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ABSTRACT Midstream urine (MSU) culture remains the gold standard diagnostic
test for confirming urinary tract infection (UTI). We previously showed that patients
with chronic lower urinary tract symptoms (LUTS) below the diagnostic cutoff on
MSU culture may still harbor bacterial infection and that their antibiotic treatment
was associated with symptom resolution. Here, we evaluated the results of the
United Kingdom’s MSU culture in symptomatic patients and controls. Next, we com-
pared the bacterial enrichment capabilities of the MSU culture with those of a 50-�l
uncentrifuged culture, a 30-ml centrifuged sediment culture, and 16S rRNA gene se-
quencing. This study was conducted on urine specimens from 33 LUTS patients at-
tending their first clinical appointment (mean age, 48.7 years; standard deviation
[SD], 16.5 years), 30 LUTS patients on treatment (mean age, 47.8 years; SD, 16.5 years)
whose symptoms had relapsed, and 29 asymptomatic controls (mean age, 40.7 years,
SD, 15.7 years). We showed that the routine MSU culture, adopting the UK interpre-
tation criteria tailored to acute UTI, failed to detect a variety of bacterial species, in-
cluding recognized uropathogens. Moreover, the diagnostic MSU culture was unable
to discriminate between patients and controls. In contrast, genomic analysis of urine
enriched by centrifugation discriminated between the groups, generating a more ac-
curate understanding of species richness. In conclusion, the United Kingdom’s MSU
protocol misses a significant proportion of bacteria, which include recognized uro-
pathogens, and may be unsuitable for excluding UTI in patients with LUTS.

KEYWORDS 16S rRNA gene sequencing, lower urinary tract symptoms, midstream
urine culture, mixed growth, urinary tract infection

An estimated 150 million to 250 million individuals worldwide develop urinary tract
infection (UTI) every year, making it one of the most frequent types of human

infections (1, 2). Midstream urine culture (MSU) is the gold standard test for its
diagnosis. Hospital laboratories in the United Kingdom abide by the Standards for
Microbiology Investigations (SMI B 41) protocol, issued and updated by Public Health
England (PHE), which generally recommends a threshold of �105 CFU/ml to confirm
both uncomplicated and complicated UTI (3); this criterion is also adopted in many
other countries but varies considerably. The 105-CFU/ml threshold originates from a
comparison conducted in the late 1950s of 74 pregnant female patients with clinically
determined acute pyelonephritis and 337 asymptomatic women (4, 5).

Concerns regarding the suitability of this quantitative cutoff for patients with
uncomplicated, acutely dysuric lower UTI were initially raised by Stamm and colleagues,
and the evidence-based suggestion for lowering the colony count for this quantitative
cutoff to 102 CFU/ml was concluded to be the more appropriate alternative (6, 7). It is
now recognized that culture, interpreted using a single quantitative threshold, may not
be appropriate when used to detect different clinical manifestations of UTI (urethritis,

Citation Sathiananthamoorthy S, Malone-Lee
J, Gill K, Tymon A, Nguyen TK, Gurung S, Collins
L, Kupelian AS, Swamy S, Khasriya R, Spratt DA,
Rohn JL. 2019. Reassessment of routine
midstream culture in diagnosis of urinary tract
infection. J Clin Microbiol 57:e01452-18.
https://doi.org/10.1128/JCM.01452-18.

Editor Erik Munson, Marquette University

Copyright © 2019 Sathiananthamoorthy et al.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
4.0 International license.

Address correspondence to Sanchutha
Sathiananthamoorthy, rebmssa@ucl.ac.uk, or
Jennifer L. Rohn, j.rohn@ucl.ac.uk.

* Present address: Trang K. Nguyen, University
of Leeds, Leeds, United Kingdom; Shradha
Gurung, University of Kent, Kent, United
Kingdom; Linda Collins, Middlesex University,
London, United Kingdom; Anthony S. Kupelian,
University College Hospital, London, United
Kingdom; Rajvinder Khasriya, University College
Hospital, London, United Kingdom.

Received 7 September 2018
Returned for modification 6 October 2018
Accepted 5 December 2018

Accepted manuscript posted online 12
December 2018
Published

BACTERIOLOGY

crossm

March 2019 Volume 57 Issue 3 e01452-18 jcm.asm.org 1Journal of Clinical Microbiology

 on M
ay 28, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kingston University Research Repository

https://core.ac.uk/display/200750179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1128/JCM.01452-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:rebmssa@ucl.ac.uk
mailto:j.rohn@ucl.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1128/JCM.01452-18&domain=pdf&date_stamp=2018-12-12
https://jcm.asm.org
http://jcm.asm.org/


cystitis, and pyelonephritis). This may be further complicated by a multitude of host and
microbial factors (8, 9), making it increasingly likely that no single threshold is suitable
for the detection of UTI in every clinical circumstance (10).

The current quantitative MSU threshold is problematic for other reasons. First,
bacterial strains are known to vary in virulence (11), meaning that some strains might
generate disease even at lower concentrations. Second, the concentration of bacteria
in urine can vary widely depending on fluid intake before MSU sampling; the concen-
tration in a dilute specimen might fall below the diagnostic cutoff as a result. Third,
recognized uropathogens, including Escherichia coli and Enterococcus faecalis, adhere
to host cells and are also known to invade them to form intracellular colonies (12–14).
Thus, urinary supernatant may be a poor substrate for recovering sequestered organ-
isms. However, it is also known that an innate immune response to UTI exacerbates the
shedding of urothelial cells into urine (15–19).

An additional problem associated with standard MSU interpretation in the United
Kingdom is the dismissal of mixed-growth cultures by default. Conventionally, mixed-
growth cultures are assumed to reflect contamination by organisms recognized to
colonize the healthy periurethral, vaginal, and perianal regions (5). Although some
laboratories electively consider the growth of up to three organisms each at �105

CFU/ml to suggest polymicrobial infection or may proceed with a repeat assessment,
many disregard mixed cultures altogether (3). However, we and others have shown that
polymicrobial infection is common in patients with lower urinary tract symptoms (LUTS)
(13, 20–22). In addition, polymicrobial urosepsis has been reported in patients who
demonstrated identical, mixed isolates from blood and urine specimens (23, 24).
Another study reported that E. coli, a predominant uropathogen, manifested greater
invasive properties when isolated from a polymicrobial culture than when isolated as
pure growth (25). This finding is supported by recent work showing that E. faecalis can
bolster E. coli by exporting the nutrient L-ornithine (26).

