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Abstract 
12 
13 

In service, railway tracks must withstand transverse and longitudinal forces arising from 

15 running vehicles and thermal loads. The mechanical design adopting any of the track 
16 

17 models available in the technical literature requires that the strength of the track is fully 

18 characterized.  In  this  paper,  the  results  of  an experimental  research  activity on the 

20 sleeper ballast  resistance  along the  lateral and  the  longitudinal directions are reported 
21 

22 and discussed. In particular, the work is aimed at identifying the strength contributions 

23 offered by the base, the ballast between the sleepers, and the ballast shoulder to the 

25 global  resistance  of  the  track  in  the  horizontal  plane.  These  latter  quantities were 
26 

27 experimentally determined by means of an ad hoc system designed by the authors. Field 

28 tests were carried out on a series of track sections that were built to simulate scenarios 

30 in which the ballast was removed from the crib and/or the shoulder. The results of this 
31 

32 study indicate that, as far as the scenarios here investigated are concerned, the strength 

33 percent  contributions from the  crib,  the sleeper base and the shoulder are  respectively 

35 equal to about 50%, 25%, and 25% in the lateral direction, and 60%, 30%, and 10% in 
36 

37 the longitudinal one. Moreover, the comparison of the acquired data with literature 

38 results reveals that a detailed knowledge both of the testing conditions and the activated 

40 ballast failure mechanisms are needed in order to correctly use test data for design 
41 

42 purpose. 
43 
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9 1. Introduction and  background
10 
11 Although Continuous Welded Rail (CWR) has solved many of the problems  associated 
12 
13 

with  tread  surface  discontinuities  that  occur  in  jointed  tracks,  the  presence  of 
14 
15 

compressive  stresses  in  the  rails  caused  by  the  solar  heating  and  the  longitudinal 

17 

18 constraint action due to the ballast compel railroad engineers inspecting continuously 
19 
20 the  lines and  carrying out  the  related  maintenance  operations  to  reduce  the  risk of 
21 
22 thermal   track   buckling,  a   very  complex   phenomenon   having  often  catastrophic 
23 
24 

consequences. 

26 

27 Researchers have focused their attention on the thermal buckling phenomenon for a 
28 

29 long time  and  numerous  experimental activities  have  been carried  out  until  now, in 
30 
31 order to identify analytical models and design practices that allow proper construction 
32 
33 

of the track against this failure mode. 
34 
35 

36 Studies on thermal track buckling started in the first decades of the last century. Kerr in 
37 

38 [1] critically surveyed most results of track buckling tests as well as the main theoretical
39 
40 analyses of track buckling published before the 1975. In most studies carried out since 
41 
42 then  in order  to analyse the  phenomenon  in  greater detail, an equivalent beam having 
43 
44 

the  same  cross section  and  rotational  inertia  as  the  real  track  [2--8]  replaced  the 

46 

47 rail/sleeper structure. These beam models are quite intuitive but they cannot take into 
48 

49 account the strong influence of the torsional stiffness of the fasteners nor the effects of 
50 
51 missing ties and fasteners, being the beam continuously constrained to the ballast. 
52 

53 

54 

55 

56 

57 

58 
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To overcome this latter limitation, Hengstum and Esveld [9] and El Ghazaly et al. [10] 

10 

11 analysed the track equilibrium under thermal loading by 2D finite element (FE) method. 
12 
13 For  the  same reason,  Jackson et al.  [11]  proposed  the  rail tie model,   a  track  finite 
14 
15 element model built by super elements technique. 
16 
17 

Since the real track buckling modes are often due to the interaction between lateral and 

19 

20 torsional buckling, 3D models are thus necessary to study this interaction effect. A FE 
21 

22 model  of  this  kind  was  proposed  by  Lei  and  Feng  [12].  Similar  FE  models were 
23 
24 developed [13,14] in order to carry out sensitivity analyses of the ballast resistance and 
25 
26 

track irregularities on the stability of CWR. 
27 
28 

Although the theoretical enquiries which have been carried out so far reached a very 

30 

31 high complexity level, the reliability of the results of any analysis of the track behaviour 
32 
33 is still strongly conditioned by the uncertainties about the ballast behaviour and the 
34 
35 interactions of this latter with the track grate [13,15]. 
36 
37 

Until  now,  several  researches  aimed  at  measuring  the  ballast  resistance  have been 

39 

40 carried out, among which it is worthy to highlight those conducted in USA [16--18], UK 
41 

42 [19,20], Australia [21] as well the most popular study conducted by the European Rail 
43 
44 Research  Institute  (ERRI)  [22,23].  Data  until  now  acquired  were  obtained  from 
45 
46 

particular track configurations and, as a consequence, it is not possible to use them as a 
47 
48 

basis for quantitative  predictions  of  the  ballast behaviour  in  scenarios different from 

50 

51 those  from  which  they  were  derived.  Moreover,  most  of  them  refer  to  the lateral 

http://mc.manuscriptcentral.com/JRRT
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resistance  only,  disregarding  the  role  the  longitudinal  stiffness  has  on  the thermal 

