are associated with longer care and more 62 

protection than small eggs [1,5,26]. Third, sexual selection has been linked to parental care since 63 

Trivers’ [27] seminal idea (reviewed by [1,9,28]), therefore we also investigate whether intense sexual 64 

selection is associated with reduced care provisioning [29–31]. We use sexual size dimorphism (SSD) 65 

as a proxy for the intensity of sexual selection [30,31]. Note that SSD as an indicator of sexual selection 66 

has been debated in frogs, since SSD may reflect selections acting on females, e.g. to increase 67 

fecundity [32–34]. Nonetheless, large size in males is associated with high reproductive success in 68 

several species of frogs (reviewed by [5,35]) due to competition for mates or female choice [36–39], with 69 

the latter processes being clearly linked to sexual selection.  70 

To address these objectives, we use a comprehensive dataset that represents 46 out of 55 extant 71 

anuran families. We analyse three main components of care: duration of care, protection of eggs and 72 

young, and nutrient transfer to offspring. We consider these separately, because complex social traits 73 

such as caring may have multiple components that evolve independently, or traded off against each 74 

other and thus respond to different selection pressures [40–43]. Second, instead of combining male-only 75 

care, female-only care and biparental care into a single variable (for instance, presence or absence of 76 

care by either parent), we treat care by males and females separately, since ecological and life-history 77 

variables may exert stronger effects on one sex than on the other. For instance, reproductive effort such 78 

as egg size and clutch volume may be an important constraint of female care, whereas the intensity of 79 

sexual competition may be an important constraint of male care [8,42,43]. Our work demonstrates that 80 
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these distinctions are important, since some of the relationships between care components and 81 

ecological and life history variables differ between males and females. 82 

 83 

2. Methods 84 

(a) Data collection 85 

We compiled the initial dataset from comprehensive phylogenetic comparative publications which 86 

contain information on parental care in frogs [8,13,18,26,42,44,45]. Next, we augmented this dataset 87 

with data from primary research publications (see Supporting Information), online databases [46,47], 88 

and peer-reviewed books [5,48,49]. Our final database holds information from 1044 species; 399 of 89 

these species exhibit some form of care. 46 of 55 Anura families are represented in our database that 90 

hold approximately 95% of extant species (electronic supplementary material, table S1). 91 

 92 

(b) Parental care variables 93 

We used 4 variables for coding parental care. First, type of care was scored on a five point scale: 0–no 94 

care; 1–male-only care; 2–female-only care; 3–biparental care; 4–care either by the male or the female. 95 

Because the latter (i.e, uniparental care either by male or female) was reported only from seven 96 

species, we excluded these species from the analyses. We considered biparental care if both parents 97 

participate in offspring care. In the analysis of the number of care-providing parents, male-only care and 98 

female-only care (scores 1 and 2) were combined as uniparental care, whereas score 3 was kept as 99 

biparental care. 100 

Second, we scored the duration of care based on discrete ontogenetic stages of the offspring 101 

(egg, tadpole and juvenile care), and recorded the most advanced stage when a particular caring 102 

behaviour has been reported. Care duration was defined as 0–no care; 1–egg care; 2–tadpole care; 3–103 

juvenile care. Care duration was scored separately for males and females.  104 

Third, we scored offspring protection as a separate variable on a 6 point scale: 0–no protection; 105 

1–offspring protected in a nest but not attended by parent(s); 2–parental attendance; 3–carrying on the 106 

back of parent(s); 4–carrying in a closed organ (brooding pouch, dermal invagination, stomach or vocal 107 

sack) of parent(s); 5–viviparity. This scoring was based on the logic that protection is more effective 108 

when eggs or offspring are enclosed (e.g., in a brooding pouch, stomach, vocal sack, skin invagination) 109 

rather than exposed on the back of the parent(s). The highest level of protection appears to be in 110 

viviparous species because in these species the offspring only leave the reproductive tract of the mother 111 

in a well-developed stage. Protection was scored separately for males and females. 112 
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Fourth, nourishment was categorized as follows: 0–exotrophic tadpoles feed mainly on external 113 

food sources after depleting their yolk provided in the egg; 1–feeding tadpoles by trophic eggs or skin 114 

secretion; 2–endotrophic tadpoles and directly developing species (which complete metamorphosis 115 

inside the egg) reach metamorphoses nourishing only upon the egg’s yolk. Nourishment was only 116 

provided by the female except in two species in which the males provision the offspring (Ecnomiohyla 117 

rabborum, Rhinoderma darwini [5,50]). Consequently the latter two species were excluded from the 118 

analyses of nourishment. 119 

In order to investigate the consistency of our parental care scores with three published datasets 120 

that scored parenting as a binary variable (presence/ absence) [13,26,44], we calculated the 121 

correlations between these four datasets. The association between our dataset and the three 122 

independent datasets were highly significant (electronic supplementary material, table S2).  123 