Few studies have analyzed the urinary microbial composition by laboratory out-
come (i.e., negative, mixed, positive cultures), and the majority of such work has
assessed culture techniques adopted in U.S. laboratories (6, 27–30). Given the limita-
tions of culture-based microbial detection (31–33), characterization of microbial
communities in health and disease is now becoming increasingly dependent on
approaches, such as DNA-based identification, which do not require growth under
particular culture conditions (34). Using metagenomics, the urinary microbiota in
patients with neurogenic bladder dysfunction (35), overactive bladder (36), urgency
urinary incontinence (UUI) (28), stress urinary incontinence (SUI) (37), and uncompli-
cated UTI (38) have been described. Some studies have also included comparisons to
asymptomatic individuals (28, 33, 35, 36, 39–41).

A critical microbiological evaluation of the urine culture protocol adopted in the
United Kingdom is long overdue. Here, we chose to study MSU culture performance in
patients describing LUTS, including those who fall short of a positive culture and those
demonstrating mixed growth, since these are generally deemed not to have a bona fide
infection. This assertion hinges on standard culture-based diagnosis, and emerging
data (13, 28, 42) suggest that such patients harbor chronic infection. Our aim was to
evaluate the MSU culture in symptomatic patients and asymptomatic controls and
assess its performance using both culture and molecular approaches with and without
specimen enrichment.

MATERIALS AND METHODS
Subject recruitment and clinical assessment. This study obtained ethical approval from the East

London & the City Research Ethics Committee, London, United Kingdom. Adult men and women aged
�18 years with LUTS were eligible for study inclusion. Pregnant subjects were not included in the study.
Since urine cultures are relied upon for diagnosis at initial presentation and during relapse, two separate
symptomatic patient groups were recruited and assessed. Patients attending their first appointment at
the Whittington Hospital Lower Urinary Tract Symptoms (LUTS) Clinic (referred to in this study as “new
patients”), who were not on antibiotic treatment and who had not taken antibiotics in the preceding 4
weeks, were evaluated by the clinician present and inducted into the first patient group. Patients
attending a follow-up consultation with symptomatic recurrence, relapse, or no response to initial
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antimicrobial treatment (referred to as “relapsed patients”) were identified following clinical assessment
to form the second patient group. Asymptomatic controls aged �18 years of either sex who had no
urological complications and who were not on antibiotic treatment were recruited from departmental
staff, students, and the general population. All patients and controls provided written consent prior to
study inclusion. Figure 1 presents a work flow of all experimental procedures conducted on each subject.
Clinicians overseeing the care of new and relapsed patients were blind to all urinalysis results (i.e., urinary
dipstick, microscopy, and MSU culture test results). For all downstream analyses, the culture plates were
coded with a four-digit study number and processed separately in large batches. The data for each
technique were inputted separately, and comparisons did not take place until all of the data had been
entered and the code broken.

Symptoms of urgency urinary incontinence (UUI), voiding dysfunction, pain, and stress urinary
incontinence (SUI) were recorded using a validated questionnaire with questions requiring a yes-or-no
response (43). The context-related symptoms were summed within each of the four symptom groups.
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(n = 33)
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(n = 30)
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(n = 29)

MIDSTREAM URINE
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CLINIC URINALYSIS
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(Leukocyte esterase, 
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Urinary microscopy
(Leukocytes)

CULTURE ANALYSIS

MICROBIAL IDENTIFICATION
MALDI-TOF MS

(Direct colony & ethanol formic 
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SEQUENCING

Phenol chloroform 
isoamyl & bead 

beating extraction

HOSPITAL MSU 
CULTURE

Reported as:

>105 cfu/ml (positive)
OR

Mixed growth of n
types of organisms 

(contamination)
OR

No significant growth 
(negative)

SYMPTOMATIC ASSESSMENT

Urgency urinary incontinence, voiding, pain and stress urinary incontinence symptoms

OBJECTIVE 2: Comparison of MSU culture with alternative methods for bacterial enrichment

MSU culture
(1 µl)

Urine culture
(50 µl)

Sediment culture
(30 ml)

FIG 1 Experimental work flow of the study. Abbreviation: MALDI-TOF MS, matrix-assisted laser desorption ioniza-
tion–time of flight mass spectrometry.
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Patient and control urine specimens were obtained using the clean-catch MSU method and anonymized
with a four-digit study number. Subjects were carefully instructed in the collection technique. Each urine
specimen was analyzed using urinary dipsticks and an automated Clinitek Status analyzer (Siemens
Healthcare, Germany) for leukocyte esterase and nitrites. Microscopic leukocyte counts were determined
using a Neubauer counting chamber, loaded with 10 �l of fresh urine. Each prepared specimen was
examined by microscopy (magnification, �200) using an Olympus CX41 light microscope (Olympus, UK).

National routine diagnostic screening. An aliquot of each MSU specimen was submitted to the
Whittington Hospital Microbiology Laboratory, London, United Kingdom, for routine culture. Urine
specimens were stored at 4°C until they were transported to the processing laboratory. These samples
took approximately 60 min to arrive and were cultured either immediately on the same day or on the
next day following overnight storage at 4°C, which reflected usual practice. The protocol involved
inoculating ChromID CPS (now ChromID CPS Elite) chromogenic culture medium (bioMérieux, France)
with 1 �l of uncentrifuged urine, which was then placed in an ordinary incubator at 37°C. Microbial
colonies were identified using the manufacturer’s color criteria. A count of �105 CFU/ml for one
organism was interpreted as a significant result. Cultures with a colony count below this threshold were
reported as “no significant growth.” MSU cultures with more than one organism were reported as “mixed
growth of n types of organisms.”

Extended culture-based analysis. Urine samples were stored at 4°C for 0.5 to 4.0 h before
transportation to the research laboratory (University College London, London, UK), where they were
processed immediately. An identical MSU culture was performed on an aliquot of the same urine
specimen. Simultaneously with this culture, 50 �l of uncentrifuged urine was plated on chromogenic
agar. From the remaining aliquots of each specimen, 30 ml was centrifuged at 1,400 � g for 10 min. The
sediment was resuspended in 400 �l of sterilized phosphate-buffered saline (PBS) solution (Life Tech-
nologies, UK). Tenfold serial dilutions were performed using PBS to reveal the presence of morpholog-
ically small-sized colonies where the growth of other organisms dominated. All cultures were incubated
aerobically at 37°C for 18 to 24 h.