10 

11 buckling of a ballasted railway track [13,14,16]. Furthermore, the experimental analyses 
12 
13 reported in literature do not cover all the aspects involved in the ballast response. Very 
14 
15 often, the scheduled experimental activities were not completed. The tests were  usually 
16 
17 

not repeated, when they were, the number of repetitions was quite low or in some cases 

19 

20 fixed without a criterion. Sometimes, the reported experimental results are partially 
21 

22 censored or data are referred to hypothetically uniform conditions even if, in general, it 
23 
24 is known that the  presence  of singularities in the subgrade  can greatly alter the ballast 
25 
26 

behaviour. 
27 
28 

The testing methods currently adopted to measure the in service ballast resistance are 

30 

31 very laborious and time consuming [24,25,26]. In order to tentatively overcome these 
32 
33 limitations of the measurement practices, an analytical approach for the evaluation of 
34 
35 the lateral resistance based on a continuous recording both of the forces applied by the 
36 
37 

tamping machine to the track and the corresponding track displacements was proposed 

39 

40 in [27,28]. Unfortunately, experimental practices which allow the direct or indirect 
41 

42 measurement of the different frictional contributions to the lateral track strength are still 
43 
44 unknown. 
45 
46 

The relative importance of the three main contributions to the lateral and longitudinal 
47 
48 

sliding resistance,  namely the  sleeper base, the  crib,  and the shoulder, depends on the 

50 

51 track cross section geometry, ballast grain size and shape, grade of ballast compaction, 
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type of sleeper, type of rails, and type of subgrade. Also the mechanical loads acting on 

10 

11 each  sleeper exert a  great  influence.  In  particular,  as reported  in [29],  the resistance 
12 
13 offered by the base depends on the vertical load, while that related to the crib and 
14 
15 shoulder is essentially related to the ballast internal friction and the volume of the grains 
16 
17 

interested by the sleepers movements [30]. Most of the studies carried out till now on 

19 

20 the  ballast  strength  contributions  are essentially sensitivity analysis carried out by the 
21 

22 FE method [to cite a few, 31 34]. In [22], literature data and ERRI tests results are 
23 
24 analysed for the particular case of the unloaded track. Lateral strength is reported per 
25 
26 

sleeper and is defined as the peak lateral resistance within a deflection of about 20 mm. 
27 
28 

Details of the shoulder sizes, sleeper spacing, height of ballast and ballast mechanical 

30 

31 properties are not specified. On the basis of these results, the ERRI suggested, as rule of 
32 
33 thumb, that the base, the crib, and the shoulder contribute approximately 1/3 each to the 
34 
35 lateral resistance. Le Pen and Powrie [30] quite recently discussed some test data and 
36 
37 

estimated for several shoulder geometry and sleeper loadings the relative contributions 

39 

40 to the total sliding resistance of the base, crib and shoulder. In particular, the base 
41 

42 contribution  was  related to  the  normal  and  moment  loads  using the  Butterfield and 
43 
44 Gottardi model [35], an approach that allows relating the ballast failure mechanisms to 
45 
46 

the differences in the contact pressure that arise on the surface between the ballast and 
47 
48 

the sleeper base. It is worth highlighting that the experimental data discussed in [30] 

50 

51 
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were produced in a laboratory by the single tie push test, an experimental methods that 

10 

11 tends often to overestimate the ballast strength [22]. 
12 
13 In order to fill in the gaps of the present scientific background on which the rules for 
14 
15 design  and maintenance  of  the  CWR  are  based,  further experimental investigations 
16 
17 

integrated  with  those  which  have  been  carried  out  until  now  are  needed.  More 

19 

20 specifically, a specific testing program is necessary to characterize the ballast behaviour 
21 

22 in  a  wide  range  of  track  configurations  and,  to  obtain  reliable  results,  a  full field 
23 
24 campaign would be preferable, since it allows reproducing testing conditions very close 
25 
26 

to the track service ones. 
27 
28 

In this study, some experimental results obtained by tests carried out on track panels in 

30 

31 the  lateral  and  longitudinal   directions  are   reported  and  critically  discussed.   This 
32 
33 experimental activity aims at an in depth understanding of the relative importance of the 
34 
35 three main contributions to the lateral and longitudinal sliding resistance, namely those 
36 
37 

offered by the crib, the shoulder and the sleeper base. It is part of a Research Project 

39 

40 funded by RFI to study the stability of the continuous welded rail [26,36--38]. The main 
41 

42 aims of  the  project were the ballast mechanical  characterization in the widest possible 
43 
44 number  of  service  conditions  (scenarios)  and  a  new  track  model  for  studying  the 
45 
46 

thermal   buckling  and   post buckling  track   behaviour  [13,36,37]. The  experimental 
47 
48 

analysis of the longitudinal ballast contributions is a quite innovative aspect of this 

50 

51 
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work, since only one other study [25], to our knowledge, has specifically dealt with this 

10 

11 problem on the base of in service ballast strength measurements. 
12 
13 From  the  comparison  of  data  acquired  by  the  authors  with  those  from  literature, 
14 
15 interesting considerations can be drawn regarding the effects produced by the track 
16 
17 

geometry configurations and ballast conditions on the relative weight of the frictional 

