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Bone is primarily made of type I collagen, which is a highly abundant natural protein. 

Collagen can be crosslinked through several methods including chemical agents, physical 

heating and UV radiation. The result is enhanced physical characteristics such as thermal 

stability, resistance to proteolytic breakdown, mechanical strength and increased overall 

biocompatibility. However, with these methods there are drawbacks; including toxicity of 

residual cross-linking agents, or difficulties with scaling. In recent years, collagen has been 

cross-linked by a safer, efficient and more practical means by using enzymes as biological 

catalysts.  

We demonstrate that crosslinking native collagen with both tissue transglutaminase 

(TG2) and microbial transglutaminase (mTG- from Streptoverticillium mobaraense) leads to an 

increase in the proliferation of human osteoblasts (HOB) and an increase in integrins on their 

cell surface compared to culture on native collagen. These integrins include αV, α5, β1 and β3 

which are all important for the ability of HOBs to mature and differentiate. In addition to this, 

the HOBs were shown to mineralise at a faster rate than on native collagen. Moreover, it was 

demonstrated that integrin expression and mineralisation rates are further increased in HOBs 

on crosslinked collagen by incorporating 45S5 bioglass particles.  

 Investigations here show distinct differences between the micro-structure of the 

scaffolds and the mean pore size between fibrils in native and crosslinked collagen. These 

results suggest that the crosslinked collagen changes the behaviour of HOBs when seeded, 

such that through the Wnt canonical pathway there is an overall increased drive towards 

mineralisation and deposition of collagen by the HOBs.  

 This work shows that crosslinked collagen scaffolds with 45S5 bioglass have the 

potential to be used as biomaterials for bone regeneration and may eventually replace 

allografts and titanium plates.  
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1.1 Type I collagen 

 

Regenerative medicine focuses on the idea of, not just healing tissue after traumatic injury, 

but restoring the tissue’s native function. In the beginning biomaterials were designed to be 

inert and elicited no response from the immune system (Hench & Polak, 2002). However 

through molecular and cellular biology advances a new ideal for medical materials has 

emerged: creating materials which can stimulate native tissue regeneration and restore the 

original functionality. One way to communicate to cells during the healing process is through 

the diverse cues provided by porous biomaterial scaffolds (Hench & Polak, 2002). The 

interconnected pores of scaffolds not only support and direct cellular growth, but can also be 

used as a part of drug and growth factor release. (Mullen et al. 2010). 

One promising approach has been to utilise natural biological polymers, which already 

have innate chemistry to communicate to cells built into the molecule. Of these polymers, type 

I collagen is the most widely used, as it is the major structural component of extra cellular 

matrix (ECM) in living tissue. Type I collagen is the first in a superfamily comprised of 28 

different types, all of which fall under fibrillar (type I falls under this category) or non-fibrillar 

(such as type IV). The versatility of collagen scaffolds is due, in part, to the diverse ways in 

which the structures can be modified. The pore architecture can be designed to mimic the 

anisotropic ECM of native tissues, which is important for tissues such as tendon and meniscus 

(Pawelec et al. 2014 & Davidenko et al. 2010). As a further modifier of biological activity, 

collagen can also be combined with other polymers, such as chitosan or elastin, which 

influences chemical and mechanical properties (Martinez et al. 2015 & Grover et al. 2012). 

Cellular response to biomaterials is dictated by a combination of mechanical, architectural 

and chemical cues from the scaffold. Sensing cues from the environment is a complex and 

dynamic process (Shiller et al. 2013). The mechanism used by cells, notably a class of trans-

membrane receptors known as integrins, can control many functions, including differentiation 

(Huebsch et al. 2010). For tissue engineering scaffolds, tailoring biological response is linked 
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to controlling the ligands, or cell signalling moieties, which are presented to cells and react with 

receptors. 

 Throughout decades of research, it has been determined that collagen is not a single 

molecule, but a large family of molecules. The defining feature of a collagen is a protein 

composed of three polypeptide chains incorporating at least one region with a repeating amino 

acid sequence (Fratzl et al. 2008). Collagen Type I, for example, has a repeating sequence of 

glycine-X-Y which forms a right-handed triple helix. At least 28 different types of collagen have 

been found thus far, even excluding the proteins with collagenous regions which have not been 

called collagen for historical reasons (Fratzl et al. 2008). Within the collagen superfamily, 

members are further classified based on their structure and distribution. 

 The most widespread collagens are the fibrillar collagens, composed primarily of a 

triple-helical region with a characteristic repeating band where fibers connect, known as D-

banding (Fratzl et al. 2008). Collagen types I, II and III all belong to the fibrillary group of 

collagens and vary in amino acid composition and distribution within the body (Friess, 1998). 

Collagen type I is the most common, constituting the major structural protein for skin, tendon 

and bone. For this reason and the ones outlined above, collagen has been investigated as a 

scaffold to be used in bone regeneration. 

  

1.2 Transglutaminases 

 

Transglutaminases (EC 2.3.2.13, henceforth TGs) are a group of ubiquitous enzymes that 

are found throughout many mammals, plants, invertebrates and the human body. They 

catalyse post-translation modifications of proteins by the formation of isopeptide bonds (Griffin 

et al., 2002). This is carried out in one of two ways: either through protein crosslinking via ε-(γ-

glutamyl) lysine bonds or via a calcium-dependent reaction. Here, transglutaminases form a 

covalent bond between the γ-carboxamide group of peptide-bound glutamine and the ε-amino 

group of a peptide-bound lysine (or primary amine). Clarke et al. were the first group to derive 
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mammalian transglutaminase from the guinea pig liver in 1959. Key stages of a cell’s life cycle, 

including its reproduction, growth and even death, are influenced by the presence of 

transglutaminases. These enzymes are able to affect the proliferation and differentiation of 

several types of cells (Beninati and Piacentini, 2004), hence why so many researchers are now 

looking into these molecules. 

By cross-linking and forming these isopeptide bonds, proteins become highly resistant 

to mechanical forces and proteolytic degradation. This type of cross-linking in humans is 

carried out by, but not limited to, type 2 tissue transglutaminase (TG2), primarily expressed in 

skin, hair, blood clotting and in wound healing (Lorand and Conrad, 1984). It has been found 

that TG2 amino acid and cDNA sequences are highly conserved between most species 

including guinea pig (liver), bovine, mice, chickens and humans (Ikura et al., 1988, Nakanishi 

et al., 1991, Gentile et al., 1991, Weraarchakulboonmark et al., 1992). TG2 is a monomer that 

is composed of 685-691 amino acids and has a molecular weight of approximately 77-85kDa. 

When compared to mouse and guinea pigs, human TG2 has nearly 80% homology between 

the amino acid sequences. Of this sequence, 49 out of 51 residues in the active site region are 

identical (Gentile et al., 1991). 

To date there is nine different transglutaminase isoenzymes that have been identified 

in mammals, however, only six have been isolated and characterised at the protein level. The 

nine transglutaminases and their characteristics are summarised below. 
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Table 1.1: A summary of transglutaminases and their basic properties. 

Mammalian Transglutaminase family Molecular 

mass (kDa)  

Regulation and GTP activity  Description and use  

Factor XIII 83 

 

Activated by thrombin and Ca2+; also requires 

reducing agent 

Perhaps the most well-known of all TGs is Factor XIII, which 

is a key zymogen in the blood clotting network It is converted 

via proteolysis into active Factor XIIIa during wound healing 

when fibrin clots are formed (Griffin et al., 2002) 

Keratinocyte /Type 1 transglutaminase (TG1) 90 Protease and Ca2+
 

required for activation, reducing agent 

required 

TG1 is a keratinocyte which exists in both membrane-bound 

and soluble forms. It’s main purpose is to be activated via 

proteolysis and plays a key role in the terminal differentiation 

of keratinocytes (Griffin et al., 2002) 

Tissue/ Type 2 transglutaminase (TG2) 78 Ca2+ required for activation, reducing agent 

also required 

The most ubiquitous transglutaminase seen in the body. 

This multifunctional protein governs cell-matrix interactions, 

tissue repair and a variety of other cell functions 

(Aeschlimann and Thomazy, 2000 & Fesus and Piacentini, 

2002) 

Epidermal/ Type 3 transglutaminase (TG3) 77 Latent (protease 

activated); Ca2+ activated, 

reducing agent required 

Epidermal transglutaminase is similar to TG1 in that it also 

undergoes proteolysis in order to become active. It is also 

involved in the terminal differentiation of keratinocytes 

(Eckert et al., 2005). 

Prostate/ Type 4 transglutaminase (TG4) 77 Ca2+ activated, 

reducing agent required 

A prostatic secretory transglutaminase that is essential for 

fertility in rodents and potentially in humans (Iismaa, 2016) 

TG5 80 Ca2+ activated Is seen to cross-link keratins as well as many other 

differentiation-specific structural proteins, including 

involucrin, loricrin, filaggrin and small proline-rich proteins, in 

the formation of the cornified cell envelope of the stratum 
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corneum the outermost “dead” layer of the epidermis (Kalinin 

et al, 2002) 

TG6 70 Ca2+ activated Catalyses cross-linking between proteins and the 

conjugation of polyamines to proteins. Mutations in this gene 

are linked to spinocerebellar ataxia type 35 (SCA35) (Wang 

et al., 2010a) 

TGM7  80 Ca2+ activated Possible biomarker for neurodegenerative disease  

Band 4.2 72 No enzyme activity Membrane; structural protein, membrane skeletal 

component in erythrocyte (Yawata, 1994) 

Microbial Transglutaminase / mTG 39 No Ca2+ required for activation This transglutaminase is not found in mammals. Is found 

instead in Streptomyces mobaraensis. Unlike many other 

transglutaminases mTG is calcium-independent and has a 

lower molecular weight (Yokoyama et al., 2004) 
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1.3 Microbial transglutaminase (mTG) 

 

 Other than the transglutaminases that have been found in mammals, there have been 

discoveries of transglutaminase in other organisms. One of the first non-mammalian sourced 

transglutaminases was sourced from a culture of Streptomyces mobaraensis (formerly known 

as Streptoverticillium mobaraense) and commonly known as microbial transglutaminase or 

mTG (Ando et al., 1989). Since then this transglutaminase has been found in other species of 

Streptomyces, where it is secreted as a zymogen from the cytoplasm membrane and activated 

through proteolytic cleavage (Pasternack et al., 1989). Streptomyces mobaraensis was found 

to secrete the enzyme into the culture medium, and thus its purification was relatively simple, 

which led to its rapid commercialisation. Microbial transglutaminase was first commercially 

described by researchers at Ajinomoto Co., Inc. in 1989. Since then, it has become one of the 

most widely used enzymes for the cross-linking of proteins and peptides in many food and 

biotechnological applications (Steffen et al., 2017). In mammals, “side-chain to side-chain” 

isopeptide bonds confer mechanical strength and increase resistance to degradation, much 

like TG2. However, in Bacillus subtilis (when heat treated), the enzymatic activity of mTG 

causes crosslinking of GerQ in spores, which leads to increased spore formation and stability 

(Kuwana et al., 2006) 

 

1.3.1 Enzymatic properties of mTG 

 

  There are major differences between the mammalian sourced TG2 and mTG. The 

former is far larger, measuring 78kDa. The latter is only 38 kDa and consists of 331 amino 

acids (Kanaji et al., 1993). Moreover, there is very little amino acid sequence homology 

between mammalian transglutaminases (Duran et al., 1998). The active site on TG2 is made 

up of three crucial amino acids: cysteine 277 (Cys 277), histidine 335 (His 335) and aspartic 

acid 358 (Asp 358). In contrast to this, only the cysteine (Cys 64) has been identified as the 

sole catalytic residue in mTG’s sequence, it has recently been proposed that mTG uses a 

cysteine protease-like mechanism in which Asp 255 plays the role of the histidine residue 
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(normally seen in animal transglutaminases) (Rachel and Pelletier, 2013). Interestingly, unlike 

animal-based transglutaminases (including TG2) mTG activity is not dependent on the 

presence of GTP or Ca2+. This property has made it very useful in the modification of food 

proteins since caseins, soybean globulins, myosins and many more, are sensitive to Ca2+ ions 

and are easily precipitated by them. On the other hand, it has since been discovered that, in 

the absence of reducing agents, Cu2+, Zn2+, Pb2+  and Li+  are found to be strongly inhibitory to 

mTG activity. This is because heavy metals are thought to bind the thiol group of the single 

cysteine residue which strongly supports the idea that this particular residue forms part of the 

active site of mTG (Yokoyama et al., 2004).   

mTG is a simple monomeric protein with just a single domain, unlike TG2, and has a 

higher optimum temperature of 55°C and a lower optimum pH of 5.5 (Ho et al., 2000). Moreover 

mTG has shown activity at a pH as low as 4 and as high as 9 (Ando et al., 1989). It has even 

been reported to retain some activity between 10°C and near freezing temperatures. Looking 

at specificity, it has been shown that mTG is able to crosslink a wide array of proteins including 

wheat glutens, egg yolk, albumin proteins, myosins, fibrins, collagen, caseins as well as many 

others (Nonaka et al., 1992, Nonaka et al., 1997).  

  

1.3.2 Structure of mTG  

 

 mTG has no detectable sequence homology to TG2, apart from the transglutaminase 

fold, and exhibits a different structure compared to it as well (Strop, 2014, Makarova et al., 

1999). The crystal structure of mTG was determined at 2.4Å resolution (Kashiwagi et al., 

2002). The monomeric molecule forms a single, compact disc-shaped domain (overall 

dimensions 65 x 59 x 41Å), which folds to form a deep cleft at the edge of the molecule. The 

catalytic Cys 64 residue is located at the bottom of a 16Å deep cleft. It is produced as a 

zymogen, whereby the N-terminus folds into a helical structure that occupies the active site 

and blocks substrate access (Yang et al., 2012). Dissociation of the N-terminus helical 
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structure by endogenous metalloprotease and tripeptidyl aminopeptidase activates the 

zymogen.  

 

As seen in Figure 1.1A) the overall structure contains 11 α-helices and 8 β-strands; one 

of the β-sheets is surrounded by α-helices, which are clustered into three regions. The central 

β-sheet forms a seven-stranded anti-parallel structure which is severely twisted between 

β5and β6 strands. Here, there is only one hydrogen bond present between the main chains of 

these strands (Trp 258 and Thr 237). In Figure 1.1, the first cluster of α-helices is composed of 

the α1, α2 and α3 helices and the key Cys 64 residue is in the loop between α2 and α3 helices. 

The second cluster comprises of α4, α5 and α10. Finally, the third cluster is made up of α6, α7 

α8 and α9.   
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A) 

B) 

Cysteine 64 

Aspartic acid 255 

Histidine 274 

Figure 1: A) Schematic ribbon structure of mTG.  The secondary structure is 
numbered for clarity. The side chain of cysteine 64 is represented as a “ball and stick 
model”. Adapted from Yokoyama et al. 2004. B) A top down view of a ribbon model 
of mTG depicting the active site triad. 
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Both TG2 and mTG contain a Cys-His-Asp catalytic triad, however, there are 

differences in the structural orientation between the two. For instance, relative to the active site 

cysteine, the position of His and Asp are reversed in the two enzymes (Strop, 2014). It has 

been proposed that Asp 255 plays a similar role to the catalytic triad histidine in TG2. Alanine 

mutagenesis confirmed the critical role of Asp 255 in mTG, whereby the activity of Ala 255 

mutant was reduced to background levels. This is further supported by mutagenesis of His 

274, here the catalytic activity was reduced by approximately 50%, suggesting that while it has 

a role it does not play a critical one in mTG (Kashiwagi et al., 2002).   

 

1.3.3 Production of mTG 

 

 The gene that codes for mTG contains a 1,221 nucleotide open reading frame that 

encodes a 407 amino acid protein. This corresponds to a predicted pre-region of 31 amino 

acids, the pro-region of 45 amino acids and the mature region of 331 amino acids. Proteases 

in the culture medium of S. mobaraensis process the pro-region, which inhibits enzyme activity 

and increases enzyme thermostability (Pasternack et al., 1998). In the past, mTG was 

produced from S. mobaraensis by conventional fermentation. Recently though, more efficient 

systems have been described that produce mTG in host-vector systems such as S. lividans 

and E. coli. In the latter system, Salis et al. yielded a very high amount of mTG; over 6 g/l 

LacZ1–8PNP1–20Met-MTGase fusion protein per batch-fed fermentation process (Salis et al., 

2015). 

 The characteristics of mTG outlined above, i.e Ca2+ independence, smaller molecular 

weight and size, higher reaction rate are all more advantageous compared to TG2 when it 

comes to commercial meat processing (increasing its gelation, water-binding, emulsion 

stability). It is because of these properties that mTG is so widely used in the food industry to 

improve the physical properties of meat, fish and other protein-rich foods (Nonaka et al., 1997).  
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1.4 Transglutaminase 2 

 

TG2 has many different names: the official name is TGM2, but more common terms 

include tissue transglutaminase (tTG), cytosolic transglutaminase (cTG) and erythrocyte 

transglutaminase. Many different types of cells in the body express TG2 to varying degrees, 

which is why it has been described as the most ubiquitous of all the transglutaminases. The 

transamidating activity of TG2 is regulated by Ca2+ and GTP/GDP binding, where binding of 

Ca2+ results in active TG2 and binding of GTP/GDP results in inactivated TG2 (Smethurst and 

Griffin, 1996).  

 

1.4.1 Transamidating and deamidation ability of TG2 

 

In 1959, Clarke et al. were the first to reveal transamidation activity carried out by TG2 

and this discovery sparked further interest in TG2 for the next two decades by researchers 

across the globe (Folk, 1983). Two important steps make up the biochemical mechanism that 

underlies the enzyme’s reaction. The first step is a rate limiting one that involves the formation 

of the thioester bond between the cysteine in the active site of TG2 and the substrate. During 

this step, the sulphur on the Cys 277 carries out a nucleophilic attack on the -carboxamide 

group of a glutamine residue, thereby releasing ammonia as a by-product, as shown in Figure 

1.2. During the second step, the acyl intermediate is attacked by the nucleophilic substrate; 

here, if the attacking nucleophile is primary amine (a small amine group or -amino group of a 

peptide-bound lysine residue), the reaction is called transamidation. However if a water 

molecule, acts as a nucleophile then it is called deamidation.  

The results of TG2 transamidation are two-fold: the modification of the substrate protein 

with small amines or the formation of an isopeptide bond between acyl-acceptor and acyl-

donor proteins. If the nucleophilic substrate is a small primary amine, then the result of the 

transamidation reaction ends with the addition of a small amine group to the substrate protein, 

which can then change its biological properties. N,N-bis(-glutamyl)polyamine formation is the 
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result of polyamine incorporation into a protein followed by another transamidation with another 

protein.  

 

. 

 

Deamidation results in the conversion of an acyl-donor glutamine residue into a 

glutamate residue, and was first thought to occur only under specific conditions. For example, 

a limited number of primary amines acting as acyl-acceptors would mean that water would act 

as an attacking group. It has also been reported that deamidation is favoured in a low pH 

environment (Fleckenstein et al., 2002). A study conducting the crosslinking of small heat-

shock proteins (sHsps) by TG2 showed that only one glutamine residue goes deamidation 

Figure 1.2: A series of post-translational reactions which are catalysed by the 
transamidase activity of TG2. A-B) Represent the two step catalysis reaction carried out by 
TG2. C) Represents the path taken when TG2 carries out a crosslinking reaction. D) 
Represents the polyamine incorporation reaction. E) Shows how deamidation is carried out 
by TG2 
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while the rest underwent transamidation (Boros et al., 2006). Furthermore, it has also been 

observed that the capacity for deamidation by TG2 is both dependent on structure and perhaps 

by pathological conditions (Stamnaes et al., 2008). 

 

1.4.2 More enzymatic functions of TG2 

 

Regarding location, TG2 is predominantly a cytosolic protein, but is also seen in the 

nucleus and associated with both the inner and outer sides of the cell membrane. It is 

becoming clear that the different activities and conformations are key when discussing the role 

of TG2 in physiological and pathological processes. This versatile protein also carries out 

disulphide isomerase and guanine/adenine nucleotide binding and has hydrolysing abilities 

(Gundemir et al., 2012). It should be noted that ATP/ADP binding has no effect on its 

transamidating activity (Lai et al., 1998). However, the binding of calcium or GTP/GDP will 

inversely regulate the transamidating activity. Put simply, TG2 is only active when bound to 

calcium (open conformation) and inactive (closed conformation) when bound to GTP/GDP 

(Begg et al., 2006, Chen and Mehta, 1999). What makes TG2 so unusual is that it has recently 

been reported to function as a protein disulphide isomerase (PDI), a protein kinase and as a 

DNA hydrolase (Hasegawa et al., 2003, Mishra and Murphy, 2004, Akimov and Belkin, 2001).   

 

1.4.3 Structure and conformation of TG2 

 

 The TG2 enzyme is made up of four domains: an N-terminal -sandwich domain, the 

catalytic core and two C-terminal -barrel domains (Figure 1.3). A catalytic triad for 

transamidating activity has been eluded that consists of Cys 277, His 335 and Asp 358 (Liu et 

al., 2002). It was found that when the cysteine was mutated into serine at position 277, the 

transamidating and GTP/GDP binding capability of TG2 was completely abolished, In addition 

to this there are two more tryptophan residues (Trp 241 and Trp 332) that have been identified 

as critical for TG2 crosslinking activity. Trp 241 and Trp 332 are thought to be necessary to 
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stabilise the enzyme-thioester intermediate that forms during the first step of catalysis (Murthy 

et al., 2002). Mutating tryptophan 241 to alanine abolished transamidating activity but didn’t 

affect GTPase activity. However, swapping tryptophan 332 for phenylalanine resulted in the 

loss of GTP/GDP binding ability. Pinkas et al. discovered that a tyrosine (Tyr 516) seated within 

the catalytic pocket was crucial for crosslinking activity. In the inactive TG2 form, a hydrogen 

bond between Cys 227 and Tyr 516 is formed, which favours the inactive state of the enzyme 

(Gundemir et al., 2012). Figure 1.3 below shows the four domains of TG2 as a linear diagram 

and which residues are seen in the binding sites.  
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The main GTP/ATP binding site has been found to be in a cleft between the catalytic 

core and the first β-barrel. TG2 interacts with GTP in the absence of Mg2+ (Jang et al., 2014). 

Later, in 2010, Han et al. observed that less hydrogen bonding occurred between ATP and the 

binding pocket compared to the GTP complex structure. Furthermore, the residues S482 and 

R580 were shown to participate in GTP binding. Point mutation of R580 led to loss of GTP/GDP 

binding activity and inhibition of transamidase activity (Han et al., 2010). 

As previously stated, the ubiquitous TG2 is an enzyme that plays a part in many cell 

processes and thus has been studied heavily in order to elucidate how it functions within the 

body. In order to achieve this its structure has been described and studied by many. In 2007 

the two major conformations of TG2 were solved with the aid of x-ray crystallography. Liu et 

al. discovered the (inactive) GDP-bound, compact form and the active site covalent inhibitor 

bound, open form (active). The catalytic domain of the GDP-bound crystal structure was 

inaccessible due to the two β-barrel domains preventing binding of the substrate to the 

enzyme. However, the Ac-P(DON)LPF-NH2 inhibitor was used with TG2 to form a stable 

extended conformation or “open form” (Begg et al., 2006, Mariani et al., 2000). In this open 

form, the transamidating active sites were exposed to substrates, and it was believed that a 

disulphide bond between Cys 370 and Cys 371 was the key to stabilising this extended open 

form. The two major conformations of TG2 that were solved using x-ray crystallography are 

shown in Figure 1.4 below. 
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Figure 1.4: Representative models of TG2 derived through x-ray crystallography. 
Conformations of TG2 are represented as ribbon models. For each conformation blue 
represents the N-terminal, orange the fibronectin domain, green represents the catalytic 
domain, yellow and red represent the first and second β-barrels respectively. A) Represents 
the GDP bound closed conformation of TG2. B) The conformation when TG2 is open with 
calcium bound to it (represented as a pink ball).C) Conformation of TG2 when Cys 277 is 
bound to Ac-P(DON)LPF-NH2 inhibitor. 
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1.4.4 Regulation of TG2 gene expression 

 

At first it was thought that the expression of human TG2 (by the gene TGM2) occurred 

via several activators. As shown in the Figure 1.5, there are four Sp1 binding sites that have 

been revealed within TG2 and numerous activator regulating sites. These regulator sites 

include: nuclear factor κβ (NFκβ), interleukin-6 response element (IL-6), tumour growth factor-

β1 (TGFβ1) response element, retinoic acid response elements (RRE1 and RRE2) and a 

glucocorticoid response element (GRE). Of all the activators of TG2, the most studied is 

retinoic acid (RA), which activates the retinoid response elements roughly 1.7kb upstream of 

the transcription start site (Nagy et al., 1996). This reaction occurs as a tripartite response: 

Firstly the ligand activates either retinoic acid receptors (RAR) or retinoid x receptor 

heterodimers (RXR) or RAR/RXR homodimers. Following on from this, the RRE binds to the 

RAR/RXR heterodimers via three hexanucleotide half-sites (two canonical and one non-

canonical). Finally, the complex binds to the Sp1 binding site with the help of other co-

activators (Griffin et al., 2002).  
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1.4.5 The role of TG2 in cell adhesion and signalling 

 

Although the majority of cellular TG2 is found in the cytosol, the role of TG2 is 

dependent on the location of the enzyme itself (Bruce and Peters, 1983). TG2 is also located 

on the plasma membrane (Begg et al., 2006), in the mitochondria (Rodolfo et al., 2004) and 

the nucleus (Bruce and Peters, 1983, Lesort et al., 1998). Furthermore, there are studies 

showing that TG2 is present in the extracellular matrix (ECM) (Zemskov et al., 2006, Upchurch 

et al., 1991). Athough TG2 is considered as a stress-related protein whose expression radically 

increases upon stress or injury (see Figure 1.5), it is also expressed continously in several 

cells including endothelial cells, fibroblasts, and smooth muscle cells (Jones et al., 1997, Ou 

et al., 2000).  