Identification of cultured isolates. Microbial isolates were identified using matrix-assisted laser
desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and a MicroFlex LT mass
spectrometer (Bruker Daltonics, USA). In the first instance, the direct colony plate method was employed
for identification, and each cultured isolate was inoculated twice onto the target plate. The target plate
was left to air dry before applying 1 �l of matrix solution (Bruker Daltonics, USA) consisting of
alpha-cyano-4-hydroxycinnamic acid dissolved in 50% acetonitrile and 2.5% trifluoroacetic acid. The
air-dried target plate was inserted into the mass spectrometer, and time was given for the high vacuum
to be restored. Using the MALDI Biotyper (version 3.0) software program (Bruker Daltonics, USA), the
isolate identifiers were recorded onto the program and the Bruker Taxonomy library was selected for the
analysis. In the event of an unsuccessful identification, an ethanol-formic acid extraction protocol was
adopted to assist with microbial cell wall disruption and release of ribosomal proteins (44). A heavy
suspension of the unidentified isolate was made in 300 �l of sterile distilled water. Following the addition
of the absolute ethanol (900 �l) microbial suspension, samples were spun down at 20,000 � g for 2 min.
The resulting ethanol was discarded and the centrifugation step was repeated. The residual ethanol was
removed, and the resulting pellet was left to air dry at room temperature for 5 min. The deposit was
resuspended in 70% formic acid (20 to 50 �l). An equal volume of acetonitrile was added to this mixture,
followed by centrifugation at 20,000 � g for 2 min. The supernatant was then applied onto a sterilized
target plate twice and left to air dry, before resuming with the direct approach protocol from the point
of adding matrix solution to each dried spot.

16S rRNA gene sequencing of urine. Prior to extraction, urine samples for DNA sequencing were
stored at �80°C. Genomic DNA was extracted from each specimen using an approach adapted from a
previously reported phenol-chloroform-isoamyl alcohol and bead-beating method (45). Specimens were
spun down, using a precooled centrifuge, at 18,000 � g for 5 min at 4°C. The cell pellets were
resuspended in extraction buffer (500 �l) consisting of 120 mM potassium phosphate (K2PO4) buffer (pH
8.0) with 5% cetyltrimethylammonium bromide (CTAB) (Sigma-Aldrich, USA) in 0.7 M NaCl. The specimen
tubes were vortexed, and the contents were transferred into presterilized 2-ml tubes containing
zirconia/silica beads (diameter, 0.1 mm). Phenol-chloroform-isoamyl alcohol (PCI; 25:24:1; 500 �l; Invit-
rogen, USA) was added to each sample, and the mixture was kept on ice. The samples were homoge-
nized using a RiboLyser apparatus (Hybaid, Germany) for 30 s at 5.5 m/s and spun down at 18,000 � g
for 15 min. Chloroform-isoamyl alcohol (CI; Invitrogen, USA) was added at a 1:1 ratio to the extracted
layer of DNA supernatant. After centrifugation at 18,000 � g for 2 min at 4°C, the DNA of each sample
was precipitated by adding 30% polyethylene glycol 8000 (PEG 8000; Sigma-Aldrich, USA) at a 2:1 ratio.

PCR was performed to amplify the V5-V7 hypervariable regions of the 16S rRNA gene using the barcoded
primers 785F (5=-GGATTAGATACCCBRGTAGTC-3=) and 1175R (5=-ACGTCRTCCCCDCCTTCCTC-3=) (see Table S1
in the supplemental material) (Sigma, UK). Each 25-�l sample reaction mixture contained 0.125 �l Moltaq
DNA polymerase (0.025 �M; Molzym, VH Bio Ltd., UK), 2.5 �l of Molzym buffer (1�) (Molzym, VH Bio Ltd.,
UK), 0.5 mM MgCl2, 0.2 mM deoxynucleoside triphosphates (Bioline, UK), 1 �l of the forward and reverse
primers (0.4 �M), and PCR water (Molzym, VH Bio Ltd., UK). The PCR stages involved an initial denatur-
ation step at 95°C for 5 min and subsequent amplification for 30 cycles at 94°C for 30 s (denaturation),
54°C for 40 s (annealing), and 72°C for 60 s (elongation), followed by 72°C for 10 min and a final hold of
4°C. All sample reactions were performed in duplex. The DNA concentrations were determined using a
Qubit high-sensitivity DNA assay kit (Life Technologies, UK) and a Qubit (version 2.0) fluorometer (Life
Technologies, UK). The amplicons were purified using Agencourt AMPure XP-PCR magnetic particles
(Beckman Coulter, USA) and combined in equimolar ratios using elution buffer (Qiagen, UK) to generate
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three pooled DNA libraries (libraries 1, 2, and 3) for pyrosequencing on a MiSeq desktop sequencer
(Illumina Inc., USA), using the version 2 reagent kit (Illumina Inc., USA). Since library 3 contained samples
with the lowest DNA yields, the purification step was repeated for this pooled library in an attempt to
improve on the final DNA concentration.

Our own customized and commercial mock communities were incorporated into DNA libraries 1 and
2 to verify the DNA sequencing protocol (Fig. S1).

Statistical analysis. All descriptive and inferential statistics were generated using SPSS (version 25.0)
software (IBM, USA). Demographic data, age, gender, 24-h urinary frequency, nocturia, validated LUTS
scores, and log-transformed leukocyte counts were compared across the groups using nonparametric
tests. In all cases except age, homogeneity of variance was not shown, so Mood’s median test was used
instead of the Kruskal-Wallis test. Hospital MSU culture data (with the outcomes “negative,” “mixed
growth,” and “positive culture”) were compared across the study groups using the chi-square test or
Fisher’s exact test.

The 16S rRNA data were analyzed using QIIME (Quantitative Insights into Microbial Ecology, version
1.8; qiime.org) software (46). The raw reads were demultiplexed and assigned to samples using barcoded
sequences. After demultiplexing, the paired-end data were joined to obtain a single FASTQ file for each
sample. These sequences were then clustered into operational taxonomic units (OTUs) using an open-
reference OTU picking strategy. The OTU clusters were assigned to the Greengenes Reference Database
(http://greengenes.lbl.gov) (47) based on 97% sequence similarity (46). OTUs were then filtered to
remove the chimeric sequences (UCHIME) (48), and taxonomy was assigned using the Ribosomal
Database Project (RDP) classifier (49). Core diversity analyses based on study group and sample type were
performed.

RESULTS
Clinical characteristics of the patient cohorts providing samples. As previous

work suggested that the gold standard MSU culture was not an optimal diagnostic tool
to detect infection in LUTS patients, we set out to directly compare it with two
alternative culture techniques. We collected clean-catch MSU specimens from 33
untreated new patients (mean age, 48.7 years; standard deviation [SD], 16.5 years) and
30 patients experiencing a symptomatic relapse (mean age, 47.8 years; SD, 16.5 years).
Since urine cultures are relied upon for diagnosis at initial presentation and during
relapse, these two patient groups were recruited and assessed separately. For compar-
ison, we also recruited 29 asymptomatic controls (mean age, 40.7 years; SD, 15.7 years).
Table 1 details the clinical characteristics of each study cohort. Statistically similar age
distributions were observed for all three study groups (�2 � 4.4, degrees of freedom
[df] � 2, P � 0.113). The majority of patients were female, which reflected the well-
known demographics of UTI.

