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Abstract. - Is it more effective to have a strong influence over a small domain, or a weaker
influence over a larger one? Here, we introduce and analyse an off-lattice generalisation of the
voter model, in which the range and strength of agents’ influence are control parameters. We
consider both low and high density regimes and, using distinct mathematical approaches, derive
analytical predictions for the evolution of agent densities. We find that, even when the agents
are equally persuasive on average, those whose influence is wider but weaker have an overall
noise-driven advantage allowing them to reliably dominate the entire population. We discuss the
potential implications of our results for the understanding of political campaign strategies and the
evolution of disease.

Introduction. – The voter model [1,2] and its many
variants provide a highly simplified framework through
which to explore the possible behaviours of a wide range of
emergent natural phenomena. The myriad of applications
of models of this class include: competing populations in
biology [3–7]; the decomposition of alloys and the kinetics
of heterogeneous catalysts in physics [8–10]; and, of course,
opinion dynamics in social and economic contexts [11–13].
The voter model was originally posed as a lattice-based
interacting particle system in which each of N individu-
als periodically re-evaluates their opinion (represented as
an element of {0, 1}), selecting their new opinion at ran-
dom from those of their neighbours [1]. This simple dy-
namical rule leads to a striking coarsening phenomenon in
which domains of homogeneous opinion grow over time un-
til eventually (after a time proportional to N2 logN [14])
a large random fluctuation breaks the symmetry between
opinions, leading to one or other managing to take over
the whole domain — a state referred to as consensus.

Over the decades since its conception, a large body of
theory has developed exploring how variations to the voter
model specification can affect the process of consensus for-
mation. Notable examples include the addition of mem-
ory [15], conservation laws [16], dynamic network struc-
ture [17–19], population growth [20], off-lattice agent dy-
namics [7, 21], and many more. However, amongst these
many variants an important avenue has remained unex-

plored. In voter-type models it is common to assume that
agents interact only with their immediate neighbours, and
that each agent type is equally likely to convert the other.
Thinking about the origins of the model as an analogy
of political dynamics, however, it is clear that in the real
world activists face a choice in how to target their efforts:
should they spend all their energies convincing their im-
mediate neighbours, or is it better to spread their message
more widely, but with reduced intensity?

To address this question, we propose a simple, novel
model of spatial consensus-forming dynamics, that is a
non-local and off-lattice generalisation of the voter model.
We consider a population composed of agents of two types,
labelled W and S, holding differing opinions and with dif-
ferent strategies for influencing others. The agents move
according to Brownian motions, and attempt to convert
other agents of the opposite type that are within their
conversion radius. Crucially, we consider the case that
the conversion radii and probability of successful conver-
sion are unequal, with the type W agents having a wide
conversion radius but converting weakly, and the type S
agents having a small radius but strong power of conver-
sion. Fixing the product of conversion strength and the
size of the region of conversion ensures that the two types
of agent are equally persuasive on average. Simulation
outcomes are not equally balanced, however: in large pop-
ulations we find that the wide and weak (W-type) agents
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are almost certain to achieve consensus.
In this letter we present a theoretical analysis of our

non-local voter model to elucidate the origins of the bias in
favour of the wide and weak persuasion strategy. We find
that, in fact, different mechanisms are at work depending
on the density of agents. In the low-density regime (i.e.
when the typical distance between agents is large) we em-
ploy bimolecular reaction kinetic theory [22,23] and basic
Markov chain technology [24] to show how and why the
type S agents are driven to extinction with high proba-
bility. Different tools are needed to tackle the crowded
high-density regime (when each agent can interact with
many others simultaneously); studying the stochastic dy-
namics of the Fourier modes of the spatial distribution
of agents (following [25, 26]), and exploiting a separation
of time-scales between spatial fluctuations and the ratio
of agent types, we are able to demonstrate a systematic
bias in favour of type W agents. In both cases our results
match those of stochastic simulations.