19 

20 contributions to the lateral strength of the track. 
21 

22 

23 
24 2. Field tests 
25 
26 

27 The  experimental  data  of  the  present  paper  were  obtained  from a testing campaign 
28 

29 carried out in Traccia, near the Central Train Station in Naples, in an area provided by 
30 
31 RFI   (Italian   Railway   Infrastructure)   during   the   Research   Program   previously 
32 
33 

mentioned. 
34 
35 

36 The track panels to be tested were obtained from a single tangent track approximately 
37 

38 200 m long (Fig. 1) that was composed of 237 kg FSV35P concrete sleepers spaced at 
39 
40 0.6 m, and 60 kg/m UIC60 rail profiles. The FSV35P sleepers are 2.42 m long, and their 
41 
42 cross section at the sleeper ends has a base of 280 mm and an height of 190 mm. The 
43 
44 

ballast height under the sleepers was about 40 cm, while the ballast shoulder  width was 

46 

47 55 cm. 
48 

49 FIGURE #1 
50 

51 Figure 1. Tests field of Traccia in Naples. 
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9 
10 

11 From the track line, seven scenarios were developed. They are also sketched in the 
12 
13 testing plan shown in Fig.  2.  In particular,  4  scenarios were  prepared  for  lateral pull 
14 
15 tests, while 3 scenarios were for longitudinal pull tests. Both the ballast distribution 
16 
17 

around the sleepers and the number of sleepers were different in each scenario. 

19 

20 
21 

22 FIGURE #2 
23 
24 Figure 2. Track sectioning scheme to obtain test scenarios. 
25 

26 

27 
28 

29 2.1  Site preparation 
30 
31 By means of a tamping machine, the operations of lining, levelling and tamping of the 
32 
33 

tangent track were initially performed for a length of about 300 m. Afterwards, in order 
34 
35 

36 to reduce stresses in the rails of the track from which the panels to be tested were to be 
37 

38 obtained, the 200 m track segment was isolated by cutting the rails by a disk saw and 
39 
40 creating a clearance of about 1.0 cm. 
41 
42 Then, each test panel was identified along the track. Each end was marked (by spray 
43 
44 

paint) on the rails heads; similarly, several point markers were sketched on the web of 

46 

47 the two rails to identify the positions of the holes for the rod of the testing fixture. 
48 

49 After ballast compaction by a DTS (dynamic track stabilizer), all fastener systems were 
50 
51 unscrewed and re tightened in order to perform rail normalization. Finally, the short 

http://mc.manuscriptcentral.com/JRRT
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8 
track panels were cut and drilled, removing the ballast where required (between sleepers 

10 

11 and/or on the ballast shoulder). As shown in Fig. 2, each track panel was separated by 
12 
13 the adjacent ones by two "inactive sleepers" in order to avoid interactions between the 
14 
15 failure wedges of the ballast shoulders. The contact pressure distributions between the 
16 
17 

sleeper  and  the  ballast bed  are  different  when the  track  is  loaded along   either  the 

19 

20 longitudinal or the lateral  direction,  resulting in a different contribution of the  base  to 
21 

22 the total resistance. For this reason it has been experimentally identified along both 
23 
24 directions. 
25 
26 

The tested scenarios are as follow: 
27 
28 
29 a)   for lateral pull tests: 
30 
31 

32  4 sleepers surrounded by ballast up to the upper surface level (namely with crib 
33 

34 and shoulders   BBB); 
35 
36  4 sleepers and ballast removed from the crib (BCB); 
37 
38 

 4 sleepers and shoulder swept down to the sleeper base (BBU); 

40 

41  4 sleepers and ballast removed from the sides (BCU); 
42 
43 

b)   for longitudinal pull tests: 
44 
45 
46  6 sleepers surrounded by ballast up to the upper surface level (BBB); 
47 
48 

 6 sleepers and shoulder swept down to the sleeper base (BBU); 
49 
50 

 6 sleepers and ballast removed from the sides (BCU). 

http://mc.manuscriptcentral.com/JRRT
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11 2.2 Equipment and  Test system 
12 
13 

All tests were carried out using two or four loading lines, for the longitudinal and lateral 
14 
15 

pull tests,  respectively. A testing system,  which was specifically designed to carry  out 

17 

18 all the research activities scheduled in the aformentioned research project, was used. 
19 
20 In  particular,  the  system  is  modular  and  is configurable  up  to  a  maximum  of five 
21 
22 loading lines operating simultaneously. Each loading lines (Fig. 3a) is composed by: an 
23 
24 

electromechanical    actuator;    one    or    more   load   cells   (depending   on    the test 

26 

27 configuration); a displacement transducer. A closed loop displacement control  operates 
28 

29 the actuators by means of a programmable digital controller. Both the digital control 
30 
31 system and the data acquisition unit were mounted on a hand sliding truck that allowed 
32 
33 

easy moving and repositioning of all the testing equipments along the track during the 
34 
35 

36 scheduled activities (Fig. 3b). The experimental apparatus have been fully described by 
37 

38 the authors in a previous paper [26]. 
39 
40 FIGURE #3LR 
41 
42 Figure 3. Test system: the series of actuators (a) and the control and acquisition 
43 
44 

unit (b). 

