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Abstract

Motivation: Data splitting is a fundamental step for building classification models with spectral

data, especially in biomedical applications. This approach is performed following pre-processing

and prior to model construction, and consists of dividing the samples into at least training and test

sets; herein, the training set is used for model construction and the test set for model validation.

Some of the most-used methodologies for data splitting are the random selection (RS) and the

Kennard-Stone (KS) algorithms; here, the former works based on a random splitting process and

the latter is based on the calculation of the Euclidian distance between the samples. We propose

an algorithm called the Morais-Lima-Martin (MLM) algorithm, as an alternative method to improve

data splitting in classification models. MLM is a modification of KS algorithm by adding a random-

mutation factor.

Results: RS, KS and MLM performance are compared in simulated and six real-world biospectro-

scopic applications using principal component analysis linear discriminant analysis (PCA-LDA).

MLM generated a better predictive performance in comparison with RS and KS algorithms, in

particular regarding sensitivity and specificity values. Classification is found to be more well-

equilibrated using MLM. RS showed the poorest predictive response, followed by KS which

showed good accuracy towards prediction, but relatively unbalanced sensitivities and specificities.

These findings demonstrate the potential of this new MLM algorithm as a sample selection method

for classification applications in comparison with other regular methods often applied in this type

of data.

Availability and implementation: MLM algorithm is freely available for MATLAB at https://doi.org/

10.6084/m9.figshare.7393517.v1.
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1 Introduction

Data splitting is a process used to separate a given dataset into at

least two subsets called ‘training’ (or ‘calibration’) and ‘test’ (or ‘pre-

diction’). This step is usually implemented after pre-processing,

when the samples’ spectra have been corrected for noise or un-

desired variability. These subsets are used towards constructing

chemometric models for quantification or classification applica-

tions. In quantification, calibration models are built to assign a con-

centration or discrete value to a sample based on its spectral

signature, whilst in classification applications, samples or experi-

mental observations are assigned to ‘classes’ based on their spectro-

chemical signature. This is made by using chemometric methods

such as principal component analysis linear discriminant analysis

(PCA-LDA) (Morais and Lima, 2018), partial least squares discrim-

inant analysis (PLS-DA) (Brereton and Lloyd, 2014), or support vec-

tor machines (SVM) (Cortes and Vapnik, 1995). Sometimes,

especially for large datasets, an extra subset called ‘validation’ is

also obtained, containing measurements observations used for opti-

mizing factors in the chemometric model, such as the number of

principal component (PCs) in PCA-LDA, latent variables in PLS-DA

and kernel parameters in SVM. When the validation set is not pre-

sent, cross-validation is applied. In this case, samples from the train-

ing set are used in an iterative validation process for optimizing

these models parameters. This is made by firstly removing a certain

number of samples from the training set and then building the classi-

fication model with the remaining samples, where the removed sam-

ples are predicted as a temporary validation set. This is performed

for a certain number of repetitions until all training samples are

excluded once from the training set and predicted as a temporary

validation set. One of the most popular cross-validation methods is

the leave-one-out cross-validation, where only one sample is

removed from the training set per each iteration. A misclassification

error is then calculated for this temporary validation set, where dif-

ferent models parameters, such as different number of factors or

principal components, are tested. The training model with the low-

est cross-validation error is then chosen as final, where the classifica-

tion parameters that led to the lowest cross-validation error value

are selected. The samples primarily excluded from modelling (test

set) are used for final model evaluation, since they are considered as

being external to the model (blind). In this case, one simulates how

the model would behave in the presence of new observations,

though they are often measured in the same experiment with the

training samples.

To avoid the presence of bias introduced by manual data split-

ting, there are a number of computational methods that can be used

for sample selection, such as based on leverage (Wang et al., 1991),

random selection (RS) or Kennard-Stone (KS) algorithm (Kennard

and Stone, 1969). RS and KS are the most used methods for sample

selection; the former due to its simplicity and the latter due to its

adaptation to analytical chemistry applications, since it allows a

training model covering most sources of variations within the data-

set, ensuring the training model is more representative of the whole

dataset. Currently, the original KS paper (Kennard and Stone, 1969)

has >1000 citations, being the method of choice in many classifica-

tion applications.