 124 

(c) Life-history variables 125 

Egg size was defined as the diameter of the egg (vitelline) in millimetres, excluding the gelatinous 126 

capsule. Clutch size was defined as the number of eggs laid during one egg-laying event. We use clutch 127 

volume (calculated as egg volume in cm3 multiplied by clutch size) instead of clutch size in bivariate 128 

analyses, because clutch volume appears to be a more appropriate indicator of female reproductive 129 

expenditure than clutch size alone. However, to separate the potential effects of egg size and clutch 130 

size in multivariate analyses, we included egg size and clutch size in the models. Snout-vent length 131 

(SVL) was calculated separately for males and females, computed as mean values across all available 132 

data for a given species. Body size (mean SVL) was calculated as the average of male and female 133 

SVLs (in mm) for each species, whereas sexual size dimorphism was log10 (SVLmale / SVLfemale). Clutch 134 

size, clutch volume and egg size were transformed to logarithmic scale to ensure homoscedasticity. If 135 

several data points were available for a given species, we calculated their arithmetic mean. 136 

Terrestrial reproduction and direct development were treated as binary variables (present or 137 

absent), following previous classifications [13,21]. Terrestrial reproduction included floating foam nest on 138 

water, as in this case the eggs themselves are included in an air-filled chamber, and also viviparity and 139 

egg-brooding in different organs (pouches, stomach, vocal sac) provided by terrestrial parents. In 140 

contrast, members of the genus Pipa which lay eggs in water and brood by aquatic parents were 141 

considered aquatic breeders. We established these categories because anuran eggs are adapted 142 

primarily to aquatic development and placing them outside water exposing them to hostile conditions, 143 

and we considered the strategy for this challenge as an important aspect of parental care. 144 

 145 
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(d) Phylogeny 146 

We used a comprehensive amphibian phylogenetic tree (the consensus tree from [51]) which included 147 

the majority of species in our database. Archaeobatrachians were treated as all anurans outside the 148 

Neobatrachia clade, and basal Neobatrachians as all Neobatrachians outside the Hyloidea and 149 

Ranoidea clade (figure 1 and electronic supplementary material, figure S1). In figure 1a–c we used 150 

Grafen-transformed branch lengths for better visualisation. 151 

Anuran phylogenies tend to hold consistent patterns, at least in the topology of deeper nodes 152 

[51,52]. Since most variation in care is between genera and families, our results appear to be robust to 153 

different phylogenetic hypotheses. Nonetheless, to check the sensitivity of our results to alternative 154 

phylogenies, we re-analysed the major models using an alternative tree: a composite tree based on 155 

[53]. We augmented the latter tree [53] with 145 additional species inserted next to their closest species 156 

(whenever known), based on recent phylogenetic information. Nodes were collapsed to polytomies 157 

when no further information was available on the phylogenetic relationships within a genus. The species 158 

we added manually are listed in electronic supplementary material, table S7, along with the references 159 

for their phylogenetic relationships. We use the branch lengths of the original trees [51,53]. In composite 160 

phylogeny we assumed half branch length for the new species we included using ‘phytools’ package 161 

[54] in R 3.1.0 [55]. Importantly, the results using the alternative phylogeny were highly consistent with 162 

those of the main phylogeny (see table 1, electronic supplementary material, tables S3–S6).  163 

 164 

(e) Comparative analyses 165 

We tested associations between parental care and life history variables using Phylogenetic Least 166 

Squares (PGLS) [56–58]. This approach controls for the non-independence among species by 167 

incorporating a variance–covariance matrix that represents their phylogenetic relationships. All analyses 168 

incorporated phylogenetic dependence by estimating Pagel’s λ [58]. We built separate multipredictor 169 