TG2 interacts with many different proteins and enzymes in the body. It has been well-

established to promote cell-ECM adhesion and cell migration (Belkin, 2011). Table 1.2 lists the  

endogenous and exogenous substrates and binding partners of TG2. 
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Table 1.2: Exogenous and endogenous substrates and binding partners of TG2 (Griffin et al., 2002, Esposito and 
Caputo, 2005) 

ECM and cell 

surface 

Cytosol Organelle 

Proteins 

Nucleus Others 

β-casein Actin 

 

α-oxoglutarate Calbindin 

 

Candida albicans 

surface proteins 

Collagen Aldolase A 

 

Acetycholine  

esterase 

Core histones glycoproteins 

gp120 

and gp41 

Fibronectin β -crystallin 

 

band III Importin-α3 Hepatitis C virus 

core protein 

Fibronogen β -tubulin 

 

CD38 pRB 

 

HIV aspartyl  

proteinase 

IGFBP-1 C-CAM 

 

Cytochromes  Pea legumin 

Laminin GADPH 

 

Erythrocyte (band 3)  Soy protein 

LTBP-1 Glucagon Histone  H2B  Wheat gliadin 

Midkine GST 

 

  Whey proteins 

Osteocalcin Lipocortin I    

Osteonectin Melittin    

Osteopontin Myosin    
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 In addition to this, it triggers the organisation of extracellular matrix proteins through 

two different pathways: The first is integrin-TG2 interaction and syndecan-4-TG2 complexes 

(Belkin, 2011). The second is through an RGD-ligand independent manner, TG2 was also 

found to associate with the membrane protein heparan sulphate proteoglycan (HSPG) 

syndecan-4 to promote cell-ECM adhesion (Telci et al., 2008). This adhesion pathway is 

hypothesised to be crucial for cell survival during injury/tissue remodelling. This is because 

TG2/fibronectin (FN)/syndecan-4 complexes activate PKC leading to the activation of 1 

integrins even when they are blocked by RGD peptides. These FN/TG2/syndecan-4 

complexes can also be activated by proteins including syndecan-2 via PKC (Wang et al., 

2010b). Some of the most important integrin subunits that TG2 non-covalently interacts with 

include 1,  3, 5, V, and 5 on cells. It should be noted that the binding sites for TG2 and 

integrins do not overlap on fibronectin. This means that the affinities of TG2 with these two 

proteins on the cell surface significantly enhance the interaction of cells with finbronectin (FN) 

and further promote cell adhesion and ECM-triggered signalling (Akimov and Belkin, 2000, 

Akimov and Belkin, 2001). In the absence of integrin-ligand interactions, TG2 may also be able 

to induce integrin clustering (Janiak et al., 2006). These TG2/integrin complexes have been 

found to decrease the activity of the Src-p190RhoGAP regulatory pathway, thus increasing the 
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kinase 

   

Substance P RhoA    
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IV 
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activation levels of RhoA GTPase and its downstream signalling target, ROCK (Janiak et al., 

2006).  

In summary, the association of TG2 with cell membrane integrins and ECM proteins 

can be considered an amplifer of outside-in adhesion signalling.  

 

1.4.6 The role of TG2 in wound healing 

 

TG2 is active in different stages of the wound healing process via both transamidation-

dependent and independent mechanisms. Soon after mechanical or chemical injury of 

fibroblasts, it has been observed that TG2 is secreted into the ECM and co-localises with ECM 

proteins (Upchurch et al., 1991). It has been established that TG2 crosslinking activity is found 

in every layer of skin, as shown in a rat dermal skin wound model (Bowness et al., 1988). 

Moreover, within wound areas, TG2 expression and activity in vascular endothelial cells and 

erythrocytes were suggested to support and amplify FXIIIa-mediated blood clot formation 

(Murthy et al., 1991, Barsigian et al., 1991, Auld et al., 2001). Recently, it has been theorised 

that TG2-promoted cell adhesion is crucial in the wound healing process. Here, TG2/FN 

complexes can interact with cell membrane syndecan receptors and enhance cell adhesion 

and survival when cells undergo anoikis (Telci et al. 2005; Verdario et al., 2003). Furthermore, 

an increase in TG2 mRNA expression is also linked to collagen-producing phenotypes during 

matrix remodelling stages (Schnabel et al., 2004, Klingberg et al., 2013). It is important to note 

that these two opposite actions may occur distinctly depending on different cell types, the type 

of stimulus and the intracellular localisation of TG2. In situations where myofibroblasts persist 

in the extracellular matrix, a fibrotic phenotype develops. In wounds, this is manifested as 

hypertrophic scar or keloid (Sayah et al., 1999; Kothari et al. 2014). In conclusion, in order to 

determine whether normal wound healing or abnormal scar tissue formation will take place, 

there has to be a balance struck within cells regarding the pro-apoptotic (see 1.3.7 below) and 

anti-apoptotic abilities of TG2.  
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1.4.7 The involvement of TG2 in pathological conditions 

 

TG2 is now known to have numerous roles in multiple diseases and disorders such as 

coeliac disease, cancer and fibrosis. Specifically, it was been found by Fesus et al. that TG2 

is involved in apoptosis. Here, levels of enzyme expression correlated with the cellular 

regression found in livers of rats after the induction of hyperplasia (Fesus et al., 1987). 

Following on from this, it was discovered that TG2 stabilises apoptotic cells via intracellular 

cross-linking in order to prevent loss of intracellular components before clearance by 

phagocytosis (Melino & Piacentini., 1998).  

TG2 has also been found to have physiological roles. When cells respond to stress or are 

damaged, TG2 is up-regulated and externalised into the matrix. Once externalised, TG2 

contributes to a chronic inflammatory response through excessive matrix deposition, ECM 

crosslinking and tissue fibrosis. Chronic inflammation and near constant TGF- activation are 

observed in several fibrotic disease models including pulmonary (Richards et al., 1991), renal 

(Johnson et al., 1997, Johnson et al., 1999, Johnson et al., 2007) and liver fibrosis (Skill et al., 

2001). TG2 crosslinks large pools of latent TGF-binding protein-1 (LTBP-1) in the ECM, 

which in turn makes the extracellular matrix resistant to degradation (Johnson et al., 2007).  

TG2 also plays a role  in coeliac disease in that deamidation of glutamine residues in gliadin 

results in their increased binding affinity to the disease-predisposing human leukocyte antigen 

(HLA) DQ2 and DQ8 molecules. Thus causing a strong immune response to be launched via 

the activation of T-lymphocytes (Lindfors et al., 2011). Similarly, a high activity of TG2 is seen 

in Alzheimer’s disease due to the polymerisation of proteins such as beta-amyloid precursor 

protein and Ab peptides in affected brains (Benilova et al., 2012).  

Recently, it has been shown that S100A4 (a biomarker for highly metastatic cancer) is a 

substrate for TG2. Crosslinking of S100A4 by TG2 can be inhibited by the TG2 specific inhibitor 

R294, leading to the abolishment of S100A4-enhanced cell migration. The mechanism for this 
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S100A4/TG2-related cell migration involves the activation of the syndecan-4 and α5β1 integrin 

co-signalling pathway linked by PKCα (Wang and Griffin, 2013). Furthermore, tumour cells 

have been found to contain modified forms of TG2 that are inactive even when secreted into 

the ECM (Beninati, 1995). 

 

1.5 Involvement of TG2 in physiological bone development 

 

Transglutaminases have been associated with the promotion of chondrocyte and 

osteoblast differentiation as well as matrix mineralisation (Yin et al., 2012a). Through recent 

studies, it has been theorised that one or more transglutaminases involved in the processes 

mentioned above might be mediated by the protein crosslinking activity of transglutaminases. 

Either by the GTPase activity of TG2 or through non-catalytic signalling effects (Nurminskaya 

and Kaartinen, 2006).  

Bone development starts during embryogenesis, continues postnatally and further 

continues to be remodelled throughout a lifetime. It is a complex process that is controlled 

locally as well as systematically by growth factors, hormones and extracellular molecules such 

as bone morphogenic proteins (BMPs) 2, 4 and 7. Of the nine members of the TG family, only 

two have been discovered in cartilage and osseous tissue, these are TG2 and FXIIIa. Through 

immunohistochemistry, it was first demonstrated that TG2 is upregulated in the hypertrophic 

zone of the growth plate in juvenile rats (Aeschlimann et al., 1993). Following this, a significant 

increase in FXIIIA expression was discovered in the hypertrophic zone of the avian embryonic 

growth plate (Nurminskaya and Linsenmayer, 1996).  

TGs are very important in early bone formation; this was shown through the expression 

patterns of TG2 and FXIIIa in early embryonic limb development (using a chicken model) that 

were analysed to understand their potential roles. As early as 4 days into development, the 

formation of the tibia begins in the regions of mesenchymal condensation. By 6.5 days, both 

TG2 and FXIIIa are present throughout the areas of chondrocyte condensation. There were 
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higher levels of both transglutaminases in the hypertrophic zone and epiphyseal regions of the 

long bone. Towards the end of embryonic development, the expression of both enzymes is 

more restricted and only expressed in the superficial layers of cells (Pechak et al., 1986, 

Nurminskaya and Linsenmayer, 1996). These results suggest that there is an early activation 

of TG2 and FXIIIa in the mesenchymal condensation phase, but then later on during 

development, the expression of these enzymes is restricted to proliferative chondroblasts close 

to the epiphyses.  

Further study in the expression of transglutaminases in the perichondrium/ periosteum 

region revealed more clues of their role in osteoblasts. Through immunohistochemistry, it was 

shown that by day 6 of development, there was an absence of transglutaminase 2 and FXIII 

expression in the perichondrium during the mesenchymal condensation phase. However, by 

day 9 when ossification has taken place in the periosteum, expression of transglutaminase 

and FXIII was detected (Nurminskaya and Kaartinen, 2006). This suggests that TG2 and FXIII 

are expressed in the cells undergoing differentiation into osteoblasts. This study suggests that 

the initiation of TG2 and FXIII synthesis by osteoblasts correlates with the deposition of the 

mineral matrix (Nurminskaya and Linsenmayer, 1996). 

 The transamidating activity of TG2 has been shown to be crucial in bone development, 

and TG2 induces mineralisation. It has been show that, when TG2 is blocked with inhibitors, 

the outcome was impaired mineralisation occurs in MC3T3-E1 pre-osteoblast cultures (Al-

Jallad et al., 2006). This work lead other research groups to theorise that TG2 could be playing 

different roles in mineralisation. These include potentially inducing mineralisation through its 

ATPase activity (Nakano et al., 2007, Nakano et al., 2010) or by activating the Wnt pathway 

by activating LRP5/-catenin (Faverman et al., 2008, Beazley et al., 2012).    
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1.5.1 TG2 and its involvement in matrix maturation 

 

Transglutaminases are well-established as matrix stabilisers and several substrates (bone 

matrix proteins) that they affect including collagen I, ostepontin, bone sialoprotein and FN 

(Kaartinen et al., 1999; Kaartinen et al., 1997; Forsprecher et al., 2011). Of all the 

transglutaminases, TG2 has been related to secretion and deposition of ECM proteins the 

most. In addition to this, TG2 crosslinking of ECM proteins has been shown to improve cell 

adhesion, proliferation and differentiation (Png and Tong, 2013, Nadalutti et al., 2011). 

The organic bone matrix is mostly comprised of type I collagen (~90%) and, as stated 

previously, is a well-known TG2 substrate in mineralised tissue. Upregulation of TG2 has been 

observed to increase deposition of collagen I in many fibrotic conditions such as lung fibrosis 

(Jones et al., 2005 & Shweke et al., 2008) kidney fibrosis (Johnson et al., 2007) and cardiac 

fibrosis (Wang et al., 2018). Regarding extracellular collagen, polymerisation could take place 

via intermolecular crosslinking (Chau et al., 2005) or between non-collagenous bone matrix 

proteins and collagen. A well-organised fibrillar collagen network forms the foundation of 

mineralisation and transglutaminases are suggested to play a role in fibre organisation through 

their crosslinking ability (Pawelec et al., 2016). Evidence has also shown that 

transglutaminases can promote collagen synthesis and assembly which leads to the promotion 

of cell differentiation (Al-Jallad et al., 2006). On the whole, TG2 promotes mineralisation in 

osteoblasts, promotes matrix protein secretion, deposition and maturation through 

crosslinking-mediated modification of ECM which further enhances cell attachment. 

  

1.5.2 Transamidating independent pathway 

 

     At this time there are several theories regarding TG2-containing adhesive/signalling 

pathways which have been proposed. One of the most studied is the involvement of TG2 in 

RGD dependent integrin signalling. Akimov et al. first showed in 2000 that TG2 non-covalently 

interacts with 1 and 3 integrins (located on the cell surface) and regulates the interaction 
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between FN and the integrins. It was theorised that TG2 acts as an integrin-associated 

coreceptor to improve cell adhesion and spreading. This interaction between extracellular TG2 

and integrins leads to integrin clustering on the cell surface, FN deposition and finally 

mineralisation (Akimov et al., 2000, Zemskov et al., 2006). 

 Telci et al. also reported on another important TG2 adhesion pathway, here TG2 and 

FN bound to syndecan-4 could associate with β1integrin. This triggers an outside-in signal 

through PKCα and triggers an RGD-independent cell adhesion process. These complexes 

also trigger an inside-out response from syndecan-2, which then modulates cytoskeletal 

organisation through the ROCK pathway to maintain the RGD- independent adhesion of 

osteoblasts (Wang et al., 2011). 

Nurminskaya et al. revealed in several cell cultures that the additon of exogenous TG2 

promotes pre osteoblast dfferentiation, chondrocyte maturation and calcification of vascular 

smooth muscle cells (VSMCs) (Faverman et al., 2008, Nurminskaya et al., 2003). These 

experiments showed a correlation between extracellular TG2 and the mineralisation process 

in several cell lines. The following theories were put forward by these researchers: 

The first is that exogenous TG2 promotes pre-osteoblast differentiation and matrix 

mineralisaion in a crosslinking activity independent mechanism (Yin et al., 2012a). This is 

supported by the revelation that there are no changes in the pattern of protein crosslinking 

after pre-osteoblasts were treated with chondrocyte-derived TG2. Cells that were transfected 

with mutant inactive TG2 were still able to develop hypertrophic differentiation. However, 

extracellular TG2 induced hypertrophy was not affected by the use of GTP-bound, 

transamidase inactive TG2 (Johnson and Terkeltaub, 2005). 

Secondly, TG2 bound to GTP acts as a molecular switch for hypertrophic differentiation 

and calcification of chondrocytes, in which its transamidase and GTPase activities are not 

required. Johnson and Terkeltaub (2005) suggest this might be down to the nucleotide-bound 

form of TG2 being in a conformation that is ideal for triggering collagen expression and 



46 
 

calcification of chondrocytes in response to specific agonists (such as BMP2 and other wnt 

ligands). It should be noted that transamidating activity inhibitors are reported to change 

conformation of TG2 (Pinkas et al., 2007).  

The third and final theory is that direct binding of TG2 to cell surface proteins in pre- 

osteoblasts, without the formation of cross-links has been demonstrated. This cell surface 

receptor superfamily that directly interacts with TG2 has been identifed as low density 

lipoprotein receptor related-protein (LRP). The interaction with this group of proteins and TG2 

leads to internalisation and degradation of surface TG2 and further regulates cell adhesion 

and signalling. Using immunoprecipitation, it has been shown that LRP5 interacts with TG2 

and is involved in pathological calcification of VSMCs (Faverman et al., 2008). For over a 

decade now, LRP5 has been implicated in  bone formation, as mutants with loss-of-function of 

LRP5 present a severe osteoporosis phenotype (Gong et al., 2001). Moreover, gain of function 

mutant studies with LRP5 showed a high bone mass phenotype (Boyden et al., 2002). It has 

now been asserted that -catenin singalling, a major component of the canonical Wnt pathway, 

directly regulates osteoblast maturation via interaction with LRP5.  Although there is contention 

regarding whether crosslinking activity is essential for exogenous TG2-induced mineralisation 

(Beazley et al., 2012), the interaction between LRP5 and TG2 as well as the downstream 

activation of -catenin pathway might play a common role in calcified tissue. Figure 1.6 shows 

the Wnt signalling pathways and their antagonists.  

 

 



47 
 

 

Figure 1.6 Scheme of Wnt signalling and its antagonists. (A) Binding of Wnt to Frizzled 
and co-receptors, LRP5/6, activates the canonical pathway. Axin is recruited to LRP5/6 and 
subsequently degraded. The disruption of the link between β-catenin and glycogen synthase 
kinase 3 beta (GSK-3 β) causes β-catenin to be released. Intracellular β-catenin is stabilised 
due to free from phosphorylation. (B) Presence of Wnt signalling antagonists, such as 
secreted Frizzled-related protein (sFRP), Wnt inhibitory factor-1 (WIF-1) and Cerberus 
(CER), block both the canonical and non-canonical pathways. Bone morphogenetic protein 
(BMP) and Nodal are two subsets of transforming growth factor beta (TGF-β) superfamily. 
(C) Interaction among antagonist Dickkopf-1 (Dkk-1) and LRP5/6 and the co-receptor 
Kremen 1/2 (Krm, green) triggers LRP5/6 endocytosis. The canonical pathway is inactive 
due to absence of LRP5/6–Wnt–Frizzled complex. β-catenin is phosphorylated by GSK-3β 
and thereby undergoes degradation. However, the non-canonical pathway remains active via 
interaction of Wnt with Frizzled without LRP5/6. (Kawano and Kypta, 2003).  
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1.6 Bone regeneration and biomaterials for tissue repair 

 

 Due to the ubiquitous expression of TG2 throughout the body and its involvement in 

various tissue developmental and wound healing processes, it is possible that TG2-based 

biomaterials could be beneficial for wound healing. Below, the advantages and potential uses 

of TG2 crosslinked biomaterials for soft and hard tissue repair are summarised below.  

 

1.6.1 Tissue engineering 

 

 It was in 1988 that Robert Nerem first coined the term “tissue engineering” at a National 

Science Foundation workshop. This term was further extended and formalised in a review 

paper in Science by Langar and Vacanti. Here, the modern day definition was given:  

“Tissue engineering is an interdisciplinary field that applies the priniciples of 

engineering and the life sciences toward the development of biological subsitutes that restore, 

maintain or improve tissue function” (Langer and Vacanti, 1993).  

In short, tissue engineering introduces a great promise and potential for producing 

engineered replacements as alternatives therapies for human disease and injury.  

 The first step is understanding cell-cell interactions, then choosing the appropriate 

matrices based on cell-matrix interaction and finally to supplement with extra biochemical 

signalling or growth factors. Thus, it is clear that cell sources, biomaterials and growth factors 

are the three fundamental elements in tissue engineering. Furthermore, there is a need  for 

vascularisation to occur to provide blood and nutrients to engineered tissues. This need has 

recently been drawing more attention, especially within the field of bioengineered tissue 

reconstruction (Naderi et al., 2011). Following this approach, some achievement has been 

made in basic research and in a clinical setting including skin, bone, heart valves, cartilage, 

esophagus, blood vessels, liver, pancreas, nerves and tracheal constructs (Horch, 2006).  
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 Of all the tissue engineering subdivisions, bioengineered bone substrates are 

considered as one of the most studied and successful. At present, there is a demand for bone 

substitues to repair and replace diseased or damaged tisue, degenerative disease and cancer. 

Moreover, due to the increasing aging population, there is a surging demand for substitutes to 

replace, restore or regenerate bone. This is a major clinical need in the fields of spinal, dental, 

cranial, orthopaedic and maxillofacial surgery. After transfused blood products, bone implants 

are the second most impanted materials and yet the availability and quality of bone substitutes 

fall shorter than the current requirement (Wang and Yeung, 2017). Thus, developing 

appropriate bone constructs to meet these growing needs is vital. However, due to the 

complexities of regenerating complex tissues and organs such as heart, muscle, kidney, liver 

and lung, there are still major milestones to be reached in tissue engineering. However, whilst 

growing relatively “simple” tissue such as cornea is becoming a reality (Ruberti and Zieske, 

2008), the quality and quantity of artificial grafts is far below the clinical demand for more 

complex tissues (Lash et al., 2015).  

 

1.6.2 Bone tissue engineering 

 

During 2015 in the US the annual medication and treatment costs for hip fractures 

alone was estimated to be between 10.3 and 15.2 billion dollars (Dy et al., 2011). Furthermore, 

5% of the 1.2 million cases of overall fractures showed non-union or delayed healing after 

surgery (Leighton et al., 2017). In 2010, it was estimated that worldwide there were 4 million 

operations that involved bone grafting or bone substitutes (Brydone et al., 2010). The aging 

society has meant that the number of joint replacement operations has increased greatly which 

further highlights the requirement of bioengineered bone tissue. To illustrate this point, during 

2011-2012, it was estimated that 180,000 cases of primary knee and hip replacement 

procedures were entered into the National Joint Registry in the UK. Of this total, around 9% of 

primary joint replacements underwent revision surgery (NJR, 2011). It is clear, therefore, that 

the need to continue research in bone engineering is urgent. The sections below summarise 
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the biology of bone as well as current options of bone grafting and recent developments in cell 

engineering. 

  

1.6.3 The biology of bone 

 

Bone is described as a rigid organ that provides mechanical support for anchoring 

muscles, confers protection to organs and facilitates movement. Bones also 

produce red and white blood cells and store minerals. Bones come in many different shapes 

and sizes and have a complex internal and external structure. They are lightweight yet strong 

and hard, and serve multiple functions as listed above. Bone is a unique organ in that its 

complex cellular composition is made up of both organic and inorganic architecture which is 

classified as micro and macro composite tissue. The mineralised matrix consists of an organic 

phase (collagen, 35% dry weight) which is responsible for its rigidity, viscoelasticity and a 

mineral phase. The latter is made of up of carbonated apatite (65% dry weight) for structural 

reinforcement, stiffness and mineral homeostasis. Finally, there are also non-collagenous 

proteins present that form a  microenvironment that is stimulatory towards cellular functions 

(Hutmacher, 2013).  

Looking at the morphology of bone, there can be two categories in which bone can fall 

under: cortical (or compact) bone and trabecular bone (cancellous or spongy). Cortical bone 

is formed of a condensed layer that consists of densely packed collagen fibrils in concentric 

lamellae. It has a low porosity when compared to other bone tissues, ranging from 5-30%. This 

type of bone is responsible for the mechanical strength and rigidity in the skeleton and 

contributes to 80% of the total bone mass in adults. Trabecular bone, on the other hand, is 

composed of a porous latticework of matrix and primarily functions to store minerals in the 

body (Deakin, 2006). Bone tissue can be categorised through the hierarchical organisation of 

its constituents at the macrostructure (cancellous and cortical bone), the microstructure 

(Haversian systems, osteons), sub-microstructure (lamellae), nanostructure (fibrillar collagen 

https://en.wikipedia.org/wiki/Stiffness
https://en.wikipedia.org/wiki/Organ_(anatomy)
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/White_blood_cell
https://en.wikipedia.org/wiki/Mineral
https://en.wikipedia.org/wiki/Function_(biology)
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and embedded minerals) and finally the sub-nanostructure (minerals, collagen and non-

collagenous proteins) (Rho et al., 1998). This macroscopic hierarchy of structure is 

summarised in Figure 1.7. 

 

 

Macroscopically, bone is seen as a hard dense cylindrical shell of cortical bone, along 

the shaft of which the bone becomes thinner with greater distance from the ends. At these 

proximal and distal ends of the bone, cortical bone encompasses the porous trabecular bone 

to optimise articular load transfer (Webster and Ahn, 2007). When comparing densities, 

trabecular bone has a porosity of 50%-90% with an average spacing of around 1 mm and 

average density of 0.2g/cm3 (Barrere et al., 2008). Whereas cortical bone is much denser with 

a porosity of 3-12% and an average density of 1.8g/cm3 (Cooper et al., 2004).  

Looking at the microscopic scale, both trabecular struts and cortical bone are 

composed of mineralised collagen fibres, which are stacked parallel to form layers. These are 

Figure 1.7: Hierarchical structure of bone from macrostructure through to sub-
nanostructure. Adapted from (Rho et al., 1998). 
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called lamellae (3-7m thick) (Webster and Ahn, 2007). In mature bone these lamellae wrap 

in concentric layers around a canal which is called the Haversian canal. This contains the nerve 

and blood vessels to form an osteon. This is a cylindrical structure that runs parallel to the axis 

of the bone. On the nanostructure level, collagen fibres are surrounded by mineral.     

Several types of bone cells and bone extracellular matrix form the mineralised bone 

matrix. Regarding bone cells, there are four types: osteoclasts, osteocytes, bone lining cells 

and osteoblasts. In addition to these four integral types there are also more cell types that are 

contained within the bone marrow within the central intramedullary canal of the bone shaft 

(Marks and Popoff, 1988). Part of the organ’s purpose is to serve as a place to store minerals 

that are used by the body’s endocrine system in order to regulate phosphate and calcium 

homeostasis. Recent studies have shown that bone exerts an endocrine function itself. It is 

thought that this is because the bones themselves are producing hormones that regulate 

phosphate and glucose homeostasis (DiGirolamo et al., 2012). 

Bone is a connective tissue that is highly dynamic. It undergoes continuous remodelling 

via a removal of bone through osteoclasts and formation of new bone by osteoblasts. This 

well-orchestrated relationship of removal and formation shifts to adapt the bone’s structure and 

functional demands such as mechanical loading and nutritional needs (Hutmacher, 2013). The 

mechanical properties of bone depends on its composition (mineralisation and porosity etc.) 

as well as the structural organisation (trabecular or cortical bone architecture, collagen fibre 

orientation etc. (Martin, 1991).        