Although including as much variability as possible within the

training model provides a good predictive performance, sometimes

random phenomena might occur with new samples in a test set, in

particular when samples come from complex matrices. An example

of this is biological-derived samples. Biological samples can be

affected by a series of factors that are difficult to include in relatively

small datasets. For example, in clinical applications the spectro-

chemical response of a ‘healthy’ and ‘disease’ sample may vary

according to changes in diet and lifestyle (Lindon et al., 2017). The

same applies for bacteria or viruses extracted from certain media,

since environmental variations may also change their spectral signa-

ture. Additionally, random factors such as genetic mutations might

affect the predictive performance of a classification model for bio-

logical samples in the future. These phenomena add a degree of ‘ran-

domness’ in the predictive behaviour of a classifier, since more

extrapolations might be needed to address all of these issues. Thus,

having in mind the inclusion of as much representativeness as pos-

sible in the training model but with a small degree of randomness,

we propose a new algorithm based on a random-mutation Kennard-

Stone approach; we call this the Morais-Lima-Martin (MLM)

algorithm.

Towards comparison of the predictive response of MLM with

RS and KS, we tested classification models on six real-world spectro-

chemical datasets using PCA-LDA, where the predictive perform-

ance in terms of accuracy, sensitivity and specificity were evaluated.

In addition, simulations with normally distributed randomly data

were performed to evidence the performance of the MLM algorithm

in comparison with the RS and KS method.

2 Materials and methods

Datasets. Six real-world datasets were used towards comparing the

classification performance of RS, KS and MLM algorithms. Dataset

1 contains 280 infrared (IR) spectra of two Cryptococcus fungi

specimens acquired via attenuated total reflection Fourier-transform

infrared (ATR-FTIR) spectroscopy. This dataset is publically avail-

able at https://doi.org/10.6084/m9.figshare.7427927.v1. Class 1 is

composed of 140 spectra of Cryptococcus neoformans samples and

class 2 of 140 spectra of Cryptococcus gattii samples. Spectra were

acquired in the 400–4000 cm�1 spectral range with a resolution of

4 cm�1 and 16 co-added scans using a Bruker VERTEX 70 FTIR

spectrometer (Bruker Optics, Ltd., UK). The spectral data were pre-

processed by excising the biofingerprint region (900–1800 cm�1),

which was followed by automatic weighted least squares (AWLS)

baseline correction and normalization to the Amide I peak

(1650 cm�1). More details regarding this dataset can be found in lit-

erature (Costa et al., 2016; Morais et al., 2017).

Dataset 2 contains 240 IR spectra derived from formalin-fixed

paraffin-embedded brain tissues separated into two classes. Class 1

contains 140 spectra from normal brain tissue, and class 2 contains

100 spectra from glioblastoma brain tissue. Spectra were collected

via ATR-FTIR spectroscopy using a Bruker VECTOR 27 FTIR spec-

trometer with a Helios ATR attachment (Bruker Optics, Ltd., UK).

The raw spectra, acquired in the 400–4000 cm�1 spectral range with

a resolution of 8 cm�1 and 32 co-added scans, were pre-processed

by excising the biofingerprint region (900–1800 cm�1), which was

followed by rubberband baseline correction and normalization to

the Amide I peak (1650 cm�1). This dataset is publicly available as

part of the IRootLab toolbox (http://trevisanj.github.io/irootlab/)

(Trevisan et al., 2013), and more information about it can be found

in Gajjar et al. (2012).

Dataset 3 contains 183 IR spectra distributed into 3 classes.

Class 1 contains 59 spectra of Syrian hamster embryo (SHE) cells

treated with benzo[a]pyrene (B[a]P), class 2 contains 62 spectra of

SHE cells treated with 3-methylcholanthrene (3-MCA) and class 3

contains 62 spectra of SHE cells treated with anthracene (Ant).

