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Abstract

We consider fundamental questions of arbitrage pricing arising when the
uncertainty model incorporates volatility uncertainty. The resulting ambigu-
ity motivates a new principle of preference-free valuation.

By establishing a microeconomic foundation of sublinear price systems,
the principle of ambiguity-neutral valuation imposes the novel concept of
equivalent symmetric martingale measures. Such measures exist when the
asset price with uncertain volatility is driven by Peng’s G-Brownian motion.

1 Introduction

A fundamental assumption behind models in Finance refers to the modeling of un-
certainty via a single probability measure. Instead, we allow for a set of probability
measures P , such that we can guarantee awareness of potential model misspecifica-
tion.1 We investigate the implications of a related and reasonable arbitrage concept.
In this context, we suggest a fair pricing principle associated with an appropriate
martingale concept. The multiple prior setting influences the price system in terms
of the simultaneous control of different null sets. This motivates a pricing theory of
possible means.2

∗Center for Mathematical Economics - Bielefeld University, 33501 Bielefeld, Germany. Email:
patrick.beissner@uni-bielefeld.de. I thank Frank Riedel for valuable advice and Larry Ep-
stein, Simon Grant, Chiaki Hara, Shaolin Ji, Peter Klibanoff, Christoph Kuzmics, Casper Larrson,
Frederik Herzberg, Marcel Nutz, Rabee Tourky, Walter Trockel, and Nicholas Yannelis for fruitful
discussions. Financial support provided by the German Research Foundation (DFG) and the IGK
“Stochastics and Real World Models” Beijing–Bielefeld is gratefully acknowledged. First Version:
March, 2012

1The distinction between measurable and unmeasurable uncertainty drawn by Knight (1921)
serves as a starting point for modeling the uncertainty in the economy. Keynes (1937) later argued
that single prior models cannot represent irreducible uncertainty.

2This was originally discussed by de Finetti and Obry (1933).
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The pricing of derivatives via arbitrage arguments is fundamental. Before stating
an arbitrage concept, a probability space (Ω,F ,P) is fixed such that marketed claims
or tradeable assets with trading strategies can be defined. The implicit assumption
is that the probabilities are known exactly. The Fundamental Theorem of Asset
Pricing (FTAP) then asserts equivalence between the absence of P-arbitrage in the
market model and the existence of a consistent linear price extension such that the
market model can price all contingent claims. The equivalent martingale measure
is then an alternative description of this extension via the Riesz representation
theorem.

In contrast to this standard setup, we introduce an uncertainty model described
as a set of possibly mutually singular probability measures or priors.3 Our leading
motivation is a general form of volatility uncertainty. This perspective deviates from
models with term structures of volatilities, including stochastic volatility models
such as Heston (1993). As argued in Carr and Lee (2009), we question this confi-
dence and avoid formulating the volatility process of a continuous-time asset price
via another process whose law of motion is exactly known. Instead, the legitimacy
of the probability law still depends on an infinite repetition of variable observations,
as highlighted by Kolmogoroff (1933). We include this residual uncertainty by giv-
ing no concrete model for the stochastics of the volatility process and instead fix a
confidence interval for the volatility variable.4

A coherent valuation principle changes considerably when the uncertainty is
enlarged by the possibility of different probabilistic scenarios having different null
sets. In order to illustrate this point, we consider for a moment the uncertainty
given by one probability model, i.e. P = {P}. An arbitrage refers to a claim X
with zero cost, a P-almost surely positive and with a positive probability a strictly
positive payoff. Formally, this can be written as π(X) ≤ 0,

P(X ≥ 0) = 1 and P(X > 0) > 0.

The situation changes in the case of an uncertainty model described by a set of
mutually singular priors P . The second and third condition should be carefully
reformulated, because every prior P ∈ P could be the correct market description.
We rewrite an arbitrage as π(X) ≤ 0,

for all P ∈ P P(X ≥ 0) = 1 and P′(X > 0) > 0 for some P′ ∈ P .

In accepting this new P-arbitrage notion as a weak dominance principle, we might
ask for the structure of the related objects.5 Suppose we apply the same idea
of linear and coherent extensions to the present multiple prior uncertainty model.

3Two priors are mutually singular if they live on two disjoint supports.
4For further motivation to consider volatility uncertainty, we refer to Subsection 1.1 of Epstein

and Ji (2013). Very recent developments in stochastic analysis have established a complete theory
to model volatility uncertainty in continuous time. A major objective refers to the sublinear
expectation operator introduced by Peng (2006).

5See Remark 3.14 in Vorbrink (2010) for a discussion of this arbitrage definition and its impli-
cation in the G-framework.
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Coherence corresponds to a strictly positive and continuous price systems on the
space of claims L which is consistent with the given data of a possibly incomplete
market. Marketed claims M ⊂ L can be traded frictionless and are priced by a
linear functional π : M → R.

Another important aspect focuses on the order structure for contingent claims
and the underlying topology of similarity for L. This comprises the basis of any
financial model that asks for coherent pricing. The representation of linear and
continuous price systems6 indicates inconsistencies between positive linear price
systems and the concept of P-arbitrage. As is usual, the easy part of establishing an
FTAP is deducing an arbitrage-free market model from the existence of an equivalent
martingale measure Q ∼ P ∈ P . When seeking a modified FTAP, the following
question (and answer) serves to clarify the issue:

Is the existence of a measure Q equivalent to some P ∈ P such that
prices of all traded assets are Q-martingales (and therefore) a sufficient
condition to prevent a P-arbitrage opportunity?

A short argument gives us a negative answer: Let X ∈M be a marketed claim with
price 0 = π(X). We have EQ[X] = 0 since Q is related to a consistent price system.
Suppose X ∈M is a P-arbitrage with P′(X > 0) > 0. The point is now,

with P = {P} we would observe a contradiction since Q ∼ P implies
EQ[X] > 0. But X ∈ M may be such that P′(X > 0) > 0 with P′ ∈ P
being mutually singular to Q ∼ P ∈ P .

This indicates that our robust arbitrage notion is, in general, not consistent with a
linear theory of valuation. In other words, a single pricing measure Q is not able to
contain all the information about what is possible under P . Similarly, the concept of
“no empty promises” in Willard and Dybvig (1999) refers to the possible ignorance
of payoffs in states with zero probability.

Since our goal is to suggest a modified framework for a coherent pricing princi-
ple, the concept of marketed claim is reformulated by a prior-dependent notion of
possible marketed spaces MP, P ∈ P . As discussed in Example 3 below, such a step
is necessary to address the prior dependency of the asset span MP. The likeness
of marketed spaces depends on the similarity of the priors in question. Hence, the
possibility of different priors creates a friction caused by the new uncertainty.

A New Commodity-Price Duality
The very basic principle of uncertainty is the assumption of different possible fu-
ture states of the world Ω .7 In the most general framework, we assume a weakly

6We discuss the precise description in Section 2.2.
7In order to tackle the mutually singular priors, we need some structure in the state space. See

Bion-Nadal and Kervarec (2010) for a discussion of different state spaces. In the most abstract
setting, the states of the world ω ∈ Ω build a complete separable metric space, also known as a
Polish space. The state space contains all realizable paths of security prices. For the greater part
of the paper, we assume Ω = C([0, T ];R), the Banach space of continuous functions between [0, T ]
and R, equipped with the supremum norm.
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compact set of priors P .8 This encourages us to consider the sublinear expectation
operator

EP(X) = sup
P∈P

EP[X].

In our economy, the Banach space of contingent claims L2(P) consists of all random
variables with a finite variance for all P ∈ P . The primitives are prior-dependent
representative agent economies given by preference relations in A(P), being convex,
continuous, strictly monotone and rational.

In the single prior setting, the expectation under an equivalent martingale mea-
sure Q refers to a normalized, linear and continuous price system in the sense of
Arrow-Debreu. The present topological dual space of L2(P), a first candidate for
the space of price systems, does not consist of elements which can be merely rep-
resented by a state price density ψ. Rather, in the present volatility uncertainty
framework, it is represented by the pairs (P, ψ) ∈ ∪P∈P{P} × L2(P). As explained
before, such linear valuations are inconsistent with the fine and robust arbitrage we
are interested in. Loosely speaking, such price systems only see the null sets of a
particular P and are blind for the null sets of any mutually singular prior P′ ∈ P .
We consider the space of nonlinear price functionals L2(P)~ built upon this dual
space. Proposition 1 lists important properties and indicates a possible axiomatic
approach to the price systems inspired by the coherent risk measures of Artzner,
Delbaen, Eber, and Heath (1999).

Sublinear prices are constructed by the price systems of partial equilibria,
which consist of prior-dependent linear price functionals πP restricted to the prior-
dependent marketed spaces MP ⊂ L2(P), P ∈ P . These spaces are joined to a
product of marketed spaces. The consolidation operation Γ transforms the ex-
tended product of price systems {πP}P∈P to one coherent element in the price space
L2(P)~+. Scenario-based viability can then model a preference-free valuation concept
in terms of consolidation of possibilities.

The first main result, Theorem 1, gives an equivalence between our notion of
scenario-based viable price systems, and the extension of sublinear functionals. The
present viability concept, corresponding to a no trade equilibrium, is based on sub-
linear prices so that every price functional act linearly under unambiguous contin-
gent claims.

Risk- and Ambiguity-Neutral Valuation
In the second part, we consider the dynamic framework on a time interval [0, T ] with
an augmented filtration F = {Ft}t∈[0,T ] modeling the arrival of new information. Its
special feature is its reliance on the initial σ-algebra, which does not contain all
null sets. Built upon this information structure, we introduce a dynamic updating
principle based on a sequence of conditional sublinear expectations Et(·) = EP [ · |Ft],
t ∈ [0, T ]. These operators are well defined under every P ∈ P and satisfy the Law
of Iterated Expectation.

8If one accepts a deterministic upper bound on the volatility, i.e. the derivative of every possible
quadratic variation, then the (relatively) weak compactness of P is a sufficient condition.
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With the conditional sublinear expectation, a martingale theory is available
which represents a possibilistic model of a fair game against nature.9 In this fash-
ion, the multiple prior framework forces us to generalize the concept of equivalent
martingale measures. Instead of considering one probability measure representing
the risk-neutral world, we suggest that the appropriate concept is a set of priors Q.
The relation to the statistical set of priors P is induced through a prior-dependent
family of state price densities ψP ∈ L2(P), P ∈ P . This creates a new sublinear
expectation, EQ, generated by Q. For this rationale, the uncertain asset price (St)
becomes under EQ mean unambiguous, i.e. EQ[ST ] = EQ′ [ST ], for all Q,Q′ ∈ Q.

The essential renewal is to consider Q as the appropriate uncertainty-neutral
world. At this stage, ambiguity neutrality as a part of uncertainty neutrality comes
into play. The central idea follows the same lines as in the classical risk-neutral val-
uation. Preferences on ambiguity become neutral when we move to the uncertainty
neutral world Q.10 And it is exactly this kind of neutrality which corresponds to
the notion of symmetric martingales, i.e (St) and (−St) are EQ-martingales. This
reasoning motivates the modification of the martingale concept, now based on the
idea of a fair game under Q. As such, the condition that the price process S is
a symmetric martingale motivates qualifying the valuation principle as uncertainty
neutral.

The principal idea of our modified notion of P-arbitrage was introduced by
Vorbrink (2010) for the G-expectation framework (see also Section 3 in Epstein and
Ji (2013)). In Theorem 2 we show that under no P-arbitrage there is a one-to-
one correspondence between the extensions of Theorem 1 and (special) equivalent
symmetric martingale measure sets Q, called EsMM-sets. We thus establish an
asset pricing theory based on a (discounted) nonlinear expectation payoff.

Having established the relation between these concepts, we continue in the same
fashion as in the classical literature with a single prior. We consider a special class
of asset prices driven by G-Brownian motion, related to a G-expectation EG. This is
a zero-mean and stationary process with novel N(0, [σ, σ])-normally distributed in-
dependent increments. Such a normally distributed random variable is the outcome
of a robust central limit theorem under the sublinear G-expectation. Moreover, in
this uncertainty setup, independence of random variables is no longer a symmetric
property.11 This process can be regarded as a canonical generalization of the stan-
dard Brownian motion, in which the quadratic variation (or volatility) may move
almost arbitrarily in a positive interval. The related heat equation is now a fully
nonlinear PDE, see Peng (2006).

We consider a Black-Scholes like market under volatility uncertainty driven by

9More precisely, a whole hierarchy of different fairness degrees is possible.
10This symmetry of priors is essential for creating a process via a conditional expectation which

satisfies the classical martingale representation property, see Appendix B.2.
11In the mathematical literature, the starting point for consideration is a sublinear expectation

space, consisting of the triple (Ω;H; E), where H is a given space of random variables. If the
sublinear expectation space can be represented via the supremum of a set of priors, see Denis, Hu,
and Peng (2011), one can take (Ω,B(Ω),P) as the associated uncertainty space or Dynkin space,
see Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011).
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a G-Brownian motion BG. The uncertain asset price process (St) is modeled as a
stochastic differential equation12

dSt = µ(t, St)d〈BG〉t + V (t, St)dB
G
t , S0 = 1.

