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Summary

In this paper a combined polar-Cartesian approach to generate a smooth trajectory of
a robotic arm along priori defined via-points is presented. Due to the characteristics/-
geometry of the robotic arm, cylindrical coordinates are associatedwith the trajectory
of motion. Possible trajectories representing the system dynamics are generated by
mix matching higher order polar piecewise polynomials used to devise the radial tra-
jectory and Cartesian piecewise polynomials used to calculate the related height in
a normal plane unfolded along the radial trajectory of the motion. To describe the
kinematic properties of the end-effector a moving non-inertial orthonormal Frenet
frame is considered. Using the Frenet frame, the components of the velocity and
acceleration along the frame unit vectors are calculated. Numerical simulations are
performed for two different configurations in order to validate the approach.
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1 INTRODUCTION

Trajectory planning of robotic manipulators is considered a fundamental factor in industry and automation with important
consequences in improving production life cycle and minimizing costs1. The capacity to plan smooth trajectories involve taking
into consideration kinematic constraints2,3, execution time4 and jerk5.
The last decade have seen important research into the assessment of novel lightweight robotic devices specifically designed

for rehabilitation6. This include a novel system7 to measure and analyse the kinetic data as a way to develop and improve
robotic rehabilitation systems. An adaptive trajectory generation approach for a bilateral upper arm rehabilitation training have
been considered in8, and a novel filtered kinematic matrix adaptive control was examined in9. A robotic platform for upper
arm neuro-rehabilitation was considered in10. In11 the movements of a human arm are considered and analysed in order to
describe the kinematic of an upper arm exoskeleton rehabilitation robot with two actuators. The kinematics and dynamics of
a Pantograph based rehabilitation robot is considered in12 as a way to create a robust control that allow stroke patients10 to
complete rehabilitation exercises of their upper arm, elbow or shoulder.
Piecewise interpolating functions with high continuity and/or geometrically continuous splines13,14,15 are adequate tools in

generating smooth motion of the robotic manipulators when the manipulator kinematics (velocity, acceleration16 and/or jerk)
or dynamics (force and/or torque) is considered17. Such approach13 should reduce resonant frequency excitation and generate
smoother trajectory profile. The interpolation of smooth curves (twice-differentiable and cubic in the parametrized co-ordinates)
invariant with respect to the fixed/moving frame represent an excellent approach to minimize angular acceleration16. A new
planning approach of an manipulator along a set of nodal points for a collection of established kinematical requirements is
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presented in18. Kinematic variables and joint-space trajectories can be easily calculated/planned through a sequence of specified
joints for smooth and continuous motion while preserving the Ck continuity19.
In this study the modelling and simulation of 3D smooth trajectories of a related robotic arm using piecewise interpolants is

addressed. Path planning of the robotic arm is devised using a given number of via-points the end-effector should reach. Due
to the geometry constraints, i.e., a trajectory does not exist outside the working envelope, the relation between the geometry of
the robotic arm and its base location is examined. Possible trajectories are generated using Hermite polar piecewise interpolants
for the projected radial trajectory on the Oxy plane combined with a linear approximation of the trajectory height. Two sets of
numerical results to highlight the correlation between the geometry and the working envelope are presented.

2 MANIPULATOR MODEL AND TRAJECTORY GENERATION

The robotic arm is represented by a z-guide (link 0) denoted by zG, a rigid sliding guide (link 1) denoted by RG and a sliding link
(link 2) denoted by SL as shown in Fig. 1.a. The z-guide (link 0) of the robotic arm represented in a fixed Cartesian reference
frame Oxyz can rotate about the Oz axis. The rigid guide (link 1) of the robotic arm can slide up and down on the z-guide (link
0) to reach a desired height while rotating (with the z-guide) about the Oz axis. Link 2 and the rigid guide are joined by the
means of a slider joint, that is, the link can slide in and out of the rigid guide20,21 as shown in Fig. 1.a. The length of the z-guide
is lz, the length of the rigid guide is lRG and the length of the sliding link is lSL.
The interpolated trajectory TPi along the via-points Pi, i = 1, n (Fig. 1).a is represented using

rPik = rPik cos �Pik i0 + rPik sin �Pik j0 + zPikk0 (1)

where TPi represents the 3 dimensional piecewise trajectory followed by the end-effector, Pik represents the interpolating points
along the pricewise curve defined by the via-points Pi and Pi+1, rPik = d