46 

47 
48 

49 Due  to  the  differences  between  the  previous  experimental  campaign  [26]  and that 
50 
51 reported in this paper, new interfaces to connect the loading system and the track were 
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8 
needed. In particular, at the present testing site there was only a single track hence a 

10 

11 railroad loader was used as fixed constraint. However, the loader shape did not provide 
12 
13 many coupling options, which were at the same time simple, cheap and quick to be 
14 
15 implemented. For this reason, the central point on the front axle (Fig. 4) was chosen to 
16 
17 

constrain the loading lines. Due to this choice, a bespoke fixture  which was at the same 

19 

20 time easy to assemble and disassemble, versatile, light and sufficiently stiff and stable 
21 

22 was designed. The result of this design activity is the structure shown in Fig. 4. The 
23 
24 system allows to transfer the load, which is applied by the actuators along different 
25 
26 

loading lines, to a single point on the test article as well as to the constraining point. The 
27 
28 

main feature of this system is the possibility to connect chains, cables or ropes using 

30 

31 off the shelf hooks. In addition, it is possible to quickly split it up, being assembled 
32 
33 using only bolts, and move from one site to another. 
34 
35 FIGURE #4 
36 
37 

Figure 4. Loads transferring structure hooked to a railroad loader. 

39 

40 

41 
42 3.  Experimental Results 
43 
44 
45 Using the  loading system  previously described,  the scheduled tests were  carried   out. 
46 
47 

The tests,  which have been performed under displacement control,  were carried out  in 
48 
49 

order to identify the characteristic curve under specific track conditions. With this aim, 

51 

52 regardless  the  plasticity  and the failure  condition  of  the  ballast  bed, each  tests was 

http://mc.manuscriptcentral.com/JRRT
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8 
carried out until the displacement value was at least 80 mm. This would ensure that the 

10 

11 characteristic curve experimentally obtained could be used to set up either a numerical 
12 
13 or  an  analytical  model  through which the  post buckling behaviour  of the track under 
14 
15 thermal buckling could be studied. Moreover, some scenarios have been tested further 
16 
17 

pulling the panel above 80 mm. In some cases, before the end of the test, the panel has 

19 

20 been unloaded  and  reloaded.  This  diversion  from  the maximum displacement above 
21 

22 defined is due  to the  possibility either gathering further data regarding the variation  in 
23 
24 stiffness after reaching the ballast plasticity or to assess the variation in the resistance 
25 
26 

after track unloading. 
27 
28 
29 The applied load was recorded during the lateral pull tests along the longitudinal axis of 
30 
31 each sleeper, whilst during the longitudinal pull tests the force values were measured 
32 
33 

along  the  longitudinal  axes  of  the  two  rails  of  the  track  panel.  The corresponding 

35 

36 displacements values were recorded during the tests along the above described loading 
37 

38 lines. 
39 
40 Signals of all the sensors of the experimental setup were acquired and processed in real 
41 
42 

time  during  the  tests,  in  order  to  directly  correlate  the  acquired  data  with  the test 
43 
44 

45 parameters [26]. 
46 

47 For each scenario, the instantaneous averages of both the loads applied to the sleepers 
48 
49 and of the corresponding (sleepers) displacements were computed in real time during 
50 

51 
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the test, in order to have an average load displacement characteristic curve that was 

10 

11 representative of the behaviour of all the sleepers of the tested scenario. 
12 

13 
14 3.1 Transversal resistance  tests on short tracks 
15 
16 

17 Lateral resistance tests were performed on 4 track panels, each one of them composed 
18 

19 by  4  sleepers and  characterized  by the  presence  (B) or   not  of  the  ballast  between 
20 
21 sleepers (C) and/or in correspondence of the shoulder (U), as shown in Figs. 5--8. 
22 

23 

24 
25 

FIGURE #5 

27 

28 Figure 5. Test on BBB scenario (with ballast shoulder and ballast crib). 
29 

30 FIGURE #6 
31 
32 Figure 6. Test on BCB scenario (without ballast crib - C). 
33 
34 

FIGURE #7 
35 
36 

37 Figure 7. Test on BBU scenario (without ballast shoulder - U). 
38 

39 FIGURE #8 
40 
41 Figure 8. Test on BCU scenario (without ballast crib, C, and at sleepers ends, U). 
42 

43 

44 
45 

The  characteristic  load displacement curves obtained  averaging the curves obtained in 

47 

48 each test are reported in Fig. 9. The difference in resistance values offered by the ballast 
49 

50 in the four test configurations is self explanatory. 
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Such difference is also quantifiable in terms of the load peak values reported in Tab. 1. 

10 

11 Moreover, on the basis of these values, the percentage contributions offered by the base, 
12 
13 the crib and the shoulder were estimated (Tab. 2). 
14 

15 

16 

17 
FIGURE #9 

19 

20 Figure 9. Lateral pull tests: load-displacement curves. 
21 

22 

23 
24 TABLE #1 
25 

26 
Table 1. Measured transversal resistance peak values per sleeper (FTransv Isleeper) 

28 
and per track unit length (F 

30 

31 

32 

 
 

Transv 

 

Ilinear metre). 