Intuitively, the increment dSt is divided into the locally certain part13 and the locally
risky and ambiguous part V (t, St)dB

G
t . An interpretation of this G-Itô differential

representation reads as follows:

d

dr
varPr (St)

∣∣∣∣
r=t

∈ V (t, St) · [σ, σ], P ∈ P ,

where varPr (St) is the (Ft,P)-conditional variance. In abuse of notation we could
write this issue as vart(dSt) = V (t, St)

2d〈BG〉t, P-quasi surely.
In this mutually singular prior setting, the (more evolved) martingale represen-

tation property, related to a conditional sublinear expectation, is not equivalent to
the completeness of the model because the volatility uncertainty is encoded in the
integrator of the price process. For the state price density process we introduce an
exponential martingale (Et)t∈[0,T ]

14 under G-Brownian motion and apply a new Gir-
sanov type theorem under EG. For every contingent claim X ∈ L2(P), this yields
following robust pricing formula

Ψ(X) = EQ(X) = EG[ETX].

Related Literature
We embed the present paper into the existing literature. In Harrison and Kreps
(1979), the arbitrage pricing principle provides an economic foundation by relating
the notion of equivalent martingale measures with a linear equilibrium price sys-
tem.15 Risk-neutral pricing, as a precursor, was discovered by Cox and Ross (1976).
Harrison and Pliska (1981), as well as Kreps (1981) and Yan (1980), continued lay-
ing the foundation of arbitrage free pricing. Later, Dalang, Morton, and Willinger
(1990) presented a fundamental theorem of asset pricing for finite discrete time.
In a general semimartingale framework, the notion of no free lunch with vanish-
ing risk Delbaen and Schachermayer (1994) ensured the existence of an equivalent
martingale measure in the given (continuous-time) financial market. All these con-
siderations have in common that the uncertainty of the model is given by a single
probability measure.

12This related stochastic calculus comprises a stochastic integral notion, a G-Itô formula and a
martingale representation theorem.

13For this part one usually has a dt-drift as the inner clock of classical Brownian motion. Since
the inner clock or quadratic variation is now given by the ambiguous 〈BG〉t, we relate it to the
drift part.

14The precise PDE description of the G-expectation allows the definition of a universal density.
Note that in the more general case we have a prior-dependent family of densities.

15The efficient market hypothesis by Fama (1970) introduces information efficiency, a concept
closely related to Samuelson (1965), where the notion of a martingale reached neo-classic economics
for the first time. Bachelier (1900) influenced the course of Samuelson’s work.
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Moving to models with multiple probability measures, the concept of pasting of
probability measures models the intrinsic structure of dynamic convexity, see Riedel
(2004) and Delbaen (2006). This type of time consistency is related to recursive
equations, see Epstein and Schneider (2003); Chen and Epstein (2002), which can
result in nonlinear expectation and generates a rational updating principle. More-
over, the backward stochastic differential equations can model drift-uncertainty, a
dynamic sublinear expectation, see Peng (1997). However, in these models of un-
certainty, all priors are related to a reference probability measure, i.e. all priors are
equivalent or absolutely continuous. Moreover, drift uncertainty does not create a
significant change for a valuation principle of contingent claims.16

The possible insufficiency of equivalent prior models for an imprecise knowl-
edge of the environment motivates the consideration of mutually singular priors
as illustrated at the beginning of this introduction. The mathematical discussion
of such frameworks can be found in Peng (2006); Nutz and Soner (2012); Bion-
Nadal and Kervarec (2012). Epstein and Ji (2013) provide a discussion in economic
terms. Similarly to the present paper, the volatility uncertainty is encoded in a
non-deterministic quadratic variation of the underlying noise process.

Recalling Gilboa and Schmeidler (1989), this axiomatization of uncertainty aver-
sion represents a non-linear expectation via a worst case analysis. Similarly to risk
measures, see Artzner, Delbaen, Eber, and Heath (1999),17 the related set of repre-
senting priors may be not equivalent to each other. This important change permits
the application of financial markets under volatility uncertainty. We refer to Avel-
laneda, Levy, and Paras (1995); Denis and Martini (2006) for a pricing principle of
claims via a quasi sure stochastic calculus.

Jouini and Kallal (1995) consider a non-linear pricing caused by bid-ask spreads
and transaction costs, where the price system is extended to a linear functional. In
Araujo, Chateauneuf, and Faro (2012), pricing rules with finitely many state are
considered.18 A price space of sublinear functionals is discussed in Aliprantis and
Tourky (2002). We quote the following interpretation of the classical equilibrium
concept with linear prices and its meaning (see Aliprantis, Tourky, and Yannelis
(2001)):

A linear price system summarizes the information concerning relative scarci-

ties and at equilibrium approximates the possibly non-linear primitive data of

the economy.

The paper is organized as follows. Section 2 introduces the primitives of the eco-
nomic model and establishes the connection between our notion of viability and

16Cont (2006) notes that this assumption is “actually quite restrictive: it means that all models
agree on the universe of possible scenarios and only differ on their probabilities. For example, if
P0 defines a complete market model, this hypothesis entails that there is no uncertainty on option
prices!”

17 Markowitz (1952) postulated the importance of diversification, a fundamental principle in
finance, which corresponds to sublinearity of risk measures.

18They establish a characterization of super-replication pricing rules via an identification of the
space of frictionless claims.
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extensions of price systems. Section 3 introduces the security market model asso-
ciated with the marketed space. We also discuss the corresponding G-Samuelson
model. Section 4 concludes and discusses the results of the paper and lists possible
extensions. The first part of the appendix presents the details of the model and pro-
vides the theorem proofs. In the second part, we discuss mathematical foundations
such as the space of price systems and a collection of results of stochastic analysis
and G-expectations.

2 Viability and Sublinear Price Systems

We begin by recapping the case where uncertainty is given by an arbitrary proba-
bility space (Ω,F ,P) as it emphasizes sensible differences with regard to the uncer-
tainty model posited in this paper. Following, we introduce the uncertainty model
as well as the related space of contingent claims. Then we discuss the space of sub-
linear price functionals. The last subsection introduces the economy, and Theorem
1 states an extension result.

Background: Classical Viability
Let there be two dates t = 0, T , claims at T are elements of the classical Hilbert lattice

L2(P) = L2(Ω,F ,P). Price systems are given by linear and L2(P)-continuous functionals.
By Riesz representation theorem, elements of the related topological dual can be identified
in terms of elements in L2(P). A strictly positive functional Π : L2(P) → R evaluates a
positive random variable X with P(X > 0) > 0, such that Π(X) > 0.
A price system consists of a (closed) subspace M ⊂ L2(P) and a linear price functional
π : M → R. The marketed space consists of contingent claims achievable in a frictionless
manner. A(P) is the set of rational, convex, strictly monotone and L2(P)-continuous
preference relations on R×L2(P). The consistency condition for an economic equilibrium
is given by the concept of viability. A price system is viable if there exists a preference
relation %∈ A(P) and a bundle (x̂, X̂) ∈ R×M with

(x̂, X̂) ∈ B(0, 0, π,M) and (x̂, X̂) % (x,X) for all (x,X) ∈ B(0, 0, π,M),

where B(x,X, π,M) = {(y, Y ) ∈ R×M : y + π(Y ) ≤ x+ π(X)} denotes the budget set.

Harrison and Kreps (1979) prove the following fundamental result:

(M,π) is viable if and only if there is a strictly positive extension Π of π to L2(P).

The proof is achieved by a Hahn-Banach argument and the usage of the properties of %
such that Π creates a linear utility functional and hence a preference relation in A(P).

2.1 The Uncertainty Model and the Space of Claims

We begin with the underlying uncertainty model by considering possible scenarios
which share neither the same probability measure nor the same null sets. Therefore
it is not possible to assume the existence of a given reference probability measure
when the null sets are not the same. For this reason we need a topological structure
to formulate the uncertainty model.
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Let Ω, the states of the world, be a complete separable metric space, B(Ω) = F
the Borel σ-algebra of Ω and let Cb(Ω) denote the set of all bounded continuous real
valued functions. The uncertainty of the model is given by a weakly compact set
of Borel probability measure P ⊂M1(Ω) on (Ω,F).19 In the following example we
illustrate a construction for P , applied in the dynamic setting of Section 3.

Example 1 We consider a time interval [0, T ], the Wiener measure P0 on the state
space of continuous paths Ω = {ω : ω ∈ C([0, T ];R) : ω0 = 0} and the canonical
process Bt(ω) = ωt. Let Fo = (Fot )t∈[0,T ], Fot = σ(Bs, s ∈ [0, t]) be the raw filtration
of B. The strong formulation of volatility uncertainty is based upon martingale laws
with stochastic integrals:

Pα := P0 ◦ (Xα)−1, Xα
t =

∫ t

0

α1/2
s dBs,

where the integral is defined P0 almost surely. The process α is Fo-adapted and has
a finite first moment. A set D of α’s builds P via the associated prior Pα, such that
{Pα : α ∈ D} = P is weakly compact.20

We describe the set of contingent claims. Following Huber and Strassen (1973),
for each F -measurable real function X such that EP[X] exists for every P ∈ P ,
define the upper expectation operator by EP(X) = supP∈P E

P[X].21 We suggest
the following norm for the space of contingent claims, given by the capacity norm
c2,P , defined on Cb(Ω) by

c2,P(X) = EP
(
|X|2

) 1
2 .

Define the completion of Cb(Ω) under the so called “Lebesgue prolongation” of c2,P
22

by L2(P) = L2(Ω,F ,P), and let L2(P) = L2(P)/N be the quotient space of L2(P)
by the c2,P null elements N . We do not distinguish between classes and their
representatives. Two random variables X, Y ∈ L2(P) can be distinguished if there
is a prior in P ∈ P such that P(X 6= Y ) > 0.

It is possible to define an order relation ≤ on L2(P). Classical arguments prove
that (L2(P), c2,P ,≤) is a Banach lattice, see Appendix A.1 for details.

We consider the space of contingent claims L2(P) so that under every probability
model P ∈ P , we can evaluate the variance of a contingent claim. Properties of
random variables are required to be true P-quasi surely, i.e. P-a.s. for every P ∈ P .
This indicates that in contrast to drift uncertainty, a related stochastic calculus
cannot be based only on one probability space.

19As shown in Denis, Hu, and Peng (2011), the related capacity c(·) = supP∈P P (·) is regular if
and only if the set of priors is relatively compact. Here, regularity refers to a reasonable continuity
property. In Appendix B, we recall some related notions and we give a criterion for the weak
compactness of P when it is constructed via the quadratic variation and a canonical process.

20In order to define universal objects, we need the pathwise construction of stochastic integrals,
(see Föllmer (1981), Karandikar (1995)).

21It is easily verified that Cb(Ω) ⊂ {X F-measurable : EP(X) <∞} holds and EP(·) satisfies the
property of a sublinear expectation. For details, see Appendix A.1.1, Peng (2010) and Appendix
B.2.

22We refer to Section 2 in Feyel and de La Pradelle (1989), see also Section 48.7-8 in Choquet
(1953) and Section A in Dellacherie (1972).
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2.2 Scenario-Based Viable Price Systems

This subsection is divided into three parts. First, we introduce the dual space
where linear and c2,P-continuous functionals are the elements. As discussed in the
introduction, we allow sublinear prices as well. This forces us to extend the linear
price space where we discuss two operations on the new price space and take a leaf
out of Aliprantis and Tourky (2002). We integrate over the set of priors for the linear
consolidation of functionals. In Proposition 1, we list standard properties of coherent
price functionals. The last part in this subsection focuses on the consolidation of
prior-dependent price systems.

Linear and c2,P-Continuous Price Systems on L2(P)
We present the basis for the modified concept of viable price systems. The mutually
singular uncertainty generates a different space of contingent claims. This gives us
a new topological dual space L2(P)∗. The discussion of the dual space is only the
first step to get a reasonable notion of viability which accounts for the present type
of uncertainty. In the second part of the Appendix, we give a result which asserts
that the topological dual, the space of all linear and c2,P-continuous functionals on
L2(P), is given by

L2(P)∗ =
{
EP[ψP·] : P ∈ P and ψP ∈ L2(P)

}
.

This representation delivers an appropriate form for possible price systems. The
random variable ψP in the representation matches the classical state price density
of the Riesz representation when only one prior {P} = P is present. The space’s
description allows for an interpretation of a state price density ψP based on some
prior P ∈ P . The stronger capacity norm c2,P(·) in comparison to the classical
single prior L2(P)-norm implies a richer dual space, controlled by the set of priors P .
Moreover, one element in the dual space implicitly selects a prior P ∈ P and ignores
all other priors. This foreshadows the insufficiency of a linear pricing principle under
the present uncertainty model, as indicated in the introduction.