(

O1, Pik
)

is the radial distance/radius from the point
O1 (of the mobile reference frame O1x1y1z1 attached to the rigid guide (link 1)) to the point Pik , zPik is the associated height
(distance from Pik to O0x0y0), and �Pik is the azimuthal coordinate given in an anticlockwise direction. When the end-effector
describes the 3 dimensional piecewise trajectory TPi given by the via-points Pi, i = 1, n, its projection on the O0x0y0 plane is
the planar polar trajectory described by Qi

(

rPik cos �Pik , rPik sin �Pik

)

.

To interpolate between the via-points Pi, i = 0, Ni specified by the data
{

ri, �i, zi
}

i=0,Ni
(Fig. 1.a), the combination between a

piecewise polar interpolation (that approximate the projected radial interpolation shown in Fig. 1.c) and a Cartesian interpolation
(Fig. 1.b) was considered. For each interval

[

�i, �i+1
]

i=0,Ni−1
and lengths ri and ri+1 of the consecutive points Qi and Qi+1, a

polar piecewise interpolantion (Fig. 1.c) can be devised as a Hermite-type polinomial22,23,24,25

r(�) =
q
∑

k=0
cik
(

� − �i
)k (2)

where ci0 = ri, ci1 = ṙi, ci2 =
1
ℎi

[(

2ṙi + ṙi+1
)

+ 3Δri
]

, ci3 =
1
ℎ2i

[

ṙi + ṙi+1 − 2Δri
]

, ri = r
(

�i
)

, ri+1 = r
(

�i+1
)

, ℎi = �i+1 − �i,

Δyi =
ri+1−ri
ℎi

, ṙ
(

�i
)

= dr(�i)
d�

= ṙi and ṙ
(

�i+1
)

= dr(�i+1)
d�

= ṙi+1.
Trajectory height, which relates the change in height with the piecewise polar trajectory of motion (Fig. 1.b), is computed

in the unfolded normal plane ((Fig. 1.a)) tracking the radial trajectory (Fig. 1.c). The computation is performed by Cartesian
piecewise interpolation with Hermite polynomials22,23,24,25 defined by

z(x) =
q
∑

k=0
C i
k

(

x − xi
)k (3)

where q is the order of the polynomial, ℎi = xi+1 − xi, zi = z
(

xi
)

, zi+1 = z
(

zi+1
)

, Δzi =
zi+1−zi
ℎi

C i
0 = zi, C i

1 = żi,
C i
2 =

1
ℎi

[(

2żi + żi+1
)

+ 3Δzi
]

,C i
3 =

1
ℎ2i

[

żi + żi+1 − 2Δzi
]

, and where the derivatives at the endpoints Pi and Pi+1 are calculated

as ż
(

xi
)

= dz(xi)
dx

= żi and ż
(

xi+1
)

= dz(xi+1)
dx

= żi+1 respectively.
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FIGURE 1 (a) Rotating extensible robotic arm model, (b–c) Trajectory of the end-effector r (�) expressed as a combination of
polar and Cartesian Hermite-type function

The variable x in Eq.(3) is the length of the curve shown in Fig. 1.c and represents the polar trajectory of motion. The length
of the trajectory shown in Fig. 1.c through the points Qi and Qi+1 is calculated using

l
(

Qi, Qi+1
)

=

�i+1

∫
�i

√

r2 +
( dr
d�

)2
d� (4)

where r = r(�) is given by Eq.2. The distance d
(

O, Pik
)

is calculated using

d
(

O, Pik
)