Spectra were acquired in the 400–4000 cm�1 spectral range with a

2 C.L.M.Morais et al.
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resolution of 8 cm�1 by using a Bruker TENSOR 27 spectrometer

with a Helios ATR attachment (Bruker Optics, Ltd., UK). Pre-

processing was performed by excising the biofingerprint region

(900–1800 cm�1), which was followed by rubberband baseline cor-

rection and normalization to the Amide I peak (1650 cm�1). This

dataset is publicly available as part of the IRootLab toolbox (http://

trevisanj.github.io/irootlab/) (Trevisan et al., 2013), and further in-

formation can be found in Trevisan et al. (2010).

Dataset 4 contains 270 IR spectra from blood samples divided

into four classes. Class 1 is composed of 90 IR spectra of control sam-

ples, class 2 contains 88 spectra from patients with Dengue, class 3

contains 66 spectra from patients with Zika and class 4 contains 26

spectra from patients with Chikungunya. This dataset is publically

available at https://doi.org/10.6084/m9.figshare.7427933.v1. Spectra

were collected in ATR mode by using a Bruker VERTEX 70 FTIR

spectrometer (Bruker Optics, Ltd., UK). Acquisition was performed

in the 400–4000 cm�1 spectral range with a resolution of 4 cm�1 and

16 co-added scans. Pre-processing was performed by excising the bio-

fingerprint region (900–1800 cm�1), which was followed by Savitzky-

Golay smoothing (window of 7 points) (Savitzky and Golay, 1964),

AWLS baseline correction and normalization to the Amide I peak

(1650 cm�1). Further details about this dataset can be found in Santos

et al. (2018).

Dataset 5 contains 351 Raman spectra of blood plasma divided

into two classes: 162 spectra of healthy individuals (class 1), and

189 spectra of ovarian cancer patients (class 2). This dataset is pub-

licly available at https://doi.org/10.6084/m9.figshare.6744206.v1.

Raman spectra were collected using an InVia Renishaw Raman

spectrometer coupled with a charge-coupled device (CCD) detector

and Leica microscope, with 5% laser power (785 nm), 5x objective

magnification, 10 s exposure time and 2 accumulations in the spec-

tral range of 400–2000 cm�1. The spectral data were pre-processed

by Savitzky-Golay smoothing (window of 15 points), AWLS base-

line correction and vector normalization. Further details about this

dataset can be found in Paraskevaidi et al. (2018).

Dataset 6 contains 322 surface-enhanced Raman spectroscopy

(SERS) spectra of blood plasma also divided into two classes: 133

spectra of healthy individuals (class 1), and 189 spectra of ovarian

cancer patients (class 2). This dataset is publicly available at https://

doi.org/10.6084/m9.figshare.6744206.v1. SERS spectra were col-

lected using the same settings for dataset 5 but, in this case, silver

nanoparticles were mixed with the biofluid before spectral acquisi-

tion. The spectral pre-processing was performed using Savitzky-

Golay smoothing (window of 15 points), AWLS baseline correction

and vector normalization. Further details about this dataset can be

found in Paraskevaidi et al. (2018).

Simulations were also performed with simulated data. This data

were generated for each simulation (1000 simulations) based on a

normally distributed random matrix with size of 100�1000 for class

1, and 100�1000 for class 2 (100 observations, 1000 variables per

observation). The matrix values ranged randomly from -10 to 10

units. A shift of 5 units was randomly added to class 2 to create a dif-

ference between the classes. The codes to produce class 1 and class 2

in MATLAB are ‘class_1¼ randn(100, 1000).*randn(100, 1000);’

and ‘class_2 ¼ (randn(100, 1000)þ5).*randn(100, 1000);’. Class 1

and class 2 were generated for each simulation (1000 times), where

all algorithms (RS, KS and MLM) were independently applied per

each simulation.

Software. Data analysis was performed within the MATLAB

R2014b (MathWorks, Inc., USA) environment. Pre-processing was

performed using PLS Toolbox 7.9.3. (Eigenvector Research, Inc.,

USA) and classification was performed using the Classification

Toolbox for MATLAB (http://www.michem.unimib.it/) (Ballabio

and Consonni, 2013). RS, KS and MLM algorithms were performed

using laboratory-generated routines. MLM algorithm is public avail-

able at https://doi.org/10.6084/m9.figshare.7393517.v1.