First, we inspected the differences between the patient and control cohorts. None
of the controls reported any LUTS, thus differing significantly from both patient cohorts
studied. A review of the symptomatic history of new patients (n � 30, the duration of
symptoms was not recorded for three patients) revealed that 1 patient (3.0%) had
experienced symptoms for �1 year, 16 patients (48.5%) had experienced symptoms for
1 to 4 years, 9 patients (27.3%) had experienced symptoms for 5 to 10 years, and 4
patients (12.1%) had experienced symptoms for �10 years. The median number of
daytime and nighttime urinary episodes differed across the three groups, with pairwise
post hoc comparisons identifying a higher median frequency for new patients and
relapsed patients than for the controls (Table 1). We proceeded to examine the
symptomatic differences between new and relapsed patients. Comparisons of symp-
tom presentation between patient groups revealed that the number of new patients
reporting UUI and SUI symptoms was significantly higher than that of relapsed patients.
The proportions of new and relapsed patients that reported voiding symptoms and
pain symptoms were statistically similar (Table 1).

In addition to observing the presence and absence of symptoms, we also calculated
a symptom score to determine the magnitude of LUTS within each patient group. The
number of symptoms was summed for each of the four categories to provide a score
and compared across the groups using Mood’s median test. The median symptom
scores for UUI, SUI, voiding, and pain symptom categories differed across the three
study groups. Post hoc analysis revealed higher median UUI, SUI, and voiding scores for
new patients than relapsed patients. However, both patient cohorts had similar pain
scores and total symptom scores (Table 1). Statistical comparison of the respective
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frequencies for each assessed LUTS between new and relapsed patient groups are
provided within the supplemental material (Table S2).

Urinary microscopy and dipstick analysis. We performed urinary leukocyte counts
to determine whether patient urine manifested evidence of infection independent of
the bacterial assessment. As shown in Table 2, there was a significant difference in the
log10 leukocyte counts among the three study groups (�2 � 6.2, df � 2, P � 0.05). Post
hoc analysis using Bonferroni’s correction identified significant differences between
controls and new patients and between controls and relapsed patients. No significant
difference in the log10 leukocyte counts was identified between new patients and
relapsed patients.

TABLE 1 Clinical characteristics of each study groupe

Characteristic

Value(s) for:

P valueNew patients (n � 33) Relapsed patients (n � 30) Controls (n � 29)

Demographics
No. (%) patients by sex

Female 32 (97.0) 27 (90.0) 26 (89.7)
Male 1 (3.0) 3 (10.0) 3 (10.3)

Age (yr)
Mean (SD) 48.7 (16.5) 47.8 (16.5) 40.7 (15.7) 0.113a

Range (yr) 18–77 24–78 20–76

Urinary patterns (24 h)
Frequency <0.05b

Mean 8.8 8.5 5.9
SD 5.1 3.7 1.5
Median (95% CI) 6.5 (5.5–10.5) 8.0 (6.5–9.5) 5.5 (5.5–6.5)

Nocturia <0.05b

Mean 1.7 1.6 0.3
SD 1.7 1.9 0.4
Median (95% CI) 1.5 (0.5–2.0) 1.0 (0.0–2.5) 0.0 (0.0–0.5)

No. (%) of patients with the following symptomsd:
UUI 25 (75.8) 12 (40.0) 0 (0.0) <0.05c

Pain 24 (72.7) 26 (86.7) 0 (0.0) 0.172c

Voiding 29 (87.9) 21 (70.0) 0 (0.0) 0.080c

SUI 17 (51.5) 2 (6.7) 0 (0.0) <0.001c

No. of symptoms
UUI symptoms <0.001b

Mean 3.4 1.4 0.0
SD 2.9 2.2 0.0
Median (95% CI) 3.0 (1.0–4.0) 0.0 (0.0–2.0) 0.0 (0.0–0.0)

Pain symptoms <0.001b

Mean 3.1 3.6 0.0
SD 2.7 2.9 0.0
Median (95% CI) 3.0 (1.0-4.0) 3.0 (2.0–4.0) 0.0 (0.0–0.0)

Voiding symptoms <0.001b

Mean 4.1 3.6 0.0
SD 2.8 2.8 0.0
Median (95% CI) 4.0 (2.0–6.0) 4.0 (2.0–5.0) 0.0 (0.0–0.0)

SUI symptoms <0.001b

Mean 0.7 0.3 0.0
SD 0.8 1.0 0.0
Median (95% CI) 1.0 (0.0–1.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)

Total symptom score <0.001b

Mean 11.3 8.9 0.0
SD 5.9 5.2 0.0
Median (95% CI) 12.0 (9.0–14.0) 9.0 (6.0–11.0) 0.0 (0.0–0.0)

aKruskal-Wallis test.
bMood’s median test.
cChi-square test.
dPercentages are those within each group. Statistical comparisons are between the new patient and relapsed patient groups only. Symptoms were ascertained from a
yes-or-no response to questions on a questionnaire.

eAbbreviations: CI, confidence interval; SUI, stress urinary incontinence; UUI, urgency urinary incontinence. Statistically significant differences are indicated by bold
font.
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Analysis of the urinary dipstick results showed that 13 (39.4%) new patients, 11
(36.7%) relapsed patients, and 6 (20.7%) controls tested positive for leukocyte esterase,
with only 1 (3.0%) new patient testing positive for urinary nitrite. The results were
unsurprising, as previous work suggested that the dipstick is not sensitive enough to
diagnose infection (leukocyte esterase � 46 to 66%, nitrite � 6 to 18%), particularly in
patients with nonacute symptoms of UTI (50–52).

Although LUTS can be driven by noninfectious causes, the association between
patient symptoms and leukocyte recruitment demonstrates urinary tract inflammation.
This is critical if an infective etiology for LUTS is being considered.

Hospital MSU culture results. Next, we determined the relationship between
patient symptoms and their standard MSU results. Table 2 summarizes the data, in
which the majority of new patients, relapsed patients, and controls were reported to
have a negative MSU culture. Six (9.5%) symptomatic patients showed a positive culture
result, as did two (6.9%) controls. A comparison of the hospital MSU culture outcomes
revealed that the MSU culture was unable to discriminate between the three study
groups (�2 � 1.7, df � 4, P � 0.787). The hospital reports showed that cultures for all
four new patients with positive cultures grew E. coli, whereas Enterococcus (n � 1) and
a coliform belonging to the Klebsiella/Enterobacter/Serratia group (n � 1) were reported
for the positive MSU cultures for relapse patients. Proteus (n � 1) and Streptococcus
agalactiae (n � 1) were cultivated from the controls.