=
√

r2ik + z
2
ik
dx (5)

where zik is the height of each trajectory point, rik is given by Eq.1, and the maximal and minimal distance from the robotic arm
base to the end-effector trajectory TPi , is calculated as in

24 using

dmin = inf
Pik∈TPi

d
(

O, Pik
)

, dmax = sup
Pik∈TPi

d
(

O, Pik
)

(6)

Since the geometric path TPi of the robotic arm should be reachable by the end-effector, i.e., the trajectory does not exist outside
the envelope of the robotic arm, the length/geometry of the extensible arm conveys the existence of a solution. That is, a trajectory
exists if and only if the system

⎧

⎪

⎨

⎪

⎩

rmax ≤ lLG + lSL
max

(

lLG, lSL
)

≤ rmin
lz ≤ supi=1,n−1,k=1,Ni

zi
(7)



4 AUTHOR ONE ET AL

has a solution (for more details see24,26,27,25, where

rmin = inf
ik∈[i,i+1]

d
(

O2, Pik
)

, rmax = sup
ik∈[i,i+1]

d
(

O2, Pik
)

(8)

for any i = 1, n − 1.

3 END-EFFECTOR PATH PLANNING

The path can be parameterized22,24,25 using the cylindrical coordinate r, � and z by r = r(�) cos �i0 + r(�) sin �j0 + zk0, that is

r =
⎡

⎢

⎢

⎣

r cos �
r sin �
z

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3
∑

k=0
cik
(

� − �i
)k cos �

3
∑

k=0
cik
(

� − �i
)k cos �

3
∑

k=0
C i
k

(

x − xi
)k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The unit vectors i0, j0, k0 can be expressed in a Frenet frame by i0 = cos �er − sin �e� , j0 = sin �er + cos �e� , k0 = ez. The
velocity vector v = ṙ = ṙer + r�̇e� + żez is written with

v =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̇
3
∑

k=0
cikk

(

� − �i
)k−1 cos � − �̇

3
∑

k=0
cik
(

� − �i
)k sin �

�̇
3
∑

k=0
cikk

(

� − �i
)k−1 cos � + �̇

3
∑

k=0
cik
(

� − �i
)k cos �

ẋ
3
∑

k=0
C i
kk

(

x − xi
)k−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where the derivative of r = r(�)was calculated using ṙ(�) = �̇
3
∑

k=0
cikk

(

� − �i
)k−1, and the derivative of z = z(x)was calculated

using ż(x) = ẋ
3
∑

k=0
C i
kk

(

x − xi
)k−1. It results

v =

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

(

�̇
3
∑

k=0
cikk

(

� − �i
)k−1 cos � − �̇

3
∑

k=0
cik
(

� − �i
)k sin �

)2

+

(

�̇
3
∑

k=0
cikk

(

� − �i
)k−1 cos � + �̇

3
∑

k=0
cik
(

� − �i
)k cos �

)2

+

(

ẋ
3
∑

k=0
C i
kk

(

x − xi
)k−1

)2

(11)
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The acceleration vector can be written as a = v̇ = r̈ =
(

r̈ − r�̇2
)

er +
(

2ṙ�̇ − r�̈2
)

e� + z̈ez by

a =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

r̈ − �̇2
3
∑

k=0
cik
(

� − �i
)k
)

cos � −

(

�̈
3
∑

k=0
cik
(

� − �i
)k + 2ṙ�̇

)

sin �
(

r̈ − �̇2
3
∑

k=0
cik
(

� − �i
)k
)

sin � −

(

�̈
3
∑

k=0
cik
(

� − �i
)k + 2ṙ�̇

)

cos �

ẍ
3
∑

k=1
C i
kk

(

x − xi
)k−1 + ẋ2

3
∑

k=2
C i
k(k − 1)k

(

x − xi
)k−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−�̇2
3
∑

k=0
cik
(

� − �i
)k + �̈

3
∑

k=1
cikk

(

� − �i
)k−1 + �̇2

3
∑

k=2
cik(k − 1)k

(

� − �i
)k−2

)