Osteoprogenitor cells differentiate to osteoblasts, which go on to synthesise bone 

matrix which is composed of mostly type I collagen. It is thought that flattened bone lining cells 

(FBLs) are quiescent osteoblasts which line non-remodelling bone surfaces. These FBLs are 

thought to be important in the maintenance of mineral homeostasis and regulate remodelling 

signals (Miller et al., 1989). Osteoblasts secrete matrix and become trapped inside it as they 

transition to osteocytes (which are shaped like stars as opposed to the triangular shaped 

osteoblasts). Osteocytes reside and network inside lacunae, similar to the way the nervous 
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system works, via long cytoplasmic extensions in tiny canals called canaliculi. Even though 

osteocytes have a low synthetic activity, there have been studies that showed they are actively 

involved in turnover of bony matrix via numerous mechanisms (Schaffler et al., 2014). 

Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into 

different lineages of mesenchymal tissue, including cartilage, fat, bone and various connective 

tissues (Phinney & Prockop, 2007). These cells have been now isolated from adult blood, tooth 

pulp and bone marrow. One of the master modulators in the differentiation of MSCs into 

Osteoprogenitor cells is the canonical Wnt/-catenin pathway (Logan and Nusse, 2004). 

Studies have also shown that high and low bone mass phenotypes are associated with 

activation of LRP5 (a co-receptor of Wnt protein receptor) (Gong et al., 2001, Boyden et al., 

2002). It has even been shown that myogenic cells can give rise to osteoprogenitor de-

differentiation under certain circumstances (Doherty et al., 1998). Here blood vessel pericytes 

could undergo de-differentiation and develop into osteoblasts, chondrocytes fibroblasts and 

adipocytes (Mills et al. 2013). 

 There is a significant morphology shift seen in osteoblast precursors as they are seen 

to transition from spindle-like cells to a large cuboidal shape when they are fully differentiated 

into mature osteoblasts. Functioning and mature osteoblasts are also seen to be surrounded 

by alkaline phosphatase (ALP) positive osteoprogenitor cells in bone remodelling nodules. 

After decades of research, it has now been established that there are three major stages of 

osteoblast differentiation and mineralisation which are summarised in the Figure 1.8 (Stein et 

al., 1990). 
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 Osteoclasts are generally believed to be derived from mononuclear precursor cells of 

monocyte-macrophage lineage in bone marrow (Nijweide et al., 1986). Regarding osteoclast 

formation, there are two key cytokines; receptor activator of nuclear factor B ligand (RANKL) 

and macrophage colony-stimulating factor (M-CSF). Both stromal cells and osteoblasts are 

needed in osteoclastogenesis. This process is regulated by soluble and membrane bound 

RANKL and M-CSF that are regulated by the stromal cells and osteoblasts (Teitelbaum and 

Ross, 2003). On osteoclast precursor cells, RANKL signals through receptor activator of 

nuclear factor B (RANK) to mediate osteoclast differentiation, activation and survival during 

normal bone modelling and remodelling processes. However, osteoprotegerin (OPG) can bind 

to RANKL and prevent RANK binding to it (Boyce and Xing, 2007). M-CSF, on the other hand, 

promotes survival, proliferation and differentiation of osteoclast precursors and regulates the 

cytoskeleton of cells. Osteoclasts are known to be responsible for resorbing bone mineral into 

the blood stream during bone remodelling. Cell integrins are crucial for the interaction between 

osteoclasts and bone matrix and bone matrix peptides. One of the key integrins is 1, which is 

          Proliferation                                 Matrix maturation                               Mineralisation     

Figure 1.8: The three main stages of osteoblast differentiation. 1- Proliferation, where 
cells are rapidly dividing and starting to secrete ECM proteins such as fibronectin and type I 
collagen. 2- Matrix maturation, here there is an increased release of ALP and secretion of 
bone matrix proteins (BMPs) like osteopontin and osteonectin.  3- Mineralisation, secretion 
of osteocalcin, deposition of Ca2+ into bone matrix and decline in ALP activity.  
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anchored and expressed in osteoclasts, which binds to collagen, fibronectin and laminin 

(Pawelec et al., 2016).  

 

1.6.4 Bone development 

 

 The first stage in the development of mesenchymal tissues is called condensation, here 

previously dispersed populations of MSCs gather together and differentiate into a single type 

of tissue such as cartilage, bone, tendon, muscle, etc. There are two mechanisms that are 

involved in skeletal development: endochondral ossification and intramembranous 

development which occur after MSC condensation. The majority of the skeleton, including all 

long bones, are formed through endochondral ossification, whereas the development of the 

skull and mandible would be formed through intramembranous ossification (Scotti et al., 2013, 

Opperman, 2000).  

Endochondral ossification starts with precursor cells differentiating into pre-

chondrocytes and forming the cartilage scaffold. Following this, the chondrocytes are then 

replaced with mineralised bone matrix. This primary ossification occurs at the centre of the 

long bone, where the chondrocytes have stopped proliferating and have become hypertrophic. 

They will also mineralise the matrix and secrete vascular endothelial growth factor (VEGF) to 

promote vascular invasion and attract chondroclasts. Hypertrophic chondrocytes cause 

adjacent perichondral cells to differentiate into osteoblasts, which in turn secrete collagen type 

1- rich matrix that results in the formation of the bone collar. The hypertrophic chondrocytes 

then undergo apoptosis leaving behind the cartilage matrix behind as a scaffold for osteoblast 

mineralisation (Majidinia et al., 2018). Growth plates are zones of proliferating chondrocytes, 

which lengthen the long bones that are in between primary and secondary ossification centres 

(Kronenberg, 2003).  

 

As stated above, flat bone growth and bone widening of long bones occurs through 

intramembranous ossification. In this process, MSCs are directly differentiated into pre-
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osteoblasts and then osteoblasts. However, this is not a process that is well characterised at 

time of writing.   

 

1.6.5 Healing from bone fracture 

 

 Today, bone fracture repair is considered to be a regenerative process. Fracture 

healing is a fascinating process whereby the formation of new bone tissue is indiscernible from 

uninjured bone (Fazzalari, 2011). This feature of bone regeneration is very different from soft 

tissues, whereby a fibrous scar is produced at the site of injury. Bone repair after a fracture is 

made up of two mechanisms: direct remodelling with minimal callus formation and indirect 

remodelling with callus formation through a combination of both intra-membranous and 

endochondral ossification, the latter is more prominent in fracture healing. In general, the 

process consists of three overlapping phases: inflammation, renewal and remodelling (Wang 

et al., 2013).  

After a bone becomes fractured, just like in other tissue injuries, there is an 

inflammatory response that peaks after 24 hours after initiation (Marsell and Einhorn, 2011). 

During this phase, there is an intricate network of pro-inflammatory signals and growth factors 

at play. This results in the expression of several inflammatory molecules, including tumour 

necrosis factor  (TNF) and interleukins (IL-1, IL-6, IL-11, IL-8) (Fazzalari, 2011, Rundle et 

al., 2006). After this, polymorphonuclear neutrophils (PMNs) and macrophages are recruited 

so that the fracture derived-microdebris and micro-organisms can be endocytosed (Schett, 

2011). Soon after this, platelets are induced as a consequence of injury to blood vessels, which 

produce platelet-derived growth factor (PDGF), transforming growth factor-β1 (TGF-1), 

tumour derived growth factor- (TGF-), insulin-like growth factors (IGFs) and fibroblast growth 

factor-2 (FGF-2). These are all released by macrophages in order to form the initial hematoma 

(Cho et al., 2002, Lieberman et al., 2002). In addition, at the fracture site, BMPs will also be 

expressed by osteoprogenitor cells. All these factors culminate in the recruitment of MSCs.  
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In the renewal phase, the recruited MSCs present at the fracture site proliferate and 

differentiate into osteoblasts to form bone through intramembranous ossification, around 7-10 

days after the fracture. Following on from this is the start of chondrogenesis in the injured 

tissue (Cho et al., 2002). It is important to note that, at this point there is an absence of 

inflammatory mediators. BMPs and TGF-β2 signalling induces endochondral bone formation 

in the cartilaginous callus (Cho et al., 2002, Gerstenfeld et al., 2003). At the end of this phase 

the cartilage that has been formed calcifies and is then replaced with woven bone (Fayaz et 

al., 2011). When the remodelling phase commences osteoprogenitor cells then differentiate 

into osteoblasts and osteoclasts. Both osteoblasts and osteoclasts mediate the replacement 

of the woven bone with lamellar bone through their reforming and resorbing actions 

(Mountziaris and Mikos, 2008). Furthermore, it is thought that (human) growth hormone and 

parathyroid hormone also play a part of the remodelling phase and contribute to the healing 

speed and strengthens the fracture callus (Nakajima et al., 2002). In addition to the signalling 

pathways that are involved in MSC differentiation, chondrocyte maturation, angiogenesis and 

ossification seem to all have similar events occurring during foetal skeletal development 

(Mountziaris and Mikos, 2008). Nevertheless, the absence of inflammatory response in 

embryonic development (as well as the involvement of embryonic stem cells) is the key 

difference between fracture healing and foetal skeletogenesis (Hall and Miyake, 2000).  

   

 

1.6.6 Biomaterials and current options for clinical regeneration 

 

When certain pathological fractures or when large bone defects occur and bone repair fails, 

clinical intervention is required (Dimitriou et al., 2011). Furthermore, the capacity of bone to 

repair itself can also be diminished by numerous conditions such as bone infection, infection 

in the periphery tissues, insufficient blood supply and systemic diseases (Dimitriou et al., 

2011). This is where bone grafts are utilised. In general bone grafts are an implanted material 

which induces bone repair through osteogenesis, osteoconduction and osteoinduction either 
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in combination with other materials or alone (Bauer and Muschler, 2000). The decision of which 

appropriate type of bone graft to use depends on graft size, tissue viability, defect size, shape 

and volume to name a few (Sheikh et al., 2015). There are four main categories that materials 

used in bone grafts can be separated into to repair bone defects: autografts, allografts, 

xenografts and bone graft substitute (Sheikh et al., 2015). In order for a bone graft material to 

be successful in regenerating bone there are four major characteristics that they have to 

demonstrate 

 Osteogenesis: The capacity to generate bone tissue via the differentiation of 

osteoblasts from osteoprogenitors (Greenwald et al., 2001) 

 Osteoinductivity: The capacity for the bone graft materials to be able to promote 

the production of bone-forming cells. 

 Osteoconductivity: Where the graft material is able to be reabsorbed into the 

body after serving as a scaffold for new bone growth. 

 Osseointegration: The capacity for the graft materials to bind with periphery 

bone tissues without generating any intervening layer of fibrous tissue. 

These are the qualities that are necessary for an ideal bone graft material in successful 

bone regeneration.  

Autografting (autologous or autogenous) are the current gold standard of bone grafting 

material and is defined as transplantation of a cancellous or cortical bone tissue from one part 

of the body to another within the same individual (Zimmermann and Moghaddam, 2011). 

Autografts are comprised of surviving cells which include osteoinductive factors such as BMP-

2, BMP-7, FGF, IGF and PDGF (Bauer and Muschler, 2000). They will also lack 

immunogenicity as well as retain immediate viability after transplantation (Janicki and 

Schmidmaier, 2011). All of these factors are what make autografts the best bone grafting 

material available. However, due to the additional surgery that is required for the harvesting of 

grafts from another site on the body, there is an increased risk of donor pain, infection, 

complications and morbidity. In addition, there is only a finite amount of autograft material 
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available from the donor. These limitations may be overcome by introducing other graft 

materials (Janicki and Schmidmaier, 2011).  

A common substitute for autografts are allografts, which are obtained from one 

individual and implanted into another individual of the same species (Ehrler and Vaccaro, 

2000). Either cortical, cancellous or even a combination of both materials can be used as either 

intact or divided forms (Parikh, 2002). Allografts can be harvested from either living donors or 

cadavers, as it is possible for the latter to retain their cellular and organic content (Zimmermann 

and Moghaddam, 2011). The disadvantages mentioned above for autografts do not apply to 

allografts. In fact, unlike autografts, there is a broad range of shapes and sizes of allograft 

materials and a higher availability of them too. However, allografts are not perfect, as there 

can be a lack of viable cells and thus a lower osteogenic potential, Moreover there is a risk of 

transmitting bacterial infections and viral diseases. These can include but are not limited to 

HIV, hepatitis B and C. It has been found that, due to the low osteogenic potential, there is a 

lower rate of healing and that the grafts can also trigger immunological reactions in the host 

body (Gomes et al., 2008, Oryan et al., 2012, Parikh, 2002).  

The third option for graft materials are xenografts, also known as xenogenic or 

heterologous grafts. Heterologous grafts come from a different species to humans and are 

commonly sourced from porcine and bovine species (Oryan et al., 2012; Develioglu et al., 

2009). The biggest advantage to these heterologous grafts is that they can be considered an 

unlimited supply. On the other hand, the major downsides are the possibility that zoonotic 

diseases can be transmitted to the host and there is also a risk of prion infections. In addition, 

there is also a lack of osteogenic characteristics which results in a poor clinical outcome (Oryan 

et al., 2012).  

The final option is to use bone graft substitutes when managing bone defects. These 

substitutes are usually formed of natural tissue scaffolds such as collagen, alginate, elastin, 

chitosan and cellulose. Synthetic materials such as mono, bi- and tricalcium phosphate 

including hydroxyapatite (HA), bi-tricalcium phosphate (b-TCP) and calcium-phosphate 

cements as well as glass ceramics (Finkemeier, 2002, Dimitriou et al., 2005). These materials 



60 
 

are advantageous since they are able to trigger proliferation, migration and differentiation of 

bone cells that are crucial for bone regeneration. 

However, more research into the mechanisms behind these advantages are still being 

researched and more synthetic materials are being researched every year.    

 

 
 

1.7 45S5 bioglass   
 

In 1971, Hench et al. began investigating silicate bioglass glasses as 3-D bone tissue 

scaffolds. Since then the field has been growing and today has expanded into tissue 

engineering and cellular biology (Baino and Vitale-Brovarone, 2011). Bioglasses are inorganic 

materials are able to react to physiological tissues and form bonds to bone through the 

formation of bone-like hydroxyapatite layers.This leads to effective biological interaction and 

fixation of bone tissue with the material surface (Hench, 1998). Looking specifically at 45S5 

bioglass, the reactions on the material surface include the release and exchange of critical 

concentrations of Si, Ca, P and Na ions. This in turn encourages favourable intracellular and 

extracellular repsonses that promote rapid bone formation (Gerhardt and Boccaccini, 2010). 

These biogl can not only act as scaffolds but also serve as carriers for the delivery of metal 

ions to mediate cellular functions. 

When Hench et al. found that certain silicate-based glass compositions could be 

bonded chemically to rat bone, they termed these glasses as “bioactive”. Bioglasses were 

classified as materials that elicited a specific biological response at the surface of the material 

which resulted in the formation of a bond between the tissues and the materials (Hench et al., 

1972). One of the oldest compositions of bioglass is the famous 45S5 Bioglass which has 

multiple successful clinical applications in tissue engineering. The meaning behind the name 

is that the composition is 45% wt SiO2 , incorporating 25% wt Na2O, 25% wt CaO, 5% wt P2O5. 

The 5 in 45S5 represents the 5:1 ratio of CaO to P2O5 and this high ratio, coupled with the high 
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amounts of Na2O, is why the glass surface is highly reactive in physiological environments 

(Hench, 1993).  

 
After much research, it is now widely believed and accepted that to create a bond with 

bone a biologically active apatite surface layer must form at the biomaterial-bone interface 

(Hench, 2006). Therefore, the fundamental necessity of bone bonding property of bioglasses 

is the chemical reactivity in physiological body fluids resulting in the formation of 

hydroxycarbonate apatite (HCA) layer to which bone can bond and collagen fibres (CF).  It 

was further found that the products that reacted with the bioglass upregulate the genes that 

control osteogenesis (Xynos et al., 2000, Xynos et al., 2001). Briefly, ion leaching/exchange 

and dissolution of the bioglass network and precipitation/growth of the calcium-deficient HCA 

layer, encourages the colonisation, proliferation and differentiation of osteoblasts (Hench, 

1993). Figure 1.9 displays SEM images of HCA binding to collagen fibrils.  

 

 

       

 

Figure 1.9: SEM images of the HCA layer bonding to bone. (A) SEM micrograph 
of collagen fibrils incorporated within the HCA layer growing on a 4585 Bioglass 
substrate in vitro (B) Close-up (11300x) of the HCA crystals bonding to a collagen 
fibril. Adapted from Hench et al. 1993. 
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In parallel to the chemical reactions on the material surface, recent studies have shown 

that ion dissolution and release from bioglass activate gene expression in osteogenitor cells 

that give rise to enhanced bone regeneration (Xynos et al., 2000).  

This study aims to investigate the differences in the physical characteristics of collagen 

scaffolds, which have been crosslinked using transglutaminases with and without bioglass 

particles. Alongside this characterisation of physical characteristics, the validation of inhibitors 

on TG2 and mTG will be assessed. And the determination of the amount of crosslink per mole 

of collagen in crosslinked collagen scaffolds will also be determined. Following this, the 

differences in integrin expression (if any) of human osteoblasts seeded on native, crosslinked 

collagen and scaffolds with bioglass will be investigated. In addition to this the rates of 

mineralisation between the scaffolds will also be assessed using von Kossa staining. The main 

objectives of the thesis are listed below: 

1.  The micro and macro structural differences between native, crosslinked collagen and 

collagen scaffolds with 45S5 bioglass using sedimentation assays as well as SEM. 

2. The mineralisation rates of HOBs on the various collagen scaffolds 

3. Plausible mechanism/pathway that explain the observed rates of mineralisation. 
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Chapter 2: Materials and Methods 
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2.1 Materials 

 

2.1.1 General chemicals 

 

All water used was deionised using Purelab Option-S 7/15 system purchased from 

ELGA. Sterilisation of disposable pipette tips, chemical and stock solutions was autoclaved 

at 121°C for 1 hour or by filtration through a 0.45m Millex syringe filter purchased from 

Merck Millipore, Watford, UK. All general chemicals were purchased from Sigma-Aldrich, 

Poole, UK unless otherwise stated. 

Recombinant human tissue transglutaminase 2 (rhTG2) and mTG were purchased 

from Zedira GmBH, Germany with the activity between 14-17U/mg as stated in certificate 

of analysis. Biotin-Cadaverine was purchased from Zedira GmBH, Germany. Silver (I) 

nitrate was purchased from Fisher Scientific UK Ltd, Leicestershire UK. Collagenase from 

Clostridium histolyticum, subtilisin, pronase, leucine aminopeptidase (LAP), prolidase and 

carboxypeptidase Y were all purchased from Sigma-Aldrich, Poole, UK. Inhibitors 1-155 

and R281 were kindly provided by Dr Vivian Wang. 45S5 bioglass particles (between 40- 

60 µm) with the composition of: 5 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% 

P2O5) and cobalt bioglass (53 wt% SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt 

% CaO, and 4 wt % P2O5)  were both kindly provided by Dr Richard Martin. 

2.1.2 Cell culture  

 

Dulbecco’s Modified Eagle Medium (DMEM) with glucose (4.5 g/l), L-glutamine 

(200mM), non-essential amino acid (NEAA) concentrate (100x) and penicillin/streptomycin 

(100x) solution were all purchased from Corning, U.K. Fetal bovine serum (FBS) was 

purchased from Labtech Sussex, UK.  
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 2.1.3 Immunochemicals 

 

 All monoclonal and polyclonal mouse α1, α2, α5, αV, β1, β3 and rabbit LRP5 and β –

catenin antibodies as well as secondary anti mouse and anti rabbit antibodies were purchased 

from Santa Cruz, California USA.  

2.1.4 Western blot chemicals 

 

Tris-glycine-SDS buffer (10X) and 30% (w/v) solution containing methylene bis 

acrylamide (in a 29:1 mix) were purchased from Melford Biolaboratories Ltd, Suffolk, UK.  

Pure nitrocellulose blotting membranes were purchased from Pall Corporation, UK. Blotting 

pads were purchased from VWR, UK. Enhanced chemiluminescence ECL reagents were 

purchased from Cynagen Bologna, Italy. 

 

2.1.5 Mineralisation and collagen staining kits 

 

Silver Quest staining kit was purchased from Invitrogen Ltd, Paisley UK. Silver nitrate 

and sodium thiosulfate were both purchased from Sigma Aldrich Poole, UK.  

 

2.1.6 Sub cellular fractionation 

 

A subcellular Protein Fractionation Kit was purchased from Thermo Scientific 

Massachusetts, USA.  

 2.2 Methods 

 

2.2.1 Cell culture  

 

Human osteoblasts (HOBs, passage 18) which were spontaneously immortalized were 

kindly gifted from Prof Sandra Downes and Dr S Anderson, University of Nottingham). 
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 HOBs were cultured in Dulbecco’s Modified Eagle medium with L-glutamine (DMEM) 

containing 10% (v/v) heat-inactivated foetal bovine serum (FBS), 1% NEAA (v/v) and 1% 

penicillin/streptomycin (v/v), hereafter described as complete medium (CM).  All flasks were 

kept in a humidified incubator at 37°C the CO2 concentration was set at 5% (v/v).  

2.2.2 Passaging cells 

 

Passaging of cells took place regularly in order to ensure that HOBs were healthy and 

were not allowed to reach over 90% confluency. After the removal of all medium, the 

monolayers in flasks were washed once with PBS (pH 7.4) to remove any residual complete 

medium. Following this, the cells were treated with 0.25% trypsin in 2mM EDTA solution for 5 

minutes. Once cells had been observed to have detached from the flask (using a light 

microscope) double the volume of complete medium (to that of trypsin) was added to inactivate 

trypsin. The suspension was then centrifuged at 300g for 5 minutes, from which a cell pellet 

was formed. This pellet was either re-suspended in serum free medium (DMEM) for use in 

investigations or seeded into the appropriate cell culture flask or vessel and then kept in a 

humidified incubator at 37°C in 5% CO2 (v/v). 

2.2.3 Cryopreservation 

 

 Healthy cell cultures were grown to approximately 90% confluency before 

tryspinisation. After centrifugation the cell pellet was then suspended in 1ml of “freezing 

mixture” consisting of 10% (v/v) DMSO in FBS. This solution was aliquoted into cryogenic 

tubes before being stored in a -20°C freezer for 1 hour, after which time it was stored in a -

80°C freezer. Following this the cryogenic tubes were then transferred in vapour phase liquid 

nitrogen freezer tanks for long term storage.  
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2.2.4 Retrieving cells from storage 

 

 Cells were kept at room temperature (19°C) until completely thawed and were then 

transferred to a sterile centrifuge tube. Complete medium was then added drop-wise whilst 

mixing the solution regularly to allow for slow dilution. The suspension was then centrifuged 

(300g for 5 minutes) to remove the freezing mixture. Using the appropriate growth medium, 

cells were then re-suspended and transferred into the appropriate tissue culture flask and 

incubated in a humidified-atmosphere incubator at 37°C (with 5% CO2 v/v). The respective 

medium was then changed no more than 8 hours thereafter to remove the remaining DMSO. 

 

2.2.5 Differentiation of HOBs 

 

Cells (passage 20-25) were seeded into either 96-well plates (100 µl) or in 35mm tissue 

culture plates at a density of 8x104/cm2 in 2 ml complete medium (10% FBS in DMEM) for 16 

hours. Following this the differentiation treatment began by replacing the complete medium 

with 50g/ml ascorbic acid and 10 mM -glycerophosphate in complete medium. This is 

differentiation medium (henceforth referred to as DM). Differentiation medium was replaced 

every 48 hours for 10 days to carry out both mineralisation assays.  

 

2.3 Protein expression assays 

 

2.3.1 Protein concentration 

 

Lowry protein assay was performed (using the Bio-Rad RC kit purchased from Life 

Sciences, Hemel Hempstead UK). As per the manufacturer’s instructions, a set of bovine 

serum albumin (BSA) standards ranging from 0.2-1 mg/ml were created and 5 l of these 

samples were added in triplicate to a 96-well plate. 25 l of “reagent A” and 200 l of “reagent 

B” were then added to the BSA standards. The plate was incubated at room temperature 

(19°C) for 15 minutes to allow full colour development, the plate was then read at 750nm using 
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a Spectrafluor plate reader. The concentrations of the proteins in cell lysates were determined 

against the linear standard curve produced by the BSA protein standards.  

2.3.2 Lysing and collecting whole cell lysates 

 

HOBs were seeded in either 35mm (2 ml complete medium) or 60mm petri dishes (4 

ml complete medium) at a density of 8x104/cm2. Once the cell media had been discarded, the 

cells were then removed using lysis buffer (0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% 

Nonidet P-40 (NP-40), 5% glycerol; pH 7.4) that was supplemented with 0.2mM PMSF and 

1% protease inhibitor cocktail (P8340) (purchased from Sigma-Aldrich Dorset, UK). After 5 

minutes of incubation at room temperature (19°C) the cell lysates were transferred to 

Eppendorf tubes and centrifuged at 13,000g for 5 minutes at 4°C to pellet the cell debris.  

For the removal of cells bound to the collagen matrix, 75l of cell lysis buffer of the 

following composition was added to each 35mm plate: 1% (v/v) NP-40, 0.5% (w/v) sodium 

deoxycholate, 0.1% (w/v) SDS, 1mM sodium fluoride, 1mM sodium orthovanadate, 2mM in 

EDTA in Tris-HCl (pH 7.4) with freshly added 0.1mM of PMSF and 1% (v/v) protease inhibitor 

complex (PIC). 