33 TABLE #2 
34 
35 Table 2. Contributions of the crib, the shoulder and the under sleeper ballast to the 
36 
37 

transversal resistance. 

39 

40 
41 

42 The percentage contribution of the sleeper base was estimated as the ratio between the 
43 
44 value measured in the BCU scenario (ballast removed from the shoulder and from the 
45 
46 

crib) and the one measured in the BBB scenario. The contributions from the shoulder 
47 
48 

and the crib were obtained combining the results obtained from four scenarios, namely 

50 

51 BBB, BCB, BCU, BBU, according to two different set. 
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The first set of scenarios is BBB/BCB/BCU. The contribution due to the ballast on the 

10 

11 lateral sleeper surfaces can be estimated by subtracting from the value of the lateral 
12 
13 resistance measured in the BBB scenario, the corresponding value measured in the BCB 
14 
15 scenario  (second  row  of  Tab.  2).  The  contribution  offered  by  the  shoulder  can be 
16 
17 

identified using a similar procedure: the lateral resistance value of the BCU scenario is 

19 

20 subtracted from the value of the lateral resistance measured in the BCB scenario (fifth 
21 

22 row of Tab. 2). 
23 
24 The second set of scenarios is BBB/BBU/BCU. The values of the lateral resistance can 
25 
26 

be  computed following a  similar procedure.  The  corresponding results are reported in 
27 
28 

the third and fourth rows of Tab. 2. 

30 

31 The percentage values estimated utilising the BBB BCB BCU and the BBB BBU  BCU 
32 
33 set of three scenarios respectively are reported in the third and fourth column of Tab. 2. 
34 
35 The two adopted methodologies lead to very close values of the contribution offered by 
36 
37 

the shoulder and crib ballast. Moreover, although the ballast was removed either with 

39 

40 mechanical devices in some scenarios, or manually stone by stone in others, the values 
41 

42 related to the different contributions are very close. 
43 

44 

45 

46 
3.2 Longitudinal resistance tests 

48 

49 
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Longitudinal resistance tests were performed on 3 track panels. Each of them contains 6 

10 

11 sleepers. As in the lateral tests, the ballast configurations of these panels were different, 
12 
13 since the scenarios were made with or without shoulder and/or crib ballast. 
14 
15 To be able to perform these tests without interfering with the adjacent scenarios, all the 
16 
17 

sleeper located between the first track panel to be tested and the movable ends of the 

19 

20 actuators was removed (Fig. 10). Moreover, two rail sections about 1.2 m long were 
21 

22 removed,  to insert two actuators of the  testing system between the  panel under testing 
23 
24 and the constraining points (Fig. 10). 
25 
26 

FIGURE #10 
27 
28 

Figure 10. First longitudinal pull test: details of the actuators and their connections 

30 

31 to the rails. 
32 

33 

34 
35 For the second test, the rails of the first scenario were removed to connect the panel to 
36 
37 

be tested to the actuators constrained to the fixed track by means of two chains (Fig. 

39 

40 11). 
41 

42 FIGURE #11 
43 
44 Figure 11. Second longitudinal pull test: detail of actuators linkage to the short 
45 
46 

track panel. 
47 
48 

49 

50 

51 
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The third test was carried out in a similar way as the second one. During one of the 

10 

11 three tests the panel was unloaded and reloaded in order to verify the path followed by 
12 
13 the load displacement curve and assess the stiffness of the track. A further assessment 
14 
15 refers to the force value reached when the panel is reloaded since it must be the same as 
16 
17 

it was before unloading. 

19 

20 The  characteristic  curves obtained from  these tests,  representing the  average   ballast 
21 

22 resistance (per unit track length) as a function of the track displacement, are shown in 
23 
24 Fig. 12. The peak values reached in each test are also reported in Tab. 3. 
25 
26 

Based on the data obtained from these tests, the percentage contributions to the global 
27 
28 

longitudinal resistance offered by the base, the crib, and the shoulder were estimated 

30 

31 (see Tab. 4) using an approach similar to the one previously adopted for the transversal 
32 
33 strengths. 
34 

35 

36 

37 
FIGURE #12 

39 

40 Figure 12. Longitudinal pull tests: load-displacement curves. 
41 

42 

43 
44 TABLE #3 
45 
46 

Table 3. Measured longitudinal resistance peak values per sleeper (FLong Isleeper) 

48 

49 and per track unit length (FLong Ilinear metre). 
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TABLE #4 

10 

11 Table 4. Contributions of the crib, the shoulder and the under sleeper ballast to the 
12 
13 longitudinal resistance. 
14 

15 

16 

17 
Discussion 

19 
20 The obtained results, when compared with those from the literature, well highlight the 
21 
22 strong influence exerted both by the measuring method, the corresponding equipment 
23 
24 

adopted for the investigations and the  specific ballast conditions of  the test  site on the 

26 

27 scatter of the experimental data. 
28 

29 In Tab. 5, for example, the peak values for unloaded tracks of the ballast transversal 
30 
31 resistance  acquired during the  tests on  the  BBB track  panel and those of  a   previous 
32 
33 

testing campaign carried out on similar scenarios [36] (where the RFI 230 ties were 
34 
35 

36 used instead of the FSV35P ties adopted in the scenarios of the present paper) are 
37 

38 reported. They give an idea of the aforementioned scatter. The evident differences 
39 
40 between the two set of strength values should dissuade anyone from using literature data 
41 
42 lacking   of   precise   information   about   the   reference   scenario   and   the   adopted 
43 
44 

experimental practice. 