The remainder of the manuscript is organised as follows:
after giving a detailed specification of the model and high-
lighting the essential paradox in the unequal outcomes of
simulations, we explore the low- and high-density regimes
in detail. Finally, we discuss the wider implications of our
work, interpreted in the context of both opinion dynamics
and evolutionary biology.

Model specification. – We consider a population
of N agents (of types S and W) that diffuse around a
regular d−dimensional hypertoroidal domain of length L
according to independent Brownian motions with diffu-
sion constant D. Each agent attempts to convert agents
of the opposite type when they are situated within the
focal agent’s conversion radius. We write rs, rw for the
conversion radii of the two types and λs, λw for the rates
of conversion (so that, for example, the probability of an
S agent successfully converting a W agent at distance x in
a small period of time δt is δtλs1|x|<rs). We are interested
in the case that there is a trade-off between the strength
of influence (measured by conversion rate) and the region
over which it has an effect (measured by conversion ra-
dius). In order to mimic limited, but equal resources, we
assume the product of the rate of conversion and region
of influence is the same for both types, so that

λsr
d
s = λwr

d
w . (1)

We choose the type labels S and W so that rs ≤ rw and
hence λs ≥ λw, that is, S-type agents have small conver-
sion radii, but convert strongly and W-type agents have
wide conversion radii, but convert weakly.

Consider a situation in which the agents are distributed
uniformly at random in space. In this case each type W
agent has an average of NsL

−dvdr
d
w type S agents within

its conversion radius, where Ns is total number of S agents,
L is the length of the domain and vd = πd/2/Γ(1 + d/2) is
the volume of the unit d-sphere. The expected total rate
of conversion from S to W is therefore NwNsL

−dvdλwr
d
w.

Fig. 1: Snapshots of the evolution of a single realisation taken
at different fractions of W -type agents. N = 1000 individuals
move with diffusion coefficient D = 0.01 on a domain of size
L = 1. For visualisation purposes we have partitioned space
into Voronoi cells with the particle positions as seeds. The
cells are coloured white for W -type agents and black for S-
type agents. Other parameters are rs = 0.1,λs = 1, rw = 0.2,
λw = 0.25, d=2.

Performing the analogous computation for type S agents
converting type W, we find the expected total rate to be
NsNwL

−dvdλsr
d
s . Thus we see that the constraint (1)

forces equality between the types in the sense that ex-
pected rates of conversion in either direction are equal (at
least when the agents are uniformly mixed in space).

In simulations, however, we repeatedly observe the wide
and weak type W agents taking over the population. Para-
doxically, snapshots of the population during this process
do not to the eye exhibit any particular spatial ordering
(see Fig. 1), making it difficult to see why the above cal-
culation for uniformly mixed agents should not hold. In
the next two sections we will look in detail at the dy-
namics of the model in different regimes to explain this
phenomenon. For simplicity we perform our calculations
in the case d = 1, however, the techniques and conclusions
are valid for any dimension.

Low-density regime. – First we consider a 1-D do-
main of length L that is much larger than the total reactive
region 2Nwrw + 2Nsrs. As the agents diffuse in this low-
density regime, we expect that, almost always, they inter-
act only in pairs, since the probability of three agents’ lo-
cations converging is smaller by a factor of O(r/L), where
r is the typical size of a conversion radius. We will show
that, during these pairwise interactions, the wide and weak
type W agents are in fact more likely to succeed in con-
verting the small and strong type S agents than vice versa.

We write κ � 1 for the rate of occurrence of pairwise
encounters that end with one agent converting the other.
This rate is a complicated function of the current compo-
sition of the population and the locations of the agents.
We will see, however, that it is possible to predict the
the ultimate fate of the system without explicitly knowing
these details. Our strategy is to consider a single ‘tagged’
agent, and examine the density u(x) of agents of the op-
posite type at small distances x ∈ [0, rw). Making a quasi-
stationary approximation that fixes κ as a small constant,
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Fig. 2: Probability of type S converting type W, as a function
of diffusion rate D, for rw = 1, rs = 1/2. The solid line is the
result of equation (5), the dashed and dot-dashed lines are the
asymptotic results given in (6).