To lyse cells, the culture medium was removed from the HOBs seeded on collagen 

matrices before being washed with PBS (pH 7.4). 70 l of the cell lysis buffer outlined above 

was then added to the plates for approximately 5 minutes before collection and then left on ice 

for 30 minutes. The protein concentration was measured using a DC Protein Assay kit (Bio-

Rad, UK) (see 2.3.1). The samples were solubilised in 2x Laemmli buffer (60 mM Tris-Cl pH 

6.8, 2% SDS, 10% glycerol, 5% -mercaptoethanol, 0.01% bromophenol blue) then boiled for 

5 minutes before being loaded onto a gel or frozen at -80°C for storage.  
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2.3.3 Transglutaminase activity assay  

 

 5 µg/ml microbial transglutaminase (Zedira, Germany) was dissolved in 50 mM Tris-

HCl (pH 7.4) buffer before immediate use. The synthetic CBZ-glutaminyl-glycine peptidic 

analogue R281 was used as an irreversible site-directed microbial transglutaminase inhibitor 

at a concentration of 250 µM. To inhibit the enzyme, R281 was incubated with mTG for an 

hour at room temperature (19°C). 

 5 µg/ml recombinant human TG2 (Zedira, Germany) was solubilised in 50 mM Tris-HCl 

(pH 7.4) before being used. 1-155 is a cell permeable irreversible inhibitor of TG2 that targets 

the active site cysteine.  

 The activity assay was based on a modified technique first used by Slaughter et al. 

(Slaughter et al., 1992). First 96-well plates were coated overnight with 50 l N,N’-

dimethylcasein purchased from Sigma-Aldrich Poole, UK (10 mg/ml) per well at 4°C overnight 

or 37°C for 1 hour. The plate was washed three times with 50 mM Tris-HCl, pH 7.4 and then 

blocked with 3% BSA in PBS pH 7.4 (heat inactivated at 78°C), at room temperature (19°C)  

for 30 minutes. The reaction was started by the addition of 100 l of solution containing 

mTG/TG2, 100 µM biotin-cadaverine, 10 mM DTT in Tris-HCl for 1 hour. This is also 

supplemented with 500 µM R281/ 25 M 1-155 inhibitor for the negative control. After this 

incubation the samples were washed three times with TBS-Tween 20 then blocked with BSA 

blocking buffer at 37°C for 30 minutes in a humidified incubator. Blocking buffer was made up 

of 3% BSA in Tris-HCl (w/v) pH 7.4 which was heat inactivated (78°C for 3 minutes). Afterwards 

100 l of ExtrAvidin® peroxidase conjugate [diluted 1:1000 in blocking buffer (3% w/v BSA in 

Tris-HCl pH 7.4)] was added to the samples for 1 hour. After a further three washes with TBS-

Tween 20, the reaction was developed using 100 μl per well SIGMAFAST o-phenylenediamine 

dihydrochloride (OPD) tablets (Sigma-Aldrich, UK) dissolved in 20 ml dH2O, with a final 

concentration of 0.4mg/ml. The colour development was terminated by addition of 50 μl of 3M 

HCl and the absorbance was read at 490 nm using a plate reader.  
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2.4 Collagen purification and assays 

 

2.4.1 Isolation and purification 

 

 Type I collagen was sourced in house by dissecting tendons from rat tails and 

dissolving them in 0.02M acetic acid, which was then left to stir constantly at 4°C overnight. 

The solution was centrifuged at 4000g for 3 hours at 4°C to remove insoluble non-collagenous 

material before the pH of the solution was neutralised to pH 7 by adding 1M NaOH to the 

solution with gentle stirring. This adjusted solution was stirred for 2 hours at 4°C which allowed 

for the collagen to precipitate. The final step was to centrifuge the suspension at 4000g for 40 

minutes at 4°C. The resulting collagen samples were solubilised in 0.2M acetic acid and the 

suspension was stirred at 4°C overnight. 

2.4.2 Collagen concentration assay 

 

 SircolTM soluble collagen assay (purchased from Bioclolor life science assays) was 

used to calculate the concentration of collagen from the neutralised collagen solution. 

Following the instructions, a reagent blank was first made up using 0.2M acetic acid. Aliquots 

of 5, 10 and 15 g were created for the collagen reference standard curve also made up in 

0.2M acetic acid. 1:10, 1:50, 1:100 and 1:1000 dilutions of purified collagen were then made 

up to individual 100 l samples to be tested. To each sample 1 ml of Sircol dye reagent was 

added to fully saturate the collagen within the 100 µl samples (including reagent blanks and 

standards).  

 Samples were incubated on a vertical shaker platform for 30 minutes so that a collagen-

dye complex could form and precipitate. Samples were then spun in a micro centrifuge at 

12,000 rpm for 10 minutes. Supernatants were then removed by inverting the sample tubes. 

Following this 750 l of ice-cold acid-salt wash reagent was gently layered onto the collagen-

dye pellet in order to remove unbound excess dye. The samples were once again centrifuged 

at 12,000 rpm for 10 minutes before the acid-salt wash was removed. To release the collagen 

bound dye, 250l alkali reagent was added to all samples and vortexed to dissolve all the 
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bound dye. The colour of the sample is light stable and following the manufacturer’s 

instructions all samples were read within 2 to 3 hours. Measurement of absorbance was carried 

out by transferring 200 l of each sample to individual wells of a 96-well plate. A SpectraFluor 

plate reader was used to measure absorbances from all the samples at 550 nm. From the 3 

collagen concentration standards, a standard curve was obtained for collagen samples to be 

measured against.      

2.4.3 Modification of collagen by transglutaminase 

  

 Neutralised collagen was treated with mTG, TG2, 40-60 m 45S5 bioglass (10 mg/ml) 

in various combinations for the investigations. For collagen scaffolds that contained TG2, 5mM 

DTT and 10mM CaCl2 in 10 mM Tris buffer (pH 7.4) were directly added to the neutralised 

collagen along with 10X PBS and dH2O in order to make up a final of volume 2 ml (in a 35 mm 

plate). Stock solutions of 1 mg/ml TG2, 13.1 mg/ml mTG, 1M DTT and 1M CaCl2 were used to 

minimise total volume changes. Both mTG and TG2 were always added to the collagen mixture 

last before being placed in a humidified-atmosphere incubator at 37°C and 5% CO2 overnight.  

2.4.4 Coomassie blue staining of collagen 

 

Native and cross-linked collagen scaffolds were crosslinked overnight on non-treated 

35mm petri dishes before 3x105 HOBs were seeded onto them in complete medium. Following 

the necessary incubation period (humidified incubator at 37°C and 5% CO2) the media was 

discarded and washed once with PBS. Afterwards the collagen scaffolds were stained with 

0.1% Coomassie blue stain solution (G-250) (50% (v/v) methanol; 10% acetic acid; 40% (v/v) 

dH2O). Samples were gently shaken for 5 minutes at room temperature (19°C) before the 

Coomassie blue stain was discarded and the scaffolds were washed three times with distilled 

water.  
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2.4.5 Coomassie blue degradation assay 

 

 Native and cross-linked collagen samples were allowed to polymerise/crosslink 

overnight on non-treated 35mm plates before HOBs  were seeded in complete medium. Plates 

were stored in a humidified incubator at 37°C at 5% CO2 for 3 days. 2 ml complete medium 

replaced every 24 hours to ensure the survival of HOBs. After 3 days the media from each 

plate was discarded and sodium-deoxycholate (0.5%) (w/v) in 10mM Tris-HCl pH 7.4 was 

added to the plates to remove the cells from the collagen matrix. After two washes with distilled 

water, the samples were stained with 0.1% (w/v) Coomassie blue stain solution (50% (v/v) 

methanol; 10% (v/v) acetic acid; 40% (v/v) dH2O). The samples were left for 5 minutes on 

shaker before a final rinse with distilled water. 

 To analyse the stained collagen samples, a GeneBox was used to capture images with 

the UV light setting activated. Processing of images took place using imageJ (Schneider et al. 

2012) by converting the images to 8-bit and carrying out densitometry analyses to generate 

the mean pixel densitometry count.      

2.4.6 Collagen sedimentation  

 

 To study the effects of crosslinking collagen, changes in deamidation and addition of 

bioglass nanoparticles on a macromolecular level, scaffolds were centrifuged as follows: 

Collagen scaffold solutions (10X PBS, distilled water, collagen, Transglutaminase and/or 45S5 

bioglass between 2- 4 ml) were crosslinked in 35mm petri dishes overnight before being 

transferred into 7ml clear screw cap tube (purchased from Falcon, USA). Samples were then 

centrifuged for 15 minutes at 2500rpm. Images were then captured on Nikon Coolpix 5400 

camera. 
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 2.5 Analysis of cell proteins 

 

 

2.5.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

 The gels used consisted of two layers; a separating gel with a final acrylamide 

concentration of 5.5-10% (w/v) and a 4% (w/v) stacking gel. These were made from a 30% 

stock solution of acrylamide (w/v) and 0.8% (w/v) N-N’-methylene bisacrylamide. For the 

stacking gels, Tris-SDS (pH 6.8) was used (0.5M Tris HCl containing 0,4% SDS), whereas the 

separating gels consisted of a Tris-SDS solution where the pH was 8.8 (1.5M Tris HCl 

containing 4% SDS). 10% ammonium persulfate and TEMED were also added to the solutions 

last before being loaded onto the glass loading plate. Table 2.1 below describes the volumes 

used: 

 

Table 2.1: The recipes for different concentrations of acrylamide in separating gels 

Stock 

Solutions 

Final acrylamide concentration in the separating gel (%) ml 

5 6 7 7.5 8 9 10 12 13 15 

30% 

acrylamide/ 

0.8 

bisacrylamide 

2.5 3.00 3.50 3.75 4.00 4.50 5.00 6.00 6.50 7.50 

4X Tri-HCl 

SDS (pH 8.8)  

3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 

dH2O 8.75 8.25 7.75 7.50 7.25 6.75 6.25 5.25 4.75 3.75 
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 To ensure that the gel’s top surface was flat and even, 1ml of propan-2-ol was overlaid 

on top of the separating gel which was then allowed to crosslink for approximately 1 hour at 

room temperature (19°C). Following crosslinking the iso-propan-2-ol was removed and the 

surface of the separating gel washed with distilled water before the stacking gel was added. 

The stacking gel consisted of 325µl 30% (w/v) acrylamide and 0.8% (w/v) N-N’-biscacrylamide 

solution, 62.5µl of Tris-SDS pH 6.8and 1.5ml of distilled water, 25l 10% (w/v) ammonium 

persulphate and 5l of TEMED. Aftr mixing the stacking gel solution it was quickly added on 

top of the separating gel and the appropriate comb was inserted to form the sample wells. 

Approximately 45 minutes was required before the stacking gel had crosslinked at room 

temperature (19°C). To run the samples, the gel combs were removed and washed with “1X 

Running Buffer” which consisted of Tris-glycine (pH 8.5) 0.025M Tris and 0.1% (w/v) SDS. 

Sample volumes were normalised against protein concentration (between 50-60µg) and added 

to the same respective volume of 2X Laemmli loading buffer before being loaded onto the 

wells. 5µl of rainbow marker (New England Bio labs) was loaded into each gel also. 

Electrophoresis was carried out at 120V for approximately 75 minutes and terminated when 

the blue marker dye from the Laemmli buffer nearly reached the bottom of the gel. 

 

2.5.2 Western blotting  

 

 First nitrocellulose transfer membranes, blotting pads and absorbent filter paper were 

first pre-soaked with transfer buffer (48.8mM Tris-HCl, 39mM glycine and 20% (v/v) methanol).  

10% 

ammonium 

persulphate 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

TEMED 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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 Transfer was carried out using a Biorad tank (purchased from Biorad Hertfordshire, 

UK) and power supply which was set to 300mA for 75 minutes in an ice box. After transfer, the 

nitrocellulose membrane was separated from the gel and rinsed gels with water before being 

incubated in blocking buffer (5% (w/v) dried milk powder in PBS pH 7.4) for one hour at room 

temperature (19°C). After this, the respective primary antibody (1:1000 dilution) in blocking 

buffer (outlined above) was added to the nitrocellulose paper and left overnight on a shaker 

platform at 4°C. Blots were washed with 0.5% (v/v) TBS-Tween, pH 7.4, four times. A species 

specific secondary HRP conjugated antibody in blocking buffer (1:1000 dilution) was then 

added to the blot for 2 hours at room temperature (19°C) on a shaker-platform. Subsequently, 

the blot was washed with 0.5% (v/v) TBS-Tween. Development was carried out using ECL 

chemiluminescence substrate which reacted to the HRP conjugate of the secondary antibody. 

Excess ECL was removed before the blot was covered in cling film and the light emission was 

detected using a SynGene GeneBox. 

 

2.5.3 Membrane stripping      

 

 The membranes were then re-probed for -actin as a loading control. To do this the 

nitrocellulose blots were washed in TBS Tween 20 and then incubated with stripping buffer 

(62.5 mM Tris-HCl (pH 6.7), 2% SDS (w/v) and 100 mM 2-mercaptoethanol) at 50°C for 30 

minutes. The Western blot method outlined above (2.5.3) was then carried out after the 

membranes had been incubated for one hour in blocking buffer. 

 

2.6 Determination of cell behaviour 

 

2.6.1 Cell proliferation 

 

 The proliferation of 2 x 104 HOBs (either with or without treatment/ crosslinking enzyme) 

was measured in 96-well plates using XTT reagents which changes colour according to the 

redox state of the solution. These reagents were mixed prior to being added to the samples 
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which were then incubated at 37°C in 5% CO2/ for four hours. Following this, 100l of the 

culture supernatant from each sample well was transferred to a new 96-well flat bottomed plate 

and the orange coloured solution was quantified using a plate reader where the absorbance 

was measured at 490 nm (and the reference wavelength at 750 nm). 

2.6.2 Mineralisation of HOB cultures 

 

 2 x 104 HOBs in 100 µl DM were cultured in 96-well plates. Either on tissue culture 

plastic, native collagen, mTG cross-linked, TG2-crosslinked and incubated at 37°C in 5% CO2 

for up to 10 days with regular change of medium every 48 hours. After 10 consecutive days 

post addition of differentiation medium (10% FBS, 50 g/ml Ascorbic acid, 10 mM -

glycerophosphate in DMEM) the mineralised bone matrix was then visualised using von Kossa 

staining. Using this method silver ions replace calcium in the matrix to form a precipitation 

complex with phosphate groups. Samples were washed with distilled water, fixed in 3.7% 

paraformaldehyde for 30 minutes and then dehydrated in 70% ethanol for 1 hour. Following 

this the dehydrated samples were washed with distilled water before 2% silver nitrate (Sigma-

Aldrich Poole, UK) was added to them. Samples were then exposed to UV light for 20 minutes, 

washed with distilled water five times and fixed with 5% sodium thiosulphate (Sigma-Aldrich 

Poole, UK) for 3 minutes. After a final wash with distilled water the samples were viewed at 

10X and 40X magnification using a Nikon CK2 microscope. Images of non-overlapping fields 

were then photographed before they were converted into negative images. Using these 

negative images mineralisation areas were then quantified using Image J software (Schneider, 

et al. 2012).  

 

2.7 Using SEM to analyse crosslinked surface topography 

 

 

 Following the overnight crosslinking of collagen scaffolds (method outlined above), 

complete medium was used to wash each scaffold and it was allowed to air dry. Following this, 
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the collagen samples were freeze dried for 24 hours. This involved cooling the samples to -

20°C at a constant cooling rate of 1°C/min and holding samples at this temperature for 20 

minutes to allow the scaffolds to freeze. The temperature was then increased to -10°C and 

held for 7 hours. The final step was to remove any water crystals by sublimation, the 

temperature was increased to 0°C for 17 hours at 200 mTorr.  Once the collagen scaffolds 

were completely dried, the samples were then sputter-coated with gold and for SEM 

observation with the kind help of Prof M Salhawa.  

 

2.8 Collagen staining assay 

  

In order to detect and stain for collagen deposition in the ECM, a Silver Quest collagen 

staining kit (purchased from Invitrogen) was used. First, 3x105 HOB cells were seeded onto 

35mm petri dishes for 10 days with differentiation medium (media changes every 48 hours). 

After 10 days the medium was discarded from each plate and cells were washed with PBS. 

Cells were then manually scraped with 500 l PBS before 0.1 mg/ml pepsin (50mM acetic 

acid) was added to the samples. Samples were left in a shaking incubator at 37°C for 2 hours 

before the medium was collected in an Eppendorf tube. Neutralising solution (200 mM Tris and 

150 mM NaCl in distilled water) was added to each sample and centrifuged at 12,000g for 10 

minutes. After the supernatant was discarded, samples were denatured using 6X Laemmli 

buffer and boiled for 5 minutes. These samples were then analysed by SDS-PAGE using a 5% 

separating gel.  

 Following electrophoresis, the gel was removed from the cassette and rinsed briefly in 

distilled water. Each gel was then fixed using 100 ml of fixative solution (prepared according 

to the Silver Quest kit instructions) and incubated for an hour at room temperature (19°C) on 

a shaker overnight at 4°C. The fixative solution was discarded before being washed in 30% 

ethanol for 10 minutes. Following this wash, 100 ml of “sensitising solution” was added to the 

gel for 10 minutes (to allow protein bands to bind to silver ions). Once the sensitising solution 
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was decanted the gel was washed again using 30% ethanol followed by a 10 minute wash with 

distilled water. The gels were then stained using the kit’s “staining solution” for 15 minutes. 

Once the gels had been sufficiently stained, the solution was decanted and washed with 

distilled water for 30 seconds. After this, the distilled water was discarded, 100 ml of developing 

solution was added to each gel for 8-10 minutes until the desired band intensity was achieved.  

 Once the bands became visible, 10 ml of “stopper solution” was immediately added to 

the gel which was still immersed in developing solution. Gels were gently agitated until a colour 

change from pink to colourless appeared. The inactivated developing solution was then 

decanted and washed with distilled water for a final time for 10 minutes.  

 Gels were then imaged using a Syngene GeneBox with the UV light setting activated, 

images that were captured were then analysed using ImageJ densitometry analysis software. 

 

2.9 Sub cellular fractionation protocol  

 

 3x105 HOBs were seeded onto 35 mm petri dishes and grown using differentiation 

medium for 2, 3, 4, or 6 days with media changes every 24 hours. At the appropriate time point, 

media was discarded from the petri dish and cells were washed with PBS. Using 1 ml of ice 

cold PBS, cells were gently scraped off using a cell scraper. If HOBs were grown on collagen 

scaffolds then 0.125% collagenase (from type III from Clostridium histolyticum, purchased from 

Invitrogen Paisley, UK) was used to degrade collagen. Cells were centrifuged for 5 minutes at 

300g and the pellet was discarded.  

 A whole lysate sample (of 20 l) of cell/PBS solution was aliquoted and added to an 

equal volume of cell lysis buffer and a protein concentration assay was carried out on the 

sample as outlined above. A protein concentration assay was also carried out on the remaining 

cell/PBS solution. Using the sub-cellular fractionation kit (Thermo Scientific Massachusetts, 
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USA) cytoplasmic extraction buffer (CEB) was then prepared using 0.1mM PMSF and 1% 

protease inhibitor cocktail according to the kit’s instructions.  

Cell/PBS solution was added to the CEB solution and mixed for 7 minutes at 4°C. 

Following this the samples were centrifuged at 500g for 3 minutes at 4°C. The supernatant 

was removed and stored on ice before each pellet was washed three times with ice cold PBS.  

The pellets were then vortexed and suspended in ice cold “membrane extraction buffer” 

(MEB) which was prepared with 0.1mM PMSF and 1% PIC according to the kit’s instructions. 

The samples were then gently mixed for 10 minutes at 4°C before the samples were 

centrifuged at 3000g for 5 minutes at 4°C. After this the supernatants were removed and stored 

on ice.  

Pellets were washed three times with ice cold PBS before being re-suspended in 

“nuclear extraction buffer” (NEB) with 0.1 mM PMSF and 1% PIC as per the kit’s instructions. 

The samples were then incubated with gentle shaking at 4°C for 30 minutes before being 

centrifuged at 5000g for 5 minutes. The final supernatant was then removed and stored on ice. 

The concentrations of the three sets of sub-cellular fractions: cytoplasmic, membrane-bound 

and nuclear were then measured using the Lowry method as described in section 2.3.1.  

 

2.10 Amino acid analysis of crosslink proteolytic digestion for crosslink 

analysis 
 

 Collagen samples were crosslinked overnight in 35mm untreated petri dishes before 

being transferred to 2 ml screw cap Eppendorf tubes and boiled for 10 minutes. Afterwards the 

samples were cooled before 0.01 mg/ml collagenase sourced from Clostridium histolyticum in 

0.1M ammonium hydrogen carbonate pH 8 for 24 hours at 37°C with gentle shaking. Following 

this, 3 consecutive additions of subtilisin (0.01 mg/ml in ammonium hydrogen carbonate) were 

added once every 24 hours. 0.015 mg/ml pronase (in ammonium hydrogen carbonate, pH 8) 
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was then added to the samples for 24 hours before being boiled for 15 minutes. Following this 

there were two consecutive leucine aminopeptidase and prolidase additions, every 24 hours. 

The final step was to add 0.01 mg/ml carboxy peptidase Y (in ammonium hydrogen carbonate) 

for 24 hours at 30°C with gentle shaking.   

Samples (10-100 μl) were mixed with an equal volume of loading buffer (0.2M lithium 

citrate, 0.1% phenol pH 2.2) and loaded onto a Biochrom 30 amino acid analyser physiological 

system using lithium buffers (Biochrom, UK). Buffers 1-6 were obtained from Biochrom. A 

modified separation method was used (Table 2.2) and detection was by ninhydrin. Dipeptide 

was determined by addition of known amounts of ε (γ-glutamyl)lysine to the sample and 

comparing peak areas. 

 
  
Table 2.2: A series of lithium buffers used during the amino acid separation phase 
 

TIME (min) BUFFER COLUMN 
TEMPERATURE 

0-9 1 25°C 

9-32 2 25°C 

32-67 3 25°C 

67-107 3 25°C 

107-123 6 75°C 

123-135 1 75°C 

135-147 1 65°C 

147-159 1 35°C 

159-171 1 25°C 

 

2.10.1 Ammonia analysis 

 

 Using ammonium hydroxide standards, collagen samples were allowed to crosslink for 

2 hours before being centrifuged for 15 minutes at 2500rpm. The collagen pellet was then 

discarded and the 50 µl of the supernatant was loaded at a concentration of 1:1 with loading 
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buffer and run on the Biochrom 30 amino acid analyser using the standard method. A set of 

ammonia standards were created from a stock solution of ammonia bicarbonate and used to 

quantify the amount of ammonia released.  

 

 

2.11 Statistical analysis 

 

 For normally distributed multiple data comparisons, one-way and two-way ANOVA 

tests were used followed by Bonferoni post-hoc test.  Results were expressed as mean ±SD. 

Where the statistical significance between control and treated samples were evaluated at a 

95% confidence level (p<0.05), the data set would be considered to be statistically significant 

and represented with a *, ** or *** above the bars. The calculations were performed using 

Graphpad Prism 5 statistical package (Graphpad Software, La Jolla California USA). 
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Chapter 3: Characterisation of novel type I 
collagen scaffolds generated using 

transglutaminases 
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3.1 Introduction 
 

 Due to the ubiquitous expression of TG2 throughout the body and its involvement in 

various tissue developmental and wound healing processes, it is possible that  TG2 modified  

biomaterials could be beneficial for wound healing. Futhermore, the crosslinking effects  of 

mTG,has still not been fully explored for its potential in enhancing bone tissue mineralisation.  

 Organic bone matrix is mostly comprised of type I collagen (~90%) and, as stated 

previously, is a well-known TG2 substrate in mineralised tissue. Regarding extracellular 

collagen, polymerisation could take place via intermolecular crosslinking (Chau et al., 2005) or 

between non-collagenous bone matrix proteins and collagen (Mosher et al., 1979). A well -

organised fibrillar collagen network forms the foundation of mineralisation, and 

transglutaminases are suggested to play a role in fibre organisation through their crosslinking 

ability (Collighan and Griffin, 2009). Evidence has also shown that transglutaminases can 

promote collagen synthesis and assembly, which leads to the promotion of cell differentiation 

(Al-Jallad et al., 2006). On the whole, TG2 promotes mineralisation in osteoblasts, promotes 

matrix protein secretion, deposition and maturation through crosslinking-mediated modification 

of the ECM, which further enhances cell attachment. By incorporating transglutaminases as 

well as 45S5 bioglass it may be possible to create a novel collagen scaffold that allows for an 

increased rate of bone regeneration. Along with 45S5 bioglass, bioglass incorporating cobalt 

ions was also tested. Cobalt ions are released in certain glass scaffolds in order cause a 

decrease in oxygen in the wound defective bone site.  When hypoxia occurs, a cascade of 

processes is initiated that results in the production of new blood vessels (Jones, 2015). 

 The aim of this chapter was to evaluate whether any crosslink bonds could be detected 

in the “in house prepared type I collagen” and assess the micro and macromolecular 

differences of crossliked collagen scaffolds. In addition to test whether the R281 and 1-155 

inhibitors are effective at the inhibiting ability of transglutaminases to form crosslinks between 

collagen strands. This is so that the inhibitors can be used as controls to separate the effects 
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of transglutaminase protein from transglutaminase activity. Secondly, to observe the effects of 

crosslinking collagen with TG2 and mTG on a macro and micromolecular level using 

sedimentation (via centrifugation) and scanning electron microscopy. Finally to investigate how 

human osteoblast cells interact with the native, crosslinked and collagen scaffolds mixed with 

45S5 bioglass.    