46 

47 However, neither the scatter quantification nor the analysis of its main sources are the 
48 

49 central purpose of the present work. Instead, the presented experimental activity has 
50 
51 been carried out essentially in order to collect data by which the individual strength 
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contributions from  the  crib,  the  shoulder, and the  under sleeper  ballast  to  the global 

10 

11 resistance of the track in the horizontal plane can be evaluated and to generalize the 
12 
13 obtained results to scenarios similar to the tested ones. 
14 
15 Two other comparisons with data taken from the literature are synthesized in Tables 6 
16 
17 

and 7, where the lateral and longitudinal percent resistance contribution values of track 

19 

20 panels tested in full field conditions [25] are compared with those obtained in the 
21 

22 present study, and in Table 6, where the lateral contributions obtained in laboratory with 
23 
24 the STPT technique [30] are compared with field data from DCPPT technique utilized 
25 
26 

in this study. 
27 
28 

In   [25],  as  expected,   the  contributions  are   quite   different,   due  to  the   different 

30 

31 geometrical parameters of the tracks, the different ballast type and grading curve. 
32 

33 

34 
35 TABLE #5 
36 

37 
Table 5. Measured lateral resistance peak values. 

39 

40 
41 

42 TABLE #6 
43 
44 Table 6. Comparison of the contributions to lateral resistance with those of ERRI 
45 
46 

[25J and those of Le Pen and Powrie [30J. 
47 
48 

49 
50 

51 TABLE #7 

http://mc.manuscriptcentral.com/JRRT


Page 21 of 41 Journal of Rail and Rapid  Transit 

52 

53 

54 

55 

56 

57 

58 

59 

60 

http://mc.manuscriptcentral.com/JRRT 

 

 

9 

18 

29 

38 

49 

 

 

1 

2 

3 

4 

5 

6 

7 

8 
Table 7. Comparison of the contributions to longitudinal resistance with those of 

10 

11 ERRI [25J. 
12 

13 

14 
15 The differences observed in the crib resistance contribution can be explained in terms of 
16 
17 

the failure mechanism. Crib resistance is essentially related to the slip energy dissipated 

19 

20 by friction, either on the sides of the sleeper or on a slip surface level with the base of 
21 

22 the sleepers within the ballast, according to the failure mechanism that offers the lesser 
23 
24 resistance  [30].  In  our case,  the  first  mechanism  was  observed,  whereas  in [25] no 
25 
26 

details are given about this aspect, which once again highlights the need of a detailed 
27 
28 

description both of the testing condition, and of the experimental observations of the 

30 

31 failure mechanisms that wakes up when the critical conditions are attained. As in the 
32 
33 case of crib ballast failure, in fact, if the experimental test field is made of poor ballast 
34 
35 materials,  internal ballast  failure  due  to low internal friction  coefficient will probably 
36 
37 

occur, which in turn would erroneously underestimate the sleeper  ballast strength if for 

39 

40 in service tracks more refined ballast materials are adopted. 
41 

42 In [30], where the testing condition were representative of freshly laid ballast, the ratio 
43 
44 LIV, where L is the peak resistance of the base contribution in the lateral direction and V 
45 
46 

is the vertical load on the sleeper, attains the mean value of about 0.55 (see Table 6). 
47 
48 

For the track section considered in this study (237 kg FSV35P type sleepers spaced of 

50 

51 0.6 m, and 60 kg/m UIC60 rails), the weight of track per sleeper is V ::: 3140 N (2324 + 
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720  + weight of  fasteners), whereas the  peak  value  of  the  base contribution,  L, was 

10 

11 experimentally found to be equal to 1599.3 N (see Tables 1 and 6); this lead to L/V ::: 
12 
13 0.51, which is only about 7.5% smaller than the value reported in [30]. 
14 
15 Also for the crib resistance a quite good agreement with the results of [30] can be 
16 
17 

appreciated (see second row of Table 6), being only about 5.4% the percent difference 

19 

20 between results from [30] and the value we have measured. Moreover, this value further 
21 

22 reduces if we calculate the crib contribution with the same procedure reported in [30] 
23 
24 (we did it in two ways in subsection 3.1, as shown in the second and third row of  Table 
25 
26 

2, and the value of 2775.3 N reported in the second row of Table 6 is the mean value 
27 
28 

obtained by averaging the results of the two methods), namely by subtracting the BCU 