Further pairwise statistical comparisons of the number of positive and negative MSU
cultures using Fisher’s exact test were performed. For this particular analysis, cultures
with mixed growth and no significant growth were under the category of “negative,”
as both results are traditionally dismissed as insignificant. This analysis indicated that
even with the exclusion of the relapsed group, the MSU culture was still unable to
discriminate between asymptomatic controls and new patients (�2 � 0.539, df � 1,
P � 0.674). The same analysis for relapsed patients and controls also showed no
significant difference (�2 � 0.0, df � 1, P � 1.0). Likewise, comparison of new patients
and relapsed patients showed no difference (�2 � 0.539, df � 1, P � 0.674). These
results further highlight the inability of the MSU culture to discriminate between the
three study groups.

Since the hospital laboratory did not report the microbial composites of mixed-
growth and negative MSU cultures, we inspected the 1-�l-loop MSU cultures that were
replicated in our own research laboratories, subjecting colonies grown on chromogenic

TABLE 2 Descriptive measures of in-house (clinic) microscopic leukocyte counts and reported routine hospital MSU culture results for
each study groupa

Diagnostic test

Valued for:

New patients (n � 33) Relapsed patients (n � 30) Controls (n � 29)

Clinic microscopic leukocyte count (log10 no. of wbc/�l)
Mean � SD (95% CI) 1.7 � 0.9 (0.3–1.0) 0.7 � 1.0 (0.4–1.1) 0.2 � 0.4 (0.1–0.3)
Median (95% CI) 0.3 (0.0–0.3) 0.5 (0.0–0.8) 0.0 (0.0–0.8)

Frequency (% of group)
0 wbc/�l 15 (45.5) 12 (40.0) 20 (69.0)
1–9 wbc/�l 11 (33.3) 11 (36.7) 8 (27.6)
�10 wbc/�l 7 (21.2) 7 (23.3) 1 (3.4)

No. (%) of patients with the following hospital midstream
urine culture findings:

No significant growthb 21 (63.6) 23 (76.7) 22 (75.9)
Mixed growthc of two organisms 3 (9.1) 2 (6.7) 4 (13.8)
Mixed growth of three organisms 4 (12.1) 2 (6.7) 1 (3.4)
�105 CFU/ml of one organism 4 (12.1) 2 (6.7) 2 (6.9)

aAbbreviations: wbc, white blood cell; CI, confidence interval.
bLess than 105 organisms/ml or the growth of �2 organisms at �100 colonies.
cGreater than 100 colonies.
dMidstream urine culture results were untraceable for new patients (n � 1) and relapsed patients (n � 1).
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agar to MALDI-TOF MS analysis for identification. The pooled percentage frequencies of
organisms identified from the polymicrobial MSU cultures of new patients (n � 7),
relapsed patients (n � 4), and controls (n � 5) are shown in Fig. S2. No colonies on the
research laboratory MSU culture were observed for 17 (58.6%) controls, 12 (36.4%) new
patients, and 13 (43.3%) relapsed patients. While 19 isolates were grown from 12
asymptomatic control MSU cultures, 39 isolates were identified from 21 new patient
cultures and 25 isolates were grown from 17 relapsed patient cultures. With this
replicated diagnostic culture, Enterococcus and Escherichia were predominantly cul-
tured from new patients and relapsed patients, whereas Streptococcus and Staphylo-
coccus were most frequently isolated from the controls. Within this sample size, Fisher’s
exact test confirmed a significantly higher frequency of Escherichia (�2 � 5.4, df � 1,
P � 0.05) and Enterococcus (�2 � 8.9, df � 1, P � 0.05) isolated from cultures for new
patients than from those for the controls. The relapsing patient group was also
observed to produce a significantly higher number of Enterococcus isolates than the
control group (�2 � 6.4, df � 1, P � 0.05). In summary, the quantitative MSU had no
discriminatory diagnostic power, but the microbial communities isolated in the process
showed some differences between the patients and the controls.

Comparison of culture techniques. We compared the discriminatory power of the
hospital MSU culture with that of other methods, specifically, plating a larger volume
of uncentrifuged urine and plating samples enriched by centrifugation. As shown in
Fig. 2, microbial growth was categorized as “no growth,” “one isolate,” and “two or
more isolates” for comparison. Of note, as the amount of bacterial input increased (from
1 �l supernatant to 50 �l supernatant of centrifuged sediment), regardless of the
patient group, more polymicrobial growths were revealed. Using this alternative cate-
gorization, the MSU culture replicated within our research laboratories was still unable
to discriminate between the three study groups (�2 � 4.6, df � 4, P � 0.326). Addi-
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tionally, culturing more supernatant (50 �l) or the sediment did not improve differen-
tiation across the three cohorts (�2 � 11.7, df � 4, P � 0.02 [no significant differences
were identified with post hoc analysis] and �2 � 8.4, df � 4, P � 0.078, respectively),
likely because, as we and others have reported, healthy bladders also harbor polymi-
crobial growths. These results suggest that quantitative microbiology is not an ade-
quate diagnostic tool for patients experiencing LUTS.

Patient and control urinary bacterial communities. Figure 3 illustrates pairwise
study group comparisons of the genera and the respective percentage frequencies
identified on the MSU culture (reproduced in-house), 50-�l urine unspun culture, and
30-ml sediment cultures (see Fig. S3 for the species-level characterization across study
groups). As seen with the MSU culture results, differences were noted among the
various groups on sediment culture. While 15 different genera were grown from
symptomatic patient sediment cultures (n � 13 from new patients, n � 11 from
relapsed patients), 8 genera were isolated from control sediment cultures. Seven
genera were shared by both patient and control groups; these were Corynebacterium,
Enterococcus, Escherichia, Klebsiella, Proteus, Staphylococcus, and Streptococcus. Organ-
isms that were cultivated from patient samples but that were not isolated from control
specimens were Candida, Citrobacter, Enterobacter, Lactobacillus, Leclercia, Morganella,
and Pseudomonas. In both symptomatic patient groups, Enterococcus, Staphylococcus,
and Escherichia were the most abundant organisms. In the asymptomatic controls,

FIG 3 Pairwise comparisons of the percent frequencies of organisms identified from the urine specimens of new patients (n � 33), relapsed patients (n � 30),
and controls (n � 29) using three different culture techniques: routine midstream urine (MSU) culture, unspun culture of a 50-�l sample volume, and a spun
sediment culture of a 30-ml sample volume. (A) New patients versus controls; (B) relapsed patients versus asymptomatic controls; (C) new patients versus
relapsed patients. Data are presented as the percentages of the total number of isolates identified.
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Staphylococcus, Enterococcus, and Streptococcus were the most frequently isolated.
However, Staphylococcus (�2 � 3.7, df � 1, P � 0.064) and Streptococcus (�2 � 2.4, df �

1, P � 0.2) were present at statistically similar frequencies in patients. Fisher’s exact test
revealed a significantly higher frequency of Enterococcus isolates cultivated from the
new patients than from the asymptomatic controls (�2 � 6.2, df � 1, P � 0.05). No
significant difference was observed with any other genus between new patients and
controls. Comparison of the frequencies between the control and relapsed patient
groups using Fisher’s exact test revealed a significantly higher frequency of Staphylo-
coccus (�2 � 6.9, df � 1, P � 0.05) and Streptococcus (�2 � 7.0, df � 1, P � 0.05) in
controls than in relapsed patients. No significant differences in the number of genera
were identified between the new and the relapsed patient groups.