we solve the equilibrium problem

0 = 2Du′′(x)− λ(x)u(x) , (2)

where λ(x) = λw1{x<rw} + λs1{x<rs}, and with boundary
conditions

u′(0) = 0 , u′(rw) = κ . (3)

The fraction of reacting pairs in which the smaller agent
wins is then

ps =
u′(rs)

u′(rw)

λs
λs + λw

. (4)

The ratio of fluxes here gives the fraction of reactions oc-
curring inside the smaller conversion radius; the second
term is simply the probability of the S + W → 2S reac-
tion occurring before the alternative S +W → 2W , given
that the agents have distance less than rs.

For our particular problem, since λ(x) is piece-wise con-
stant, the solution to (2) may be found by matching solu-
tions to the autonomous problem 0 = 2Du′′(x)−λu(x) in
the two regions [0, rs) and [rs, rw) with different values of
λ. Introducing µ1 =

√
(λs + λw)/2D and µ2 =

√
λw/2D,

and using the boundary condition u′(0) = 0, we obtain

u(x) =

{
C1 cosh (µ1x) for x ∈ [0, rs)

C2 cosh (µ2x) + C3 sinh (µ2x) for x ∈ [rs, rw).

The constants C1,2,3 above are determined by the require-
ments of matching density u(x) and flux u′(x) at the in-
terface between regions at x = rs, as well as the boundary
condition u′(rw) = κ. The full expressions are long and
largely uninformative. Applying these results to (4) yields
the probability of the smaller agent winning in a pairwise
interaction, given in equation (5) overleaf.

Note that ps < 1/2 for rs < rw and for all D, meaning
that, in pairwise interactions, the agents with a wide re-
gion of influence always have an advantage. The strength
of this advantage varies with the difference in radii and
the rate of diffusion. The effect of varying the diffusion
constant is most clearly demonstrated by considering the

asymptotic behaviour of equation (5) for small and D.
Since µ1,2 diverge for small D, we find that ps → 0 expo-
nentially fast in D−1/2; the dominant scaling in this limit
being controlled by the leading exponent in (5). For large
D, µ1,2 have Taylor series, and a straightforward expan-
sion is possible. Together, we obtain:

ps ≈


2rw

rs + rw
exp

[
−(rw − rs)

√
λw
2D

]
for D � 1 ,

1

2
− rw − rs

24D
for D � 1 .

(6)
In both limits it is clear that the advantage held by the
W agents increases with the difference in conversion radii
(rw − rs). These asymptotic scalings are compared to the
full expression for ps in Figure 2.

So far we have only discussed the fraction of pairwise
interactions won by either agent; for a strategy to dom-
inate the whole population, its agents must win repeat-
edly. Continuing with the approximation that only pair-
wise encounters are possible (which is exact in the limit of
low density), the number Ns of S agents (or equivalently
Nw = N−Ns for W agents) in the population at time ti of
the i-th conversion is described by the simple birth-death
process

P
[
Ns(ti + 1) = n

∣∣Ns(ti) = m
]

=

{
ps if n = m+ 1

1− ps if n = m− 1 .

(7)
Following standard methods for one-step Markov chains
(see, e.g. [24]), we find that the probability of S agents
winning overall, starting from an initially equal mix Ns =
Nw = N/2 is given by

Ps =
p
N/2
s

p
N/2
s + (1− ps)N/2

. (8)

Since, for rs < rw, ps < 1/2 it is straightforward to see
that Ps → 0 asN →∞, meaning that the advantage of the
wide agents in pairwise interactions, no matter how small,
is amplified into certain victory in large populations. Fig-
ure 3 shows a comparison between the theoretical result
of (8) and the observed win ratio in stochastic simulations
for various parameter values.

High-density regime. – The analysis in the previ-
ous section hinged on the fact that, in low density popula-
tions, agents typically meet only in pairs. Modern commu-
nication platforms, however, enable users to interact with
huge numbers of others simultaneously. It is therefore in-
structive to consider the opposite limit in which we send
the population N → ∞, keeping the domain size fixed.
This regime requires a completely different treatment, fo-
cusing on the spatial distribution of agents.