30 

31 curve (only base contribution, fourth row of Table 1) from that obtained during the 
32 
33 BBU test (base and crib contributions, third row of Table 1); in this case, in fact, a value 
34 
35 of 2942.1 N is found, as reported in the third row of Table 2, which corresponds to a 
36 
37 

0.2% only difference with respect to the results of [30].  Moreover,  if  we multiply this 

39 

40 value by the ratio between the lengths of the sleepers utilized, respectively, in [30] and 
41 

42 in this study, namely 2.5/2.42 = 1.03 (being 2.5 m the length of the sleeper utilized in 
43 
44 [30] and 2.42 m that of this study), a crib resistance of 2942.1x1.03 ::: 3030 N is 
45 
46 

obtained, which is yet in good agreement (with a difference of 3%) with the value of 
47 
48 

2935 N found in [30]. 

50 

51 
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For the shoulder contribution, instead, the results obtained in [30] are about 32% higher 

10 

11 than those of the present study, as shown in the second row of Table 6. As done above, 
12 
13 this difference reduces if we consider the same procedure adopted in [30], namely by 
14 
15 subtracting the BCU curve (fourth row of Table 1) from that obtained during the BCB 
16 
17 

test (base and shoulder contributions, second row of Table 1); following this method, a 

19 

20 shoulder resistance of 1672 N is found (see fifth row of Table 2), which is about 25% 
21 

22 smaller than the value found in [30]. However, if it is assumed that shoulder failure 
23 
24 mechanism depends on the extension of ballast failure wedges, and that these areas are 
25 
26 

proportional with a same factor to the cross  section perimeter of the sleeper end face, it 
27 
28 

seems correct, for data comparison with [30], to further multiply the above value by the 

30 

31 ratio  of  cross section  perimeters,  llLP-P/llts,  where  llLP-P  = 2x(29+21)  =  100 cm  (see 
32 

33 Table 7 in [30]) and llts = 2x(28+19) = 94 cm (see section 3) are, respectively, the 
34 
35 cross section perimeter of the sleeper end face utilized by Le Pen and Powrie [30] and 
36 
37 

that of this study; following this approach, a value of 1779 N is obtained, which is about 

39 

40 20% smaller than the value found in [30]. 
41 

42 Concerning the differences observed in the shoulder contributions,  it  is  worthwhile  to 
43 
44 observe also that the adopted experimental practice may have a strong influence on the 
45 
46 

value of the shoulder strength. When tests are carried out according to the single tie 
47 
48 

push  test  (STPT),  as  done  in  [30],  shoulder  resistance  is  usually  higher  than that 

50 

51 obtained by pull tests on cut panels containing several sleepers [15,23]. This is probably 
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due to the interactions between the different ballast failure wedges of adjacent sleepers. 

10 

11 Both  the  experimental  and  numerical  studies  show  that  the  shoulder  resistance 
12 
13 contribution depends strongly on the shoulder width, whilst results related to the effects 
14 
15 of the shoulder height are controversial. In example, numerical results reported in [31] 
16 
17 

show that an increase in height of a ballast shoulder will increase the initial stiffness of 

19 

20 the ballast, but has no influence on the peak resistance. Conversely, shoulder  resistance 
21 

22 curves  experimentally  obtained  by  Le  Pen  and  Powrie  [30]  pointed  out  that  the 
23 
24 resistance peak value is higher as greater is the shoulder height. 
25 

26 

27 
28 

29 Conclusions 
30 
31 During  the  numerical  and  experimental  activities  on  the  thermal  stability  of  the 
32 
33 

continuous welded rail track, particular types of field tests for the measurement of the 
34 
35 

36 contributions offered by the ballast surrounding the sleeper to the track resistance in the 
37 

38 lateral and longitudinal directions were carried out. Although longitudinal strength is a 
39 
40 key factor for thermal track buckling phenomenon, there is limited literature in terms of 
41 
42 base, crib, and shoulder contributions to global resistance. 
43 
44 

For the sleeper type and spacing of this study, with ballast in loose tamped conditions, it 

46 

47 was found that, for unloaded track: 
48 

49  the contributions of crib, base, and shoulder are, respectively, about 50%, 25%, 
50 
51 and 25% of the total lateral resistance; 
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 the contributions of crib, base, and shoulder are, respectively, about 60%, 30%,

10 

11 and 10% of the total longitudinal resistance. 
12 
13 Comparison of the lateral contributions with detailed STPT laboratory data taken from 
14 
15 literature shows a good agreement, with the only exception of the shoulder, which was 
16 
17 

found smaller in the tests of this study. This is consistent with literature findings, being 

19 

20 the results of the STPT technique affected by the border effects due adjacent sleepers. 
21 

22 Other comparisons with literature also highlighted the need of detailed description  both 
23 
24 of the testing condition, and of the experimental observations of the failure mechanisms 
25 
26 

that wakes up when the critical conditions are attained. For these reasons, the use of 
27 
28 

experimental  results  from   scenarios  that   do  not   reproduce  precisely  actual  track 

30 

31 conditions, or that are not fully detailed, has to be avoided. 
32 

33 
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Figure 1. Tests field of Traccia in Naples. 
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Figure 4. Loads transferring structure hooked to a railroad loader. 
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Figure 5. Test on BBB scenario (with ballast shoulder and ballast crib). 
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Figure 7. Test on BBU scenario (without ballast shoulder - U). 