We went on to analyze urinary bacteria in unprocessed urine (1 ml, uncentrifuged)
versus 30 ml of urine enriched by centrifugation in the new patient versus control study
groups using next-generation sequencing based on the rRNA gene. The percentage of
identified sequencing reads or reads that passed filter (PF) (percentage of bases with a
quality score of �30 [%Q�30]) for loaded DNA libraries 1, 2, and 3 were (i) 77.9%
(10,122,606 PF reads), (ii) 80.0% (14,910,030 PF reads), and (iii) 68.3% (10,129,563 PF
reads), respectively. Bacterial DNA was detected in the urine samples from 32 (97.0%)
of 33 recruited new patients (30 uncentrifuged urine samples and 30 centrifuged
samples) and 26 (89.7%) of 29 control patients (22 uncentrifuged samples and 23
centrifuged samples). Samples that yielded low DNA concentrations were salvaged
with an extended protocol. Beyond this, bacterial DNA was undetectable in one new
patient and three controls.

Figure 4 presents the relative abundance of the 20 most abundant taxa identified
from the uncentrifuged and centrifuged urine samples for new patients and controls
(see Table S3 for hierarchical classifications). The 20 most abundant taxa made up
81.0% of new patient sequences and 79.0% of control sequences. The most abundant
taxa of the uncentrifuged urinary bacterial community of new patients from highest to
lowest were Enterobacteriaceae (32.3%), followed by Lactobacillus (15.5%), Streptococcus
(8.7%), and Enterococcus (8.0%), whereas the most abundant taxa of the new patient
urinary microbial community represented by centrifuged samples were Enterobacteri-
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aceae (26.9%), Enterococcus (12.8%), Psychrobacter (9.3%), and Streptococcus (8.3%). The
most abundant taxa identified from uncentrifuged control samples were Streptococcus
(21.5%), Enterobacteriaceae (20.1%), Lactobacillus (11.6%), and Gardnerella (7.5%). In
contrast, the most abundant taxa identified from centrifuged control urine samples
were Streptococcus (15.8%), Staphylococcus (14.8%), Enterobacteriaceae (11.5%), and
Lactobacillus (9.2%). From these data, a decrease in the overall abundance of Lactoba-
cillus (15.5% uncentrifuged, 7.8% centrifuged) and an increase in the abundance of
Enterococcus (8.0% uncentrifuged, 12.8% centrifuged) were observed with the new
patient centrifuged urinary community compared with the abundances observed with
the new patient uncentrifuged community. On the other hand, the control centrifuged
community showed an increase in the overall abundance of Staphylococcus (1.9%
uncentrifuged, 14.8% centrifuged) compared with that in the control uncentrifuged
urinary community. Centrifugation of samples therefore has a strong influence on
species recovery. Moreover, this approach also highlights differences in microbial
composition between patients and controls (similar to what was seen in our sediment
culture data [Fig. 3]).

Table 3 presents the richness and diversity measures of new patient and control
urinary tract bacterial communities. Richness was assessed by comparing the mean
number of OTUs and mean chao1 estimator values using Welch’s two-sample t test.
Diversity was assessed by comparing the mean Shannon index and mean inverse
Simpson’s index using Welch’s two-sample t test. Pairwise comparisons indicated no
significant difference in the mean number of observed OTUs and the chao1 estimator
between patient and control uncentrifuged samples, centrifuged samples, and both
uncentrifuged and centrifuged samples combined. Additionally, no significant differ-
ence in the mean Shannon’s index and inverse Simpson’s index was observed between
the patient and the control communities.

Overall, our analyses show a clear difference between patients with LUTS and
controls, namely, that the Enterobacteriaceae was the most abundant taxon associated
with disease and that Streptococcus was the most abundant taxon associated with
health. However, it is clear that the method of sample processing enriches for different
taxa. Specifically, centrifugation enriched Enterococcus in patient samples and Staphy-
lococcus in control samples.

Comparison of sediment culture and sequencing approaches. As shown in Fig.
5, color-coded matrices consisting of all cultured bacterial taxa that were detected by
centrifuged sediment culture and 16S rRNA gene sequencing were generated for new

TABLE 3 Richness and diversity measures determined for new patients and controls

Metric

New patients Controls

Unspun (n � 30) Spun (n � 30) Both (n � 60) Unspun (n � 22) Spun (n � 23) Both (n � 45)

No. of OTUs
Mean (SD) 237.5 (122.4) 243.5 (145.1) 247.0 (137.7) 271.8 (271.8) 264.7 (235.2) 276.2 (214.0)
Median 251.0 224.0 247.5 247.0 217.5 230
Minimum-maximum 4–510 7–606 4–619 10–639 6–1,016 6–1,016

Chao1 estimator
Mean (SD) 310.2 (147.7) 317.0 (159.7) 333.3 (164.4) 341.6 (205.0) 336.9 (253.0) 362.5 (255.9)
Median 340.9 283.4 334.2 315.1 295.6 321.1
Minimum-maximum 7–570.5 7.2–706.0 7–740.6 20.5–780.2 7.5–1,085.7 7.5–1,193.4

Shannon’s index
Mean (SD) 1.6 (0.8) 1.7 (0.9) 1.7 (0.9) 1.8 (0.8) 1.7 (0.8) 1.7 (0.8)
Median 1.5 1.8 1.7 1.9 1.7 1.8
Minimum-maximum 0.3–3.3 0.5–3.3 0.3–3.3 0.4–3.2 0.3–3.4 0.3–3.4

Inverse Simpson’s index
Mean (SD) 3.4 (2.8) 4.0 (3.2) 3.7 (3.0) 3.9 (2.6) 3.9 (3.5) 3.9 (3.0)
Median 2.6 3.0 2.7 3.3 2.5 3.1
Minimum-maximum 1.1–14.6 1.2–13.2 1.1–14.6 1.1–11.6 1.1–17.0 1.1–17.0

Failure of Midstream Urine Culture To Detect Infection Journal of Clinical Microbiology

March 2019 Volume 57 Issue 3 e01452-18 jcm.asm.org 11

 on M
ay 28, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://jcm.asm.org
http://jcm.asm.org/