Sample selection. Samples were divided into training (70%) and

test (30%) sets using, independently, the RS, KS or MLM algo-

rithms. RS is based on a random sample selection where spectra

from the original dataset are randomly assigned to training or test.

KS algorithm is based on an Euclidian distance calculation, where

the sample with maximum distance to all other samples are selected,

then the samples which are as far away as possible from the selected

samples are selected, until the selected number of samples is reached.

This means that the samples are selected in such a way that they will

uniformly cover the complete sample space, reducing the need for

extrapolation of the remaining samples. MLM algorithm, based on

a KS-based approach, applies a KS method to the data, as described

before; then, a random-mutation factor is used in the KS results,

where some samples from the training set are transferred to the test

set, and some samples from the test set are transferred to training.

Herein, the mutation factor was set at 10%. This value is inspired in

the mutation probability of genetic algorithms (Morais et al., 2019),

where 10% is a common threshold employed to keep a balance be-

tween the degree of randomness and model convergence. MLM al-

gorithm is visually illustrated in Figure 1.

Classification. Classification was performed based on a PCA-

LDA algorithm. For this, initially a principal component analysis

(PCA) model is applied to the pre-processed data, decomposing the

spectral space into a small number of PCs representing most of the

original data-explained variance (Bro and Smilde, 2014). Each PC is

composed of scores and loadings, the former representing the vari-

ance on samples direction, and the latter the variance on variables

(e.g. wavenumber) direction. Then, the PCA scores are used as input

for a linear discriminant analysis (LDA) classifier. LDA performs a

Mahalanobis distance calculation to linearly classify the input space

(PCA scores) into at least two classes (Dixon and Brereton, 2009;

Morais and Lima, 2018). The LDA classification scores (Lik) can be

calculated in a non-Bayesian form as (Dixon and Brereton, 2009;

Morais and Lima, 2018):

Lik ¼ xi�xkð ÞTC�1
pooled xi�xkð Þ (1)

where xi is a vector containing the input variables for sample i; xk is

the mean vector of class k; Cpooled is the pooled covariance matrix

between the classes; and, T represents the matrix transpose

Fig. 1. Illustration of the MLM algorithm based on a random-mutation of the

Kennard-Stone (KS) method. Adapted from Morais et al. (2018)

Random-mutation Kennard-Stone algorithm 3
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operation. Model optimization was performed using cross-

validation venetian blinds with 10 splits.

The PCA-LDA classification performance was evaluated by

means of accuracy, sensitivity and specificity calculations. Accuracy

represents the total number of samples correctly classified consider-

ing true and false negatives; sensitivity measures the proportion of

positives that are correctly identified; and, specificity measures the

proportion of negatives that are correctly identified (Morais and

Lima, 2017). These parameters are calculated as follows:

Accuracy ð%Þ ¼ ððTPþ TNÞ=ðTPþ FPþ TNþ FNÞÞ � 100 (2)

Sensitivity ð%Þ ¼ ðTP=ðTPþ FNÞÞ � 100 (3)

Specificity ð%Þ ¼ ðTN=ðTNþ FPÞÞ � 100 (4)

where TP stands for true positives; TN for true negatives; FP for

false positives; and, FN for false negatives.

3 Results

Six real-world datasets were evaluated using different data splitting

techniques: RS, KS and our new MLM algorithm. These datasets are

composed of IR and Raman spectra from biological-derived applica-

tions involving: IR spectra of fungi (dataset 1); IR spectra of cancer

brain tissue (dataset 2); IR spectra for toxicological study (dataset

3); IR spectra of viruses (dataset 4); Raman spectra of plasma for

ovarian cancer detection (dataset 5); and, SERS spectra of plasma

for ovarian cancer detection (dataset 6). Figure 2 shows the pre-

processed mean spectrum with standard deviation for each class in

datasets 1–6. The pre-processed spectra from these datasets were

used as input for the sample selection techniques, where their classi-

fication performances were evaluated via the PCA-LDA algorithm.