 

 

3.2 Characterisation of transglutaminase inhibitors, type 1 collagen and 

optimisation of collagen crosslinking  

 

3.2.1 Assessment of type I collagen purity 

 

 In order to test the purity of the collagen that is sourced and purified in house, SDS 

polyacrylamide gel electrophoresis (PAGE) was carried out (Figure 3.1). Using a 5% 

acrylamide gel (see Materials and Methods), the 1 and 2 chains (with N and C terminal sites 

cleaved) are present at the expected sizes of 130 and 115kDa. Type I collagen is a 

heterotrimer of two 1 and one 2 chain, where there is double the number of 1 chains 

compared to 2 chains which is why the band at 130kDa is double the size of the 115kDa 

band.  
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Figure 3.1: Coomassie blue stain for type 1 collagen following separation by 
SDS PAGE: A) Here the denatured α1 and α 2 chains are visible close together. 
0.19 mg of collagen was loaded onto the well before PAGE was carried out as 
stated in the Materials and Methods. B) Western blot for type I collagen that is 
purified and sold by Sigma Aldrich which has the same corresponding α bands. 
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3.2.2 Assessing the concentration of 1-155 required to inhibit TG2 

 

 1-155 is a cell permeable, irreversible inhibitor that is a substrate analogue that binds 

at the active site to selectively inhibit TG2 activity (Zonca et al., 2017) and has been reported 

by Moro et al. to selectively inhibit TG2 activity. In Figure 3.2  it is been shown to inhibit almost 

all TG2 activity at a concentration of 25 M, which is similar to what has been reported in the 

literature (Zonca et al., 2017).  
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Figure 3.2: TG2 inhibition activity assay. TG2 activity with varying concentrations of 1-155 

was measured through biotin cadaverine incorporation assay as described in the materials and 

methods chapter. 5 µg/ml TG2 treated without 1-155 was used as a positive control and a 

sample without any TG2 was used as a negative control. The data represents mean values +/- 

SD where n=3. Statistical analysis was carried out using a one way ANOVA test where the 

inhibition of TG2 samples was compared against a negative control. P-values corresponding 

to P< 0.001 are represented with a ***. 
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3.2.3 Assessing the concentration of R281 required to inhibit mTG 

 

 R281 is a non-cell-permeable inhibitor that has been reported by Zonca et al. to inhibit 

both TG2 and mTG. In Figure 3.3 it is shown that R281 can inhibit mTG activity when incubated 

with the enzyme between 250-500 µM.  
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Figure 3.3: R281 inhibition activity assay. mTG activity with varying concentrations of R281 

was measured through biotin cadaverine incorporation assay as described in the materials and 

methods chapter. 5µg/ml of mTG treated without R281 was used as a positive control and a 

sample without any mTG was used as a negative control. The data represents mean values 

+/- SD where n=3. Statistical analysis was carried out using a one way ANOVA test where the 

inhibition of mTG samples was compared against a negative control. P-values corresponding 

to P< 0.001 are represented with a ***. 
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3.2.4 Dependence of TG2 activity on reduction by DTT 

 

 For TG2 to actively form crosslinks, it must be activated by Ca2+ ions and be reduced 

by a reagent such as 1-4, dithiothreitol (DTT). However in high concentrations of DTT can be 

toxic to cells and therefore it should be used at low concentrations As expected, the higher the 

concentration of DTT in a sample, the higher the observed absorption. Since high 

concentrations of DTT are toxic, 5mM DTT was chosen to reduce TG2 in collagen scaffolds.  
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Figure 3.4: DTT activity assay.  TG2 activity with varying concentrations of R281 was 

measured through biotin cadaverine incorporation assay as described in the materials and 

methods chapter. 5µg/ml of mTG treated without R281 was used as a positive control and a 

sample without any mTG was used as a negative control. The data represents mean values 

+/- SD where n=3. Statistical analysis was carried out using a one way ANOVA test where 

the absorbance of samples were compared against a blank control. P-values corresponding 

to p< 0.05 are represented with a * and where p<0.01 are represented with a **. 
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3.2.5 The effect of collagen pH on TG2 activity  

 

 Due to the collagen solution being solubilised in 0.2 M acetic acid, the pH must be 

neutralised from 5 to 7 in order for enzymes such as TG2 to be stable and functional. To 

determine the effect of pH on TG2, a biotin cadaverine activity assay was carried out to 

ascertain the optimum pH that yields the highest level of TG2 activity. Figure 3.5 shows that 

collagen neutralised to pH 7 gave the highest activity, which is also reported in the literature 

(Fleckenstein et al., 2002) 
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Figure 3.5: TG2 pH activity assay. After 5µg/ml of TG2 was added to collagen solutions of 

varying pHs a biotin cadaverine incorporation assay was carried out as described in the 

materials and methods chapter.  A sample without any TG2 was used as a negative control. 

The data represents mean values +/- SD where n=3. Statistical analysis was carried out using 

a one way ANOVA test where the absorbance of samples were compared against a blank 

control. P-values corresponding to p<0.01 are represented with a **. 
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3.3 Effect of transglutaminase cross-linking on collagen properties  

 

3.3.1 Observing the macromolecular effects of mTG and TG2 crosslinked collagen  

 

To observe the effects of crosslinking collagen on a macromolecular scale, 2.5 mg/ml 

collagen was allowed to crosslink overnight in untreated 35 mm plastic plates and then 

collected into individual 7 ml bijou tubes and centrifuged for 15 minutes at 1500 g. Figure 3.6 

shows the difference in the overall structure that is seen between cross-linked and non-cross 

linked collagen. The native collagen sample shows that the collagen had not been sedimented 

and floated even after the centrifugation process. The second sample from the left contained 

an R281 inactivated form of mTG which is why it looks similar to the native collagen sample. 

The third sample is of the activated mTG and the crosslinked collagen is much more compact 

and sedimented, which sits at the base of the bijou tube. Likewise, the TG2 crosslinked 

collagen is also more compact and dense than the non-crosslinked samples. 
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Figure 3.6: Image of centrifuged collagen samples. 4 ml collagen samples were 

crosslinked overnight before being collected and centrifuged for 10 minutes at 1500g. 

The concentration of all collagen samples was 1mg/ml, from right to left: A) Native 

collagen, B) inactive mTG crosslinked collagen, C) mTG crosslinked collagen and D) 

recombinant human TG2. Data are representative of one experiment where n=3. 

A                           B                        C                      D 
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3.3.2 Observing the macromolecular effects of TG2 crosslinked collagen without 

calcium and DTT  

In Figure 3.7, the effects of subtracting calcium and the reducing agent DTT from the 

TG2 collagen solution is shown. Both of these are needed for TG2 transamidating activity as 

discussed in chapter 4. The collagen solution was allowed to crosslink overnight in untreated 

35 mm plastic plates and then collected into individual 7 ml bijou tubes before the samples 

were centrifuged for 15 minutes at 1500g. Once again there is a difference between the native 

collagen and the TG2 sample. TG2 samples without calcium and DTT show a similar 

macromolecular structure to the native collagen. Their sediments are less compact than the 

TG2 sample that contains the calcium and DTT.  
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Figure 3.7: Image of centrifuged collagen samples. 2.5 mg/ml collagen samples were 

crosslinked overnight before being collected and centrifuged for 15 minutes at 1500 g. 

The concentration of all 2 ml collagen samples was 2.5 mg/ml, from left to right: Native 

collagen, TG2 crosslinked collagen, TG2 crosslinked collagen without calcium and TG2 

crosslinked collagen without DTT. Data are representative of one experiment where 

n=3. 
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3.3.3 SEM imaging of collagen scaffolds 

 

SEM images shown in Figure 3.8A and 3.8B are of a 2.5 mg/ml sample of native 

collagen which were taken at 96X and 390X magnification, respectively. Figures 3.8C and 

3.8D are SEM images of mTG crosslinked collagen (at 96X and 390X respectively) and 3.8E 

and 3.8F are images of TG2 crosslinked collagen (at 96X and 390X respectively). The 

difference in morphology between all three collagen samples is striking in respect to the gaps 

(in black) between collagen fibres (white). Between Figure 3.8A, 3.8C and 3.8E the gaps 

between the strands become narrower due to the crosslinking effect. Interestingly Figures 3.8E 

and 3.8F show a different structure altogether as the collagen fibrils have lost their definition 

and pores are no longer visible between fibrils. 

By using ImageJ software, the space between collagen fibres in each image taken at 

96X magnification was measured and averaged. By quantifying the mean pore size, it was 

possible to quantify which collagen samples had the shortest and longest average space 

between their respective collagen strands (Figure 3.8G).    
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Figure 3.8: SEM images of native and crosslinked collagen: A) Collagen samples were 

crosslinked overnight before being collected and centrifuged for 15 minutes at 1500g. The 

concentration of all collagen samples was 2.5 mg/ml, from left to right: native collagen, TG2 

crosslinked collagen, TG2 crosslinked collagen without calcium and TG2 crosslinked collagen 

without DTT. B) SEM image of 2.5 mg/ml native collagen at 96X magnification C) SEM image 

of 2.5mg/ml native collagen at 390X magnification D) SEM image of 2.5 mg/ml mTG 

crosslinked collagen at 96X magnification E) SEM image of 2.5mg/ml mTG crosslinked 

collagen at 390X magnification F) SEM image of 2.5 mg/ml TG2 crosslinked collagen at 96X 

magnification G) SEM image of 2.5 mg/ml TG2 crosslinked collagen at 390X magnification. H) 

SEM images were analysed using ImageJ and the average pore size was measured and 

plotted. The data represents mean values +/- SD where n=3. Statistical analysis was carried 

out using a one way ANOVA test where the size of collagen pores were compared against 

those of the native collagen sample. P-values corresponding to p< 0.01 are represented with 

a ** and where p<0.001 are represented with a ***. 
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3.3.4 SDS PAGE of native mTG and TG2 crosslinked collagen 

 

In order to further show crosslinking is taking place in the collagen scaffolds (2.5 

mg/ml), crosslinked samples were allowed to crosslink overnight and separated  by  SDS 

PAGE then stained using Coomassie brilliant blue dye to identify the presence of the bands. 

In Figure 3.9 there is a significant difference in the bands between the crosslinked collagen 

and the native collagen bands. Due to the crosslinking effect, the bands in the crosslinked 

samples are thicker and therefore remain in the loading gel. Furthermore, the  bands in the 

crosslinked collagen samples are less visible compared to those in the native and 

transglutaminase inhibited bands.  
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Figure 3.9: Observation and quantification of native and crosslinked collagen bands A) 

Native and cross linked collagen samples (2.5mg/ml) were allowed to crosslink overnight in 

96well plates. A 5.5% bis-acrylamide gel was used to carry out a western blot then stained 

with Coomassie blue dye. The image was taken from a GeneBox using GeneSys software. B) 

Using ImageJ software, the image was converted and bands were analysed. The data 

represents mean values +/- SD where n=3. Statistical analysis was carried out using a one 

way ANOVA test where the mean pixel densitometry values of crosslinked collagen scaffolds 

were compared with those given by native collagen scaffolds. P-values corresponding to 

P<0.01 are represented with a **. 
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 3.3.5 Determination of the (γ-glutamyl)lysine content of TG cross-linked collagen 

 

In order to prove that the (-glutamyl) lysine isopeptide bond or “crosslink” is being 

formed, samples of collagen scaffold were digested and analysed. To measure the presence 

of crosslink various samples of collagen including: native collagen, 10 g and 50 g of TG2, 5 

g of mTG that were added to collagen, R281 inactivated mTG and 1-155 inactivated TG2 

were exhaustively proteolytically digested. The digestion process is outlined in the Materials 

and methods chapter and the analysed results using a Biochrom 30 amino acid analyser are 

shown in Figure 3.10. The collagen sample that contained 5 g of mTG gave the highest 

amount of crosslink per nmol of collagen. Followed by the samples of collagen that contained 

50 g and 10 g of TG2 respectively. The inactivated mTG and TG2 samples contianed almost 

no crosslink, as did the native collagen sample. 
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Figure 3.10: Amino acid analyser crosslink assay. 100µl of digested collagen (per sample) 

was loaded in a 1:1 ratio with lithium loading buffer and loaded onto the amino acid analyser. 

Hydroxyproline and ε(-glutamyl) isopeptide bond standards were also ran on the analyser so 

that standard curves could be created for the respective samples. From the standard curves 

the amount of crosslink per nmol of collagen was then calculated. The data represents mean 

values +/- SD where n=3. Statistical analysis was carried out using a one way ANOVA test 

where the nmol of crosslink per nmol of collagen present in crosslinked scaffolds is compared 

to the base amount of crosslink found in native collagen. The p-values corresponding to P< 

0.001 are represented with a ***. 
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3.3.6 Effect of pH on the deamidation activity of TG2 

 

TG2 has been described as a Swiss army knife given its many functions, including 

crosslinking and deamidation. To measure how much deamidation is occurring at different pH 

levels, three collagen scaffolds that contained 5g/ml TG2 were crosslink at pH 5, 6 and 7. To 

measure the amount of deamidation, samples were analysed through the amino acid analyser 

to detect the amount of ammonia released. Figure 3.11 shows that the negative control of 

native collagen gave the least amount of ammonia and the sample of collagen containing TG2 

at pH 6 gave the highest concentration of ammonia. Due to the acidic conditions at pH 5, the 

enzyme is likely to denature which may explain the reduction of ammonia released. 
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Figure 3.11: Observation of different pH level collagen scaffolds and deamidation assay 

for collagen scaffolds: A) Image of centrifuged collagen samples. 2.5 mg/ml collagen 

samples were crosslinked overnight before being collected and centrifuged for 15 minutes at 

1500g. The concentration of TG2 in all collagen samples was 5 µg/ml. From right to left: pH 5, 

pH 6 and pH 7.B) After the collagen samples were crosslinked overnight. Samples were 

centrifuged and 100 µl of supernatant (per sample) was loaded in a 1:1 ratio with lithium loading 

buffer and loaded onto the amino acid analyser. A set of ammonia standards were also run on 

the analyser so that a standard curve could be created for the respective samples. From the 

standard curve the nmol of ammonia released per nmol of collagen loaded per sample was 

then calculated. The data represents mean values +/- SD where n=2. Statistical analysis was 

carried out using a one way ANOVA test where the p-values corresponding to P< 0.001 are 

represented with a ***. 
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3.4 Cellular response of HOB cells to native and crosslinked collagen 
 

3.4.1 Proliferation of human osteoblasts on native and crosslinked collagen 

 

An XTT proliferation assay was carried out to observe the difference between the viable 

cell number of HOBs after growth on native collagen, mTG crosslinked collagen and TG2 

crosslinked collagen. 20 x104 HOBs cultured in 100 µl complete medium (CM, 10% foetal 

bovine serum in Dulbecco’s Modified Eagle Medium) were seeded onto native collagen coated 

wells (2.5mg/ml), mTG crosslinked collagen wells and TG2-crosslinked collagen. Samples 

proliferated over the course of 6 days and the absorbances were measured at 490 nm and 

630 nm.In Figure 3.12 the day 2 samples all showed relatively similar proliferation rates, 

however after 4 days osteoblasts grown on mTG and TG2 crosslinked collagen had a far higher 

rate of proliferation than cells on native collagen. Three days post seeding the proliferation of 

HOBs grown on TG2 on average still remained higher than the other samples. This suggests 

that HOBs mitochondrial/metabolic activity can increase over time on collagen scaffolds.   
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Figure 3.12: XTT proliferation assay for native and crosslinked collagen. HOBs seeded 

onto the different collagen matrices were monitored between day 2 and day 6 (post seeding) 

after they had been seeded onto a 96-well plate. The three conditions in which HOBs were 

seeded (from left to right) are: Native collagen, mTG crosslinked collagen and TG2 cross-

linked collagen. A Biotek plate reader was used to measure the absorbances of each sample 

at 490nm and 630nm. The absorbance values for these respective wavelengths were 

subtracted and averaged to give the mean absorbance values shown in the graph. The data 

represent mean values +/- SD where n=3. Statistical analysis was carried out using a one way 

ANOVA test where the absorbance of samples from crosslinked collagen samples were 

compared to those from native collagen samples. P-values corresponding to P<0.05 are 

represented with a *. 
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3.4.2 Observing the macromolecular effects of mTG and TG2 crosslinked collagen 

with 45S5 bioglass particles 

 

To observe the effects of crosslinking collagen with 45S5 bioglass on a macromolecular 

scale, 2.5 mg/ml collagen was mixed with 10 mg/ml 45S5 bioglass and allowed to crosslink 

overnight in untreated 35 mm plastic plates and then collected into individual 7 ml bijou tubes 

and centrifuged for 15 minutes at 1500g. Figure 3.13 shows the difference in the sedimentation 

that is seen between cross-linked collagen with 45S5 bioglass and non-cross linked collagen. 

The native collagen sample shows that the collagen had not been sedimented and floated after 

the centrifugation process. The second sample from the left contained uncrosslinked collagen 

with bioglass and sedimented more densely than native collagen. The third sample contains 

mTG crosslinked collagen with 45S5 bioglass which was much more compact and sedimented 

than native collagen. Likewise TG2 crosslinked collagen with 45S5 bioglass is also more 

compact and appears denser than the non-crosslinked sample. 
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Figure 3.13: Image of centrifuged collagen samples with 45S5 bioglass. Collagen samples 

(2 ml) were crosslinked overnight before being collected and centrifuged for 10 minutes at 

1500g. The concentration of all collagen samples was 2.5 mg/ml, from left to right: A) Native 

collagen, B) native collagen mixed with 45S5 bioglass, C) mTG crosslinked collagen+ 45S5 

bioglass, and D) TG2 crosslinked collagen + bioglass. Data are representative of one 

experiment where n=3. 
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3.4.3 Proliferation of human osteoblasts on native and crosslinked collagen containing 

45S5 bioglass particles 

 

An XTT proliferation assay was carried out to observe the difference between the viable 

cell numbers of HOBs after growth on native collagen, native collagen mixed with (10 mg/ml) 

45S5 bioglass, mTG crosslinked collagen mixed with (10 mg/ml) 45S5 bioglass and TG2 

crosslinked collagen mixed with (10mg/ml) 45S5 bioglass. HOBs cultured in complete medium 

(CM, 10% foetal bovine serum in Dulbecco’s Modified Eagle Medium) were seeded onto the 

scaffolds with medium changes every 48 hours. Samples were measured over the course of 

6 days and the absorbances were measured at 490 nm and 630 nm. In Figure 3.14 both the 

native collagen and native collagen with bioglass showed relatively similar absorbances for all 

three time points. However, after 4 days, TG2 and mTG crosslinked collagen with bioglass 

absorbances were greater than that of native collagen. This suggests that crosslinked collagen 

mixed with 45S5 bioglass is not impairing HOB proliferation.   
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Figure 3.14: XTT proliferation assay for native and crosslinked collagen mixed with 45S5 

bioglass. HOBs seeded onto the different collagen matrices were monitored between day 2 

and day 6 (post seeding) after they had been seeded onto a 96-well plate. The four conditions 

in which HOBs were seeded (from left to right) are: Native collagen, native collagen+ 45S5 

bioglass, mTG crosslinked collagen+ 45S5 bioglass and TG2 cross-linked collagen+ 45S5 

bioglass. A Biotek plate reader was used to measure the absorbances of each sample at 490 

nm and 630 nm. The absorbance values for these respective wavelengths were subtracted 

and averaged to give the mean absorbance values shown in the graph. The data represents 

mean values +/- SD where n=3. Statistical analysis was carried out using a one way ANOVA 

test where the absorbance of samples from crosslinked collagen samples were compared to 

those from native collagen samples. P-values corresponding to P<0.05 are represented with 

a *. 
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3.4.4 Stability of crosslinked collagen matrices 

 

 Over time, collagen scaffolds are degraded by cells  seeded onto it via interactions with 

the extracellular matrix and the secretion of MMP 8 and MMP 13 (Lu et al., 2011). After seeding 

collagen with HOBs for 3 days, the effects of collagen degradation can be quantified. Once 

cells were removed from the collagen scaffold, the scaffold was stained as outlined in the 

Materials and Methods section. The stained collagen scaffolds were then imaged using the 

GeneBox. 

Representative collagen plates are shown in Figure 3.15. In each case, the mean pixel 

densitometry value of the collagen plates was higher than in those of both the NC plates and 

the inactivated mTG and TG2 plates, indicating that crosslinking of collagen by mTG and TG2 

stabilises the collagen to cell protease degradation. 
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Figure 3.15: Collagen digestion assay. A) 35 mm non-treated plastic tissue culture plates 
coated with five different types of collagen mixture. From left to right: 1) Native collagen, 2) 
R281 inactivated mTG collagen, 3) 1-155 inactivated TG2, 4) mTG crosslinked collagen (5 
µg/ml) and 5) TG2 crosslinked collagen (5 µg/ml). The samples were sustained using complete 
medium for 3 days and following HOBs removal with sodium deoxycholate, were stained with 
Coomassie brilliant blue stain. Samples were captured using the Syngene GeneBox and 
analysed using ImageJ as described in the Materials and Methods. B) Using ImageJ software, 
the image was converted, and scaffolds were analysed. The data represents mean values +/- 
SD where n=3. Statistical analysis was carried out using a one way ANOVA test where the p-
values corresponding to P<0.001 are represented with a ***. 
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3.4.5 Proliferation of human osteoblasts on native and crosslinked collagen 

containing cobalt bioglass 

 

An XTT proliferation assay was carried out to observe the difference between the viable 

cell number of HOBs after growth on native collagen mixed with 10 mg/ml cobalt bioglass. 

HOBs cultured in complete medium (CM, 10% foetal bovine serum in Dulbecco’s Modified 

Eagle Medium) were seeded onto native collagen coated wells (2.5 mg/ml), with and without 

2% and 4% 10 mg/ml cobalt bioglass. Samples were measured over the course of 6 days and 

the absorbances were measured at 490 nm and 630 nm. In Figure 3.16 all the samples 2 days 

post seeding showed relatively similar proliferation rates; however, after 4 days absorbances 

for the cobalt glass samples began to drop below that of the native collagen samples. By 6 

days post seeding, the proliferation rate for 4% cobalt on average still remained lower than the 

other samples. This shows that cobalt glass particles are not viable for HOB proliferation.   
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Figure 3.16: XTT proliferation assay for native and collagen mixed with cobalt bioglass. 

HOBs seeded onto the different collagen matrices were monitored between day 2 and day 6 

(post seeding) after they had been seeded onto a 96-well plate. The three conditions in which 

HOBs were seeded (from left to right) are: Native collagen, collagen with 2% cobalt bioactive 

glass and collagen with 4% cobalt bioglass. A Biotek plate reader was used to measure the 

absorbances of each sample at 490nm and 630nm. The absorbance values for these 

respective wavelengths were subtracted and averaged to give the mean absorbance values 

shown in the graph. The data represents mean values +/- SD where n=3. Statistical analysis 

was carried out using a one way ANOVA test where the absorbance of samples from 

crosslinked collagen samples were compared to those from native collagen samples. P-values 

corresponding to P<0.05 are represented with a *. 
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3.5 Discussion 
 

One of the first investigations carried out was the confirmation that the type 1 collagen 

which was produced in house was pure using SDS PAGE. The gels were stained with 

Coomassie brilliant blue dye and indicated the presence of bands observed at 130 kDa and 

115 kDa showing the denatured α1 and α2 chains respectively that make up type 1 human 

collagen.  

Activity assays revealed that a concentration of 25 µM and above was enough to 

inactivate 5 µg/ml TG2 in a biotin cadaverine incorporation activity assay. In order to inactivate 

mTG, 1-155 had no effect, and so R281 was used at the concentration reported in the literature 

(Zonca et al., 2017). The effects of omitting calcium and dithiothreitol (DTT) from the TG2 

collagen solution was observed in Chapter 3. Ca2+ is required to activate TG2, while DTT is 

needed to maintain the enzyme in a reduced active form. Studies in Chinese Hamster V79 

cells showed that concentrations of DTT in low doses were not toxic to cells (Held and Melder, 

1987). Using a biotin cadaverine assay, it was found that 10 mM DTT was sufficient to reach 

the same level of activity as 100 mM DTT. The activity of TG2 has long been established to be 

optimal at pH7 (or physiological pH) (Fleckenstein et al., 2002, Gundemir et al., 2012) and this 

was supported by data in this chapter. 

Amino acid analysis indicated there was a low level of ε(γ-glutamyl) crosslinking in the 

proteolytically digested native collagen sample when compared to the 1 nmol crosslinked 

standard sample alone. As expected, there was a significant peak representing ε(γ-glutamyl) 

crosslink in the mTG sample, and when spiked with the ε(γ-glutamyl) standard, it was clear 

that the two peaks had the same retention time, confirming the presence of the crosslink in the 

mTG crosslinked collagen. There was roughly half the amount of nmol crosslink per nmol of 

collagen present in TG2 crosslinked collagen than there was in mTG crosslinked collagen.  
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Likewise, there also seemed to be significant differences in the SEM images taken of 

the native, mTG and TG2 crosslinked images. The mean pore size area between collagen 

fibrils were also different, even between mTG and TG2 crosslinked collagen. This difference 

in structure could be due to the difference in the nmol of crosslink per nmol of hydroxyproline 

present in the two crosslinked collagen scaffolds. 

In order to observe the visible effects of TG crosslinking on collagen, samples were 

crosslinked overnight in untreated 35 mm plastic plates and centrifuged. The difference in the 

overall structure between cross-linked and non-crosslinked collagen was shown to be 

substantial. The native collagen sample was far less sedimented and floated in the water and 

PBS. The inactive form of mTG appeared very similar to the native collagen sample. The active 

mTG and TG2 samples showed a far more sedimented and compact scaffold that was found 

at the base of the bijou tube. This was confirmed that both TG2 and mTG had having a physical 

effect on collagen, which affected its macromolecular structure. This is confirmed by a previous 

study on collagen fibril modification by atomic force microscopy showing that the rigidity of TG2 

crosslinked collagen is three fold higher than compared to native collagen (Wang & Martin, 

2013).  

 The native collagen in Figure 3.7 was shown to be more sedimented than in Figure 3.6 

most likely due to the concentration of collagen to be 2.5mg/ml instead of 1mg/ml, but there is 

a clear difference between the structure seen between it and the TG2 sample. Centrifuged 

crosslinked collagen samples with 45S5 bioglass were seen to be more sedimented than 

native collagen samples with and without 45S5 bioglass. Similar to the native collagen sample, 

the TG2 samples without calcium and DTT showed a similar macromolecular structure to 

native collagen. 