We first introduce some notation to keep track of the
agent locations and types. In a population of size N we
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ps =
2µ1rw

(
e2µ1rs − 1

)
eµ2(rs+rw)

(rs + rw)
(
(µ1 − µ2)(e2rs(µ1+µ2) − e2µ2rw) + (µ1 + µ2)(e2µ1rs+2µ2rw − e2µ2rs)

) . (5)
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Fig. 3: Colour plot of the probability Ps of type S agents
achieving consensus obtained from simulations with various
values of population size N and size ratios rs/rw. The over-
laid black lines show level contours obtained from (8); we note
that the value of Ps observed in stochastic simulations is gen-
erally slightly higher than the analytical prediction, but the
qualitative features match well.

index the agents by integers i ∈ N = {1, . . . , N}, and
write Xi for the location agent i. We also write S for the
set of indices of S agents, and similarly W for those of
type W, so that N = S ∪W and S ∩W = ∅. The state
of the system at some instant in time is then completely
specified by the population densities of the type S and W
agents, respectively defined as

ϕs(x) =
1

N

∑
i∈S

δ(x−Xi) , ϕw(x) =
1

N

∑
i∈W

δ(x−Xi) .

(9)
According to the model definition we gave in the intro-

duction, the state of the system evolves via the continuous
diffusion of the agents, and the discrete jumps occurring
when one agent converts another. For technical reasons,
it is simpler in this section for us to express the diffusion
of agents as the limit of a position-jump process. In this
description all agents are instantaneously static, but may
choose to jump at random times that are exponentially
distributed with rate γ; when a jump occurs the distance
travelled is a normal random variable with mean zero and
variance D/γ. In the limit γ →∞ the agents’ trajectories
converge to Brownian motion with diffusion coefficient D.

This description is useful as now the state of the system
(i.e. the pair ϕ = (ϕs, ϕw)) evolves according to a Markov
jump process in the space of distributions. Changes to the
system state (whether due to an agent moving, or chang-
ing type) are expressed as the subtraction of a Dirac mass
from one or other density, combined with addition of an-
other Dirac mass, possibly in a spatially distinct location.
Following the notation of [27] we introduce operators ∆u±

x

to denote the addition (+) or subtraction (−) of a Dirac

mass of weight 1/N at spatial location x in the density
of agents of type u. Writing P (ϕ, t) for the probability
density of state (ϕ) at time t, we are able to formulate the
master equation

d

dt
P (ϕ; t) = N

∫∫
Q(ϕ;x, y)P (ϕ; t) dxdy , (10)

where

Q(ϕ;x, y) =
(
∆s+
x ∆s−

y − 1
)
ϕs(x) d(x− y)

+
(
∆w+
x ∆w−

y − 1
)
ϕw(x) d(x− y)

+
(
∆s+
x ∆w−

x − 1
)
ϕs(x)ϕw(y)λw(x− y)

+
(
∆w+
x ∆s−

x − 1
)
ϕw(x)ϕs(y)λs(x− y) .

(11)

The four terms above respectively correspond to: move-
ment of an S agent, movement of a W agent, conversion
of an S agent to a W, conversion of a W agent to an S.
The functions d, λs and λw are the rate kernels for these
events in agents of different types; they are given by

d(x) =
γ√

2πD/γ
e−γx

2/2D ,

λs(x) = λs1|x|<rs , λw(x) = λw1|x|<rw ,
(12)

although the theory holds for alternative forms of move-
ment and interaction. Equations (10) and (11) define a
Markov jump process in the space of degenerate distri-
butions composed of multiple Dirac masses. In the high-
density limit of large N , as more and more agents are
included in the system, we expect that the normalised
agent densities ϕ will converge (in some suitable sense) to
smooth random functions. To bridge the gap between the
discrete finite populations and the smooth large N approx-
imation, it is useful to regularise the densities by moving
to Fourier space. We introduce the series expansions

f(x) =
∑
k∈Z

fk e
ikx , (13)

for f ∈ {ϕs, ϕw, λs, λw, d}, where fk = 1
2π

∫
e−ikxf(x) dx .