PGLS models for each parental care variable (i.e., care duration by females, care duration by males; 170 

protection by females, protection by males, nourishment by females) in which one of the care variables 171 

was the dependent variable, and log clutch size, log egg size, average SVL, sexual dimorphism, 172 

terrestrial reproduction and direct development were the predictors.  173 

We also included the higher nodes (i.e., superfamily ID, see supporting data s2) as a factor in 174 

PGLS models [53,59]. This was to control for the lack of variation in key traits within higher taxa: for 175 

traits that do not vary within higher nodes, the effective level of replication and appropriate degrees of 176 

freedom can be questioned. Due to the lack of variation within clades, three species-poor lineages 177 

(‘Crown Hyloidea’ that includes Alsodidae, Ceratophryidae, Hylodidae, Odontophrynidae and 178 
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Rhinodermatidae, 12 species in total; Heleophrynidae, 2 species; and Sooglossoidea, 3 species) were 179 

excluded from analyses that included higher node as factor. Higher nodes were not included in analyses 180 

on trophic egg feeding (Nourishment excluding species in Nourishment category 2) – in this case, most 181 

of the clades showed little variance to the trait.  182 

We tested multicollinearity between predictors using variance inflation factor (VIF) analysis: all 183 

predictors had VIF values less than 5 (VIFmax = 2.02). In multiple regression models, we included six 184 

predictor variables (see table 1) except in models of nourishment we did not include developmental 185 

mode since nourishment and developmental mode were correlated by definition. All analyses were 186 

carried out using R 3.1.0 [55] with ‘caper’ package [60]. 187 

 188 

3. Results 189 

Types of care varied across Anura, with each type of care occuring in several clades (figure 1; electronic 190 

supplementary material, table S1). Major clades exhibited substantial variations in sex of care provider, 191 

protection and nourishment (figure 1): exceptional diversity was exhibited by five clades that include 192 

Eleutherodactylidae, Dendrobatidae, Leptodactylidae and Microhylidae, figure S1). 193 

Care duration, protection and nourishment were not different between species with female-only 194 

care, male-only care and biparental care (Phylogenetic Generalised Least Squares PGLS, care 195 

duration: figure S2, F2,379 = 0.716; p = 0.489; protection: F2,375 = 0.502; p = 0.610; nourishment: F2,370 = 196 

0.502; p = 0.426), nor between uniparental and biparental species (PGLS, care duration: F1,387 = 0.415; 197 

p = 0.520; protection: F1,382 = 0.788; p = 0.375; nourishment: F1,378 = 1.694; p = 0.194). Thus, males and 198 

females provide similar extents of care in anurans. Interestingly, the extent of parental care by males 199 

was associated with the extent of female care both in care duration (PGLS; F1,1006 = 8.674; p < 0.0001) 200 

and protection (F1,1005 = 54.58; p < 0.0001). 201 

Terrestrial reproduction was a key factor associated with parental care (figure 1). All forms of care 202 

were more common in terrestrial taxa than in aquatic ones (figure 2) including protection by males (5.5% 203 

and 46.5% of aquatic and terrestrial taxa, respectively), protection by females (1% and 39.0%), and 204 

nourishment (5.0% and 34.5%). Terrestrial reproduction was associated with increased levels of care by 205 

both males and females (figure 2 and electronic supplementary material, table S3). Consequently, the 206 

number of caring parents was significantly higher in terrestrial frogs than in aquatic ones (PGLS; F1,591 = 207 

80.47; p < 0.0001). 208 

Large eggs and small clutches were associated with extended parenting and protection by both 209 

sexes, and provisioning by the female (figure 3 and electronic supplementary material, table S4). 210 

However, since egg size and clutch volume often depend on body size, we also investigated the 211 
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relationship between egg size, clutch volume and care by including body size as an explanatory variable 212 

in phylogenetically corrected models (table S5). When body size was statistically controlled for, neither 213 

egg size nor clutch volume remained correlated with care with the exception of nourishment, and small 214 

clutch volume remained associated with male care (electronic supplementary material, table S5). 215 