The Price Space of Nonlinear Expectations
In this paragraph we introduce a set of sublinear functionals defined on L2(P). The
singular prior uncertainty of our model induces the appearance of non-linear price
systems.23 Let k(P) be the convex hull of P . The coherent price space of L2(P)
generated by linear c2,P-continuous functionals is given by

L2(P)~+ =

{
Ψ :L2(P)→ R :Ψ(·)=sup

P∈R
EP[ψP·] with R ⊂ k(P), ψP ∈L2(P)+

}
.

Elements in L2(P)~+ are constructed by a set of c2,P-continuous linear functionals
{ΠP : L2(P) → R}P∈P , which are consolidated by a combination of the point-
wise maximum and convex combination. Strictly positive functionals in L2(P)~++

23A subcone of the super order dual is considered in Aliprantis and Tourky (2002). They in-
troduce the lattice theoretic framework and consider the notion of a semi lattice. In Aliprantis,
Florenzano, and Tourky (2005); Aliprantis, Tourky, and Yannelis (2001) general equilibrium mod-
els with a superlinear price systems are considered in order to discuss a non-linear theory of value.

10



satisfy additionally Ψ(X) > 0 for every X ∈ L2(P)+ with P(X > 0) > 0 for some
P ∈ P . The following example illustrates how a sublinear functional in L2(P)~+ can
be constructed.

Example 2 Let {Pn}n∈N be a partition of P. And let µn : B(M1(Ω)) → R be
a positive measure with support Pn and µn(Pn) = 1. The resulting prior Pn(·) =∫
Pn P(·)µn(dP) is given by a weighting operation Γµn. When we apply Γµn to the

density ψP we get ψ̄n(ω) =
∫
Pn ψP(ω)µn(dP), ω ∈ Ω. These new prior density pairs

(ψ̄n,Pn) can then be consolidated by the supremum operation of the expectations,
i.e. Γ({ΠP}P∈P)(·) = supn∈NE

Pn
[
ψ̄n·
]
.

For further details of Example 2, see Appendix A.1.1 and Appendix B.1.1. The
following proposition discusses properties and the extreme case of functionals in the
price space L2(P)~+.24

Proposition 1 Functionals in L2(P)~+ satisfy 1. sub-additivity, 2. positive homo-
geneity, 3. constant preserving, 4. monotonicity and 5. c2,P-continuity.25

Moreover, for every positive measure µ on B(P) with µ(P) = 1, we have the
following inequality for every X ∈ L2(P)

EPµ [ψµX] ≤ sup
P∈k(P)

EP[ψPX], where Pµ(·) =

∫
P
P(·)µ(dP).

Below, we introduce the consolidation operation Γ for the prior-dependent price
systems. Γ(P) refers to the set of priors in P which are relevant. In Example 2, we
observe Γµn(P) = Pn.

Remark 1 Price systems in L2(P)~+ resemble the structure of ask prices. How-
ever, the related bid price can then be described by the super order dual −L2(P)~−,
since sup(·) = − inf(−·). From this perspective, we could also construct a fully
nonlinear, monotone and positive homogeneous price systems Ψ as elements in
L2(P)~+ − L2(P)~−. For some cover P+ ∪ P− = P we have

X 7→ Ψ(X) = sup
P∈P+

EP[ψPX] + inf
P′∈P−

EP′ [ψP′X]. (1)

At this stage, the nonlinear price functional can be seen as a fully nonlinear expec-
tation E(·) ≤ EP(·), being dominated by EP on L2(P) (see Remark 3.1. below and
Section 8 of Chapter III in Peng (2010) for more details).

Marketed Spaces and Scenario-Based Price Systems
In the spirit of Aliprantis, Florenzano, and Tourky (2005) our commodity-price
duality is given by the following pairing 〈L2(P), L2(P)~+〉.

24 A full lattice-theoretical discussion of our price space L2(P)~+ lies beyond the scope of this
paper. However, it is worthwhile to mention that Theorem 12 in Denis, Hu, and Peng (2011)
characterizes σ-order continuity of sublinear functionals in L2(P)~+.

25Formally this means: 1.Ψ(X + Y ) ≤ Ψ(X) + Ψ(Y ) for all X,Y ∈ L2(P), 2.Ψ(λX) = λΨ(X)
for all λ ≥ 0, X ∈ L2(P), 3.Ψ(c) = c for all c ∈ R, 4. If X ≥ Y then Ψ(X) ≥ Ψ(Y ) for all
X,Y ∈ L2(P) and 5. Let (Xn)n∈N converge in c2,P to some X, then we have limn Ψ(Xn) = Ψ(X).
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For the single prior framework, viability and the extension of the price system
are associated with each other. This structure allows only for linear prices. In our
framework this corresponds to a consolidation via the Dirac measure δ{P} for some
P ∈ P , so that Γ(P) = {P}.

We begin by introducing the marketed subspaces MP ⊂ L2(P), P ∈ P . The
underlying idea is that any claim in MP can be achieved, whenever P ∈ P is the true
probability measure. This input data resembles a partial equilibrium, depending on
the prior under consideration. 26 Claims in the marketed space MP can be bought
and sold whenever the related prior governs the economy. We illustrate this in the
following examples.

Example 3 1. Let us consider the role of marketed spaces in the very simple situ-
ation when no prior dependency is present, i.e. MP = M for every P ∈ P. Specifi-
cally, set

M =
{
X ∈ L2(P) : EP[X] = const. for every P ∈ P

}
.

As we show in Corollary 1, this space consists of (unambiguous) contingent claims
which do not depend on the prior of the corresponding linear expectation operator.
It turns out that this space has a strong connection to symmetric martingales.

2. Suppose the set of priors is constructed by the procedure in Example 1. The
marketed spaces differ because of the P-dependent replication condition. Specifically,
this is encoded in an equation which holds only P-almost surely.

Let the marketed space be generated by the quadratic variation of an uncertain
asset with terminal payoff 〈B〉T and a riskless asset with payoff 1. We have by

construction 〈B〉T =
∫ T

0
αsds Pα-a.s. The marketed space under Pα is given by

MPα =

{
X ∈ L2(Pα) : X = a+ b ·

∫ T

0

αsds Pα-a.s., a, b ∈ R
}
.

But 〈B〉 coincides with the P-quadratic variation under every martingale law P ∈ P.
Therefore a different α̂ builds a different marketed space MPα̂. Suppose α = α̂ P0-
a.s. on [0, s] for some s ∈ (0, T ] then we have MPα∩MPα̂ consists also of non trivial
claims. Note, that Pα and Pα̂ are neither equivalent nor mutually singular.27

We fix linear price systems πP on MP. As illustrated in Example 3, it is possible that
the πP1 , πP2 ∈ {πP}P∈P have a common domain, i.e MP1 ∩MP2 6= {0}. In this case
one may observe different evaluations among different priors, i.e πP1(X) 6= πP2(X)
with X ∈ MP1 ∩ MP2 . To account for this possible phenomenon, we associate a

26One may think that a countable set of scenarios could be sufficient. As in Bion-Nadal and
Kervarec (2012), the norm can be represented via different countable dense subsets of priors.
However, for the marketed space we allow for a direct prior dependency of all possible scenarios
P. This implies that different choices of countable and dense scenarios can deliver different price
systems (see Definition 1 below).

27The event {ω : 〈B〉r(ω) =
∫ r
0
αt(ω)dt, r ∈ [0, s]} has positive mass under both priors, but the

priors restricted to the complement are mutually singular. We refer to Example 3.7 in Epstein
and Ji (2013) for a similar example.
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linear price system πP : MP → R for each marketed space. In this context, we posit
that coherence is based on sublinear price systems,28 as illustrated in the following
example (see also Heath and Ku (2006) for a discussion).

Example 4 Let the uncertainty model consist of two priors P = {P,P′}. If P is
the true law, the market model is given by the set of marketed claims MP priced by
a linear functional πP. If P′ is the true law, we get MP′ and πP′. As in Example
3.2, constructing a claim via self-financing strategies implies an equality of portfo-
lio holdings that must be satisfied almost surely only for the particular probability
measure. If the trader could choose between the sets MP′ +MP to create a portfolio,
additivity would be a natural requirement with the consistency condition πP′ = πP
on MP′ ∩MP. However, the trader is neither free to choose a mixture of claims, nor
may she choose a scenario, simply because of existing ignorance.

An equality of prices at the intersection is less intuitive, since the different pri-
ors create a different price structure in each scenario. We therefore argue, that
sup(πP′(X), πP(X)) is a robust and reasonable price for a claim X ∈ MP′ ∩MP in
our multiple prior framework. This yields to subadditivity. In contrast to the classi-
cal law of one price, linearity of the pricing functional is merely true under a fixed
prior.29

The set {πP}P∈P of linear scenario-based price functionals inherit all the information
of the underlying financial market. In the single prior setting incompleteness means
MP 6= L2(P).30 MP ⊗ MP′ refers to the Cartesian product of the relevant basis
elements in MP and MP′ .

Definition 1 Fix subspaces {MP}P∈P with MP ⊂ L2(P) and a set {πP}P∈P of linear
price functionals πP : MP → R. A price system for ({πP}P∈P,Γ) is a functional on
the Cartesian product of Γ-relevant scenarios

π(⊗P) :
⊗

P∈Γ(P)

MP → R

such that the projection to MP is given by the restriction π(⊗P)�MP = πP�MP.

Each P-related marketed space MP consists of contingent claims which can be
achieved frictionless, when P is the true law. We have a set of different price
systems {πP :MP → R}P∈P . When we aim to establish a meaningful consolidation

28This price system can be seen as an envelope of the price correspondence π(X) = {πP (X) :
X ∈MP,P ∈ P}, as in Clark (1993).

29Sublinearity induced by market frictions is conceptually different. For instance, in Jouini and
Kallal (1999) one convex set of marketed claims is equipped with a convex pricing functional, in
which case, the possibility of different scenarios is not included.

30Note that Ω is separable by assumption, hence L2(P) = L2(Ω,F ,P) is a separable Hilbert
space for each P ∈ P and admits a countable orthonormal basis. In terms of Example 2, P0 is the
Wiener measure. In this situation, L2(P0) can be decomposed via the Wiener chaos expansion.
A similar procedure could be done for the canonical process Xα related to some Pα. So we can
generate an orthonormal basis for each L2(Pα), with α ∈ D. However, we take an infinite product,
if |Γ(P)| 6<∞, since an infinite orthonormal sum is not in general a Hilbert space.
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of the scenarios we need an additional ingredient, namely Γ. This consolidation
determines the operator which maps an extension of π(⊗P) into the price space
L2(P)~++ and therefore influences the whole marketed space.

2.3 Preferences and the Economy

Having discussed the commodity price dual and the role of the consolidation of linear
price systems, we introduce agents which are characterized by their preference of
trades on R×L2(P), P ∈ P . There is a single consumption good, a numeraire, which
agents will consume at t = 0, T . Thus, bundles (x,X) are elements in R × L2(P),
which are the units at time zero and time T with uncertain outcome. We call the
set of rational preference relations %P on R×L2(P), A(P), which satisfies convexity,
strict monotonicity, and L2(P)-continuity. Let

B(x,X, πP,MP) = {(y, Y ) ∈ R×MP : y + πP(Y ) ≤ x+ πP (X)}

denote the budget set for a price functional πP : MP → R. We are ready to define
an appropriate notion of viability. Such a minimal consistency criterion can be
regarded as an inverse no trade equilibrium condition.

Definition 2 A price system is scenario-based viable, if for each P ∈ Γ(P) there
is a preference relation %P∈ A(P) and a bundle (x̂P, X̂P) ∈ B(0, 0, πP,MP) such that

(x̂P, X̂P) is %P-maximal on B(0, 0, πP,MP).

The conditions are necessary and sufficient for a classical economic equilibrium
under each scenario P ∈ Γ(P), when we find such preference relations. Note that
this definition has up to some degree the preference flavor of Bewley (2002). In the
case of Example 3.1, scenario-based viability is exactly the existence of an agent
with Bewley preferences and a maximal consumption bundle (x̂, X̂), not depending
on the prior.31

In the following, we relate the viability of ({πP}P∈P ,Γ) with price systems in
L2(P)~+. Let MP

P = MP ∩ L2(P), with P ∈ P .

Theorem 1 A price system ({πP}P∈P ,Γ) is scenario-based viable if and only if
there is an Ψ ∈ L2(P)~++ such that πP�MPP ≤ Ψ�MPP for each P ∈ Γ(P).

This characterization of scenario-based viability takes scenario-based marketed
spaces {MP}P∈P as given. Moreover, the consolidation operator Γ is a given char-
acteristic of the coherent price system. With this in mind, one should think that
in a general equilibrium system the locally given prices {πP}P∈P are be part of it.