In Fourier space, the step operators for addition or sub-
traction of Dirac masses can themselves be expressed as a
series in large N ;

∆u±
x = 1± 1

2Nπ

∑
k

e−ikx
∂

∂ϕu
k

+
1

8N2π2

∑
k,`

e−i(k+`)x
∂

∂ϕu
k

∂

∂ϕu
`

+O(N−3) .

(14)
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Inserting these expressions into to (10) via (11) and dis-
carding terms above second order, we obtain a Fokker-
Planck equation for the Fourier modes of ϕs and ϕw:

∂P

∂t
= −

∑
u,k

∂

∂ϕu
k

Au
kP +

1

2N

∑
u,v,k,`

∂

∂ϕu
k

∂

∂ϕv
`

Bu,v
k,`P (15)

where, introducing

c±k =
∑
m

(
λwmϕ

w
mϕ

s
k−m ± λsmϕs

mϕ
w
k−m

)
, (16)

and taking the diffusion jump rate γ →∞, we have

Aw
k = 2πc−k −

Dk2

2
ϕw
k , As

k = −2πc−k −
Dk2

2
ϕs
k , (17)

and

Bu,u
k,` = c+k+` +

Dk`

4π
ϕu
k+` , Bu,v

k,` = −c+k+` . (18)

From the Fokker-Planck equation (15) we can extract sta-
tistical information about the system behaviour. Taking
the limit N →∞ the dynamics become non-random; mul-
tiplying though by either sk or wk and integrating over all
modes yields, in this limit, the mean-field ODEs

dϕw
k

dt
= 2πc−k −

Dk2

2
ϕw
k ,

dϕs
k

dt
= −2πc−k −

Dk2

2
ϕs
k . (19)

It is easy to check that this system admits a family of fixed
points of the form

ϕw
k =

ω

2π
δk,0 , ϕs

k =
1− ω

2π
δk,0 , ω ∈ [0, 1] . (20)

These correspond to the situation in which the agents are
homogeneously mixed in space, with a fraction ω being
of type W and (1 − ω) of type S. These fixed points are
linearly stable with respect to perturbations in modes k 6=
0, but perturbations to ϕw

0 , ϕ
s
0 are not suppressed. For

large but finite N , the noisy behaviour of the system gives
rise to small fluctuations in all modes, which may in turn
induce a net drift in the number of agents of each type.

To explore this possibility, we propose the linear fluctu-
ation ansatz1

ϕw
k =

ω

2π
δk,0 +

ξk√
N
, ϕs

k =
1− ω

2π
δk,0 −

ξk√
N
, (21)

which gives

c−k =
ω(λsk − λw0 ) + (1− ω)(λwk − λs0)

2π
√
N

ξk

+
1

N

∑
m

(λsm − λwm)ξmξk−m .

c+k =
ω(1− ω)(λw0 + λs0)

4π2
δk,0 +O(1/

√
N) .

(22)

1Note this is not quite the same as the Van Kampen expansion,
since we preserve the order 1/N contribution to the dynamics of ω.

Multiplying through by ω = 2πϕs
0 and integrating in

the Fokker-Planck equation (15) (and recalling that, since
ϕw, ϕs ∈ R, we must have ξ−k = ξk), we find

dω

dt
=

4π2

N

∑
k

(λsk − λwk )〈|ξk|2〉 , (23)

where 〈· · · 〉 =
∫

C(· · · )P (ϕ, t)
∏
k,`∈Z dϕs

kdϕw
` denotes the

average over P . The pre-factor of N−1 here shows that the
two agent types are equally balanced in the limit N →∞,
where ω̇ → 0 and the fraction of agents of each type does
not change. Nonetheless, we can also see clearly from
this equation that the variance of the fluctuations ξk gives
rise to a bias of order N−1 in the dynamics of ω, with
the cumulative effect of slowly but reliably altering the
fraction of agents of each type.