Sexual size dimorphism was associated with male care but not female care (electronic 216 

supplementary material, table S4 and figure S3). However, male care was associated with increased 217 

male size relative to female size (table S4). The latter relationship remained significant when absolute 218 

body size was controlled for in the analysis (table S5). The latter relationship between size dimorphism 219 

and body size suggests that Anura exhibit an allometric relationship between sizes of males and 220 

females known as Rensch’s rule [44,61] (PGLS; F1,430 = 7.39; p = 0.007). 221 

Terrestrial reproduction remained the main predictor of both care duration and offspring 222 

protection in multipredictor analyses, but not for nourishment (table 1). These results suggest that the 223 

relationships between life history and care we uncovered using bivariate analyses (electronic 224 

supplementary material, table S4) may be mediated by terrestrial reproduction. Nevertheless, in multi-225 

predictor models male-biased size dimorphism remained associated with male care (table 1), and 226 

nourishment remained associated with clutch size and body size.  227 

Trophic egg feeding (i.e, exotrophic tadpoles feed on external food sources versus tadpoles fed 228 

by trophic eggs or skin secretion) was associated with sexual dimorphism and clutch volume (electronic 229 

supplementary material, tables S3–S4), and these relationships remained significant after controlling for 230 

body size (table S5, S6). 231 

 232 

4. Discussion 233 

Our comprehensive phylogenetic analyses of the extent of male and female care show that care is 234 

extremely variable both within and among major clades of frogs. Not only the presence or absence of 235 

care varies – that has been uncovered by previous studies [18,26] – but also the type and duration of 236 

care are highly variable. In contrast to reptiles and mammals, in which the females are the main care 237 

provider, or to birds in which biparental care is the predominant form of care [9,62], in frogs female-only, 238 

male-only and biparental care are all widespread among various lineages, and the involvement of males 239 

and females in care is comparable. Because in ~20% of newts and salamanders (urodeles) one of the 240 

parents guards the eggs or the offspring [5,9,63,64], and caecilians in which females feed their offspring 241 

using an excretion of their skin [65,66], the overall richness of caring is spectacular in amphibians. This 242 

suggests that over the course of amniote evolution, the phylogenetically younger tetrapod clades (e.g., 243 

reptiles, birds and mammals) became specialised to a limited set of care patterns [62].  244 
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Consistently with previous studies [11–13], we found that the transition towards terrestrial 245 

reproduction facilitated parental care. Moreover, our work advances the understanding of evolutionary 246 

relationships by showing that terrestrial reproduction is related to all forms of both male and female 247 

care, except nourishment. Thus, when early tetrapods invaded terrestrial niches, both males and 248 

females may have been under the effects of selection forces to improve the survival of their offspring, so 249 

that both males and females evolved various forms of care provisioning in response to terrestrial 250 

reproduction. Therefore, the subsequent canalization of parental care largely towards females (e.g., in 251 

reptiles and mammals) and cooperation by both sexes (in birds) may have been the result of additional 252 

selective pressures that the ancestors of these clades faced during their radiation into various ecological 253 

niches. This implies that the predominance of maternal care coevolved with internal fertilization [67, but 254 

see 68]. In urodeles, where internal fertilization is more frequent, only phylogenetically basal external 255 

fertilizers with aquatic reproduction appear to provide paternal care [5,63], although clutch attending by 256 

females is widespread especially in those with terrestrial reproduction [63]. 257 

We also found that egg size and clutch volume are related to parental care, although these 258 

associations became non-significant by including terrestriality in the models. On the one hand, terrestrial 259 

egg-layers have larger eggs and smaller clutches than aquatically reproducing frogs [8,13,26], which 260 

may be predicted by other factors besides parental care, such as selection on offspring size [69] or 261 

protection against the hostile environment [11]. However, egg size and clutch size were no longer 262 

associated with care duration and protection when body size was statistically controlled. Therefore, the 263 

associations between egg size, clutch size and parenting showed by previous studies [8,13,26] may 264 

have been mediated by other factors, e.g. body size and/or terrestrial reproduction. On the other hand, 265 

increased nutrient transfer to the offspring is associated with reduced clutch size, which seems to be the 266 

result of an increased investment to individual offspring [3] traded off against fecundity. Moreover, 267 

trophic egg feeding is also associated with reduced egg size [table S6], implying that mothers may 268 

reduce the cost egg production using this type of nourishment. 269 

Finally, the evolutionary relationship between male care and size dimorphism has been debated 270 

[32-34], and our results using fine-scaled care variables, multi-predictor models and more extensive 271 

taxonomic coverage than previous studies, confirm that male care is associated with sexual size 272 

dimorphism [44]. We suggest two mutually non-exclusive explanations for the increased male size 273 