 This confirms that both Calcium (upon which TG2 is dependent upon to be active) and 

the reducing agent DTT which maintains activity are both needed for the modification of 

collagen fibril structure by TG2. It is well-known that TG2 is calcium dependent with regards to 

its transamidase activity (Verderio et al. 2004) and thus the enzyme alone will have had little 
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crosslinking effect on the collagen without calcium, explaining why it had a similar morphology 

to the native collagen sample. The sample that contained calcium but not the reducing reagent 

DTT also had a similar morphology when centrifuged to the native collagen sample. Thus 

transamidating activity is likely to only be transient until TG2 becomes oxidised, which is why 

it resembles the structure of native collagen (Pinka et al. 2007). 

When observing the deamidation limits of TG2, there was no clear relationship between 

lowering the pH and the amount of ammonia released. In the literature, it was first reported 

that deamination was only favoured by certain conditions like pH conditions under 7 

(Fleckenstein et al., 2002). Recently though, a study has been published that shows that a 

glutamine residue is Hsp20 was specifically demainated while other glutamine residues are 

transamidated (Boros et al., 2006). We have shown that deamidation is low at pH 7, peaks at 

pH 6 and drops at pH 5, likely due to enzyme denaturation. 

The cell proliferation data indicate a clear trend for all samples, showing that as time 

increased so did the number of viable HOBs in each group. This indicates that the inclusion of 

45S5 glass nanoparticles may not be toxic to the cell. However this need to be confirmed by 

more tests such as an LDH assay and other proliferation assays. Moreover, it can be seen that 

the inclusion of glass into the mixture had little effect on the cells grown on native collagen 

since the proliferation rates did not vary. When the glass particles were added to the TG2 

collagen mixture, there was a decrease in proliferation by day 6; up until then, it had been 

higher than the average absorbance for each day for samples without bioglass particles. One 

hypothesis for this is that the HOBs are differentiating and mineralising quicker on this collagen 

scaffold than they are on mTG and native collagen scaffolds. Investigations into the underlying 

mechanisms will be discussed in chapter 5. 

 
 As shown by Akhouayri et al. (2010), Chau et al. (2005) and Ignatius et al. (2005), cells 

that are seeded onto collagen will adhere and interact in the matrix, but also degrade it to some 

degree. Since crosslinking collagen with TG2 is known to improve not only mechanical strength 
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but also its resistance to proteolytic digestion the same was to be expected from mTG 

crosslinked collagen.  

 The mean pixel value, which indicates the amount of collagen still present, was 

repeatedly higher for the mTG crosslinked collagen than that of native collagen and the R281 

inactivated mTG treated collagen. Likewise TG2 samples on average showed 0.25 fold less 

digestion compared to native collagen and 1-155 inactivated TG2 collagen. 

 Finally, a cell proliferation assay was carried out on HOBs that were grown on native 

collagen mixed with 2% and 4% 10 mg/ml cobalt bioglass. After 4 days, a decrease in cell 

proliferation was shown in HOBs seeded on 2% cobalt collagen and an even greater decrease 

was shown in HOBs seeded on 4% cobalt collagen. The decrease in cell viability is likely due 

to the cells becoming hypoxic, leading to the cell death (Jones, 2015). To summarise, there is 

a clear difference in micro and overall structure between native, mTG and TG2 crosslinked 

collagen. As well as a difference in the nmol of crosslink per nmol collagen between mTG and 

TG2 crosslinked collagen samples. 
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Chapter 4: Mineralisation of human osteoblasts 
in novel collagen scaffolds 
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4.1 Introduction 
 

 Throughout the human life span, bone undergoes continuous remodelling, which is a 

response to physiological and mechanical environmental stressors. Essentially bone 

remodelling is made up of two reciprocal activities: the resorption of bone matrix by osteoclasts 

and bone formation by osteoblasts. As stated previously, osteoblasts derive from 

mesenchymal stem cells and orchestrate bone formation under the strict regulation of 

hormones, cytokines and the extracellular environment.  

 It has been well-established in recent decades that transglutaminases play a role in 

matrix maturation, calcification and mineralisation (Yin et al., 2012b). TG2 expression has now 

been found in cartilage, specifically in hypertrophic chondrocytes (Aeschlimann et al., 1993, 

Aeschlimann et al., 1996, Nurminskaya et al., 1998, Johnson and Terkeltaub, 2005), as well 

as in MCT3 pre-osteoblasts (Al-Jallad et al. 2006), primary osteoblasts and human and rat 

osteosarcoma cells. However, the mechanism behind transglutaminase-mediated mineral 

deposition has not been well-established. Nai et al. hypothesised that ECM protein assemblies, 

in the presence of TG2, could participate in matrix stabilisation and in cell adhesion processes 

(Chau et al. 2005, Verderio et al. 1998 & Yeh et al. 2014).  

 Furthermore, the importance of transglutaminase activity in mineralisation was 

demonstrated by Al-Jallad et al. (2006) who showed that, by using transamidase inhibitors, it 

was possible to block mineralisation in mouse pre-osteoblasts in vitro, even though TG2/FXIIIa 

double knockouts mice show no abnormality in bone formation. Therefore, it is hypothesised 

that transglutaminase, mediated differentiation could be transamidase dependent, as several 

bone matrix proteins are also transglutaminase substrates, including type I collagen, 

osteocalcin, osteonectin and vitronectin (Mosher and Schad, 1979, Kaartinen et al. 1997). 

These ECM protein assemblies, in the presence of TG2, could contribute to matrix stabilisation 

and cell adhesion processes (Verderio et al. 1998, Chau et al. 2005, Telci et al. 2008). 

Nurminskaya and Kaartinen (2006) suggested that mineralisation induced by transglutaminase 
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crosslinking activity may involve a complex interplay between extracellular matrix proteins and 

the local calcium concentration in mineralised tissue.  

How human osteoblasts react to being seeded onto TG2 and mTG crosslinked 

collagen is assessed in this chapter. Importantly, it has been shown that HOBs are able to 

differentiate small changes in the distance between collagen fibres (Boccaccini et al., 2010). 

These distances in collagen pore size act as signalling cues, which in turn influence cell 

behaviour and induce migration and matrix production, in this case mineralisation.  

Changes in the extracellular matrix such as the concentration of calcium or pH will 

change how HOBs mineralise, as does crosslinking collagen. This was shown by Chau et al. 

(2005), who showed that TG2 crosslinked collagen matrices allowed more HOBs to attach to 

the scaffold compared to native collagen, suggesting that either more RGD sites (Arg-Gly-

Asp triplicate repeating amino acids on collagen helices) are available on crosslinked 

collagen or that cells are exploiting alternative binding sites via upregulation or alternative 

compensatory mediated binding sites.     

The inclusion of bioglass particles could also yield interesting data in terms of whether 

there is a change in mineralisation rates and if so, how this comes about. This aspect will be 

investigated when cells are seeded onto collagen mixed with bioglass particles; one hypothesis 

is that the leaching of calcium from the glass particles into the ECM could affect mineralisation 

rates. This could lead to an increase in mineralisation as HOBs are stimulated further by 

contact with the HCA layer which has been shown by Hench’s group (Hench et al., 1991) to 

form between the bioglass and cells. 
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4.2 Characterising the mineralisation of collagen scaffolds with mTG and TG2  
 

4.2.1 Mineralisation of HOBs 

 

 HOBs cultured in differentiation medium (10% foetal bovine serum in DMEM 

supplemented with 50 g/ml ascorbic acid and 10 mM -glycerophosphate) for 0, 6, 8 and 10 

days (represented in graph figures as D0, D6, D8 etc). As shown in Figure 4.1, HOBs cultured 

with this medium began to show mineralisation taking place by day 6 and much more positive 

von Kossa staining by day 10. This suggested that a 10-day differentiation treatment course 

was an appropriate time frame to observe osteoblast mineralisation in vitro and this would be 

a suitable model for assessing the effect of mTG and TG2 treatments on mineralisation (Nai 

et al. 2014).  
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Figure 4.1: Mineralisation of HOBs cultured over 10 days on tissue culture plastic. A) 

HOBs were cultured in differentiation medium for 0-10 days. Calcium deposition in extracellular 

matrix was stained black using Von Kossa staining and highlighted by red arrows. Scale bars= 

200 µm. (as described in the Materials and Methods). B) The results represent the mean 

values of pixel density for images that were taken on a Nikon digital camera and inverted on 

ImageJ. Analysis involved each pixel of the image being graded a value of how black it was 

on a scale of 0-255. The results represent mean values +/- S.D, where n=3. Statistical analysis 

was carried out using a one-way ANOVA test where mean pixel densitometry of HOBs was 

compared to the day 0 sample. The p-values corresponding to P< 0.001 are represented with 

a ***. 
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4.2.2 Effect of mTG and TG2 on mineralisation in HOBs 

 

HOBs were cultured in differentiation medium (10% fetal bovine serum in DMEM 

supplied with 50 g/ml ascorbic acid and 10 mM -glycerophosphate) for 6, 8 and 10 days 

(Figure 4.2). Here, HOBs were cultured with this medium along with 5 g/ml recombinant 

human TG2 or mTG, which was added every 48 hours. This is because media is replaced 

every 48 hours.  Mineralisation rates were significantly higher from D6 onwards for the mTG 

and TG2 samples. By day 10, there was a statistical significance in the difference between 

mineralisation of cells grown with just differentiation medium and those grown with 

transglutaminases added with media changes. 
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Figure 4.2: Mineralisation of HOBs with mTG and TG2 added. (A) HOBs cultured with DM, 

5 µg/ml mTG and 5 µg/ml TG2 were subjected to von Kossa staining on day 6, 8 and 10. The 

mineral depositions were stained in black and for all groups increased from day 6 to 10. By 

Day 10 HOBs with 5 µg/ml TG2 added with each media change gave the most mineralisation. 

Samples were viewed at x10 magnification using a Nikon CK2 and photographed with an 

Olympus DP10 digital camera. Scale bars= 200 µm. (B) The mineralised area was visualised 

by von Kossa staining and positive staining was quantified by ImageJ. The results represent 

mean values +/- S.D, where n=3. Statistical analysis was carried out using a one-way ANOVA 

test where the mean pixel densitometry of cells grown without TGs were compared to those 

with TGs added. The p-values corresponding to P< 0.05 are represented with a *. 
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4.2.3 Mineralisation of HOBs when seeded on mTG and TG2 crosslinked collagen 

 

 HOBs were grown on 2.5 mg/ml collagen scaffolds where 5 µg/ml TG2 and mTG were 

added to the collagen scaffolds before they were crosslinked overnight (see Materials and 

Methods) with differentiation medium changes every 48 hours (DM, CM supplied with 50 μg/ml 

ascorbic acid and 10 mM β-glycerophosphate) for 6, 8 and 10 days (Figure 4.3). Mineralisation 

was determined using von Kossa staining. HOBs grown on crosslinked collagen scaffolds were 

shown to have a statistically significantly higher rate of mineralisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

                            

Figure 4.3: Mineralisation of HOBs when seeded onto mTG and TG2 crosslinked 

collagen. (A) HOBs were seeded onto native, 5 µg/ml mTG and 5 µg/ml TG2 crosslinked 

collagen (2.5 mg/ml) and subjected to von Kossa staining on day 6, 8 and 10. The mineral 

depositions were stained in black and for all groups increased from day 6 to 10. Samples were 

viewed at x10 magnification using a Nikon CK2 and photographed with an Olympus DP10 

digital camera. Scale bars= 200 µm. (B) The mineralised area was visualised by von Kossa 

staining and positive staining was quantified by ImageJ. The results represent mean values 

+/- S.D, where n=3. Statistical analysis was carried out using a one-way ANOVA test where 

the mean pixel densitometry of HOBs on native collagen scaffolds were compared to those 

seeded on crosslinked scaffolds. P-values corresponding to P< 0.05 are represented with a *. 
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4.2.4 Mineralisation of HOBs when seeded onto TG2 crosslinked collagen without 

DTT 

 

The effects of omitting calcium and the reducing agent DTT from the TG2 collagen 

solution was observed in Chapter 3. Both of these are needed for TG2 transamidating activity. 

TG2 in collagen samples without DTT show a similar macromolecular structure to native 

collagen. They are not as sedimented or dense as the TG2 sample that contains the calcium 

and DTT. Here, the ability for HOBs to mineralise when seeded onto TG2 crosslinked collagen 

(without DTT) is shown in Figure 4.4. There was a clear difference as HOBs seeded onto TG2 

collagen scaffolds with DTT included, showing a greater mineralisation compared to its 

counterpart without DTT.  
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Figure 4.4: Mineralisation when HOBs were seeded onto TG2 crosslinked collagen 

without DTT. (A) HOBs were seeded onto native, 5 µg/ml TG2 and 5 µg/ml TG2 without 10 

mM DTT crosslinked collagen (2.5mg/ml) and subjected to von Kossa staining on day 6, 8 and 

10. The mineral depositions were stained in black and for all groups increased from day 6 to 

10. Samples were viewed at x10 magnification using a Nikon CK2 and photographed with an 

Olympus DP10 digital camera. Scale bars= 200 µm. (B) The mineralised area was visualised 

by von Kossa staining and positive staining was quantified by ImageJ. The results represent 

mean values +/- S.D, where n=3. Statistical analysis was carried out using a one-way ANOVA 

test where the mean pixel densitometry of HOBs on native collagen scaffolds were compared 

to those seeded on crosslinked scaffolds. The p-values corresponding to P< 0.05 are 

represented with a *. 
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4.2.5 Mineralisation of HOBs when seeded onto TG2 crosslinked collagen without 

Calcium 

 

In Figure 1.8 the effects of subtracting calcium and/or DTT from the TG2 collagen 

solution was observed. These samples show a similar macromolecular structure to native 

collagen due to the lack of crosslinks between collagen fibres. Calcium is needed for TG2 to 

become activated but to show that inactive TG2 does not affecting mineralisation rates, a 

collagen scaffold that contained TG2 and DTT but no calcium was measured against one with 

TG2 and calcium but no DTT (Figure 4.5). There was a clear difference in HOBs seeded onto 

TG2 collagen scaffolds with calcium versus the samples without calcium. When HOBs were 

seeded onto collagen scaffolds with TG2 and calcium, there was a significantly higher amount 

of mineralisation taking place to that of HOBs seeded onto collagen with TG2 and no calcium 

by day 10, suggesting that TG2 in the active state is required for increased mineralisation to 

occur, most likely due to the enzyme catalysing crosslink bonds between collagen fibres. 
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Figure 4.5: Mineralisation of HOBs when HOBs were seeded onto TG2 crosslinked 

collagen without calcium. (A) HOBs were seeded onto native, 5µg/ml TG2 and 5 µg/ml TG2 

without 20 mM Ca2+ crosslinked collagen (2.5 mg/ml) and subjected to von Kossa staining on 

day 6, 8 and 10. The mineral deposits were stained in black and for all groups increased from 

day 6 to 10. Samples were viewed at x10 magnification using a Nikon CK2 and photographed 

with an Olympus DP10 digital camera. Scale bars= 200 µm. (B) The mineralised area was 

visualised by von Kossa staining and positive staining was quantified by ImageJ. The results 

represent mean values +/- S.D, where n=3. Statistical analysis was carried out using a one-

way ANOVA test where the mean pixel densitometry of HOBs on native collagen scaffolds 

were compared to those seeded on crosslinked scaffolds. The p-values corresponding to P< 

0.05 are represented with a *. 
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4.2.6 Mineralisation of HOBs when seeded onto TG2 crosslinked collagen without 

calcium and DTT 

Having shown that both DTT and calcium are required for TG2 to crosslink collagen 

and an increase in mineralisation, samples of collagen alone (without DTT and calcium) were 

tested to see if TG2 alone would affect mineralisation. These scaffolds have already shown a 

similar macromolecular structure to native collagen due to the lack of crosslinks between 

collagen fibres. It was found that TG2 alone was not as effective at mineralising HOBs (when 

seeded on the scaffold for 10 days) and was comparable with cells grown on collagen. 
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Figure 4.6: Mineralisation when HOBs were seeded onto TG2 crosslinked collagen 

without calcium and DTT. (A) HOBs were seeded onto native, 5 µg/ml, 5 µg/ml TG2 without 

DTT and Ca2+ and TG2 crosslinked collagen (2.5 mg/ml) and subjected to von Kossa staining 

on day 6, 8 and 10. The mineral deposits were stained in black and for all groups increased 

from day 6 to 10. Samples were viewed at x10 magnification using a Nikon CK2 and 

photographed with an Olympus DP10 digital camera. Scale bars= 200 µm. (B) The mineralised 

area was visualised by von Kossa staining and positive staining was quantified by ImageJ. The 

results represent mean values +/- S.D, where n=3. Statistical analysis was carried out using a 

one-way ANOVA test where the mean pixel densitometry of HOBs on native collagen scaffolds 

were compared to those seeded on crosslinked scaffolds. The p-values corresponding to P< 

0.05 are represented with a *. 
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4.3 Characterising the mineralisation of collagen scaffolds with 

transglutaminases and transglutaminase inhibitors 

 

4.3.1 Optimising the use of 1-155 inhibitor when cells are seeded onto TG2 

crosslinked collagen 

  

 1-155 is described as a cell permeable, irreversible inhibitor that is a substrate 

analogue which binds at the active site to selectively inhibit TG2 activity  (Zonca et al., 2017) . 

At a concentration of 25 M, it was shown to reduce activity of almost all of the 5 g/ml 

concentration of TG2. First, the method in which 1-155 was added to TG2 and collagen needed 

to be optimised. Three ways of adding the inhibitor to collagen and TG2 were assessed to 

establish the most efficient method to inhibit TG2 crosslinking ability. 

1- 1-155 (25 M) was pre-incubated with active 5 g/ml TG2 for one hour on ice before 

this solution was added to collagen, 10X PBS and water and allowed to crosslink 

overnight (as described in materials and methods) 

2- 1-155 (25M) was added to the collagen mixture containing 5 g/ml TG2 and allowed 

to crosslink overnight (as described in materials and methods ) 

3- 1-155 (25M) was added to cells seeded onto 2.5 mg/ml TG2 crosslinked collagen 

with media changes every 48 hours 

The cells that were seeded onto crosslinked collagen where 1-155 was pre-incubated withTG2 

showed a rate of mineralisation that was similar to cells seeded onto native collagen. There 

was more mineralisation shown in samples where 1-155 and TG2 was added to collagen 

mixture at the same time. This means that some of the TG2 was likely to have been inhibited 

but some remained active and therefore increased the amount of mineralisation in those 

samples compared to that seen in native collagen. However, adding 1-155 to the cells seeded 

onto TG2 crosslinked collagen had almost no effect.   
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Figure 4.7: Mineralisation of HOBs when 1-155 was added to collagen. (A) HOBs seeded 

onto various collagen scaffolds were grown using differentiation medium. The mineral 

depositions were stained in black and for all groups increased from day 6 to 10. Samples were 

viewed at x10 magnification using a Nikon CK2 and photographed with an Olympus DP10 

digital camera. Scale bars= 200 µm. (B) The mineralised area was visualised by von Kossa 

staining and positive staining was quantified by ImageJ. The results represent mean values 

+/- S.D, where n=3. Statistical analysis was carried out using a one-way ANOVA test where 

the mean pixel densitometry of HOBs on native collagen scaffolds were compared to those 

seeded on inhibited crosslinked scaffolds the p-values corresponding to P< 0.05 are 

represented with a *. 
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4.3.2 Optimising the use of R281 inhibitor when cells are seeded onto mTG 

crosslinked collagen 

  

 In the previous chapter, R281 was described as a non-cell-permeable inhibitor which 

has been reported by Zonca (Zonca et al. 2017) to inhibit both TG2 and mTG. It was shown 

that R281 can almost completely inhibit mTG activity when incubated with the enzyme at 250 

µM. As with 1-155 and TG2, the method in which R281 was added to mTG and collagen 

needed to be optimised. Three ways of adding the inhibitor to collagen and mTG were 

investigated. 

1- R281 (250 µM) was pre-incubated with active 5 g/ml mTG for one hour on ice before 

this solution was added to collagen, 10X PBS and water and allowed to crosslink 

overnight (as described in methods in materials) 

2- R281 (250 µM) was added to the collagen mixture containing 5 g/ml mTG and allowed 

to crosslink overnight (as described in methods in materials) 

3- R281 (250 µM) was added to cells seeded onto 2.5 mg/ml mTG crosslinked collagen 

with media changes every 48 hours 
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Figure 4.8: Mineralisation of HOBs when R281 was added to collagen. (A) HOBs seeded 

onto various collagen scaffolds were grown using differentiation medium. The mineral 

depositions were stained in black and for all groups increased from day 6 to 10. Samples were 

viewed at x10 magnification using a Nikon CK2 and photographed with an Olympus DP10 

digital camera. Scale bars= 200 µm. (B) The mineralised area was visualised by von Kossa 

staining and positive staining was quantified by ImageJ. The results represent mean values 

+/- S.D, where n=3. Statistical analysis was carried out using a one-way ANOVA test where 

the mean pixel densitometry of HOBs on native collagen scaffolds were compared to those 

seeded on inhibited crosslinked scaffolds the p-values corresponding to P< 0.05 are 

represented with a *. 
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4.3.3 Assessing the mineralisation effect of 1-155 on HOBs 

  

 In this experiment, 1-155 was added to HOBs alone in order to determine whether its 

presence alone had any effect on the mineralisation rates of HOBs after 6, 8 and 10 days 

(Figure 4.9). It was clear that there was no statistically significant difference between 

mineralisation rates between cells and cells with 25 M 1-155 added. When comparing 

samples where cells had TG2 added versus both TG2 and 1-155 added there was a clear 

difference. Cells where 1-155 and TG2 were added showed similar rates of mineralisation to 

that of cells alone and the cells where 1-155 was added. 
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Figure 4.9: Mineralisation of HOBs when 1-155 was added. (A) HOBs, HOBs with 25 µM 1-

155, HOBs with 5 µg/ml TG2 and HOBs with 25 µM 1-155 and 5 µg/ml TG2 were subjected to 

von Kossa staining on day 6, 8 and 10. The mineral depositions were stained in black and for 

all groups increased from day 6 to 10. Samples were viewed at x10 magnification using a 

Nikon CK2 and photographed with an Olympus DP10 digital camera. Scale bars= 200 µm. (B) 

The mineralised area was visualised by von Kossa staining and positive staining was 

quantified by ImageJ. The results represent mean values +/- S.D, where n=3. Statistical 

analysis was carried out using a one-way ANOVA test where the mean pixel densitometry of 

HOBs on native collagen scaffolds were compared to those seeded on inhibited crosslinked 

scaffolds p-values corresponding to P< 0.05 are represented with a *. 
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4.3.4 Assessing the effect of R281 on mineralisation of HOBs 

  

In this experiment, R281 was added to HOBs in order to determine whether its 

presence alone had any effect on the mineralisation rates of HOBs after 6, 8 and 10 days. It 

was clear from Figure 4.10 that there were no statistically significant changes between 

mineralisation rates between cells and cells with 250 µM R281 added. When comparing 

samples where cells had mTG added versus both mTG and R281 added there was a clear 

difference. Cells where R281 and mTG added showed similar rates of mineralisation to that of 

cells alone and the cells where R281 was added. 
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Figure 4.10: Mineralisation of HOBs when R281 was added. (A) HOBs, HOBs with 250 µM 

R281, HOBs with 5 µg/ml mTG and HOBs with 250 µM R281 and 5 µg/ml mTG were subjected 

to von Kossa staining on day 6, 8 and 10. The mineral depositions were stained in black and 

for all groups increased from day 6 to 10. Samples were viewed at x10 magnification using a 

Nikon CK2 and photographed with an Olympus DP10 digital camera. Scale bars= 200 µm (B) 

The mineralised area was visualised by von Kossa staining and positive staining was 

quantified by ImageJ. The results represent mean values +/- S.D, where n=3. Statistical 

analysis was carried out using a one-way ANOVA test where the mean pixel densitometry of 

HOBs on native collagen scaffolds were compared to those seeded on inhibited crosslinked 

scaffolds. The p-values corresponding to P< 0.05 are represented with a *. 
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4.3.5 Mineralisation of HOBs on mTG crosslinked collagen with 1-155 

  

 It has already been shown that R281 can inhibit both mTG and TG2 (Zonca et al., 2017) 

but it is unknown if 1-155, which inhibits TG2, can also inhibit mTG activity. In order to 

determine whether 1-155 inhibits or decreases mineralisation by cells seeded onto mTG 

crosslinked collagen, mineralisation rates of HOBs after 6, 8 and 10 days were assessed. It 

was clear that there was a statistically significant change in the mineralisation rates of HOBs 

seeded on native collagen and cells with 1-155 (25 M) and mTG added to the collagen. When 

comparing samples where HOBs were seeded onto active mTG crosslinked collagen versus 

HOBs seeded onto mTG with 1-155 in collagen, there was no clear difference.  
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Figure 4.11: Mineralisation of HOBs when 1-155 was added to mTG crosslinked collagen. 

(A) HOBs seeded onto collagen scaffolds with mTG and mTG with 1-155 were grown using 

differentiation medium. The mineral depositions were stained in black and for all groups 

increased from day 6 to 10. Samples were viewed at x10 magnification using a Nikon CK2 and 

photographed with an Olympus DP10 digital camera. Scale bars= 200 µm. (B) The mineralised 

area was visualised by von Kossa staining and positive staining was quantified by ImageJ. The 

results represent mean values +/- S.D, where n=3. Statistical analysis was carried out using a 

one-way ANOVA test where the mean pixel densitometry of HOBs on native collagen scaffolds 

were compared to those seeded on crosslinked scaffolds. The p-values corresponding to P< 

0.05 are represented with a * 
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4.4 Assessing the mineralisation of HOBs on crosslinked collagen and 

crosslinked collagen mixed with glass 

 

4.4.1 Comparing the mineralisation rates between collagen scaffolds with 

transglutaminases and 45S5 bioglass particles 

 

Now that the mineralisation rates for HOBs seeded onto crosslinked collagen has been 

established the next variable to be assessed was how they might mineralise differently if 

seeded onto native and crosslinked scaffolds with 10 mg/ml 45S5 bioglass particles.  