31The fundamental theorem of asset pricing in Dybvig and Ross (2003) contains a third equiva-
lent statement, the existence of an agent (preferring more than less) being in an optimal state. The
adequate concept of strict monotone preferences is subtle and important when the uncertainty is
given by a set of mutually singular priors. For instance, the classical strict monotonicity (X ≥ Y
and X 6= Y implies X � Y ) seems to be too strong. For instance, maxmin preferences of Gilboa
and Schmeidler (1989) do not satisfy this monotonicity under the P.
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The extension we perceive can be seen as a regulated and coherent price system for
every claim in L2(P).

In comparison to the single prior case, the structure of incompleteness depends
on the set of relevant priors Γ(P). As described in Example 3.2, this is a natural
situation. As such, prior-dependent prices πP are also plausible. The expected
payoff as a pricing principle depends on the prior under consideration, as well. In
this way, the concept of scenario-based prices accounts for every Γ-relevant price
system simultaneously.

As indicated in Example 3.1, there is a closed subspace of unambiguous claims
where the valuation is unique. In Section 3, we use the related symmetry property
for the introduction of a reasonable martingale notion. Let R ⊂ P and define the
R-marketed space by

M(R) =
{
X ∈ L2(P) : EP[X] is constant for all P ∈ R

}
.

Only the continent claims in M(R) reduce the valuation to a linear pricing, if
Γ(P) = R.32 Claims in M(R) are unambiguous. This can also be formulated as
a property of events U(R) = {A ∈ F : P (A) is constant for all P ∈ R}.33 From
Theorem 1 we have the following corollary.

Corollary 1 Every Ψ in Theorem 1 is linear and c2,P-continuous on M(Γ(P)).

We have two operations which constitute the distillation of uncertainty. This con-
solidation can be seen as a characterization of the Walrasian auctioneer, in which
case diversification should be encouraged. But this refers to the sublinearity of Ψ.

Remark 2 One may ask which Γ is appropriate. Such a question is related to the
concept of mechanism design. The market planner can choose a consolidation that
influences the indirect utility of a reported preference relation. However, the full
discussion of these issues lies beyond the scope of this paper.34

3 Asset Markets and Symmetric Martingales

We extend the primitives with trading dates and trading strategies. A time in-
terval is considered where the market consists of a riskless security and a security
under volatility uncertainty. Within the financial market model, we discuss the
modified notions of arbitrage and equivalent martingale measures. Theorem 2 asso-
ciates scenario-based viability with equivalent symmetric martingale measure sets.
The last section considers the so called G-framework. Here, the uncertain security

32Or unless Γ is given a priori by a linear pricing, e.g. Γ = δ{P} for some P ∈ P.
33Note, that for the single prior case every closed subspace of L2(P) can be identified with a sub

σ-algebra in terms of a projection via the conditional expectation operator. Although U is not a
σ-algebra, but a Dynkin System, it identifies in a similar way a certain subspace. See also Epstein
and Zhang (2001) for a definition of unambiguous events and an axiomatization of preferences on
this domain.

34A starting point could be Lopomo, Rigotti, and Shannon (2009), who consider a mechanism
design problem under Knightian uncertainty.
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process is driven by a G-Itô process, which shows that the concept of symmetric
martingale measure sets is far from empty.

Background: Risk-neutral asset pricing with one prior
In order to introduce dynamics and trading dates, we fix a time interval [0, T ] and a

filtration F = (Ft)t∈[0,T ] on (Ω,F ,P). Fix an F-adapted risky asset price (St) ∈ L2(P⊗dt)
and a riskless bond S0 ≡ 1. We next review some terminology.

The portfolio process of a strategy η = (η0, η1) is called Xη. Simple self-financing
strategies are piecewise constant F-adapted processes η such that dXη = ηdS, which we
call A(P). A P-arbitrage in A(P) is a strategy (with zero initial capital) such that Xη

T ≥ 0
and P

(
Xη
T > 0

)
> 0.

A claim is marketed, i.e. X ∈ M , if there is a η ∈ A(P) such that X = ηTST P-a.s.,

then we have the (by the law of one price) π(X) = η0S0. An equivalent martingale measure

(EMM) Q must satisfy that S is a Q-martingale and dQ = ψdP, where ψ ∈ L2(P)++ is

a Radon Nykodym-Density with respect to P. Theorem 2 of Harrison and Kreps (1979)

states the following:

Under no P-arbitrage, there is a one to one correspondence between the continuous linear

and strictly positive extension of π : M → R to L2(P) and a EMM Q. The relation is

given by Q(B) = Π(1B) and Π(X) = EQ[X], B ∈ FT and X ∈ L2(P).

This result can be seen as a preliminary version of the first fundamental theorem of asset

pricing.

3.1 Volatility Uncertainty, Dynamics and Arbitrage

We specify the mathematical framework and the modified notions, such as arbitrage.
The present uncertainty model (Ω,F ,P) is based on the explicit formulation of
volatility uncertainty. Afterwards, we introduce the notion of a martingale with
respect to a conditional sublinear expectation, the financial market and the robust
arbitrage concept.

3.1.1 Dynamics and Martingales under Sublinear Expectation

The principle idea is to transfer the results from Section 2 into a dynamic setup.
The specification in Example 1 of Section 2.1 serves as our uncertainty model. We
can directly observe the sense in which the quadratic variation creates volatility
uncertainty. We introduce the sublinear expectation E : L2(P) → R given by the
supremum of expectations of P = {Pα : α ∈ D}. It is possible to work within the
larger space L̂2(P). An explicit representation of L̂2(P) is given in Appendix A.1.
Moreover, we assume that P is stable under pasting (see Appendix A.2. for details).

As we aim to equip the financial market with the dynamics of a sublinear con-
ditional expectation, we introduce the information structure of the financial market
given by an augmented filtration F = (Ft)t∈[0,T ]. The setting is based on the dynamic
sublinear expectation terminology as instantiated by Nutz and Soner (2012).

We give a generalization of Peng’s G-expectation as an example, satisfying the
weak compactness of P when the sublinear expectation is represented in terms of a
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supremum of linear expectations. In Section 3.3 and in Appendix B.2, we consider
the G-expectation as an important special case. That said, a possible association
of results in Section 2 depends heavily on the weak compactness of the generated
set of priors P .

Example 5 Suppose a trader is confronted with a pool of models describing volatil-
ity, such as the stochastic volatility model in Heston (1993). After a statistical
analysis of the data, two models remain plausible Pα and Pα̂. Nevertheless, the im-
plications for the trading decision deviate considerably. Even the asset span on its
own depends on each scenario (see Example 3). A mixture of both models does not
change this uncertain situation at all. In order to address the possibilistic issue, let
us define the universal extreme cases σt = inf(αt, α̂t) and σt = sup(αt, α̂t). When
thinking about a reasonable uncertainty management, no scenario between σ and σ
should be ignored. The uncertainty model which accounts for all these cases is given
by

P = {Pα : αt ∈ [σt, σt] P0 ⊗ dt a.e.}.

A related construction of a sublinear conditional expectation is achieved in Nutz
(2012), where the deterministic bounds of the G-expectation are replaced by path
dependent bounds.35

In the following, we introduce an appropriate concept for the dynamics of the
continuous-time multiple-prior uncertainty model. The associated objectives are
trading dates, the information structure and the price process (as the carrier of
the uncertainty). In order to introduce the price process S = (St)t∈[0,T ] of an un-
certain and long lived security, we have to impose further primitives. Define the
time-depending set of priors

P(t,P)o = {P′ ∈ P : P = P′ on Fot }.

This set of priors consists of all extensions P : Fot → [0, 1] from Fot to F in P .
In other words, P(t,P)o contains exactly all probability measures in P defined on
F that agree with P in the events up to time t. Fix a contingent claim X ∈
L2(P). In Nutz and Soner (2012), the unique existence of a sublinear expectation
(EPt (X))t∈[0,T ] is provided by the following construction36

EPt (X)(ω) = sup
P′∈P(t,P)o

EP′ [X|Ft](ω) P-a.s. for all P ∈ P

The conditional expectation operator satisfies the Law of Iterated Expectation, i.e.
EPs (EPt ) = EPs with s ≤ t. We can define a martingale similarly to the single prior

35This framework is also included in Epstein and Ji (2013). In this setting, drift and volatility
uncertainty are considered simultaneously. Drift uncertainty or κ-ambiguity are well known terms
in financial economics. A coherent and well-developed theory, known as g-expectation, is available
under a Brownian filtration.

36Pess sup denotes the essential supremum under P. Representations of such martingales can
be formulated via a 2BSDE. This concept is introduced in Cheridito, Soner, Touzi, and Victoir
(2007), see also Soner, Touzi, and Zhang (2012).
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setting.37 The nonlinearity implies that if a process X = (Xt)t∈[0,T ] is a martingale
under EPt (·) then −X is not necessarily a martingale.

Definition 3 An F-adapted process X = (Xt) is a P-martingale if

EPs (Xt) = Xs P-q.s., for all s ≤ t.

We call X a symmetric P-martingale if X and −X are both P-martingales.

In the next subsection we discuss the martingale property of asset prices processes
under a modified sublinear expectation. As we will see, the space M(P) is closely
related to symmetric martingales. Conceptually, the symmetry refers to a gener-
alized Put-Call parity and formalizes the uncertainty-neutral valuation in terms of
martingales.

3.1.2 The Primitives of the Financial Market and Arbitrage

For the sake of simplicity, we assume that the riskless asset is S0
t = 1, for every

t ∈ [0, T ], i.e. the interest rate is zero. We call the related abstract financial market
M(1, S) on the filtered space uncertainty space (Ω,F ,P ;F), whenever the price
process of the uncertain asset (St) satisfies St ∈ L2(P) for every t ∈ [0, T ] and
F-adaptedness.

A simple trading strategy38 is an F-adapted stochastic process (ηt) in L2(P) ×
L2(P) when there is a finite sequence of dates 0 < t0 ≤ · · · ≤ tN = T such that
η = (η0, η1) can be written with ηi ∈ L2(Ω,Fti ,P) as ηt =

∑N−1
i=0 1[ti+1,ti)(t)η

i. The
fraction invested in the riskless asset is denoted by η0

t , t ∈ [0, T ]. A trading strategy
is self-financing if η0

tn−1
S0
tn + η1

tn−1
Stn = η0

tnS
0
tn + η1

tnStn P-q.s. and for every n ≤ N .
The value of the portfolio satisfies Xη

t ∈ L2(P) for every t ∈ [0, T ].
The set of simple self-financing trading strategies is denoted by A. This financial

market M(1, S) with trading strategies in A is called M(1, S,A).
It is well known that a necessary condition for equilibrium is the absence of

arbitrage. Therefore, with regard to the equilibrium consistency condition of the last
section, we introduce arbitrage in the financial market of securities. The modeled
uncertainty of the financial market motivates us to consider a stronger and robust
notion of absence of arbitrage.

Definition 4 Let R ⊂ P. We say there is an R-arbitrage opportunity in
M(1, S,A) if there exists an admissible pair η ∈ A such that η0S0 ≤ 0,

ηTST ≥ 0 R-q.s., and P̂ (ηTST > 0) > 0 for at least one P̂ ∈ R.

The choice of the definition is based on the following observation. This arbitrage
strategy is riskless for each P ∈ R and if the prior P̂ constitutes the market one would
gain a profit with a strictly positive probability. With this in mind, the P-arbitrage

37For the multiple prior case with mutually equivalent priors we refer to Riedel (2009).
38As mentioned in Harrison and Pliska (1981) simple strategies rule out the introduction of

doubling strategies and hence a notion of admissibility.
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notion can be seen as a weak arbitrage opportunity with the corresponding cone
L2(P)+\{0}. Alternatively, we could argue that absence ofR-arbitrage is consistent
with a weak-dominance principle based on R.

To connect the prior-dependent marketed spaces of Definition 1, we say that a
claim X ∈ L2(P) is marketed inM(1, S,A) at time zero under P ∈ P if there is an
η ∈ A such that X = ηTST holds only P-almost surely. In this case we say η hedges
X and lies in MP. η0S0 = πP(X) is the price of X in M(1, S,A) under P ∈ P .

With Example 3 and 4 in mind, fix the marketed spaces MP ⊂ L2(P), P ∈
P . The price of a marketed claim under the prior P should be well defined. Let
η, η′ ∈ A(P) generating the same claim X ∈ MP, i.e. ηTST = η′TST P-a.s. We
have η0S0 = η′0S0 = πP(X) under absence of P-arbitrage. Note, that this may not
be true under no P̂-arbitrage, with P 6= P̂ ∈ P . This is related to the law of one
price under a fixed prior. Now, similarly to the single prior case, we define viability
in a financial market. We say that a financial market M(1, S,A) is viable if it is
Γ(P)-arbitrage free and the associated price system ({πP}P∈P ,Γ) is scenario-based
viable.