(relative to female size) with the extent of male care. On the one hand, sexual selection may favour 274 

larger males in male caring species if females prefer large males and/or large males are more 275 

successful in coercive mating [38,39], provided that these males are more successful in nursing the 276 

offspring. On the other hand, male care may reduce the fecundity selection pressure on females, so that 277 
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female size decreases in those species in which the males provide care [44,61]. To distinguish between 278 

these scenarios, further experimental and phylogenetic analyses are warranted [9,17]. 279 

Here we treat parental care as an invariable trait for a given species, although this assumption 280 

suits some species better than others. For example, Allobates femoralis exhibits variation in parenting 281 

since females transport tadpoles but this behaviour is only provoked by the absence of the father that is 282 

normally the care-providing parent [41]. Therefore, future phylogenetic analyses should pay attention to 283 

the flexibility of care provisioning [41,70]. Care provision can be further tuned by variation in the 284 

ecological [25,71,72] or social environment [41], and this plasticity not only enables better adaptation to 285 

seasonal and unpredictable changes of the environment, but it may also act as the origin of evolutionary 286 

changes in the extent of care [41,45] or in parental roles [41,43,45]. Field-based and laboratory-based 287 

studies will likely add more examples for this plasticity and would help in identifying environmental 288 

factors which provokes shifts. 289 

In summary, parental care is predicted by ecological and life history variables in frogs. Care is a 290 

complex social trait and specific aspects of care have different predictors in males and females. Further 291 

analyses are needed to investigate the impacts of climate, reproductive modes and mating systems on 292 

care strategies. Since new forms of parental care are cropping up [71,72], field-based studies of yet 293 

unstudied species are needed to explore breeding systems (including parenting) in frogs that live in 294 

remote areas and/or inhabit extreme environments. Taken together, studies of anuran parental care 295 

provide important contributions to the understanding of reproduction, evolution and diversification in the 296 

most threatened vertebrate class of the Anthropocene. 297 
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Figure legends 485 

Figure 1. Phylogenetic distribution of parental care and breeding habitat in frogs. (a) Type of care (592 486 

species). (1) Alytidae (Alytes sp., male egg transport), (2) Pipidae (Pipa sp., eggs embedded in the 487 

dorsal skin of female), (3) Hemisotidae (Hemisus sp, tadpole guarding by the female), (4) Microhylidae 488 

(Sphenophryne cornuta, juvenile transport by the male), (5) Rhacophoridae (Rhacophorus sp., foam 489 

nest made by both parents), (6) Dicroglossidae (Limnonectes larvaepartus, viviparity: live birth to 490 

larvae), (7) Limnodynastidae (Limnodynastes peronii, foam nest made by the female), (8) 491 

Myobatrachidae (Assa darlingtoni, male carry tadpoles in inguinal pouches), (9) Eleutherodactylidae 492 

(Eleutherodactylus coqui, direct developing eggs guarded by the male), (10) Hemiphractidae 493 

(Flectonotus sp., eggs carried in dorsal pouch of the female), (11) Hylidae (Hypsiboas boans, male 494 

guard eggs in constructed mud pool), (12) Rhinodermatidae (Rhinoderma darwini, tadpoles reared in 495 

vocal sac of the male), (13) Leptodactylidae (Leptodactylus podicipinus, the pair constructs the foam 496 

nest, the female guard the tadpoles), (14) Dendrobatidae (Ranitomeya imitator, the male transports 497 

tadpoles, the female feeds tadpoles in cooperation with the male), (16) Bufonidae (Nimbaphrynoides 498 

sp., viviparity: live birth to toadlets). (b) Diversity of female care (care duration, protection and 499 

nourishment, 594 species). (c) Diversity of male care (care duration and protection, 593 species). 500 

Grafen-transformed branch lengths are shown. 0 refers to no care in a particular trait, whereas 3, 5 and 501 