When the mineralisation assay was carried out it was shown that when TG2 and mTG 

were mixed with collagen and bioglass particles a statistically significant higher amount of 

mineralisation took place when compared to the native collagen scaffold. However, there was 

no significance when comparing mineralisation between native collagen and native collagen 

mixed with bioglass particles.  
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Figure 4.12: Mineralisation of HOBs when seeded onto native and crosslinked collagen 

with 45S5 bioglass particles. (A) HOBs seeded onto native and crosslinked collagen 

scaffolds which were grown using differentiation medium. The mineral deposits were stained 

in black and for all groups increased from day 6 to 10. Samples were viewed at x10 

magnification using a Nikon CK2 and photographed with an Olympus DP10 digital camera. 

Scale bars= 200 µm. (B) The mineralised area was visualised by von Kossa staining and 

positive staining was quantified by ImageJ. From left to right: Native collagen, native collagen 

mixed with bioglass, mTG crosslinked scaffold, mTG crosslinked scaffold mixed with bioglass, 

TG2 crosslinked scaffold, TG2 crosslinked scaffold mixed with bioglass, R281 inactivated mTG 

scaffold and 1-155 inactivated TG2 scaffold. The results represent mean values +/- S.D, where 

n=3. Statistical analysis was carried out using a one-way ANOVA test where the mean pixel 

densitometry of HOBs on native collagen scaffolds were compared to those seeded on 

crosslinked scaffolds with and without bioglass. The p-values corresponding to P< 0.05 are 

represented with a *. 
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4.4.2 Assessing the mineralisation rates between collagen scaffolds with transglutaminases 

and 45S5 bioglass particles at earlier time points 

 

In the previous chapter, the XTT cell proliferation analysis of cells grown on TG2 

crosslinked collagen showed a slight fall in absorbance by day 6. We hypothesise that this is 

not a sign that the cells find the ECM to be toxic, since absorbance was increasing up until the 

last day it was measured. Instead, it may have decreased because cells seeded onto the 

crosslinked collagen have mineralised and differentiated quicker than on native collagen. To 

test this theory, the mineralisation rate of cells on native collagen and on crosslinked collagen 

with glass were measured before the normal 6 day starting point. As shown below, there was 

a clear statistical difference between the mineralisation rate between native collagen and 

crosslinked collagen with bioglass particles.  
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Figure 4.13: Mineralisation of HOBs when seeded onto native and crosslinked collagen 

with 45S5 bioglass particles over 5 days. (A) HOBs seeded onto native and crosslinked 

collagen scaffolds which were grown using differentiation medium. The mineral deposits were 

stained in black and for all groups increased from day 3 to 5. Samples were viewed at x10 

magnification using a Nikon CK2 and photographed with an Olympus DP10 digital camera. 

Scale bars= 200 µm. (B) The mineralised area was visualised by von Kossa staining and 

positive staining was quantified by ImageJ. The results represent mean values +/- S.D, where 

n=3. Statistical analysis was carried out using a one-way ANOVA test where the mean pixel 

densitometry of HOBs on native collagen scaffolds were compared to those seeded on 

crosslinked scaffolds with and without bioglass. The p-values corresponding to P< 0.01 are 

represented with a ** and where p< 0.001 is represented with ***. 

 

 

 

 

 

 

 

 

 

 

B 

D
3

D
4

D
5

0

10000

20000

30000
NC

NC+G

mTG+G

TG2+G

R281

1-155

** **

*** ***

Days post seeding

M
e
a
n

 D
e
n

s
it

o
m

e
tr

y
 p

ix
e
l 

c
o

u
n

t



156 
 

4.5 Crosslinked collagen deposition by human osteoblasts 

 

 

4.5.1 Quantification of crosslinked collagen when transglutaminases are added to 

HOBs on plastic tissue 

 

 To assess collagen deposition by HOBs, cells were allowed to grow on tissue culture 

plastic for 10 days in differentiation medium before being discarded. From the remaining matrix 

bound to the plastic wells, the proteins were digested with pepsin. Samples were then loaded 

onto a 5% acrylamide gel.  Using the Silver Quest staining kit (see Materials and Methods) the 

collagen was then stained and imaged using G-box. 

 Figure 4.14 shows that there was a difference in the collagen deposited in the ECM 

between the control samples and samples where 5 g/ml of TG2 and mTG was added to the 

samples every 48 hours.  
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Figure 4.14: HOB production of collagen in the Extracellular matrix. (A) Cells were 
removed from the wells 10 days post seeding. Resulting ECM was digested and samples and 
ran on 5% bis-acrylamide gel before being stained for collagen using Silver Quest staining kit. 
A representative gel is shown where the red boxes indicated the bands analysed. (B) 
Normalised collagen expression was plotted where the results represent mean values +/- S.D, 
where n=3. Statistical analysis was carried out using a one-way ANOVA test where the mean 
pixel densitometry of bands representing collagen deposition by HOBs  were compared to 
those seeded with TGs. The p-values corresponding to P< 0.001 are represented with *** and 
p=values corresponding to P<0.01 are represented with **. 
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4.6 Discussion 

 

The bone formation process is carried out by osteoblasts under the control of hormones 

and cytokines in the extracellular matrix of bone. The bone matrix itself is mostly made up 

of type 1 collagen, which is secreted from osteoblasts and assembled into macromolecular 

structures to give bone its tensile strength and to act as a scaffold for mineralisation and 

cell adhesion (Al-Jallad et al. 2006). One of the many non-collagenous proteins shown to 

reside within bone matrix are transglutaminases (which, as stated previously, are capable 

of linking primary amines to specific glutamine residues of its protein substrates). In this 

case TG2 and mTG are used to crosslink collagen to non-collagenous matrix components 

such as fibronectin and osteopontin in vitro (Kaartinen et al. 1999). It has been suggested, 

that by stabilising the matrix further (via crosslinking in this manner) mineralisation and cell 

adhesion are increased (Lorand and Graham, 2003; Nurminskaya et al. 2003; Akimov et 

al. 2000; Fortunati et al. 2014). We have shown in this chapter how mineralisation on tissue 

culture plastic begins around 6 days post seeding and increases until a plateau is reached 

approximately after 10 days.   

We have shown that when mTG and TG2 are added to HOBs on tissue culture plastic, 

there is a significant increase in mineralisation compared to HOBs alone. It has also been 

thought that TG2 in the extracellular environment could trigger a signal from the outside to 

the cell to begin mineralisation (Nurminskaya et al. 2003). This was later backed up by 

studies carried out by Faverman et al. who showed that LRP5 binds to TG2, triggering the 

Wnt non-canonical pathway. Once activated, this pathway leads to the release of β-catenin 

from the cytoplasm into the nucleus. This translocation of β-catenin causes TCF/LEF 

transcription factors to be released from the DNA and triggers HOB mineralisation 

(Faverman et al., 2008). We hypothesis that TG2 binds to LRP5 on HOBs as well as 

crosslinking the matrix laid down in the ECM over time by HOBs. In contrast, mTG only 

crosslinks the ECM matrix and does not bind to LRP5 and therefore has less of an effect 

on mineralisation than TG2. 
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The data strongly suggests that the crosslinking of collagen has had a positive effect on 

mineralisation. This is could be due to an increase in the expression of αVβ3 integrins that 

regulate cell proliferation and maturation. Also further stabilisation of the collagen matrix allows 

for greater cell adherence and proliferation. The crosslinking of collagen has already been 

shown to increase the mechanical strength of the overall scaffold compared to native collagen 

scaffolds (Chau, 2005; Fortunati et al. 2014). Moreover, investigations have shown0 

mesenchymal stem cells (MSCs) will change their differentiation fate depending on the 

elasticity of the surface they are seeded on (Discher et al., 2007). Discher et al. found that 

native MSCs would commit to osteogenic cell pathways if seeded on collagen that was 

crosslinked on relatively stiff matrices. This would explain why HOBs seeded on stiffer, 

crosslinked collagen show higher levels of mineralisation.  

As expected, removing calcium from TG2 collagen scaffolds led to a mineralisation that 

was similar to that of native collagen mineralisation. Interestingly, the absence of DTT from the 

TG2 samples led to a decrease in mineralisation. This suggests that TG2 must be also reduced 

and be active in order to allow for a statistically significant increase in mineralisation. This 

implies that TG2 protein alone cannot be responsible for increased mineralisation. 

The data in this chapter show that either R281 or 1-155, when added to cells will not have 

any effect on HOB mineralisation. When added along with mTG or TG2, there is sufficient 

inactivation taking place to reduce the mineralisation rates of those samples to that seen in the 

control HOB sample. It has been shown in the literature that R281 can inhibit both TG2 and 

mTG activity (Zonca et al., 2017), whereas our data show that only TG2 is inhibited by 1-155. 

 Although HOBs on both mTG and TG2 crosslinked collagen mineralised more than 

those on native collagen, there was still a difference in mineralisation rates. This could be 

explained by the differences seen in the stiffness between the two crosslinked collagen 

scaffolds (Lee et al., 2013, Grover et al., 2012, Chau et al., 2005). These differences may lead 

to HOBs reacting differently to the differences in stiffness (Pawelec et al., 2015), causing 

different rates of mineralisation (Discher et al., 2007). It has been reported that epithelial cells 
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seeded on stiffer matrices also upregulate expression of LRP5/6, which could explain the 

upregulation seen on HOBs seeded on crosslinked collagen (Han et al., 2016). 

Another reason for this difference in mineralisation rate could be explained by 

differences in the mean collagen pore size as observed in Chapter 3. Given that HOBs on 

average are 20-30µm in length (Wheeless et al. 2016) and the gaps between collagen fibres 

are nanometres apart, the amount of contact that each HOB has on collagen fibres is different 

between the scaffolds. The changes in distance between collagen fibres or pore alignment is 

known in the literature to be a signalling cue to osteoblasts (Ashworth et al., 2016, Pawelec et 

al., 2015). These signalling cues in turn influence cell behaviour and induce migration and 

matrix production. Given the increased contact that HOBs on crosslinked collagen have this 

could contribute to the increased integrin expression seen in Chapter 5 (Grover et al., 2012).  

 If increased surface area seen on crosslinked collagen increase mineralisation of 

HOBs, then adding 45S5 bioglass would also give more surface area for HOBs to adhere to in 

the overall ECM. Furthermore, from multiple studies it is established that 45S5 bioglass will 

bond to soft tissues as well as bone (Hench et al., 1972, Hench, 1993). Once implanted, the 

surface of the 45S5 bioglass forms a biologically active hydroxycarbonate apatite (HCA layer) 

this is crucial to providing the bonding interface with tissues. The HCA phase that is formed on 

the bioglass is the chemical and structural equivalent of the mineral phase in bone, which in 

turn induces cells to mineralise (Hench, 1993).   

Finally, when mTG and TG2 were added to collagen mixed with bioglass, there was an 

early (day 5) and significant increase in mineralisation this increased rate is shown to start as 

early as day 4-5. Briefly, ion/leaching/exchange and dissolution of the bioglass network and 

precipitation/growth of the calcium deficient HCA layer encourages the colonisation and 

proliferation of osteoblasts (Hench, 1993). These findings by Hench and Xynos could explain 

why increased mineralisation was found in the collagen samples with 45S5 bioglass. One 

interesting observation is that when bioglass is added to native collagen alone, there was an 

increase in mineralisation but this was not shown to be statistically significant. It should also 

be noted that when TGs are added to HOBs grown on culture that after 10 days there seems 
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to be more exogenous type 1 collagen found in the ECM. This could possibly be leading to a 

positive feedback cycle, since HOBs are able to make more contact (via cell surface and 

integrins) to collagen which stimulates further proliferation and mineralisation. 

To summarise, the effect of TG2 increasing mineralisation of HOBs is only seen when 

the enzyme is active and reduced (by calcium and DTT respectively). Similarly, when mTG is 

active there is a significant increase in mineralisation seen in collagen scaffolds too. The 

addition of bioglass particles further increases mineralisation of HOBs on crosslinked collagen 

scaffolds and this is likely due to HOBs interacting with the HCA layer that is formed between 

bioglass particles and HOBs.   
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Chapter 5: Intracellular effects of seeding 
HOBs on novel crosslinked collagen scaffolds 
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5.1 Introduction 

 

In the ECM, there are a variety of cues that are interpreted by cells that lead to different 

integrins being expressed. Integrin ligands are recognised by integrins via their conserved 

amino acid sequences. One of the most studied conserved amino acid sequences on these 

ligands is the RGD sequence (arginine, glycine, aspartate). Many proteins in the ECM, 

including collagen, contain the RGD sequence, which only become, accessible after 

processing (such as crosslinking) or degradation (Barczyk et al., 2010). Thus, collagen only 

reveals these RGD sequence, following crosslinking or denaturation and can recognise 

integrins such as αVβ3 and αVβ5 (Pawelec et al., 2016).  

A variety of integrins have been shown to be expressed by osteoblasts, including αVβ3, 

αVβ5 and α2β1 (Lai and Cheng, 2005). These integrins are expressed on the cell surface and 

modulate cell adhesion, cell spreading, differentiation and mineralisation.  

In addition to these integrins, another important transmembrane protein is involved: low 

density lipoprotein receptor-related protein 5 or LRP5 is an important protein that is involved 

in the Wnt- β-catenin pathway. Once a ligand has bound to LRP5, a cascade of reactions 

leading to the dissociation of β-catenin from glycogen synthase kinase 3β or GSK3 (He et al., 

2004). Once dissociated, β-catenin accumulates in the nucleus, where it can form a complex 

and displace TCF/ LEF transcription factors from the cell’s DNA. This displacement leads to 

cell differentiation (Chau et al., 2009). It has been shown by Faverman et al, (2008) that TG2 

binds to LRP5 to activate the Wnt- β-catenin pathway in vascular smooth muscle cells. 

The synthesis and release of collagen from HOBs is seen during mineralisation and 

differentiation (Rutkovskiy et al., 2016). The collagen produced is an important ECM protein 

as it further adds to the scaffold and in turn becomes mineralised to form bone (Pawelec et al., 

2016) 

Native collagen are only able to recognise integrins such as α1 and α2 via the RGD 

site GFOGER (a 30 amino acid sequence) (Pawelec et al., 2016). TG2 crosslinked collagen 
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expresses “cryptic” RGD peptides in such a way that HOBs perceive the scaffold to be more 

like gelatin than collagen. As seen by the decrease of α1 and α2 integrins seen on HOBs 

seeded on TG2 crosslinked collagen.   

5.2 Integrin expression of HOBs on collagen scaffolds 

 

 

5.2.1 Expression of 3 integrin on human osteoblasts over 3 days 

 

By monitoring 3 integrin expression in whole lysates, it was found that β3 integrin 

expression steadily increased after 3 days (post seeding) when grown on un-treated 96-well 

plates. It was seen that, by day 3, the expression of 3 integrin was approximately 1.6 fold 

higher than it was at day 1. 
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Figure 5.1: Expression of β3 integrin in whole cell lysate. Cell lysates were collected after 
1, 2 and 3 days post seeding and Western blotting was performed to analyse β3 integrin 
expression. A representative Western blot result is shown in (A) β-actin was used as loading 
control and normalised data are shown in the graph. (B). Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
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5.2.2 Expression of αV integrin on human osteoblasts over 3 days 

 

By monitoring αV integrin expression in whole lysates, it was found that αV integrin 

expression was approximately 1.64 fold higher than it was at day 1, as shown in Figure 5.2. 

Since 3 is paired with V on the cell surface it could be expected that the expression of αV 

would also increase, although V can be paired with other integrins.  
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Figure 5.2: Expression of αV integrin in whole cell lysate. Cell lysates were collected after 
1, 2 and 3 days post seeding and Western blotting was performed to analyse αV integrin 
expression. A representative Western blot result is shown in (A) β-actin was used as loading 
control and normalised data are shown in the graph. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
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5.2.3 Expression of LRP5 on human osteoblasts with transglutaminases added 

 

 Cell lysates were measured for LRP5 using Western blotting, as shown in Figure 5.3. 

It shows that HOBs grown with mTG and TG2 added to express LRP5 1.25 and 1.64 fold 

higher compared to native collagen. This suggests that, as in vascular smooth muscle cells, 

TG2 might be binding to LRP5 in HOBs. However, to conclusively show the binding of TG2 to 

LRP5 further investigation is needed. 
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Figure 5.3: Expression of LRP5 integrin in whole cell lysate. Cell lysates were collected 3 
days post seeding and Western blotting was performed to analyse LRP5 integrin expression. 
A representative Western blot result is shown in (A) β-actin was used as loading control and 
normalised data are shown in the graph. (B) Normalised integrin expression was plotted where 
the results represent mean values +/- S.D, where n=3. Statistical analysis was carried out 
using a one-way ANOVA test where the p-values corresponding to P< 0.001 are represented 
with ***. 
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5.3 Characterisation of integrin expression on human osteoblasts when seeded 

onto collagen scaffolds with transglutaminase  

 

5.3.1 β3 integrin expression in HOBs grown on collagen scaffolds 

 

 To contrast the differences in integrin expression, HOBs were grown on collagen 

scaffolds with and without modification by transglutaminases. In figure 5.4, the expression of 

3 was measured via Western blotting. After 3 days post seeding, HOBs grown on TG2 

crosslinked collagen were seen to express 3 integrin 2.1 fold more than on cells grown on 

native collagen as seen below. Furthermore, the cells grown on mTG crosslinked collagen 

expressed 3 1.62 fold more than HOBs seeded on native collagen. 
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Figure 5.4: Expression of β3 integrin in HOBs seeded onto collagen scaffolds. Cells were 
lysed after 3 days post seeding and Western blotting was performed to analyse β3 integrin 
expression. A representative Western blot result is shown in (A) β-actin was used as loading 
control and normalised data are shown in the graph. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
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5.3.2αV integrin expression for HOBs grown on collagen scaffolds 

 

Given the changes in β3 integrin expression on HOBs seeded on crosslinked collagen, 

it was necessary to investigate the expression of αV integrin since it forms the other half of the 

αVβ3 signalling complex. HOBs were grown on collagen scaffolds with and without 

modification by transglutaminases. Figure 5.5 shows the expression of V measured via 

Western blotting. There was a 1.71 fold increase in expression of V integrins found in cells 

grown on mTG. In addition a similar increase of 1.78 fold expression of αV in HOBs seeded 

on TG2 crosslinked collagen compared to native collagen. This further demonstrates that 

cellular pathways are being affected by being grown on modified collagen scaffolds. 
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Figure 5.5: Expression of αV integrin in HOBs seeded onto collagen scaffolds. Cells were 
lysed after 3 days post seeding and Western blotting was performed to analyse αV integrin 
expression. A representative Western blot result is shown in (A). β-actin was used as loading 
control and normalised data are shown in the graph. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P<0.01 are 
represented with **. 
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5.3.3β1 integrin expression for HOBs grown on collagen scaffolds 

 

 Having observed the expression of the integrin pair αVβ3 (individually), the next step 

was to look at α5 and β1. α5β1 is expressed on the surface of osteoblasts and, along with 

αVβ3, binds to ligands such as BMPs in the ECM to influence the fate of  osteoblasts, including 

proliferation, attachment and mineralisation (Fortunati et al., 2014, Orban et al., 2004). Figure 

5.6 shows that HOBs seeded onto mTG and TG2 collagen were shown to express β1 integrin 

1.5 and 1.79 fold more than HOBs seeded onto native collagen.  
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Figure 5.6: Expression of β1 integrin in HOBs seeded onto collagen scaffolds. Cell 
lysates were lysed after 3 days post seeding and Western blotting was performed to analyse 
β1 integrin expression. A representative Western blot result is shown in (A). β-actin was used 
as loading control and normalised data were shown in the graph. (B) Normalised integrin 
expression was plotted where the results represent mean values +/- S.D, where n=3. Statistical 
analysis was carried out using a one-way ANOVA test where the p-values corresponding to 
P< 0.001 are represented with *** and p=values corresponding to P<0.01 are represented with 
**. 
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5.3.45 integrin expression for HOBs grown on collagen scaffolds 

 
 

Having shown the differences in β1 integrin expression on HOBs seeded on 

crosslinked collagen in Figure 5.6, it was necessary to investigate the expression of α5 integrin 

since it forms the other half of the β1α5 signalling complex.  HOBs were grown on collagen 

scaffolds with and without modification by transglutaminases. Figure 5.7 shows the expression 

of 5 was measured via Western blotting. There was a 1.65 fold increase in expression of 5 

integrins found in cells grown on mTG. Furthermore a 2.13 fold increase in α5 integrin was 

seen in HOBs seeded on TG2 crosslinked collagen compared to native collagen. 
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Figure 5.7: Expression of α5 integrin in HOBs seeded onto collagen scaffolds. Cells were 
lysed after 3 days post seeding and Western blotting was performed to analyse α5 integrin 
expression. A representative Western blot result is shown in (A). β-actin was used as loading 
control and normalised data are showed in chart. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
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5.3.5 1 integrin expression for HOBs grown on collagen scaffolds 

 

HOBs were grown on collagen scaffolds with and without modification by 

transglutaminases. Expression of 1 was measured via Western blotting in figure 5.8. There 

was nearly a 0.5 fold decrease in expression of 1 integrins found in cells grown on TG2 

crosslinked collagen compared to native collagen. However HOBs on mTG crosslinked 

collaged did not show a decrease in 1 or 2 integrins. 1 integrin is often observed on the 

HOBs surface when they bind to a collagen scaffold (Barczyk et al., 2010).  
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Figure 5.8: Expression of α1 integrin in HOBs seeded onto collagen scaffolds. Cells were 
lysed after 3 days post seeding and Western blotting was performed to analyse α1 integrin 
expression. A representative Western blot result is shown in (A). β-actin was used as loading 
control and normalised data are shown in the graph. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
 
 
 
 
 
 
 
 

B 

NC              mTG           TG2 

Normalised to 

-actin 

-actin  
Loading control 

1 Integrin 

        1                 0.96             0.54 

A 

0.0

0.5

1.0

1.5
NC

mTG

TG2

***

HOBs seeded onto collagen scaffolds
1
 i

n
te

g
ri

n
 e

x
p

re
s
s
io

n
 (

n
o

rm
a
li

s
e
d

)



180 
 

 
 

5.3.6 2 integrin expression for HOBs grown on collagen scaffolds 

 

Given that α1 expression levels decreased in HOBs grown on TG2 crosslinked 

collagen, it was necessary to investigate if α2 expression differed. This is because, along with 

α1, α2 is an integrin that does not recognise denatured collagen (Knight et al., 2000).  

HOBs were grown on collagen scaffolds with and without modification by 

transglutaminases. Expression of 2 was measured via Western blotting. There was nearly a 

0.4 fold decrease in expression of 2 integrins found in cells grown on TG2 crosslinked 

collagen compared to native collagen.  
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Figure 5.9: Expression of α2 integrin in HOBs seeded onto collagen scaffolds. Cells were 
lysed after 3 days post seeding and Western blotting was performed to analyse α2 integrin 
expression. A representative Western blot result is shown in (A). β-actin was used as loading 
control and normalised data are shown in the graph. (B) Normalised integrin expression was 
plotted where the results represent mean values +/- S.D, where n=3. Statistical analysis was 
carried out using a one-way ANOVA test where the p-values corresponding to P< 0.001 are 
represented with ***. 
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5.3.7 LRP5 integrin expression for HOBs grown on collagen scaffolds 

 

 Since Figure 5.3 showed that HOBs increase their expression of LRP5 when 

transglutaminases are present. To see if LRP5 expression changed in HOBs grown on 

collagen scaffolds with and without modification by transglutaminases, Western blotting on cell 

lysates was carried out as shown in Figure 5.10. There was a 2.96 fold increase in expression 

of LRP5 found in cells grown on TG2 crosslinked collagen compared to native collagen. 

Similarly a 1.49 increase in fold expression was found in HOBs grown on mTG crosslinked 

collagen. 
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Figure 5.10: Expression of LRP5 integrin in HOBs seeded onto collagen scaffolds. Cells 
were lysed after 3 days post seeding and Western blotting was performed to analyse LRP5 
integrin expression. A representative Western blot result is shown in (A). β-actin was used as 
loading control and normalised data are shown in the graph. (B) Normalised integrin 
expression was plotted where the results represent mean values +/- S.D, where n=3. Statistical 
analysis was carried out using a one-way ANOVA test where the p-values corresponding to 
P< 0.001 are represented with ***. 
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5.4 Characterisation of integrin expression on human osteoblasts when seeded 

onto collagen scaffolds with transglutaminase and 45S5 bioglass 

 

5.4.1 β3 integrin expression for HOBs grown on collagen scaffolds mixed with 45S5 

bioglass 

  

Having shown that β3 integrin expression on HOBs increases over time in Figure 5.1 

and when seeded onto crosslinked collagen in Figure 5.4. It was necessary to investigate the 

impact that 45S5 bioglass might have on cells. β3 integrin expression was measured on HOBs 

seeded on native collagen and crosslinked collagen with 10 mg/ml 45S5 bioglass particles was 

then measured. After seeding HOBs on the collagen scaffolds, cell lysates were collected and 

the expression of β3 integrins was measured using Western blotting. The results are shown in 

Figure 5.11. 