3.2 Equivalent Symmetric Martingale Measure Sets

In Section 2 we introduced the price space of sublinear functionals generated by
a set of linear c2,P-continuous functionals. The extension of the price functional
is strongly related to the involved linear functionals which constitutes the price
systems locally. In this fashion, we introduce a modified notion of fair pricing. In
essence, we associate a risk-neutral prior to each local and linear extension of a price
system. Here, the term local refers to a fixed prior, so that at this stage no volatility
uncertainty is present.

In our uncertainty model, the price of a claim equals the (discounted) value
under a specific sublinear expectation. Exploration of available information, when
multiple priors are present, changes the view of a rational expectation.

In economic terms, the notion of symmetric martingales eliminates preferences
for ambiguity in the valuation. This is the base to introduce the following rational
pricing principle in terms of sublinear expectations with a symmetry condition.

Definition 5 A set of probability measures Q on (Ω,F) is called equivalent sym-
metric martingale measure set (EsMM-set) if the given conditions hold:

1. For every Q ∈ Q there is a P ∈ k(P) such that P and Q are equivalent to each
other, so that dQ

dP ∈ L
2(P).

2. The uncertain asset (St) is a symmetric EQ-martingale, where EQ is the con-
ditional sublinear expectation under Q.

The first condition formulates a direct relationship between an element Q in the
EsMM-set Q and the primitive priors P ∈ P . The square integrability is a techni-
cal condition that guarantees the association to the equilibrium theory of Section
2. The second is the accurately adjusted martingale condition. The idea of a fair
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gamble should reflect the neutrality of preferences for risk and ambiguity. Under
the new sublinear expectation, the asset price and hence the portfolio process, are
symmetric martingales. This implies, as discussed in the introduction, that the
value of the claim does not depend on the prior. The valuation is mean unam-
biguous, i.e. preferences for ambiguity under Q are neutral. One can think of the
ambiguity-neutral part in the valuation in terms of maxmin preferences from Gilboa
and Schmeidler (1989).39 In this situation, the expected utility is under every prior
Q ∈ Q the same. Similarly to pricing under risk, where risk preferences do not
matter, analogous reasoning should be true concerning preferences for ambiguity.
As such, saying everyone is uncertainty neutral immediately leads one to come up
with the uncertainty-neutral expectation EQ.

The case of only one prior is related to the well-known risk-neutral valuation
principle. Under volatility uncertainty, this principle needs a new requirement due
to the more complex uncertainty model. In this sense the symmetry condition
encodes ambiguity neutrality as part of uncertainty neutrality.

Remark 3 1. In the light of Remark 1, let us mention that Definition 3 and 5
can be generalized to the notion nonlinear conditional expectations (Et) satisfying
the Law of Iterated Expectation, see Section 9 in Chapter III of Peng (2010). The
definition of a E-martingale is straightforward.

Concerning the definition of an EsMM-set, the object Q would refer to the set
of priors representing E. In Remark 1, a possible construction is illustrated.

A further weakening of the symmetric martingale property is possible. Instead
of that we could merely require the E-martingale property of (St).

2. Note that in the case of a single prior framework, i.e. P = {P}, the notion
of EsMM-sets is reduced to accommodate EMM’s. In this regard we can think of
canonical generalization. On the other hand, classical EMM’s and a linear price
theory are still present. Every single-valued EsMM-set {Q} can be seen as an EMM
under P ∈ P. Here, the consolidation is given by Γ = δP and we have Γ(P) = {P}.
In this situation, Γ reveals the ignorance of every other possible prior P′ ∈ P.

The following result justifies the discussion involving uncertainty neutrality and the
symmetry condition for martingales. The one to one mapping of Theorem 2 and the
choice of the price space fall into place. In this manner we show that the existence
of an R-arbitrage in M(1, S,A) with Γ(P) = R is inconsistent with an economic
equilibrium for agents in A(P), with P ∈ R. We fix an associated price system using
the procedure described at the end of Subsection 3.1.

Theorem 2 Suppose the financial market model M(1, S,A) does not allow any
P-arbitrage opportunity. Then there is a bijection between coherent price systems
Ψ : L2(P)→ R in L2(P)~++ of Theorem 1 and EsMM-sets, satisfying stability under

39However, the same argument is applicable to the α-MEU preferences of Ghirardato, Mac-
cheroni, and Marinacci (2004), the smooth ambiguity preferences of Klibanoff, Marinacci, and
Mukerji (2005) and variational preferences of Maccheroni, Marinacci, and Rustichini (2006).
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pasting of the induced set Γ(P).40 The relationship is given by Ψ(X) = EQ(X),
where

Q =
{
Q ∈M1(Ω) : dQ

dP = ψP,P ∈ Γ(P), ψP ∈ L2(P)++

}
is the associated EsMM-set.

Let R ⊂ P and M(R) be the set of all EsMM-sets Q such that the related con-
solidation Γ satisfies Γ(P) = R. Theorem 2 can be seen as the formulation of a
one-to-one mapping between a subset of

L2(P)~++ and
⋃

R⊂k(P)

M(R).

There is a hierarchy of sublinear expectations, related to the chosen consolidation
operator Γ and the EsMM-sets, which are ordered by the inclusion relation. We
illustrate the relationship between Γ and an EsMM-set in the following example.

Example 6 For the sake of simplicity, let us assume that P = {P1,P2,P3,P4},
so that any pasting property is ignored. Starting with the sublinear price system,
we have four price functionals π1, π2, π3, π4 and the consolidation operator Γ. Let
us assume that Γ = (+,∧) and λ ∈ (0, 1). This gives us λπ1 + (1 − λ)π2 = πλ

and Γ(π1, π2, π3, π4) = πλ ∧ π3. The resulting EsMM-set is given by Q = {ψλ ×
Pλ, ψ3×P3} ∈ M(P \ {P4}), where Pλ = λP1 + (1− λ)P2, ψλ = λψ1 + (1− λ)ψ2 and
EPλ [ψλ] = 1 = EP3 [ψ3].

We close this consideration with some results analogous to those of the single prior
setting where we combine Theorem 2 and Theorem 1.

Corollary 2 Let R = Γ(P) ⊂ P be stable under pasting and given.

1. M(1, S,A) is viable if and only if there is an EsMM-set.

2. Market completeness, i.e MP = L2(P) for each P ∈ R, is equivalent to the
existence of exactly one EsMM-set in M(R).

3. If M(R) is nonempty, then there exists no R-arbitrage.

4. If there is a strategy η ∈ A with η0S0 ≤ 0, ηTST ≥ 0 R-q.s. and
EQ(ηTST ) > 0, for some Q ∈ M(R), then there is an R-arbitrage opportunity.

The result does not depend on the preference of the agent. The expected return
under the sublinear expectation EQ equals the riskless asset. Hence, the value of a
claim can be considered as the expected value in the uncertainty-neutral world.41

3.3 A Special Case: G-Expectation

Now, we select a stronger calculus to model the asset prices as a stochastic differ-
ential equation driven by a G-Brownian motion.42 In this situation the volatility of

40See Definition 6 in Appendix A for this important concept. In essence, this condition is needed
to define a conditional sublinear expectation based on Q, satisfying the iterated law of conditional
expectation.

41However, the sublinear expectation depends on Γ.
42An illustration of the concept in a discrete time framework is achievable, via the application

of the results in Cohen, Ji, and Peng (2011).
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the process concentrates the uncertainty in terms of the derivative of the quadratic
variation. The quadratic variation of a G-Brownian motion creates volatility uncer-
tainty. Again, we review the related result of the single prior framework.

Background: Itô processes in the single prior framework
We specify the asset price in terms of an Itô process dSt = µ(t, St)dt + σ(t, St)dBt,

S0 = 1, driven by a Brownian motion B = (Bt)t∈[0,T ] on the given filtered probability

space, µ(·, x), σ(·, x), with x ∈ R+ are adapted processes such that (St) is a well defined

process taking values in R+. The filtration is generated by B. The interest rate is r = 0.

Let Eθ be the exponential martingale, given by dEθt = Eθt θtdBt, Eθ0 = 1, with a consistent

kernel θ we can apply Girsanov theorem. The following result is from Harrison and Kreps

(1979):

The set of equivalent martingale measures is not empty if and only if ρ = EθT ∈ L2(P),

θ ∈ L2(P⊗ dt) and S∗ =
∫
σdB is a P-martingale.

ρ can be interpreted as a state price density. The associated market price of risk θt = µt−r
σt

is the Girsanov or pricing kernel of the state price density.

3.3.1 Security prices as G-Itô processes and sublinear valuation

An important special case is an uncertainty model given by the G-expectation EG :
L2
G(Ω) → R,43 where L2

G(Ω) = L̂2(P) is described at the beginning of Appendix
A.1. More precisely, the uncertainty model is induced by the following sublinear
expectation space (C([0, T ];R), L2

G(Ω), EG) as given.
We select the next rational base, namely an interval [σ, σ] ⊂ R++, instead of

a constant volatility σ. As indicated in the introduction, volatility uncertainty
refers to the awareness that every adapted process (σt) taking values in [σ, σ] may
constitute one possible prior or scenario. We introduce an asset price process driven
by a G-Brownian motion (BG

t )t∈[0,T ]. In Appendix B.2 we present a small primer of
the applied results.

Under the objective description of the real world, given by P and induced by
[σ, σ], the asset price is driven by the following G-stochastic differential equation

dSt = µ(t, St)d〈BG〉t + V (t, St)dB
G
t , S0 = 1.

Let µ : [0, T ] × Ω × R → R and V : [0, T ] × Ω × R → R+ be processes such that a
unique solution exists.44 Moreover, let V (·, x) be a strictly positive process for each
x ∈ R+. The riskless asset has interest rate zero.

The Girsanov theorem for G-Brownian motion is precisely what is needed to
verify the symmetric EQ-martingales property of the price processes S under some
sublinear expectation given by an EsMM-set Q. The present uncertainty model
enables us to apply the necessary stochastic calculus. As such, we model the financial
market in the G-expectation setting, introduced in Peng (2006) and Peng (2010).

43It is shown in Theorem 52 by Denis, Hu, and Peng (2011), that this sublinear expectation can
be represented by a weakly compact set, when the domain is in L2

G(Ω).
44We refer to Chapter 5 in Peng (2010) for existence results of G-SDE’s.
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Central results, such as a martingale representation and a well behaved underlying
topology are desired for the foundational grounding of asset pricing. The second
condition of Definition 5 highlights how a Girsanov transformation adapts to a
symmetric EQ-martingale and thus guarantees the existence of nontrivial EsMM-
sets.45 For this purpose we define the related sublinear expectation generated by an
EsMM-set, Q = {Q : dQ = ψdP, P ∈ P}:

sup
Q∈Q

EQ[X] = EQ(X) = EG[ψX], X ∈ L2
G(Ω).

Note that we consider an aggregated family of state price densities ψ ∈ L2
G(Ω) which

is defined P-q.s. This means that the density is now a uniform object under our
uncertainty model, i.e. ψ = ψP P-a.s. for all P ∈ P (see also Remark 4 below).
Theorem 3 justifies the choice of this shifted sublinear expectation when the asset
price is restrained to a symmetric martingale for an uncertainty-neutral expectation.

Let us introduce the universal state price density Eθ, with ψ = EθT P-q.s., be-
ing a symmetric martingale of exponential type under the G-expectation, with an
integrable pricing kernel (θt)t∈[0,T ] (or market price of uncertainty)

dEθt = Eθtθ(t, St)dB
G
t , Eθ0 = 1.

Applying the results in Appendix B.2 allows us to write Eθ explicitly as

Eθt = exp

(
− 1

2

∫ t

0

θ(r, Sr)
2d〈BG〉r −

∫ t

0

θ(r, Sr)dB
G
r

)
, t ∈ [0, T ].

Let the pricing kernel solve V (t, St)θ(t, St) = µ(t, St) P-quasi surely, for every t ∈
[0, T ]. Before we formulate the last result we define S∗t = S∗0 +

∫ t
0
V (r, S∗r )dB

G
r ,

t ∈ [0, T ] and assume that a unique solution on (Ω, L2
G(Ω), EG) exists for some

state-dependent process V , see Peng (2010).

Theorem 3 The set of EsMM-sets contains a Q ∈ M(P) if and only if S∗ is an
EG-martingale and

EG

[
exp

(
δ ·
∫ T

0

θ(r, Sr)
2d〈BG〉r

) ]
<∞, for some δ >

1

2
.

With Theorem 2 in mind we can associate the concept of scenario-based viability.
Let X ∈ L2

G(Ω) be a contingent claim such that it is priced by P-arbitrage then the
fair value is given by Ψ(X) = EG[EθTX], whenever Γ consists only of a consolidation
via the maximum operation.