A
ci
ne
to
ba
ct
er

C
itr
ob
ac
te
r

En
te
ro
ba
ct
er

Es
ch
er
ic
hi
a

Le
cl
er
ci
a

K
le
bs
ie
lla

M
or
ga
ne
lla

Pr
ot
eu
s

Ps
eu
do
m
on
as

St
ap
hy
lo
co
cc
us

St
re
pt
oc
oc
cu
s

En
te
ro
co
cc
us

La
ct
ob
ac
ill
us

C
or
yn
eb
ac
te
riu
m

NL1
NL2
NL3
NL4
NL5
NL6
NL7
NL8
NL9
NL10
NL11
NL12
NL13
NL14
NL15
NL16
NL17
NL18
NL19
NL20
NL21
NL22
NL23
NL24
NL25
NL26
NL27
NL28
NL29
NL30
NL31
NL32
NL33

AC1
AC2
AC3
AC4
AC5
AC6
AC7
AC8
AC9
AC10
AC11
AC12
AC13
AC14
AC16
AC17
AC18
AC19
AC20
AC21
AC22
AC23
AC24
AC25
AC26
AC27
AC28
AC29
AC30

FIG 5 Comparison of genus-level taxa detected by sediment culture and 16S rRNA gene sequencing for
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patient centrifuged samples and control centrifuged urine samples. Among all centri-
fuged samples, 37 (59.7%) of 62 contained bacteria that were detected by both culture
and sequencing methods. Three (9.1%) patient and four (13.8%) control centrifuged
samples were sequence negative but culture positive. Two (6.1%) patient and three
(10.3%) centrifuged control samples were culture negative but sequence positive.
Enterococcus was the most frequently identified bacterium from both the sediment
culture and sequencing methods. This genus was identified from 22 (66.7%) new
patient samples. Staphylococcus was the most frequently identified bacterium by both
methods from control samples. This genus was identified from 11 (37.9%) centrifuged
control samples. Escherichia demonstrated the most cases (n � 14) in which it was
detected by sediment culture but remained undetected by sequencing. One new
patient sample (NL5) grew Leclercia on sediment culture, but this particular taxon was
not detected by sequencing. This analysis shows that the sequencing method is vastly
superior to culture techniques for bacterial detection and that culture methods do not
recover a large number of bacterial species, including recognized uropathogens.

DISCUSSION

A recent commentary in the Journal of Clinical Microbiology emphasized how the
diagnostic landscape for UTI is becoming increasingly challenging in the face of
alternatives to standard culture (53). The primary purpose of this study was to evaluate
the routine MSU culture performed in UK diagnostic laboratories. This evaluation is
crucial, since culture is considered the gold standard diagnostic test for confirming or
excluding UTI in symptomatic patients, although evidence suggests that it may be
deficient (6, 7). In the United Kingdom, symptom-based empirical antibiotic treatment
for acute UTI is recommended (54). The evidence suggests that the diagnostic accuracy
of acute symptoms in previously asymptomatic subjects outperforms routine culture-
based diagnosis (55). In contrast, relapsing patients with LUTS are not as straightfor-
ward and may demonstrate a distinct microbiota under the influence of prescribed
antimicrobials. The cohort of relapsing patients was consequently excluded from
genomic analysis to aid in clarifying the differences in urinary microbial communities
between first-visit patients with LUTS and health. Despite testing negative on routine
MSU culture, such patients have been shown to harbor uropathogens when their urine
is examined with more sensitive methods (13, 28, 29, 36, 42). Furthermore, symptomatic
resolution has been observed following antibiotic treatment in this type of patient (56).
Therefore, we questioned whether current routine MSU cultures with a �105-CFU/ml
threshold were sensitive enough to detect UTI in patients presenting with LUTS.

Following a symptomatic assessment of LUTS patients, we scrutinized the microbial
composition of each patient and control MSU culture and compared these results to
the results reported by the hospital diagnostic laboratory, as well as to the organisms
identified using other alternative culture and molecular methods. Crucially, we found
that the routine MSU culture results reported by the diagnostic laboratory failed to
discriminate between the patient and control groups. Less than 10% of patients with
a clinically suspected UTI had a positive MSU culture, with only 4 of 33 new patient
cultures producing monomicrobial growth at 105 CFU/ml. In contrast, bacterial DNA
sequencing revealed bacteria, including recognized uropathogens, in 32 new patients,
including symptomatic patients who were reported to have a negative MSU culture. In
this study, 16S rRNA gene sequencing was not applied as a diagnostic test, but rather,
it was used to determine whether recognized uropathogens were missed with routine
culture techniques and to characterize symptomatic and healthy urinary bacterial
communities.

Our second key finding was that MSU culture grossly underestimated the amount of
polymicrobial growth in patient urine. For example, 36.4% of new patient urine samples
grew mixed growths; this number rose to 63.6% when more uncentrifuged urine was
plated and to 84.8% in the case of centrifuged sediment cultures. Although it is now
recognized that even healthy urine contains bacteria (41), which certainly complicates
the diagnostic landscape, our enhanced culture and genomic analyses showed a clear
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difference between the taxa isolated from patients and those isolated from controls.
Specifically, Enterobacteriaceae was the dominant family in new patients, whereas
Streptococcus was foremost in the asymptomatic controls. These findings, taken to-
gether with other reports, suggest that automatically discounting polymicrobial cul-
tures may dismiss symptomatic patients in need of treatment.

There is, of course, a formal possibility that the mixed growths reported here could
simply be the result of contamination by skin bacteria during sample collection. In the
United Kingdom, this possibility is addressed by the UK Standards for Microbiology
Investigations, which recommends the counting of squamous epithelial cells in the
urine as a marker for contamination. However, their utility for this purpose is compli-
cated by the fact that exfoliation of urothelial cells as an innate immune response to UTI
is a recognized phenomenon which is widely used as a surrogate marker of infection
in both mice and humans (14, 21, 57–65). Indeed, using antibodies against uroplakin III,
a highly specific marker for cells originating from the urinary tract, we previously
demonstrated that the majority of epithelial cells shed in the urine of symptomatic
patients originate from the bladder (14). Finally, were the presence of mixed growths
merely the result of contamination, we would not expect their presence to cluster
statistically with symptoms, as they did in this study.

Of note, some UTI-associated organisms were shared at the culture level by symp-
tomatic and asymptomatic patients: Corynebacterium, Enterococcus, Escherichia, Kleb-
siella, Proteus, Staphylococcus, and Streptococcus. The presence of uropathogenic spe-
cies in controls could reflect a lack of the appropriate virulence factor expression (11)
or immune differences in the host (e.g., see reference 66). However, similar community
profiles in the bladder have been seen by others (13, 28, 29, 42, 67), which makes it
likely that the ability to be pathogenic is highly context dependent and could therefore
be influenced by the presence of other species. Such pathobiont relationships are
common in the microbial world (68) and in the case of UTI have been reported in mixed
infections with E. coli and Enterococcus (25, 26). Furthermore, voided urine passes
through the urethra as well as the bladder; the microbial ecology of the urethra is
poorly understood in the case of UTI (69–71), and further studies are needed to
understand what role such urethral communities might play.