Dataset 1 is composed of 280 IR spectra for two fungi specimens

groups (Cryptococcus neoformans [class 1]; Cryptococcus gattii

[class 2]), each class having 170 spectra each. Both fungi classes are

pathogenic agents responsible for causing Cryptococcosis in

humans, differing in their epidemiology, host range, virulence, anti-

fungal susceptibility and geographic distribution (Morais et al.,

2017). From a clinical point of view, Cryptococcus neoformans is a

pathogen with a tendency to attack the central nervous system and

its effects are mainly noted in immunosuppressed patients, whereas

Cryptococcus gattii targets the lungs of immunocompetent, healthy

individuals (Morais et al., 2017). RS, KS and MLM were independ-

ently applied to the pre-processed spectra separating 70% of them

for training and 30% for testing. Cross-validated PCA-LDA was

applied for model construction using three PCs (99% cumulative

explained variance) selected according to the minimum cross-

validation error rate within the minimum number of PCs (Fig. 3).

The model fitting performance is shown in Table 1, where the best

training (84%) and cross-validation (83%) accuracy are observed

using RS algorithm. KS generates the worst fitting performance with

80% accuracy in both training and cross-validation. The MLM al-

gorithm shows an intermediary performance with 83% and 82% ac-

curacy in training and cross-validation, respectively.

Although the best fitting accuracy, the RS-based model exhibits

a very poor sensitivity, at 69%, in the test set (Table 2). The specifi-

city is high (88%), but the model seems to have a poor balance in

terms of sensitivity and specificity, indicating that one class is much

better classified than the other. The KS-based model with the worst

fitting gives the best specificity (98%), but the sensitivity remains

the same. On the other hand, the MLM-based model shows the best

well-balanced performance, where the specificity falls to 78%, but

the sensitivity increases to 74%, indicating that both classes are

well-classified, and the model is not skewed towards a good classifi-

cation of just one of the classes. Overall accuracy varying with the

sample selection method is depicted in Figure 4, where the accuracy

for dataset 1 using MLM (81%) is close to the KS algorithm (83%),

which achieves the best accuracy due to the great specificity of this

Fig. 2. Mean pre-processed spectrum with standard deviation (shaded) for

each class in dataset 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)

Fig. 3. PCA-LDA cross-validation error rate for datasets 1 (a), 2 (b), 3 (c), 4 (d),

5 (e) and 6 (f). CV: cross-validation; PCs: principal components

4 C.L.M.Morais et al.
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model. RS has the worst accuracy (79%), indicating that the per-

formance of this method in the test set is inferior to the other algo-

rithms that had worst fitting; thus, confirming that good fitting is

not necessarily associated with good predictions.

Dataset 2 is composed of 140 spectra of normal (class 1) and

100 spectra of gliobastoma (class 2) brain tissue samples.

Gliobastoma is the brain cancer type with the poorest survival rate

(Gajjar et al., 2012). Reference methods for detecting these types of

cancer, such as immunohistochemical detection of isocitrate de-

hydrogenase (IDH), suffers from some limitations, especially their

subjective nature (Gajjar et al., 2012). The use of IR spectroscopy

has the potential to aid tumour differentiation based on a non-

analyst dependent, fast and non-destructive methodology. In this

dataset, both tumour types are differentiated based on their IR spec-

trochemical signature. The pre-processed IR spectra for dataset 2

are show in Figure 2b. As before, RS, KS and MLM algorithms were

applied to this dataset separating the data into training and test sets.

PCA-LDA was applied as a classification method using 9 PCs

(Fig. 3b), accounting to 99% of cumulative explained variance.

The training performance of this model in dataset 2 is shown in

Table 1, where the RS algorithm presents the best fitting (training

and cross-validation accuracy of 85 and 83%, respectively). The

other algorithms (KS and MLM) have the lowest fitting performance

with accuracies around 80%. Nevertheless, as before, the situation

is reversed in the test set, where the RS algorithm has the worst sen-

sitivity and specificity values (Table 2). In the test set, the best sensi-

tivity and specificity values are obtained using MLM, with a slightly

superior performance than KS algorithm. The overall model accur-

acy also is better for MLM (Fig. 4), where the accuracy in the test

set is observed at 81% using MLM, at 79% using KS and at 72%

using RS. This confirms MLM to be the method of choice for this

dataset.