2 refer to the most advanced stage in offspring development in care duration, protection (for males and 502 

females separately) and nourishment (for females), respectively. 503 

 504 

Figure 2. Care duration, offspring protection and nourishment in relation to aquatic and terrestrial 505 

reproduction in frogs. Number of species exhibiting different extent of care duration, offspring protection 506 

and nourishment (on the left) and the extent of female and male parental care in aquatic and terrestrial 507 

species (mean + SD; on the right). Red shades represent female care, blue shades represent male 508 

care. 509 

 510 

Figure 3. Parental care in relation to life histories in frogs. Egg size and clutch volume are plotted 511 

against offspring care, protection and nourishment in females (red) and males (blue, see statistics in 512 

electronic supplementary material, table S4–S5). The variables were scored as follows. Care duration: 513 

0–no care; 1–egg care; 2–tadpole care; 3–juvenile care; Protection: 0–no protection; 1–nest building; 2–514 

attending; 3–carrying on back; 4–carrying in a closed organ; 5–viviparity; Nourishment: 0–exotrophic 515 

tadpoles; 1–trophic egg feeding; 2–endotrophic tadpoles, direct development or viviparity. 516 

517 
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Table 1. Parental care in relation to ecology, life-history and sexual dimorphism in Anura using 533 

phylogenetically corrected generalized linear squares (PGLS) models. Multipredictor PGLS models for 534 

each care variable are provided separately for males and females; note that only females provide 535 

nourishment. Higher node was included in the models except for nourishment (see Methods). Italics 536 

indicate significant predictors. Egg size is provided as diameter in mm. Clutch volume is calculated as 537 

egg volume × clutch size and provided as mm3. Clutch volume and egg size were log-transformed prior 538 

to the analyses. Body size refers to the average snout-vent length (SVL) in mm. Sexual size dimorphism 539 

was calculated as log10 (SVLmale / SVLfemale). We provide parameter estimates with standard error (β ± 540 

SE), the corresponding t and P values, and the adjusted R2 for the model including F(dfeffect, dferror) and 541 

P values, respectively. 542 
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Care duration by females  by males 

Terrestrial reproduction 

β ± SE T P  β ± SE t P 

 0.227 ± 0.103 2.209 0.028  0.278 ± 0.093 3.000 0.003 

Direct development -0.386 ± 0.224 1.721 0.087  -0.015 ± 0.197 0.077 0.938 

Clutch size  0.007 ± 0.056 0.130 0.897  -0.006 ± 0.053 0.110 0.913 

Egg size  0.011 ± 0.177 0.061 0.951   0.009 ± 0.166 0.052 0.959 

Body size -0.001 ± 0.001 0.407 0.685   0.002 ± 0.001 1.421 0.157 

Sexual dimorphism -0.110 ± 0.388 0.282 0.778   1.070 ± 0.376 2.842 0.005 

Model 0.155 2.961 (18, 175) 0.0001  0.175 3.254 (18, 174) < 0.0001 

Protection by females  by males 

Terrestrial reproduction 

β ± SE T P  β ± SE t P 

 0.426 ± 0.137 3.113 0.002  0.414 ± 0.158 2.626 0.009 

Direct development -0.452 ± 0.295 1.532 0.127   0.086 ± 0.332 0.261 0.795 

Clutch size  0.045 ± 0.087 0.524 0.601  -0.016 ± 0.097 0.168 0.867 

Egg size -0.059 ± 0.285 0.209 0.835   0.084 ± 0.310 0.272 0.786 

Body size  0.000 ± 0.001 0.038 0.969   0.001 ± 0.002 0.656 0.513 

Sexual dimorphism -0.208 ± 0.640 0.325 0.746   2.156 ± 0.701 3.075 0.002 

Model 0.282 5.231 (18, 176) < 0.0001  0.125 2.539 (18, 176) < 0.001 

 

Nourishment by females 

 by females excluding species with endotrophic 

tadpoles, direct development and viviparity 

Terrestrial reproduction 

β ± SE T P  β ± SE t P 

 0.018 ± 0.098 0.186 0.853  0.014 ± 0.055 0.265 0.792 

Clutch size -0.180 ± 0.053 3.389 < 0.001  -0.066 ± 0.030 2.162 0.032 

Egg size  0.119 ± 0.169 0.706 0.481  -0.195 ± 0.097 2.010 0.046 
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Body size  0.003 ± 0.001 2.043 0.042   0.003 ± 0.001 3.513 0.001 

Sexual dimorphism -0.148 ± 0.373 0.398 0.691   0.162 ± 0.347 0.208 0.437 

Model 0.194 3.781 (17, 179) < 0.0001  0.060 3.283 (5, 174) 0.007 

 