To compute the direction and strength of this effect, we
multiply through by ξkξ−k in (15), using the ansatz (22),
and integrate to obtain

d

dt
〈|ξk|2〉 = −αk(ω)〈|ξk|2〉+ βk(ω) +O(N−1/2) , (24)

where

αk(ω) =
ω(λs0 − λwk ) + (1− ω)(λw0 − λsk)

π
+Dk2 ,

βk(ω) =
ω(1− ω)

2π2
.

(25)

If we neglect the O(N−1/2) terms in (24) then that equa-
tion, together with (23), specifies a closed system of ODEs.
Moreover, the pre-factor of N−1 in the right hand side of
(23) implies a separation of time-scales between the fast
dynamics of the fluctuations and slow dynamics of the
overall ratio of types. The system can be solved, to lead-
ing order in N , via adiabatic elimination (see e.g. [28, 29]
for discussion of this and related methods). Treating ω as
a constant in (24), then for 1� t� N we have

〈|ξk|2〉 ≈
1

2π

ω(1− ω)

ω(1− λwk ) + (1− ω)(1− λsk) + πDk2
. (26)

The time-scale of relaxation to this quasi-equilibrium is
much faster than the dynamics of ω, so we may treat the
variance of the fluctuations 〈|ξk|2〉 as fully determined by
the value of ω. Inserting (26) into (23), we obtain the
differential equation

dω

dt
=

1

N
F (ω) , (27)

where

F (ω) =
∑
k

2π(λsk − λwk )ω(1− ω)

ω(λs0 − λwk ) + (1− ω)(λw0 − λsk) + πDk2
.

(28)
Figure 4 illustrates the shape of this function for several
different values of rs. Note that in each case F (ω) is
strictly positive over the whole of ω ∈ (0, 1), meaning that
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Fig. 4: Illustration of F (ω) defined in (28), for different values
of rs, when rw = 1, D = 0.

the trend is always for the fraction of type W agents to
increase on average. In Figure 5, we show an example evo-
lution trajectory of ω, given by equation (27), compared
to the average over a number of simulation runs, which
shows excellent agreement.

Conclusion. – We have introduced a novel mecha-
nism of spatial consensus-forming dynamics. We demon-
strated that, despite being equally persuasive on average,
agents that distribute their resources widely at the cost of
converting others only weakly dominate more forceful but
narrowly-focussed individuals. The results presented in
this letter are for the simplest possible conversion kernels
and for agents diffusing at the same rate. In real scenarios
it is possible that there is a trade-off between campaigning
strategy (encoded by the conversion kernel) and speed of
movement. It is also likely that the resources of the two
types may not be equal and it is of interest to characterise
the scenarios in which the wide and weak campaigners
dominate despite being more poorly resourced.

We anticipate that our results may have interesting ap-
plications beyond the realms of political campaigning, for
example to biological competition [30]. Indeed, there are
clear parallels between this work and that of [7], who
demonstrated that faster diffusing individuals dominate
in spatial models of biological competition. The underly-
ing competition dynamics and mechanisms of establishing
dominance are, however, entirely different. Another con-
text for future research, building on our results, is in the
interaction between the dynamics of individual behaviour
and disease spread; in rabies, for example, infected indi-
viduals exhibit markedly different behaviours to the un-
infected [31]. There are also consequences for the under-
standing of the evolution of modes of infection, for exam-
ple the evolutionary trade-offs between long-range but un-
reliable air-borne transmission to blood-borne infections
requiring personal contact.

Acknowledgements. – KM is supported by the
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Fig. 5: The fraction ω of type W agents increases over time
in the high-density regime, in the domain (−π, π] with the
diffusion coefficient set to zero. The black curve shows the
theoretical prediction (27) for the case rw = 1, rs = 1/2. The
thick dashed blue line shows the average over 100 simulations
in a population of size N = 100 with the same parameters. The
area between the 0.2 and 0.8 quantiles is shaded light blue.
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