 β3 integrin expression increased in HOBs on all collagen scaffolds that had 45S5 

bioglass mixed with them.  The lowest increase was seen in native collagen mixed with 

bioglass (by 1.25 fold) and the highest increase was found in HOBs seeded on TG2 crosslinked 

with 45S5 bioglass (2.25 fold). The β3 integrin expression was found to be significantly higher 

on HOBs grown on native collagen with glass than without (0.25 fold higher). Similarly, HOBs 

grown on TG2 and mTG crosslinked collagen with glass showed significantly higher 

expression of β3 integrins than their respective scaffolds without glass.  
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Figure 5.11: Expression of β3 integrin in HOBs seeded onto collagen scaffolds with 45S5 
bioglass. Cells were lysed after 3 days post seeding and Western blotting was performed to 
analyse β3 integrin expression. A representative Western blot result is shown in (A). β-actin 
was used as loading control and normalised data are showed in the graph. (B) Normalised 
integrin expression was plotted where the results represent mean values +/- S.D, where n=3. 
Statistical analysis was carried out using a one-way ANOVA test where the p-values 
corresponding to P< 0.05 are represented with *. 
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5.4.2 V integrin expression for HOBs grown on collagen scaffolds mixed with 45S5 

bioglass 

 

Having shown that αV integrin expression on HOBs increases over time in Figure 5.2 

and when seeded onto crosslinked collagen in Figure 5.5. It was necessary to investigate the 

influence of bioglass on cells. The expression of αV integrin expression on HOBs when seeded 

on native collagen and crosslinked collagen with 10µg/ml 45S5 bioglass particles was then 

measured. After seeding HOBs on the collagen scaffolds cell lysates were collected and using 

Western blotting the expression of αV integrins was measured. The results are shown in Figure 

5.12 

 αV integrin expression increased in HOBs on all collagen scaffolds that had 45S5 

bioglass mixed with them.  The lowest increase was seen in native collagen mixed with 

bioglass (by 1.52 fold) and the highest increase was found in HOBs seeded on mTG 

crosslinked with 45S5 bioglass (2.76 fold). As with β3, HOBs grown on TG2 and mTG 

crosslinked collagen with glass showed significantly higher expression of αV integrins than 

their respective scaffolds without glass. 
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Figure 5.12: Expression of αV integrin in HOBs seeded onto collagen scaffolds with 45S5 
bioglass. Cells were lysed after 3 days post seeding and Western blotting was performed to 
analyse αV integrin expression. A representative Western blot result is shown in (A). β-actin 
was used as loading control and normalised data are shown in the graph. (B) Normalised 
integrin expression was plotted where the results represent mean values +/- S.D, where n=3. 
Statistical analysis was carried out using a one-way ANOVA test where the p-values 
corresponding to P< 0.05 are represented with * and P< 0.001 are represented with ***. 
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5.4.3 β1 integrin expression for HOBs grown on collagen scaffolds mixed with 45S5 

bioglass 

 

Figure 5.13 shows that the β1 integrin expression increased in HOBs on all crosslinked 

collagen scaffolds that had 45S5 bioglass mixed with them.  A decrease in expression was 

seen in native collagen which was mixed with bioglass (by 1.2 fold) the highest increase was 

found in HOBs seeded on TG2 crosslinked with 45S5 bioglass (2.3 fold).  

 β1 integrin expression was significantly higher on mTG and TG2 crosslinked collagen 

with bioglass than when grown on their respective collagen scaffolds without bioglass.  
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Figure 5.13: Expression of β1 integrin in HOBs seeded onto collagen scaffolds with 45S5 
bioglass. Cell lysates were lysed after 3 days post seeding and Western blotting was 
performed to analyse β1 integrin expression. A representative western blot result is shown in 
(A). β-actin was used as loading control and normalised data are shown in the graph. (B) 
Normalised integrin expression was plotted where the results represent mean values +/- S.D, 
where n=3. Statistical analysis was carried out using a one-way ANOVA test where the p-
values corresponding to P< 0.05 are represented with * and p=values corresponding to P<0.01 
are represented with **. 
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5.4.4 5 integrin expression for HOBs grown on collagen scaffolds mixed with 45S5 

bioglass 

 

Having shown that α5 integrin increases when seeded onto crosslinked collagen in 

Figure 5.7, it was appropriate to investigate the influence of bioglass on the cells. The 

expression of α5 integrin expression on HOBs when seeded on native collagen and 

crosslinked collagen with 10 µg/ml 45S5 bioglass particles was then measured. After seeding 

HOBs on the collagen scaffolds cell lysates were collected and using western blotting the 

expression of α5 integrins was measured. The results are shown in Figure 5.14. 

 

 α5 integrin expression increased in HOBs on all collagen scaffolds that had 45S5 

bioglass mixed with them.  The lowest increase was seen in native collagen which was mixed 

with bioglass (by 1.24 fold) and the highest increase was found in HOBs seeded on TG2 

crosslinked with 45S5 bioglass (2.51 fold). α5 integrin expression was significantly higher on 

mTG and TG2 crosslinked collagen with bioglass than their respective collagen scaffolds 

without bioglass.  
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Figure 5.14: Expression of α5 integrin in HOBs seeded onto collagen scaffolds with 45S5 
bioglass. Cell lysates were lysed after 3 days post seeding and Western blotting was 
performed to analyse α5 integrin expression. A representative western blot result is shown in 
(A). β-actin was used as loading control and normalised data are shown in the graph. (B) 
Normalised integrin expression was plotted where the results represent mean values +/- S.D, 
where n=3. Statistical analysis was carried out using a one-way ANOVA test where the p-
values corresponding to P< 0.01 are represented with **. 
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Table 5.1: A summary of integrin expression seen on HOBs when seeded on various 

collagen scaffolds 

 

Collagen 
scaffolds 

Expression of integrin relative to that seen on HOBs seeded on 
native collagen. Green = increase in expression and Red = 
decrease in expression 

 α1 α2 α5 αV β1 β3 LRP5 

mTG 0.96 0.95 1.5 1.47 1.2 1.27 1.49 

TG2 0.54 0.35 1.87 1.62 1.62 1.6 2.56 

NC+G   1.24 1.52 0.8 1.25  

mTG+G   2.35 2.32 1.78 1.48  

TG2+G   2.51 2.76 2.3 2.25  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 
 

5.4.5 β-catenin expression in HOBs 

 
 

The expression of β-catenin in HOBs grown on tissue culture plastic was observed 

between 3 and 6 days post seeding the results are shown in Figure 5.15. The Western blots 

show a decrease in the amount of β-catenin present in the cytoplasm and a simultaneous 

increase amount found in the nucleus fraction as time passed.  
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Figure 5.15: Expression of β-catenin in HOB cell fractions. Cellular fractions were 
separated through centrifugation (see materials and methods) after 3 and 6 days post seeding 
and Western blotting was performed to analyse β-catenin expression. A representative 
western blot result for day 3 is shown in (A). A representative western blot result for day 3 is 
shown in (B) β-actin was used as loading control and fractions were normalised to the total β-
catenin expression found in the whole lysate. (C-E) Normalised β-catenin expression was 
plotted where the results represent mean values +/- S.D, where n=3 for cytoplasmic, 
membrane bound and nuclear fractions. Statistical analysis was carried out using a one-way 
ANOVA test where the p-values corresponding to P< 0.001 are represented with ***. 
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5.4.6 β-catenin expression in HOBs grown on collagen scaffolds 

 
  

Having shown that β-catenin is translocated from the cytoplasm to the nucleus in Figure 

5.16, the differences in translocation of β-catenin in HOBs seeded on various collagen 

scaffolds were measured. HOBs were seeded on various collagen scaffolds with mTG, TG2 

(5 µg/ml) and 45S5 bioglass, and the results for the translocation of β-catenin from cell lysates 

are shown in Figure 5.17. Western blot analysis shows that there was a significant increase in 

the expression of β-catenin in the nuclear fraction in HOBs seeded on TG2, mTG+G and 

TG2+G by day 6 compared to the amount seen in cells on HOBs seeded on native collagen. 

Interestingly a significant decrease in fold β-catenin expression is also seen in day 3 HOBs 

lysates between those seeded on native collagen and TG2 with bioglass.  
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Figure 5.16: Expression of β-catenin in HOB cell fractions seeded on collagen scaffolds. 
(A) Cellular fractions were separated through centrifugation (see materials and methods) after 
3 and 6 days post seeding and Western blotting was performed to analyse β-catenin 
expression. A representative western blot result for day 3 and 6 is shown whereby β-actin was 
used as loading control and fractions were normalised to the total β-catenin expression found 
in the whole lysate. (B-E) Normalised β-catenin expression was plotted for each cell fraction 
where the results represent mean values +/- S.D, where n=3 for cytoplasmic, membrane bound 
and nuclear fractions. Statistical analysis was carried out using a two-way ANOVA test where 
the p-values corresponding to P< 0.05 are represented with * and p< 0.01 are represented 
with **. 
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5.5 Discussion 

 

The integrins αV and β3 are found paired on osteoblasts cell surface and work to 

facilitate cell spreading and differentiation. Fourel et al. showed that once the integrin receptors 

bind to cell matrix proteins such as collagen/fibronectin a multistep process is set into motion. 

The destruction of the GSK3-β-catenin complex, through the Wnt pathway, also results in the 

translocation of β-catenin from the cytoplasm into the nucleus resulting in HOB differentiation 

and mineralisation. It can also lead to the C-terminal phosphorylation of Smad and second to 

inhibit GSK3 activity via the Srk-FAK-ILK pathway. This leads to both cell spreading and fate 

commitment (Fourel et al. 2014).  

 The findings in this chapter show that HOBs grown in vitro will express αV and β3 

integrins increasingly as time passes (when seeded in DM). This is to be expected since 

previous studies have shown in osteoblasts that mineralisation occurs roughly 5-6 days post 

deeding upon which the “ECM maturation and mineralisation” stage begins within osteoblasts 

(Lian & Stein, 1995). Similarly, there is a rise in the integrin LRP5 could explain the reason 

why the β-catenin expression in cells from day 3 and day 6 change. Typically, in the Wnt 

pathway, the release of β-catenin from the GSK3 complex within the cell cytoplasm leads to 

β-catenin leaving the cytoplasm and entering the nucleus and displacing Groucho protein to 

bind to TCF1 in order to set cell differentiation in motion and mineralisation (Holmen et al. 

2005). 

 

We have shown that even over the course of 3 days there is an increase in the 

expression of αV, α5, β1 and β3 integrins when cells are grown on mTG or TG2 crosslinked 

collagen compared to those grown on native collagen. There are several reasons for this. 

Cellular functions and growth are driven by the ECM and its characteristics; mechanical and 

chemical (Marklein and Burdick, 2010, Brown et al., 2010).  
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One mechanical reason for this increase in integrin expression so early on could be 

seen in chapter 3. The gaps between collagen fibres are significantly smaller in TG2 

crosslinked collagen than in native collagen as seen by the smaller space between fibres. Pore 

alignment and size has been shown to influence cell behaviour including migration and matrix 

production (Pawelec et al., 2015, Ashworth et al., 2016). There is also growing evidence that 

shows cells to be sensitive enough to detect and respond to differences on the nano-scale in 

changes to the environment (Boccaccini et al., 2010). Since HOBs will have more collagen 

fibres to bind and interact with, this could be the reason why αV, α5, β3 and β1 integrins are 

expressed more so in crosslinked collagen scaffolds than in native ones. 

Another mechanical cue which could be driving cell migration and differentiation is the 

difference is collagen stiffness between native and crosslinked collagen. Chau et al. have 

shown rheological differences and an increased mechanical stiffness in crosslinked collagen, 

this substrate stiffness can act as a cellular signal and lead to differences in cell behaviour 

(Roskelley et al., 1995, Discher et al., 2007). This is hypothetical however, since the stiffness 

of these collagen scaffolds were not assessed in this thesis. 

Finally, one of the chemical characteristics that is likely to increase the expression of 

integrins is the increase of RGD peptides. RGD peptides are ligands that have conserved 

amino acid sequences (Barczyk et al., 2010). These peptides are revealed by crosslinked 

collagen (Barczyk et al., 2010) and when collagen is denatured into gelatin (Pawelec et al., 

2016). Importantly, RGD acts as a primary mediator of the response in HOBs and bind to αV, 

α5 and β1 subunits which is why they increase in fold expression on cells grown on crosslinked 

collagen (Orban et al., 2004).   

β3 has been shown to  be upregulated in the literature (Orban et al., 2004, Fortunati et 

al., 2014). A paper by Wozniak et al. showed that differences in mechanical stiffness of the 

collagen and vitronectin substrates can affect the clustering and  expression of αVβ3 (Wozniak 

et al., 2000).   

Native collagen, on the other hand, does not reveal these RGD peptides. Collagen 

recognition is via a different binding site , i.e GFOGER, which is dependent on collagen's 
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helical structure (Knight et al., 2000). Here, α1 and α2 integrins have been reported to bind to 

collagen (Orban et al., 2004), and this is likely to be why expression of these integrins drops 

by around 0.5 fold in HOBs on TG2 crosslinked collagen. The HOBs are no longer able to bind 

to GFOGER sites on crosslinked collagen and are expressed less on the HOBs surface.  

Interestingly, there was  even greater expression of the integrin αVβ3 pair when HOBs 

had been seeded on collagen scaffolds with 45S5 bioglass nanoparticles incorporated into 

them. Here, the expression of β3 in mTG and TG2 crosslinked collagen was 1.65 and 1.24 

times higher than in native collagen. Xynos et al. (2001) showed that these bioglass 

nanoparticles are capable of stimulating osteogenesis and have an impact on gene regulation 

regarding differentiation. 

While β1 integrin expression decreased when HOBs were seeded on native collagen 

with bioglass, α5 integrin expression did increase. α5β1 are a pair of integrins that have been 

shown in the literature to bind to RGD peptides to mediate cell adhesion and promote 

osteogenic differentiation in MSCs (Saidak et al., 2015). Specifically, this pair of integrin 

receptors link the ECM to intracellular bundles of actin filaments. Once transduced, 

extracellular signals cross the plasma membrane resulting in the activation of various 

intracellular signalling cascades, including the Wnt pathway (Schneider et al., 2001). The 

literature also shows how important the α5β1 integrins are to osteoblast mineralisation by 

exposing them to antibodies directed at the integrins and showing significant decrease in 

osteoblast mineralisation (Schneider et al., 2001).  

The synthesis and release of collagen from HOBs is seen during mineralisation and 

differentiation (Rutkovskiy et al., 2016). The collagen produced is an important ECM protein 

as it further adds to the scaffold and in turn becomes mineralised to form bone (Fortunati et 

al., 2014). What has been seen is an increase of collagen type 1 being secreted in the ECM 

when mTG and TG2 are added with media changes. This is explained in the literature, as TG2 

has been shown to be a Wnt ligand that binds to LRP5, which leads to the translocation of β-

catenin from the cytoplasm and into the nucleus (Faverman et al., 2008). 
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As stated already, the translocation of β-catenin from the cytoplasm and into the 

nucleus is crucial in the mineralisation process. It has been shown in the data that this 

translocation occurs between day 3 and 6 and the total amount of β-catenin does not change 

with in the cell. Curiously, the amount of β-catenin in the cytoplasm and nucleus between 

HOBs on all collagen scaffolds was different. It has been shown in the data that translocation 

of β-catenin is occurring earlier than in day 3 on collagen with bioglass, with and without 

transglutaminase.  

The reason for these differences in translocation and activation of the Wnt pathway is 

likely to be due to the HOBs reacting differently to the mechanical and chemical cues. As stated 

previously, these include the differences in collagen stiffness, mean collagen pore size, RGD 

peptides availability and osteogenic stimulation when bioglass is added.  

A slight decrease in proliferation seen at day 6 in HOBs seeded on TG2 crosslinked 

collagen with bioglass (see Chapter 1) might be explained by the increased and more rapid 

translocation of β-catenin seen in the data here. Since there seems to be a more rapid 

translocation, there is a possibility that cells on TG2 crosslinked collagen with glass are 

mineralising and differentiating more quickly than HOBs on native collagen. The increased 

mineralisation and differentiation leads osteoblasts to mature and become trapped. These cells 

are then known as osteocytes (Dallas and Bonewald, 2010).   
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Chapter 6- General discussion 
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6.1 Background  

 

When biomaterials were first used, they were designed to be inert and elicit no 

response from the immune system (Hench and Polak, 2002). However, as our understanding 

of molecular and cellular biology increased a new standard was set: to create materials which 

could stimulate native tissue regeneration and restore the original functionality. Scaffolds and 

constructs of this kind would not only support the overall function of the tissue but also 

communicate with the body at the cellular level (Hench and Polak, 2002). These scaffolds are 

made from a variety of materials and more natural biological polymers are being introduced 

every year.  

One of the first biological polymers used widely in medical applications was collagen 

(Ehrmann and Gey, 1956). Since the initial investigations carried out by Ehrman and Gey in 

1956, collagen has been used to grow and differentiate many cell types (Lynch et al., 1995, 

Ivarsson et al., 1998, Reznikoff et al., 1987). There are many diverse applications that have 

been found for collagen scaffolds by tailoring their structures. These include osteochondral 

defects, connective tissues, adipose tissues and mammary glands (Tuan-Mu et al., 2016, 

Shepherd et al., 2013, Davidenko et al., 2010). When processed, however, native collagen is 

inherently mechanically weak, thermally unstable and suseptable to proteolytic breakdown. In 

order to overcome this, different techniques have been utilised to crosslink collagen to 

overcome these defficiencies. Even so, these techniques have impractical drawbacks or leave 

residual chemical agents at the large scale production level. Thus, many investigations into 

safer alternatives have been carried out including UVA light and Riboflavin/glucose.  

With this in mind, the aim of this thesis was to use TG2 and mTG to achieve the desired 

crosslinking. Crosslinked collagen with and without 45S5 bioglass was then used as a scaffold 

for human osteoblasts to be seeded on. From this point, the differences in HOB mineralisation 

between native and crosslinked collagen with 45S5 bioglass were investigated. The 

differences in mineralisation rates between the collagen scaffolds were then investigated on 
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the intracellular level, focussing specifically at the integrins expressed, LRP5 expression and 

translocation of β-catenin within the cell.  

 

6.2 How novel collagen scaffolds effect the behaviour of human osteoblasts 

 

 Figure 6.1 is a summary of how both mechanical and chemical cues contribute to the 

increased mineralisation compared to native collagen.  
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Figure 6.1: A graphic depicting the proposed intracellular process of mineralisation 

when HOBs are seeded on crosslinked collagen. Here the increased mechanical stiffness, 

smaller pore size and increased exposure of RGD peptides exposed all contribute to increased 

expression of αVβ3 and α5β1 integrins on the cell surface. Coupled with this is the HCA layer 

formed between the calcium rich 45S5 bioglass and the osteogenic inducing properties of the 

bioglass (Hench, 1993, Hench et al., 1972, Xynos et al., 2000).  The LRP5/6 integrin is also 

expressed more likely due to HOBs being seeded on a stiffer collagen matrix (Han et al., 2016). 

All these mechanical and chemical cues lead to the activation of the Wnt pathway and 

increased mineralisation. 
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We have shown that over 3 days there is an increase in the expression of αV, α5, β1 

and β3 integrins when cells are grown on mTG or TG2 crosslinked collagen compared to those 

grown on native collagen. Moreover, there was a decrease in α1 and α2 integrins, which are 

the integrins that HOBs express when they are exposed to collagen in the ECM. There are 

several reasons for this.  

The gaps between collagen fibres are shown to be significantly smaller in TG2 

crosslinked collagen than in native collagen as shown by the SEM images. Pore alignment 

and size have been shown to influence cell behaviour including migration and matrix 

production (Pawelec et al., 2015, Ashworth et al., 2016). There is also evidence that shows 

cells to be sensitive enough to detect and respond to differences on the nano-scale in changes 

to the environment (Boccaccini et al., 2010). Since HOBs will have more collagen fibres to bind 

and interact with, this could be a reason why αV, α5, β3 and β1 integrins are expressed more 

so in crosslinked collagen scaffolds than in native ones. 

As mentioned before another mechanical cue which is likely to be driving cell migration 

and differentiation is the difference is the stiffness between native and crosslinked collagen. 

While mechanical stiffness has not been measured in this thesis, Chau et al. have shown 

rheological differences and an increased mechanical stiffness in crosslinked collagen; this 

substrate stiffness can act as a cellular signal and lead to differences in cell behaviour (Discher 

et al., 2007). This increased stiffness of the matrix upon which HOBs are seeded on could also 

be a plausible reason why increase in LRP5 is being observed. Investigations into cells grown 

on matrices of varying stiffness show there are differences in cell behaviour. When grown on 

stiffer matrices, epithelial cells have been shown to upregulate LRP5/6 for example (Han et 

al., 2016). β3 integrin has been shown to also be upregulated in the literature (Orban et al., 

2004, Fortunati et al., 2014). A paper by Wozniak et al. showed that differences in mechanical 

stiffness of the collagen and vitronectin substrates can affect the clustering and expression of 

αVβ3 (Wozniak et al., 2000).   

Finally, one of the chemical characteristics that is likely to increase the expression of 

integrins is the increase of RGD binding sites. These peptides are revealed by crosslinked 
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collagen (Davidenko et al., 2018) when collagen is denatured into gelatin (Pawelec et al., 

2016). αV, α5 and β1 subunits all bind to RGD motifs which is why they increase in fold 

expression on HOBs grown on crosslinked collagen (Orban et al., 2004).   

Native collagen does not reveal these RGD binding sites. Collagen recognition by 

HOBs is via a different binding site: GFOGER, which is dependent on collagen's helical 

structure (Knight et al., 2000). α1 and α2 integrins are reported to bind to collagen (Orban et 

al., 2004) and this is likely to be why expression of these integrins drops by around 0.5 fold in 

HOBs on TG2 crosslinked collagen. The HOBs are less able to bind to GFOGER sites on 

crosslinked collagen and are expressed less on HOBs surface. It is still uncertain as to why 

cells seeded on mTG crosslinked collagen did not show a fold decrease in expression of α1 

and α2 integrins, although it is clear that the two transglutaminases crosslink collagen 

differently (Chau et al., 2005). It is clear that there is a difference in the micro-molecular 

structures between TG2 and mTG crosslinked collagen such as the mean pore size of collagen 

fibres and this may explain the observed behaviour of HOBs seeded on the respective 

scaffolds. 

An even greater expression of the αVβ3 and α5β1 integrin pairs were shown when 

HOBs had been seeded onto crosslinked collagen scaffolds with 45S5 bioglass particles 

incorporated into them. Xynos et al. 2001 have shown that these bioglass nanoparticles are 

capable of stimulating osteogenesis and have an impact on the upregulation of many genes. 

Hench et al. have also shown that the HCA layer formed between cells and collagen fibres 

which we hypothesise could also be leading to the HOBs behaving differently (increasing 

integrin expression) when seeded on these scaffolds.  

 Whilst β1 expression did not increase in HOBs seeded on native collagen with bioglass, 

we have shown that both α5 and β1 integrins are increased on cells seeded on crosslinked 

collagen with bioglass. This leads to integrins sending extracellular signals across the plasma 

membrane, resulting in the activation of various intracellular signalling cascades including the 

Wnt pathway (Schneider et al., 2001). Increased osteoblast mineralisation would be explained 

by this activation of the Wnt pathway and is also shown in the literature; it has been shown 



210 
 

that by exposing α5 and β1 integrins to function blocking antibodies directed at the integrins, 

there is a significant decrease in osteoblast mineralisation (Schneider et al., 2001).  

 The collective increase in expression of integrins direct the behaviour of the cells to 

proliferate and spread and ultimately differentiation and mineralisation (Lai and Cheng, 2005). 

The increased mineralisation also comes from the exposure to either TG2 itself or cells 

upregulating LRP5/6 on the cell surface and triggering the destruction of the GSK3 complex. 

The β-catenin released from this complex is then able to displace Groucho protein to bind to 

TCF1 in order to set cell differentiation in motion and mineralisation (Holmen et al. 2005). 

 

6.3 Conclusions 

  

In summary, data presented here suggests that treating native collagen with 

transglutaminases alters it in such a way that it is perceived differently by HOBs during culture. 

It is theorised that this modified collagen presents itself as being almost gelatin-like with  stiffer 

mechanical properties and a smaller pore size. This behaviour is inferred by the altered integrin 

expression profile on HOBs. Consequently, this leads to greater expression of LRP5 protein, 

resulting in the downstream processing required for the observed increased mineralisation.  

In this thesis, we have shown that crosslinked collagen mixed with 45S5 bioglass could 

potentially be used as a biomaterial that enhances mineralisation in bone scaffolds for non-

union bone breaks. These crosslinked collagen scaffolds with 45S5 bioglass are more 

biocompatible than native collagen and also show increased rates of mineralisation. The 

scaffolds would have low immunogenicity and could grow with the host. This would be a distinct 

advantage over the titanium plates currently used. 

 As stated in the introduction, 10% of all bone breaks are non-union and require metal 

plates and screws in order for the bone to heal. Here we have characterised a base scaffold 

upon which future development and research can take place.  
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An immune response against collagen mainly targets epitopes in the telopeptide 

region at each end of the tropocollagen molecule (Scmitt et al. 1964; Davison et al., 1967) 

However, the conformation of the helical part and the amino acid sequence on the surface of 

the polymerized collagen fibril, also influence the immunologic profile of the collagen 

molecule (Michaeli et al., 1969). Thus, the difference of immunogenicity between 

polymerized collagen and their smaller counterpart lies on the accessibility of the antigenic 

determinants that decrease during the polymerisation process. This is certainly something to 

consider when creating a collagen scaffold to be used as an implant in an animal model. 

Despite this type I collagen is still considered a suitable material for implantation since only a 

small amount of people possess humoral immunity against it and a simple serologic test can 

verify if a patient is susceptible to an allergic reaction in response to this collagen-based 

biomaterial (Charriere et al. 1989).  

Further rheological studies as well as characterisation and optimisation of the 

crosslinked scaffold, could one day lead to a low immunogenic, simple and effective implant 

that can be transplanted into humans.  
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