Moreover, one can define a new Ĝ-expectation related to a volatility uncertainty
of a closed subinterval [σ̂1, σ̂2] ⊂ [σ, σ]. We can identify a consolidation operator by
ΓĜ(P) = {Pα : α ∈ [σ̂1, σ̂2]}. In this case Theorem 3 can be reformulated in terms
of the existence of an EsMM-set QĜ ∈ M (ΓĜ(P)).

45Trivial EsMM-sets consist of mutually equivalent priors, associated to a single P ∈ P.

23



Remark 4 The more precise calculus of the G-expectation is based on an analytic
description of nonlinear partial differential equations. This allows us to create a
uniform state price density process in terms of an exponential martingale, based on
a G-martingale representation theorem (see Appendix B 3). With this in mind, a
more elaborated notion of EsMM-sets can be formulated by requiring that the family
of densities {ψP}P∈P create a uniform process as a symmetric martingale under the
sublinear expectation EP = EG.

Remark 5 Under the assumption of G-Brownian motion, Epstein and Ji (2013)
obtain an analogous state price density process. Without applying a Girsanov-
type theorem, they use a density process in the important case µ(t, St) = µtSt
and V (t, St) = VtSt. In comparison to our flexible local functional form, their
asset price is apparently governed by dSt = St(btdt + VtdB

G
t ).46 In this case,

the relationship between the asset price processes, with the special pricing kernel(
µt
Vt

)
= (θt) ∈M2

G(0, T ), is given by∫ t

0

µsd〈BG〉s =

∫ t

0

µsâsds =

∫ t

0

bsds, where âs =
d

ds
〈BG〉s.

Extensions to continuous trading strategies seem to be next natural step. Never-
theless, an admissibility condition should be requested, in order to exclude doubling
strategies. Considering markets with more than one uncertain security requires a
multidimensional Girsanov theorem.47 We close this section with an example of the
connection between super-replication of claims and EsMM-sets.

Example 7 Under one prior P = {P}, Delbaen (1992) obtained the super-
replication price in terms of martingale measures in M({P}):

ΛP(X) = inf{y ≥ 0|∃ θ ∈ A(P) : y + θTST ≥ X P-a.s.} = sup
Q∈M({P})

EQ[X]

When the uncertainty is given by a set of mutually singular priors, a super-
replication price can be derived, see Denis and Martini (2006), in terms of a set
of martingale lawsM such that ΛP(X) = supQ∈MEQ[X]. In the G-framework with
simple trading strategies, this set M is an EsMM-set. When applying our theory to
this problem, we get

ΛP(X) = inf{y ≥ 0|∃ θ ∈ A : y + θTST ≥ X P-q.s.}
= sup

P∈P
sup

Q∈M({P})
EQ[X]

= EG[ETX],

upon applying our Theorem 3 as well as Theorem 3.6 from Vorbrink (2010). This
is associated to the maximal EsMM-set in M(P). However, with Proposition 1 every
EsMM-set delivers a price below this super-hedging price.

46This allows us to model local volatility structures and volatility uncertainty at the same time.
47See Osuka (2011).
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4 Discussion and Conclusion

We present a framework and a theory of derivative security pricing where the un-
certainty model is given by a set of mutually singular probability measures which
incorporates volatility uncertainty. The notion of equivalent martingale measures
changes, and the related linear expectation principle becomes a nolinear theory of
valuation. The associated arbitrage principle should consider all remaining uncer-
tainty in the consolidation.

The results of this paper establishes preliminary version of the fundamental the-
orem of asset pricing (FTAP) under mutually singular uncertainty. In Delbaen and
Schachermayer (1994) and Delbaen and Schachermayer (1998), a definitive FTAP
is achieved for the single prior uncertainty model in great generality. The notion of
arbitrage is in principle a separation property of convex sets in a topological space.
In this regard, the choice of the underlying topological structure is essential for
observing a FTAP. For instance, Levental and Skorohod (1995), establish a FTAP
with an approximate arbitrage based on a different notion of convergence.

In our setting, two aspects must be kept in mind for deriving a FTAP with
mutually singular uncertainty. Firstly, the spaces of claims and portfolio processes
are based on a capacity norm, and thus forces one to argue for the quasi sure analysis,
a fact implied in our definition of arbitrage (see Definition 4). A corresponding
notion of free lunch with vanishing uncertainty will have to incorporate this more
sensitive notion of random variables.

Secondly, the sublinear structure of the price system allows for a nonlinear sepa-
ration of convex sets. With one prior, the equivalent martingale measure separates
achievable claims with arbitrage strategies. In our small meshed structure of random
variables this separation is guided by the consolidation operator Γ. The preference-
free pricing principle gives us a valuation via expected payoffs of different adjusted
priors. In comparison to the preference and distribution free results in a perfectly
competitive market, see Ross (1976), the implicit assumption is the common knowl-
edge of uncertainty, described by a single probability measure. The design of uncer-
tainty prescribes the consequences for pricing without a consumption-based utility
gradient approach.

The valuation of claims, determined by P-arbitrage, contains a new object Γ,
which may inspire skepticism. However, note that the consolidation operator Γ
could be seen as a tool to regulate financial markets. The valuation of claims in
the balance sheet of a bank should depend on Γ. For instance, this may affect
fluctuations of opinion in the market as a consequence of uncertainty. In Remark 2
of Section 2 we describe how a good consolidation may be found via consideration
of mechanism design. Such considerations may provide a base for the choice of the
valuation principle under multiple priors.48

Nonlinear Expectations and Market Efficiency

48As a first heuristic, it is possible that utilitarian (convex combination) and Rawlsian (supre-
mum operation) welfare functions may constitute a principle of fair pricing. Here, the prior is
chosen behind the “veil of ignorance”. See also Section 4 of Wilson (1996).
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In Remark 1 of Section 2 and Remark 3.1 of Section 3 we indicate how a fully
nonlinear price system can be accomplished. In fact this is an approach hinting at a
positive theory of nonlinear expectations, where the observable aggregated market
sentiment could be captured by the partition of optimists and pessimists.

Such an attempt is a possible starting point to measure the degree of market effi-
ciency. In fact, if markets are efficient in the weak form, deflated asset prices would
by symmetric martingales and reveal all information. An approximately efficient
market could be detected by observing the martingale property under a nonlinear
conditional expectation. In this case the market prices can be regarded as the best
linear approximation of the nonlinear market expectation of the economy.

Preferences and Asset pricing
The uncertainty model in this paper is closely related to Epstein and Wang (1994)
and especially to Epstein and Ji (2013) as they consider equilibria with linear prices
in their economy. This leads to an indeterminacy in terms of a continuum of linear
price systems. The relationship between uncertainty and indeterminacy is caused
by the constraint to pick one effective prior. The Lucas critique49 applies insofar as
it describes the unsuitable usage of a pessimistic investor to fix an effective prior in
reduced form.

Our valuation principle is based on a preference-free approach. We value contin-
gent claims in terms of mean unambiguous asset price processes. In other words, the
pricing measures of the uncertainty neutral world yield expectations of the security
price that do not merely depend on the chosen “risk-neutral” prior. Nevertheless,
the idea of a risk-neutral valuation principle is not appropriate, as different mutu-
ally singular priors deliver different expectations, that cannot be related via a single
density.

From this point of view, we disarrange the indeterminacy of linear prices, and
allow for the appearance of a planner to configure the sublinearity. In this sense, the
regulator as a policy maker is now able to confront unmeasurable sudden fluctuations
in volatility. A single prior, as a part of the equilibrium output, can create an
invisible threat of convention, which may be used to create the illusion of security
when faced with an uncertain future. In a model with mutually singular priors, the
focus on a single prior creates a hazard. Events with a positive probability under
an ignored prior may be a null set under an effective prior in a consumption-based
approach.

Sublinear prices and regulation via consolidation
In this context, sublinearity is associated with the principle of diversification. In
these terms, an equilibrium with a sublinear price system covers the concept of
Walrasian prices which decentralize with the coincidental awareness of different
scenarios. A priori, an instructed Walrasian auctioneer has no knowledge of which
prior P in P occurs. The degree of discrimination is related to the intensity of
nonlinearity. Note that this is a normative category and opens the door to an
economic foundation of regulation. Each prior is a probabilistic scenario. The

49See Section 3.2 in Epstein and Schneider (2010).
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auctioneer consolidates the price for each possible scenario into one certain and
robust valuation. This is also true for an agent in the model, hence the auctioneer
should be able to discriminate under-diversification in terms of ignorance of priors
in this uncertainty model. Further, a von Neumann-Morgenstern utility assumption
results in an overconfidence of certainty in the associated agent.

Since we want to generalize fundamental theorems of asset pricing, we are con-
cerned with the relationship between equivalent martingale measures, viable price
systems and arbitrage. In this setting, these concepts must be recast because of
the multiple prior uncertainty. In contrast, with one prior an equivalent martingale
measure is associated with a linear price system. The underlying neoclassical equi-
librium concept is a fully positive theory. In the multiple prior setting such a price
extension can be regarded as a diversification-neutral valuation principle. Here,
diversification is focused on a given set of priors P . Should the unlucky situation
arise that an unconsidered prior governs the market, it is the task of the regulator
to robustify these possibilities via an appropriate price system. For instance, unit-
ing two valuations of contingent claims cannot be worse than adding the uncertain
outcomes separately. This is the diversification principle under P .

Recalling the quotation of Aliprantis, Tourky, and Yannelis (2001) in the intro-
duction, the degree of sublinearity in our approximation is regulated by the type of
consolidation of scenario-dependent linear price systems.

A Details and Proofs

A.1 Section 2

Let L0(Ω) denote the space of all measurable real-valued functions on Ω. L̂2(P) =
L2(P)/N be the quotient of L2(P), the closure of Cb(Ω) by c2,P in L0(Ω). N denotes
the ideal of c2,P in L0(Ω) null elements. Such null elements are characterized by
random variables which are P-polar. P-polar sets evaluated under every prior are
zero or one, although, the value may differ between different priors. A property
holds quasi-surely (q.s.) if it holds outside a polar set. Furthermore, the space
L̂2(P) is characterized by

L̂2(P) =
{
X ∈ L0(Ω) : X has a q.c. version, lim

n→∞
EP(|X|21{|X|>n}) = 0

}
,

A mapping X : Ω → R is said to be quasi-continuous if ∀ε > 0 there exists an
open set O with supP∈P P (O) < ε such that X|Oc is continuous. We say that
X : Ω→ R has a quasi-continuous version (q.c.) if there exists a quasi–continuous
function Y : Ω → R with X = Y q.s. The mathematical framework provided
enables the analysis of stochastic processes for several mutually singular probability
measures simultaneously. All equations are understood in the quasi-sure sense. This
means that a property holds almost-surely for all scenarios P ∈ P . Since, for all
X, Y ∈ L2(P) with |X| ≤ |Y | imply c2,P(X) ≤ c2,P(Y ), we have that L2(P) is a
Banach lattice.50

50This is of interest for existence results from general equilibrium theory.
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In the following we discuss the different operations for consolidation. Let ΠP =
EP[ψP·] ∈ L2(P)∗, with P ∈ P . Let µ be a measure on the Borel measurable space
(P ,B(P)) with µ(P) = 1 and full support on P . In this context we can consider
the additive case in L2(P)~+, where a new prior is generated:51

Γµ :
⊗
P∈P

L2(P)∗ → L2(P)~+, Γµ({ΠP}P∈P) =

∫
P
ψP · µ(dP) = EPµ [ψPµ·],

where ψPµ is constructed as in Example 2. We can consider the Dirac measure
δP as an example for µ. The related consideration of only one special prior in P
is in essence the uncertainty model in Harrison and Kreps (1979). The operation
in question is given by (ΠP)P∈P 7→ EP[ψP·]. The second operation in L2(P)~+ is a
point-wise maximum:

Γsup :
⊗
P∈P

L2(P)∗ → L2(P)~+, Γsup({ΠP}P∈P) = sup
P∈P

EP[ψP·].

This is an extreme form of consolidation and can be considered as the highest
awareness of all priors. Note that combinations between the maximum and an
addition operation are possible as indicated in Example 2 and Proposition 1.

Proof of Proposition 1 Since L2(P) is a Banach lattice, the 5th claim follows
from Theorem 1 in Biagini and Frittelli (2010), whereas the other claims follow
directly from the construction of the functionals in L2(P)~+. �

For the proof of Theorem 1, we define the shifted preference relationship %0
P such

that every feasible net trade is worse off than (0, 0) ∈ B(0, 0, πP,MP). Obviously,
an agent given by %0

P does not trade. Hence, an initial endowment constitutes a no
trade equilibrium.