Dataset 3 consists of spectra derived from SHE cells treated with

one of three agents: B[a]P, class 1; 3-MCA, class 2; or, Anthracene,

class 3. Class 1 is composed of 59 IR spectra, and both class 2 and 3

of 62 spectra. Pre-processed spectra for this dataset are shown in

Figure 2c. PCA-LDA model was built using 10 PCs (99%

Table 1. PCA-LDA fitting accuracy for training and cross-validation

(CV) varying with the sample selection method (RS: random selec-

tion; KS: Kennard-Stone; MLM: Morais-Lima-Martin) applied in

datasets 1–6

Dataset Sample selection

method

Training

accuracy (%)

CV accuracy

(%)

1 RS 84 83

KS 80 80

MLM 83 82

2 RS 85 83

KS 81 80

MLM 82 77

3 RS 86 84

KS 83 82

MLM 84 80

4 RS 92 91

KS 90 90

MLM 93 90

5 RS 93 93

KS 89 88

MLM 91 88

6 RS 74 72

KS 75 72

MLM 76 75

Fig. 4. Accuracy in the test set obtained by PCA-LDA varying with the sample

selection method (RS: random selection; KS: Kennard-Stone; MLM: Morais-

Lima-Martin) applied in datasets 1–6

Table 2. Sensitivity and specificity for the test set obtained by PCA-

LDA varying with the sample selection method (RS: random selec-

tion; KS: Kennard-Stone; MLM: Morais-Lima-Martin) applied in

datasets 1–6

Dataset Sample selection method Sensitivity (%) Specificity (%)

1 RS 69 88

KS 69 98

MLM 74 78

2 RS 79 63

KS 79 80

MLM 81 80

3 RS

Class 1 83 87

Class 2 79 89

Class 3 89 100

KS

Class 1 94 97

Class 2 100 92

Class 3 84 100

MLM

Class 1 94 92

Class 2 95 95

Class 3 84 100

4 RS

Class 1 96 100

Class 2 100 100

Class 3 85 98

Class 4 88 95

KS

Class 1 100 100

Class 2 100 100

Class 3 90 98

Class 4 88 97

MLM

Class 1 100 100

Class 2 100 100

Class 3 95 98

Class 4 88 99

5 RS 94 88

KS 94 95

MLM 94 91

6 RS 70 70

KS 72 84

MLM 72 89
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cumulative explained variance) (Fig. 3c). The best training perform-

ance was found using RS algorithm, followed by MLM and KS,

which had similar fitting (Table 1). KS and MLM algorithms exhibit

similar performance in the test set, with sensitivities and specificities

for class 1 and 2>90%. For class 3, both algorithms show 100%

specificity and 84% sensitivity. On the other hand, the RS algorithm

presents a slightly better sensitivity for class 3 (89%), but lower sen-

sitivity and specificities for the other classes (<90%). Accuracy in

the test set was found to be superior for KS (93%), followed by

MLM (91%) and RS (84%) (Fig. 4). Similarly to dataset 1, KS has a

slightly better performance than MLM; however, the figures of

merit for MLM are more well-balanced, where extreme situations in

KS (100% sensitivity or specificity) are not found, but more coher-

ent values between these two metrics (i.e. sensitivity and specificity

values closer to each other).

Dataset 4 is composed of control and typical virus-infected blood

samples. Class 1 contains 90 IR spectra of control samples; class 2

contains 88 spectra of blood from patients with Dengue; class 3 con-

tains 66 spectra of blood from patients with the Zika virus; and,

class 4 contains 26 spectra of blood from patients with

Chikungunya. These viruses are transmitted by mosquitos of genus

Aedes, having many chemical similarities (e.g. Dengue and Zika are

from the same family, Flaviviridae), in particular in their surface

proteins (Santos et al., 2018). Fast clinical diagnosis using reference

methodologies is difficult; however, IR spectroscopy can be used as

an alternative tool for viral infection differentiation (Santos et al.,

2018). Pre-processed spectra for dataset 4 are shown in Figure 2d.