FIGURE #7 

218x113mm (300 x 300 DPI) 

http://mc.manuscriptcentral.com/JRRT


Journal of Rail and Rapid  Transit Page 36 of 41 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

http://mc.manuscriptcentral.com/JRRT 

 

 

For 

Peer 

 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Test on BCU scenario (without ballast crib, C, and at sleepers ends, U). 
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Figure 9. Lateral pull tests: load-displacement curves. 
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Figure 10. First longitudinal pull test: details of the actuators and their connections to the rails. 
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Figure 11. Second longitudinal pull test: detail of actuators linkage to the short track panel. 
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Figure 12. Longitudinal pull tests: load-displacement curves. 
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P e
r 

37 

1 
2 

3 Table 1. Measured transversal resistance peak values per sleeper (FTransv Isleeper) and per track unit 

4 length (FTransv Ilinear metre). 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
17 Table 2. Contributions of the crib, the shoulder and the under sleeper ballast to the transversal 
18 resistance. 
19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 

Table 3. Measured longitudinal resistance peak values per sleeper (FLong Isleeper) and per track unit 
36 

length (F 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

Long Ilinear metre). 

48 
Table 4. Contributions of the crib, the shoulder and the under sleeper ballast to the longitudinal 

49 
resistance. 

Ballast 

constituents 
Flong /sleeper 

[NJ 

Flong /lin. metre 

[N/mJ 

Percentage 

rates 

Base 2667 4445 28.4 % 

Between sleepers 
(BBU-BCU) 

5506 9176 58.7 % 

Shoulder 
(BBB-BBU) 

1212 2020 12.9 % 

Total (BBB) 9385 15641 100 % 

Scenario 
FTransv /sleeper 

[NJ 
FTransv /lin. metre 

[N/mJ 

BBB 5879.7 9799.5 

BCB 3271.2 5452.0 

BBU 4541.4 7569.0 

BCU 1599.3 2665.4 

Ballas

t 

constitue

nts 

FTransv 

/sleep
er 
[NJ 

FTransv /lin. 
metre 
[N/mJ

Percentage rates 

(from BBB, BCB, 

BCU) 

Percentage rates 

(from BBB, BBU, 

BCU) 

Averag

e 

percent

age 

rates 

Base 1599.3 266
5.4 

27.2 % 27.2 % 27.2 % 

Between 

sleepers 

(BBB-BCB) 

2608.5 434

7.5 

44.4 % 

47.2 % 

Between 

sleepers 
(BBU-BCU) 

2942.1 490

3.5 

 
50.0 % 

Shoulder
(BBB-BBU)

1338.3 2230.5 22.8 %

25.6 %
Shoulder

(BCB-BCU)
1672.0 278

6.6

28.4 %

Total 100 % 100 % 100 %

Scenario 
Flong /sleeper 

[NJ 
Flong /lin. metre 

[N/mJ 

BBB 9385 15641 

BBU 8173 13622 

BCU 2667 4445 
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or 
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4 

5 Table 5. Measured lateral resistances peak values. 
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20 
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23 
24 

25 Table 6. Comparison of the contributions to lateral resistance with those of ERRI [25J and Le Pen and 

26 Powrie [30J. 
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36 

37 

38 
39 

40 Table 7. Comparison of the contributions to longitudinal resistance with those of ERRI [25J. 

41 

42 

43 

44 

45 

Scenario 
FTransv /sleeper 

[NJ 
FTransv /lin. metre 

[N/mJ 

This study 5879.7 9799.5 

RFI 230 h 30 n.c. [9] 5545.0 9241.7 

RFI 240 h 30 n.c. [9] 7715.0 12858.3 

RFI 240 h 30 c.b.w. [9] 10000.0 16666.6 

RFI 240 h 30 c. [9] 8840.0 14733.3 

RFI230 / RFI240: type of sleeper 

h: height, in cm, of the ballast under sleepers 

n.c.: non-consolidated ballast

c.: consolidated ballast; 

c.b.w.: consolidated ballast and ballast wall

This study ERRI [25J le Pen and Powrie [30J 

Ballast 
constituents 

FTransv /sleeper 
[NJ 

Percentage rates 
FTransv /sleeper 

[NJ 
Percentage 

rates 
FTransv /sleeper 

Base 1599.3 27.2 % 2900 37 % LIVI@ Peak = 0.55 

Crib 2775.3 47.2 % 2100 27 % 2935 N 

Shoulder (55 cm) 1505.1 25.6 % 2800 36 % 2231 N 

Total 5879.7 100 % 7800 100 % 

This study ERRI [34J 

Ballast 
constituents 

Flong /sleeper 
[NJ 

Percentage rates 
FlONG /sleeper 

[NJ 
Percentage 

rates 

Base 2667 28.4 % 3300 36 % 

Crib 5506 58.7 % 4600 51 % 

Shoulder 1212 12.9 % 1200 13 % 

Total 9385 100 % 9100 100 % 
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