Proof of Theorem 1 Let the price system ({πP}P∈P ,Γ) be given and we have a
Ψ ∈ L2(P)~+ on L2(P) such that πP�MPP ≤ Ψ�MPP for each P ∈ Γ(P), where MP

P =

MP ∩ L2(P). The preference relation on R× L2(P ), given by

(x,X) <0
P (x′, X ′) if x+−ΠP(−X) ≥ x′ +−ΠP(−X ′),

is in A(P). For each P ∈ Γ(P), the bundle (x̂P, X̂P) = (0, 0) satisfies the viability
condition of Definition 2, hence {πP}P∈Γ(P) is scenario-based viable.

In the other direction, let π(⊗P) : ⊗MP → R be a price system. The preference
relation <0

P∈ A(P) satisfies for each (x̂P, X̂P), P ∈ Γ(P), the viability condition. We
may assume for each P, (x̂P, X̂P) = (0, 0), since it is only a geometric deferment.
Consider the following sets

�0
P =

⊗
P∈Γ(P)

{(x,X) ∈ R× L2(P) : (x,X) �P (0, 0)},

B(⊗P) =
⊗

P∈Γ(P)

B(0, 0, πP,MP).

51The related operation of convex functionals would corresponds to the convolution operation.
Without convexity of P, the prior Pµ may only lie in the convex hull of k(P).
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We have that B(⊗P) and �0
P are convex sets. The Riesz space product ⊗L2(P) =

⊗P∈Γ(P)L
2(P) (see paragraph 352 K in Fremlin (2000)), is under the norm c2,P

again a Banach lattice (see paragraph 354 X (b) in Fremlin (2000)). By the L2(P)-
continuity of each %0

P, the set �0
P is c2,P-open in ⊗L2(P).

According to the separation theorem for a topological vector space, for each P ∈
Γ(P) there is a non zero linear and c2,P-continuous functional φP on ⊗P∈Γ(P)(R ×
L2(P)) with

1. φP(x,X) ≥ 0 for all (x,X) ∈�0
P

2. φ(x,X) ≤ 0 for all (x,X) ∈ B(⊗P)

3. {(yP, YP)}P∈Γ(P) = (y, Y ) with prR×L2(P)(φP)(y, Y ) =: φ�P(yP, YP) < 0,

since φP is non-trivial. Note that condition 3. depends on the chosen P.
Strict monotonicity of %0

P implies (1, 0) �0
P (0, 0). The L2(P)-continuity of each

<0
P gives us (1 + εy, εY ) �0

P (0, 0), for some ε > 0, hence

φ�P(1 + εyP, εYP) = −φ�P(1, 0) + εφ�P(yP, YP) ≤ 0

and φ�P(1, 0) ≥ −εφ�P(yP, YP) > 0.

We have φ�P(1, 0) > 0 and after a renormalization let φ�P(1, 0) = 1. Moreover, we
can write φ�P(xP, XP) = xP + ΠP(XP), where ΠP : L2(P)→ R can be identified as an
element in the topological dual L2(P)∗.

We show strict positivity of ΠP on L2(P). Let X ∈ L2(P)+ \ {0} we have
(0, X) �0

P (0, 0), hence (−ε,X) �0
P (0, 0), and therefore ΠP (X)− ε ≥ 0.

Moreover we have L2(P)-positivity of ΠP�L2(P) on L2(P), i.e. X ≥ 0 P-q.s.
implies ΠP�L2(P) ≥ 0. Since L2(P) is a Banach lattice, ΠP ∈ L2(P)∗ follows.

Let X ∈ MP
P , since (−πP(X), X), (πP(X),−X) ∈ B(0, 0, πP,M

P
P ) we have 0 =

φ(πP(X), X) = πP (X)− ΠP (X) and ΠP�MPP
= πP follows.

Γ({ΠP}P∈Γ(P)) = Ψ is by construction in L2(P)~+. The strict positivity of Ψ
follows from the strict positivity of each ΠP. Ψ�MPP ≥ πP follows from an inequality
in the last part of Proposition 1 and ΠP�MP = πP. �

We illustrate the construction in the following diagram:

{πP : MP → R}P∈P � // π(⊗P) :
⊗

P∈Γ(P)MP → R
_

Hahn Banach
��{

ΠP : L2(P)→ R
}
P∈Γ(P)

� Γ // Ψ :L2(P)→ R

Proof of Corollary 1 By construction every functional Ψ can be represented as
the supremum of priors, which are given by convex combinations. Since X ∈
M(Γ(P)), the supremum operation has no effect on X and the assertion follows.
�
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A.2 Section 3

Next, we discuss the augmentation of our information structure. The unaugmented
filtration is given by Fo. As mentioned in Subsection 3.1, the set of priors have to
be stable under pasting in order to apply the framework of Nutz and Soner (2012).
For the sake of completeness, we recall this notion.

Definition 6 The set of priors is stable under pasting if for every P ∈ P, every
Fo-stopping time τ , B ∈ Foτ and P1,P2 ∈ P(Foτ ,P), We have Pτ ∈ P, where

Pτ (A) = EP
[
P1(A|Foτ )1B + P2(A|Foτ )1Bc

]
, A ∈ Foτ .

In the multiple prior setting, with a given reference measure this property is equiva-
lent to the well-known notion of time consistency. However, this is not true if there
is no dominant prior.52

The usual condition of a “rich” σ-algebra at time 0 is widely used in mathemat-
ical finance. But the economic meaning is questionable. Our uncertainty model of
mutually singular priors can be augmented, similarly to the classical case, using the
right continuous filtration given by F+ = {F+

t }t∈[0,T ] where

F+
t =

⋂
s>t

Fot , for t ∈ [0, T ).

The second step is to augment the minimal right continuous filtration F+ by all polar
sets of (P ,FoT ), i.e. Ft = F+

t ∨ N (P ,FoT ). This augmentation is strictly smaller

than the universal augmentation
⋂
P∈P Fo

P
. This choice is economically reasonable

since the initial σ-field does not contain all 0-1 limit events. An agent considers
this exogenously specified information structure. It describes what information the
agent can know at each date. This is the analogue to a filtration in the single prior
framework satisfying the usual conditions. For the proof below, we need results
from Appendix B.1.

Proof of Theorem 2 We fix an EsMM-set Q. The related consolidation Γ gives
us the set of relevant priors Γ(P) ⊂ P. Let ψP = dQ

dP , for each Q ∈ Q and the related
P ∈ P. We have ψP ∈ L2(P). Let the associated strictly positive Ψ ∈ L2(P)~++ be
given.

Take a marketed claim Xm ∈ MP
P with P ∈ Γ(P) and let η ∈ A be a self-

financing trading strategy that hedges Xm. Since η ∈ A, by the decomposition rule
for conditional EQ-expectation, see for instance Theorem 2.6 (iv) in ?, and since S
is a symmetric EQ-martingale, the following equalities

EQt (ηuSu) = η+
t EQt (Su) + η−t EQt (−Su) = η+

t St − η−t St = ηtSt,

hold, where η = η+ − η− with η+, η− ≥ 0 P-quasi surely and 0 ≤ t ≤ u ≤ T .
Therefore we achieve

Ψ(Xm) = EQ0 (ηTST ) = η0S0 ≥ πP(Xm), P ∈ Γ(P).

52 Additionally, the set of priors must be chosen maximally. For further consideration, we refer
the reader to Section 3 in Nutz and Soner (2012).
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For the other direction, let Ψ ∈ L2(P)~++ with Ψ�MP ≥ πP, related to a set of linear
functionals {πP}P∈P and {ΠP}P∈P , such that Π�MP = πP. This can be inferred from
Ψ and the construction in the proof of the second part of Theorem 1. Now, we define
Q in terms of Γ.

We illustrate the possible cases which can appear. For simplicity we assume
P = {P1,P2,P3}. Let Pk,j = 1

2
Pk + 1

2
Pj and ψk,j = 1

2
ψk + 1

2
ψj, recall that we can

represent each functional ΠP(·) by EP[ψP·]. We have

1

2
(Π1 + Π2) ∧ Π3 becomes

{
ψ1,2 × P1,2, ψ3 × P3

}
= Q.

Consequently, Q = {Q : dQ = ψPdP, P ∈ Γ(P) ⊂ k(P), ψP ∈ L2(P)}, where ψP,
with P /∈ P, is constructed by the procedure of Example 2. The first condition
of Definition 5 follows, since the square integrability of each ψP follows from the
c2,P-continuity of linear functionals which generate Ψ.

We prove the symmetric Q-martingale property of the asset price process. Let
B ∈ Ft, η ∈ A be a self-financing trading strategy and

η1
s =

{
1 s ∈ [t, u) and ω ∈ B
0 else ,

η0
s =


St, s ∈ [t, u) and ω ∈ B
Su − St, s ∈ [u, T ) and ω ∈ B
0 else.

This strategy yields a portfolio value

ηTST = (Su − St) · 1B,

the claim ηTST is marketed at price zero. In terms of the modified conditional
sublinear expectation (EQt )t∈[0,T ], we have with t ≤ u

EQt ((St − Su)1B) = 0.

By Theorem 4.7 Xu and Zhang (2010), it follows that St = EQt (Su).53 But this
means that (St)t∈[0,T ] is an EQ-martingale. The same argumentation holds for −S,
hence the asset price S is a symmetric EQ-martingale. �

Proof of Corollary 2 1. Suppose there is a Q ∈ M(P) and let η ∈ A such that
ηTST ≥ 0 P-q.s. and P′(ηTST > 0) > 0 for some P′ ∈ P. Since for all Q ∈ Q
there is a P ∈ k(P) such that Q ∼ P, there is a Q′ ∈ Q with Q′(ηTST > 0) > 0.
Hence, EQ(ηTST ) > 0 and by Theorem 2 we observe EQ(ηTST ) = η0S0. This
implies that no P-arbitrage exists.

2. In terms of Theorem 1, each P ∈ R admits exactly one extension. With
Theorem 2 the result follows.

53The result is proven for the G-framework. However the assertion in our setting holds true
as well by an application of the martingale representation in Proposition 4.10 by Nutz and Soner
(2012).
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3. By Theorem 2, there is a related Ψ in L2(P)~+, wit Γ(P) = R. Fix a costless
strategy η ∈ A such that η0S0 = 0 hence Ψ(ηTST ) = 0. The viability of Ψ
implies ηTST = 0 R-q.s. Hence, no R-arbitrage exists.

4. This then follows by the same argument as in Harrison and Pliska (1981) (see
the Lemma on p.228), since EQ is strictly positive, by Theorem 2. �

For the proof of Theorem 3, we apply results from stochastic analysis in the
G-framework. The results are collected in Appendix B.2.

Proof of Theorem 3 Let Q = {Q : dQ = ρdP,P ∈ P} be an EsMM-set, where
the density ρ satisfies ρ ∈ L2

G(Ω) and EG[ρ] = −EG[−ρ]. Next define the stochas-
tic process (ρt)t∈[0,T ] by ρt = EG[ρ|Ft] resulting in a symmetric G-martingale to
which we apply the martingale representation theorem for G-expectation, stated in
Appendix B.2. Hence, there is a γ ∈M2

G(0, T ) such that we can write

ρt = 1 +

∫ t

0

γsdB
G
s , t ∈ [0, T ], P-q.s.

By the G-Itô formula, stated in the Appendix B.2, we have

ln(ρt) =

∫ t

0

φsdB
G
s +

1

2

∫ t

0

φ2
sd〈BG〉s, P-q.s

for every t ∈ [0, T ] in L2
G(Ωt) and hence

ρ = E
φ
T = exp

(
− 1

2

∫ T

0

θ2
sd〈BG〉s −

∫ T

0

θsdB
G
s

)
, P-q.s.

With this representation of the density process we can apply the Girsanov theorem,
stated in Appendix B.2. Set φt = ρt

γt
and consider the process

Bφ
t = BG

t −
∫ t

0

φsds, t ∈ [0, T ].

We deduce that Bφ is a G-Brownian motion under Eφ(·) = EG[φ·] and S satisfies

St = S0 +

∫ t

0

VsdB
φ
s +

∫ t

0

(µs + Vsφs)d〈Bφ〉s t ∈ [0, T ]

on (Ω, L2
G(Ω)), Eφ). Since V is a bounded process, the stochastic integral is a

symmetric martingale under Eφ. S is a symmetric Eφ-martingale if and only if
µt + Vtφt = 0 P-q.s. We have shown that ρ is a simultaneous Radon-Nikodym type
density of the EsMM-set Q. Hence, there is a nontrivial EsMM-set in M(P), since
φt = θt P-q.s for every t ∈ [0, T ]. �
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B Required results

In this Appendix we introduce the mathematical framework more carefully. We also
collect all the results applied in Sections 2 and 3. Before, we state the mentioned
criterion for the weak compactness of P . Let σ1, σ2 : [0, T ]→ R+ be two measures
with a Holder continuous distribution function t 7→ σi([0, t]) = σi(t). As introduced
in Section 2.1, a measure P on (Ω,F) is a martingale probability measure if the
coordinate process is a martingale with regard to the canonical (raw) filtration.