Further afield, microbial community inhabitants in adjacent niches, such as the
vagina and perianal region, may also influence what species induce UTI pathophysiol-
ogy. For example, recent work by Gilbert et al. showed that transient exposure to the
vaginal organism Gardnerella vaginalis could induce dysbiosis, reactivating dormant E.
coli in previously infected mouse bladders (64). Other interactions could be protective;
for example, the vaginal commensal Lactobacillus crispatus, which is known to make the
vagina less hospitable to certain Gram-negative perianal uropathogens, may decrease
the instance of recurrent UTI (72, 73). Indeed, our results showing that Lactobacillus is
a dominant organism among the control samples, consistent with reports from other
groups comparing the urine of patients with LUTS with that of asymptomatic controls,
support this notion (28). Further research, including detailed sequence comparisons, is
required to understand the mobility and interspecies effects of the various microbial
inhabitants in the perianal region and the urethra region. This could further our
understanding of the significance of polymicrobial communities in UTI.

Of interest, the process of centrifugation had a major effect on which taxa domi-
nated, enriching Enterococcus in patient samples and Staphylococcus in controls. This is
perhaps unsurprising, given that uropathogens are known to strongly adhere to and,
in some cases, invade urothelial cells (14). These cells are shed into the urine via an
innate immune response that is yet to be fully characterized (63, 74). Therefore, a
significant proportion of bacteria in such specimens—and perhaps those most relevant
for pathophysiology— could be cell associated and not planktonic. The MSU culture
samples a small amount of urine supernatant and does not access the cell-rich
sediment that settles by gravity. Several reports from the Brubaker group also recog-
nized the limitations of standard culture and developed the expanded quantitative
urine culture (EQUC) protocol. This involves inoculating uncentrifuged urine onto a
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broader selection of culture media for optimal species isolation (28, 36, 42). The
approach demonstrated that the routinely performed standard quantitative culture
missed 67% of recognized uropathogens, with the authors suggesting that the method
be used to supplement the standard culture (42). They did not, however, analyze
centrifuged sediment with this protocol.

In addition to factors beyond control, such as the volume of fluid intake before urine
sampling, even the use of a broader selection of culture media has its limitations (31).
The cultured urinary community depends on the types of specimens analyzed, the
techniques employed, the nutrient medium used, the laboratory conditions (e.g., pH,
temperature, O2 concentration), as well as the viability and facultative and fastidious
natures of urinary tract organisms. Such factors can distort the species richness of the
urinary tract community. Additionally, bacteria may exist in the viable but not cultivable
(VBNC) state, also referred to as conditionally viable environmental (CVEC) cells, active
but not cultivable (ABNC) cells, or dormant cells (75). Such species are more reliably
represented by nucleic acid-based approaches.

In their studies, Brubaker and colleagues examined bladder urine specimens (spe-
cifically collected by a transurethral catheter [CSU] or suprapubic aspiration [SPA]) (28,
33, 36, 42). In our study, we used a clean-catch MSU specimen collection technique
for several reasons. The aim of this study was to evaluate the routine MSU culture
technique, which is the primary method in the clinic for collecting a urine sample for
culture. In symptomatic patients, catheterization is potentially an invasive, uncomfort-
able, and painful method of collection that has also been reported to increase the risk
of developing an infection (76). Furthermore, catheterization may bypass organisms
colonizing the urethra, which may represent an early-stage UTI or contribute to the
infection. Hooton et al. discussed this as a possible reason for why a lower threshold is
usually applied to CSU cultures and a higher count is considered for MSU cultures, since
it is unclear if the latter collection method has sampled bacteria from the bladder
and/or the urethral region (27).

Female subjects formed the majority of patients and controls, in line with the
demographics of UTI. Given that a previous study found some differences between the
microbial ecology in male and female bladders (77), it would be interesting to further
explore the effect of sex on symptomatic urinary microbiota.

The lack of a statistical difference between patient and control uncentrifuged
samples was consistent with the findings of other studies (28, 78) and could be
attributed to the small study cohort. However, statistical comparison of all patient
samples (uncentrifuged and centrifuged) to all control samples (uncentrifuged and
centrifuged) using the nonparametric Kruskal-Wallis test did confirm a significantly
higher median number of OTUs in patients than in controls. This suggests that
incorporating centrifuged urine samples may clarify the distinction between patient
and control bacterial community richness.

While region-specific 16S rRNA gene sequencing using the MiSeq platform provided
a less biased representation of the urinary bacterial community, it is important to
acknowledge the limitations of this method. Due to the short-read sequencing ap-
proach used, approximately 30% (approximately 500 nucleotides) of the 16S rRNA gene
was amplified, which makes identification at the genus level possible but reliable
taxonomic assignment of reads at the species level elusive. Our comparison of taxa
identified by culture and 16S rRNA gene sequencing revealed that the sequencing
method was more capable than the centrifuged sediment culture technique of iden-
tifying the cultivable bacterial taxa from patient and control samples. However, the
sediment culture method permitted bacterial identification at the species level, which
could not be achieved reliably by 16S rRNA gene sequencing directly from urine. Of
note, Escherichia demonstrated one of the highest rates of detection by culture but
was often undetected by DNA sequencing among centrifuged and uncentrifuged
samples. This genus belongs to the Enterobacteriaceae family, the members of which
are reported to be challenging to identify reliably at the genus level due to the high
degree of sequence similarities (79). Given that E. coli is a prominent uropathogen,
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improvements are needed. A molecular species-level characterization could be
achieved using the more recently developed third-generation sequencing technolo-
gies, including the MinION platform series (80). The potential to reconstruct more than
90% of the 16S rRNA gene makes species-level characterization possible.

This study underlines the potential weaknesses of the MSU culture for diagnosing
UTI in patients affected by LUTS, which should now be assessed further in a larger,
multicenter study. These patients appear to harbor chronic infection, missed by quan-
titative cultures and most effectively demonstrated by nonculture techniques. These
methods shed light on the complexity of the bacterial communities within these
patients, whose symptoms and urinary white blood cell count may be the best
indicators of infection until the disease landscape is better understood. In the mean-
time, those responsible for UTI detection, diagnosis, and patient care, including clini-
cians and microbiologists, may wish to use caution when interpreting a negative or
mixed-growth MSU culture result in symptomatic patients, as well as reassess reporting
and treatment guidelines to arrive at a solution most appropriate for patients in a way
that also preserves antibiotic stewardship efforts (53). Ultimately, a point-of-care test
based on a sound understanding of the relevant microbiomes using emerging portable
genomic technology would revolutionize the diagnostic landscape for this common
affliction.
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