PCA-LDA model was built using 6 PCs (Fig. 3d), accounting for

97% of cumulative explained variance using RS and MLM sample

selection methods, and 96% using KS sample selection method. RS

and MLM exhibit similar fitting performance, with accuracies

>90% in the training set. KS shows a slightly lower training per-

formance with an accuracy of 90% in the training set (Table 1). In

the test set, MLM algorithm shows the best sensitivity and specifi-

city values (Table 2), followed by KS and RS. The overall accuracy

in the test set also follows this trend, where the MLM algorithm has

an accuracy of 98%, followed by KS (96%) and RS (94%) (Fig. 4).

Both datasets 5 and 6 are for diagnosis of ovarian cancer based

respectively on the Raman and SERS spectra of blood plasma. These

techniques have great potential towards liquid biopsy diagnosis of

ovarian cancer in a minimally-invasive, rapid and objective fashion

(Paraskevaidi et al., 2018). Both datasets contain 2 classes, where

dataset 5 is divided into 162 Raman spectra for class 1 (healthy con-

trols) and 189 Raman spectra for class 2 (ovarian cancer); and data-

set 6 is divided into 133 SERS spectra for class 1 (healthy controls)

and 189 SERS spectra for class 2 (ovarian cancer). These spectra are

shown in Figure 2e and f, respectively. Model construction was per-

formed with PCA-LDA using 14 PCs (Fig. 3e and f, respectively),

which accounted to 98% of cumulative variance in dataset 5 and

94% of cumulative variance in dataset 6. Training performance was

superior using RS in dataset 5 and MLM in dataset 6 (Table 1),

while for prediction of the external test set, the MLM algorithm

showed similar classification performance in comparison with KS

for dataset 5 and the best performance amongst all three algorithms

in dataset 6 (Table 2 and Fig. 4), where the test accuracy for the

MLM algorithm was equal to 92% in dataset 5 and 82% in dataset

6, in comparison with 94% (dataset 5) and 79% (dataset 6) using

the KS algorithm and 91% (dataset 5) and 70% (dataset 6) using

the RS algorithm.

Finally, 1000 simulations using a normally distributed randomly

data were performed in order to compare the performance of the

RS, KS and MLM algorithms in a more robust way. As depicted in

Figure 5, the MLM algorithm achieved the best classification per-

formance in terms of accuracy among all algorithms tested, with an

average accuracy of 67% in the range between 53 and 82%. RS al-

gorithm achieved the worst accuracy values, with an average of

66% and range 50–80%, while KS achieved an accuracy value simi-

lar to MLM (67%), but with a poorer lower-limit, where accuracies

ranged between 50 and 82%. In addition, the histogram profiles in

Figure 5 show that amongst all 1000 simulations, MLM algorithm

achieved the highest frequency peak (>150 times) above the average

accuracy of 67%, while for RS and KS algorithms the highest fre-

quency peak is below the average accuracy of 67%.

These findings confirm the hypothesis that our new MLM algo-

rithm based on a random-mutation KS algorithm approach presents a

better overall performance than using RS or KS algorithms independ-

ently, especially due to the well-balanced sensitivity and specificity

values in the prediction set for real-world samples. The fact that RS

individually achieved good fitting but a lower predictive performance

indicates that this algorithm might not include a representative vari-

ance in the training model. This reinforces the hypothesis that not ne-

cessarily an algorithm with good fitting, as demonstrated using RS,

will generate good predictive results towards external samples.
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This work was supported by Coordenaç~ao de Aperfeiçoamento de Pessoal de

Nı́vel Superior (CAPES) - Brazil (grant 88881.128982/2016-01), Biotechnology

and Biological Sciences Research Council (grant number BB/D010055/1) and

the Engineering and Physical Sciences Research Council (EPSRC; Grant Nos:

GR/S75918/01 and EP/K023349/1).

Conflict of Interest: none declared.

Fig. 5. PCA-LDA accuracy distribution and histogram for 1000 simulations

using normally distributed randomly data, where (a) RS, (b) KS and (c) MLM

algorithm
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