Criterion for weak compactness of priors, Denis and Kervarec (2013): Let P(σ1, σ2)
be the set of martingale probability measures with

dσ1(t) ≤ d〈B〉Pt ≤ dσ2(t),

where 〈B〉P is the quadratic variation of B under P. Then the set P(σ1, σ2) is
weakly compact.

B.1 The sub order dual

In this subsection we discuss the mathematical preliminaries for the price space of
sublinear functionals for Section 3.

The topological dual space:

1. Let c2,P be a capacity norm, defined in Section 2.2. Every continuous linear
form l on L2(P) admits a representation:

l(X) =

∫
Xdµ ∀X ∈ L2(P),

where µ is a bounded signed measure defined on a σ-algebra containing the
Borel σ-algebra of Ω. If l is a non-negative linear form, the measure µ is
non-negative finite.

2. We have L2(P)∗ =
{
µ =

∫
ψPdP : P ∈ P and ψP ∈ L2(P)

}
.

The first claim is stated in Proposition 11 of Feyel and de La Pradelle (1989). The
second assertion can be proven via a modification of of Lemma I.28 and Theorem
I.30 in Kervarec (2008), where the case of L1(P)∗ is treated.

B.1.1 Semi lattices and their intrinsic structure

The space of coherent price systems L2(P)~++ plays a central role in Theorem 1 and
2. Every consolidation operator has a domain in

⊗
P∈P L

2(P)∗ and maps to L2(P)~.
We begin with the most simple operation of consolidation, ignoring a subset of priors
and giving a weight to the others.

Let µ ∈M≤1(P) be the positive measure µ such that µ(P) ≤ 1. The underlying
space is

⊗
P∈P L

2(P)∗, when considering simultaneously the representations of con-
tinuous and linear functionals on L2(P). So let N ⊂ B(P) be a Borel measurable
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set and µ ∈M≤1(P). The consolidation via convex combination is given by

Γ(µ,N) :
⊗
P∈P

L2(P)~ → L2(P)∗, {ΠP}P∈P 7→
∫
N

ψPdµ(dP).

The size of N determines the degree of ignorance, related to the exclusion of the
prior in the countable reduction. A measure with a mass strictly less than one
implies an ignorance. Here, a Dirac measure on P is a projection to one certain
probability model.

Next, we consider the supremum operation of functionals. The operation of
point-wise maximum preserves the convexity. We review a result which gives an
iterated application of the Hahn-Banach Theorem.

Representation of sublinear functionals Frittelli (2000): Let ψ be a sublinear func-
tional on a topological vector space V , then

ψ(X) = max
x∗∈Pψ

x∗(X),

where Pψ = {x∗ ∈ X∗ : x∗(X) ≤ ψ(X) for all X ∈ V } 6= ∅

The maximum operation can also be associated to a lattice structure. In economic
terms this is related to a normative choice of the super hedging intensity. The
diversification valuation operator consolidation is set to one nonlinear valuation
functional. Note that the operation preserves monotonicity.

B.2 Stochastic analysis with G-Brownian motion

We introduce the notion of sublinear expectation for the G-Brownian motion. This
includes the concept of G-expectation, the Itô calculus with G-Brownian motion
and related results concerning the representation of G-expectation and (symmetric)
G-martingales. For a more precise detour we refer to the Appendix of Vorbrink
(2010) and to references therein. At the end of this section we present a Girsanov
theorem for G-Brownian motion, which we apply in Theorem 3 of Subsection 3.3.
Let Ω 6= ∅ be a given set. Let H be a linear space of real valued functions defined
on Ω with c ∈ H for all constants c and |X| ∈ H if X ∈ H. Note that in our model
we choose Cb(Ω) = H and Ω = ΩT = C0([0, T ]).

A sublinear expectation Ê on H is a functional Ê : H → R satisfying mono-
tonicity, constant preserving, sub-additivity and positive homogeneity. The triple
(Ω,H, Ê) is called a sublinear expectation space. For the construction of the G-
expectation, the notion of independence and G-normal distributions we refer to
Peng (2010).

A process (Bt)t≥0 on a sublinear expectation space (Ω,H, Ê) is called a G–
Brownian motion if the following properties are satisfied:

(i) B0 = 0.

(ii) For each t, s ≥ 0: Bt+s −Bt ∼ Bt and Ê[|Bt|3]→ 0 as t→ 0.
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(iii) The increment Bt+s−Bt is independent from (Bt1 , Bt2 , · · · , Btn) for each n ∈ N
and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

(iv) Ê[Bt] = −Ê[−Bt] = 0 ∀t ≥ 0.

The following observation is important for the characterization of G–martingales.
The space Cl,Lip(Rn), where n ≥ 1 is the space of all real-valued continuous functions
ϕ defined on Rn such that |ϕ(x) − ϕ(y)| ≤ C(1 + |x|k + |y|k)|x − y| ∀x, y ∈ Rn.
We define Lip(ΩT ) := {ϕ(Bt1 , · · · , Btn)|n ∈ N, t1, · · · , tn ∈ [0, T ], ϕ ∈ Cl,Lip(Rn)}.
The Itô integral can also be defined for the following processes: Let H0

G(0, T ) be the
collection of processes η having the following form: For a partition {t0, t1, · · · , tN}
of [0, T ], N ∈ N, and ξi ∈ Lip(Ωti) ∀i = 0, 1, · · · , N − 1, let η be given by

ηt(ω) :=
∑

0≤j≤N−1

ξj(ω)1[tj ,tj+1)(t) for all t ∈ [0, T ].

For η ∈ H0
G(0, T ) let ‖η‖M2

G
:=
(
EG

[∫ T
0
|ηs|2ds

]) 1
2

and denote by M2
G(0, T ) the

completion of H0
G(0, T ) under this norm. We can construct Itô’s integral I on

H0
G(0, T ) and extend it to M2

G(0, T ) continuously, by I : M2
G(0, T ) → L2(P). The

next result is an Itô formula. The presentation of basic notions on stochastic calculus
with respect to G-Brownian motion lies beyond the scope of this appendix.

Itô-formula, Li and Peng (2011): Let Φ ∈ C2(R) and dXt = µtd〈BG〉t + VtdB
G
T ,

t ∈ [0, T ], µ, V ∈M2
G(0, T ) are bounded processes. Then we have for every t ≥ 0:

Φ(Xt)− Φ(Xs) =

∫ t

s

∂Φ(Xu)VudB
G
u +

1

2

∫ t

s

∂Φ(Xu)µu + ∂2Φ(Xu)V
2
u d〈BG〉u.

Next, we discuss martingales in the G-framework. In Song (2011), this identity
declares that a G-martingale M can be seen as a multiple prior martingale which is
a supermartingale for any P ∈ P and a martingale for an optimal measure.

Characterization for G-martingales, Soner, Touzi, and Zhang (2011): Let x ∈ R, z ∈
M2

G(0, T ) and η ∈M1
G(0, T ). Then the process

Mt := x+

∫ t

0

zsdBs +

∫ t

0

ηsd〈B〉s −
∫ t

0

2G(ηs)ds, t ≤ T,

is a G–martingale.
In particular, the nonsymmetric part −Kt :=

∫ t
0
ηsd〈B〉s −

∫ t
0

2G(ηs)ds, t ∈
[0, T ], is a G-martingale which is different compared to classical probability the-
ory since {−Kt}t∈[0,T ] is continuous, and non-increasing with a quadratic variation
equal to zero. M is a symmetric G–martingale if and only if K ≡ 0.

Martingale representation, Song (2011): Let ξ ∈ L2
G(ΩT ). Then the G–martingale

X with Xt := EG[ξ|Ft], t ∈ [0, T ], has the following unique representation

Xt = X0 +

∫ t

0

zsdBs −Kt,
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where K is a continuous, increasing process with K0 = 0, KT ∈ LαG(ΩT ), z ∈
Hα
G(0, T ),∀α ∈ [1, 2), and −K a G–martingale. Here, Hα

G(0, T ) is the comple-

tion of H0
G(0, T ) under the norm ‖η‖Hα

G
:=

(
EG

[∫ T
0
|ηs|2ds

]α
2

) 1
α

. If ξ is bounded

from above we have z ∈M2
G(0, T ) and KT ∈ L2

G(ΩT ), see Song (2011).
Finally we state a Girsanov type theorem with G-Brownian motion. In Subsec-

tion 3.3 we discussed some heuristics in terms of a G-Doleans Dade exponential.
Define the density process by Eθ as the unique solution of dEθt = EθtθtdB

G
t , Eθ0 = 1.

The proof of the Girsanov theorem is based on a Levy martingale characterization
theorem for G-Brownian motion.

Girsanov for G-expectation, Xu, Shang, and Zhang (2011): Assume the following
Novikov type condition: There is an ε > 1

2
such that

EG

[
exp

(
ε ·
∫ T

0

θ2
sd〈BG〉s

)]
<∞

Then Bθ
t = BG

t −
∫ t

0
θs〈BG〉s is a G-Brownian motion under the sublinear expectation

Eθ(·) given by, Eθ(X) = EG[EθT ·X], Pθ = EθT · P with X ∈ L2(Pθ).
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pp. 143–150.

Fremlin, D. H. (2000): Measure theory, vol. 3. Torres Fremlin.

Frittelli, M. (2000): “Representing Sublinear Risk Measures and Pricing Rules,” Working
paper.

Ghirardato, P., F. Maccheroni, and M. Marinacci (2004): “Differentiating ambiguity and
ambiguity attitude,” Journal of Economic Theory, 118(2), 133–173.

Gilboa, I., and D. Schmeidler (1989): “Maxmin expected Utility with Non-Unique Prior,”
Journal of Mathematical Economics, 18(2), 141–153.

Harrison, J., and D. Kreps (1979): “Martingales and Arbitrage in Multiperiod Securities
Markets,” Journal of Economic Theory, 20(3), 381–408.

Harrison, J., and S. Pliska (1981): “Martingales and stochastic integrals in the theory of
continuous trading,” Stochastic Processes and their Applications, 11(3), 215–260.

Heath, D., and H. Ku (2006): “Consistency Among Trading Desks,” Finance and Stochastics,
10(3), 331–340.

Heston, S. (1993): “A Closed-Form Solution for Options with Stochastic Volatility with Appli-
cations to Bond and Currency Options,” Review of Financial Studies, 6(2), 327–343.

Huber, P., and V. Strassen (1973): “Minimax Tests and the Neyman-Pearson Lemma for
Capacities,” The Annals of Statistics, 1(2), 251–263.

38



Jouini, E., and H. Kallal (1995): “Martingales and Arbitrage in Securities Markets with
Transaction Costs,” Journal of Economic Theory, 66(1), 178–197.

(1999): “Viability and Equilibrium in Securities Markets with Frictions,” Mathematical
Finance, 9(3), 275–292.

Karandikar, R. (1995): “On Pathwise Stochastic Integration,” Stochastic Processes and their
Applications, 57(1), 11–18.

Kervarec, M. (2008): “Etude des modeles non domines en mathematiques financieres,” These
de Doctorat en Mathematiques, Universite d’ Evry.

Keynes, J. (1937): “The General Theory of Employment,” The Quarterly Journal of Economics,
51(2), 209–223.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005): “A smooth model of decision making
under ambiguity,” Econometrica, 73(6), 1849–1892.

Knight, F. (1921): Risk, Uncertainty and Profit. Beard Books.

Kolmogoroff, A. (1933): Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin.

Kreps, D. (1981): “Arbitrage and Equilibrium in Economies with Infinitely many Commodities,”
Journal of Mathematical Economics, 8(1), 15–35.

Levental, S., and A. Skorohod (1995): “A Necessary and Sufficient Condition for Absence
of Arbitrage with Tame Portfolios,” The Annals of Applied Probability, 5(4), 906–925.

Li, X., and S. Peng (2011): “Stopping Times and Related It’s Calculus with G-Brownian
Motion,” Stochastic Processes and their Applications, 121(7).

Lopomo, G., L. Rigotti, and C. Shannon (2009): “Uncertainty in Mechanism Design,”
Working paper.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006): “Ambiguity Aversion, Robust-
ness, and the Variational Representation of Preferences,” Econometrica, 74(6), 1447–1498.

Markowitz, H. (1952): “Portfolio Selection,” The Journal of Finance, 7(1), 77–91.

Nutz, M. (2012): “Random G-Expectations,” To appear in Annals of Applied Probability.

Nutz, M., and H. Soner (2012): “Superhedging and Dynamic Risk Measures under Volatility
Uncertainty,” To appear in SIAM J. Control Optim.

Osuka, E. (2011): “Girsanov’s Formula forG-Brownian Motion,” Arxiv preprint arXiv:1106.2387.

Peng, S. (1997): “BSDE and related g-expectation,” Pitman research notes in mathematics
series, 364, 141–159.

(2006): “G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô
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