cos �
(

−�̇2
3
∑

k=0
cik
(

� − �i
)k + �̈

3
∑

k=1
cikk

(

� − �i
)k−1 + �̇2

3
∑

k=2
cik(k − 1)k

(

� − �i
)k−2

)

sin �

ẍ
3
∑

k=1
C i
kk

(

x − xi
)k−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−�̈
3
∑

k=0
cik
(

� − �i
)k − 2�̇2

3
∑

k=1
cikk

(

� − �i
)k−1

)

sin �
(

�̈
3
∑

k=0
cik
(

� − �i
)k + 2�̇2

3
∑

k=1
cikk

(

� − �i
)k−1

)

cos �

ẋ2
3
∑

k=2
C i
k(k − 1)k

(

x − xi
)k−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

where r̈(�) = �̈
3
∑

k=1
cikk

(

� − �i
)k−1 + �̇2

3
∑

k=2
cik(k − 1)k

(

� − �i
)k−2, and the second derivative of z was calculated using z̈ =

ẍ
3
∑

k=1
C i
kk

(

x − xi
)k−1 + ẋ2

3
∑

k=2
C i
k(k − 1)k

(

x − xi
)k−2.

4 KINEMATICS

The generalised coordinates �C1 , zC2 and rC3 (Fig. 2) relates to the centre of the mass of link 0 (z-guide zG), link 1 (the rigid
sliding guide RG), and respectively link 2 (sliding hand support SL). The frames O0x0y0z0 and O1x1y1z1 are defined by i0 =
i, j0 = j,k0 = k, and respectively by i1, j1,k1 (Fig. 3). The Euler angles28 relates i1, j1,k1 and i0, j0,k0 by

⎡

⎢

⎢

⎣

i1
j1
k1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos � − sin � 0
sin � cos � 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

i0
j0
k0

⎤

⎥

⎥

⎦

(13)

No other reference frames are needed since the mobile reference frame defined by i1, j1,k1 can be properly used to express
all the link’s position, velocity (respectively angular velocity) and acceleration (respectively angular acceleration). The angular
velocity/acceleration of link 1, 2 and 3 can be expressed by

!1 = !2 = !3 = �̇k1 = �̇k0
�1 = �2 = �3 = �̈k1 = �̈k0 (14)
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FIGURE 2 Reference frames and robotic arm model

The position of the mass center of link 1, link 2 and link 3, can be calculated wirh

rC1 =
lzG
2
k1 =

lzG
2
k0

rC2 = zC2k1 +
lRG
2

j1

=
lRG
2
sin �i0 +

lRG
2
cos �j0 + zC2k0

rC3 = zC2k1 + rC3j1
= rC3 sin �i0 + rC3 cos �j0 + zC2k0 (15)

The velocity of the mass center of link 1, link 2 and link 3 can be calculate with

vC1 =
d
dt

rC1 = ṙC1 = 0

vC2 =
d
dt

rC2 =
d
dt

(

lRG
2
sin �i0 +

lRG
2
cos �j0 + zC2k0

)

= 1
2
lRG�̇ cos �i0 −

1
2
lRG�̇ sin �j0 + żC2k0

vC3 =
d
dt

rC3 =
d
dt

(

rC3 sin �i0 + rC3 cos �j0 + zC2k0
)

= cos �
(

l̇C3 tan � + rC3 �̇
)

i0 + cos �
(

l̇C3 − rC3 �̇ tan �
)

j0 + żC2k0 (16)
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The acceleration the mass center of link 1, link 2 and link 3 can be calculate with

aC1 =
d
dt

vC1 = r̈C1 = 0

aC2 =
d
dt

vC2 =
d
dt

(1
2
lRG�̇ cos �i0 −

1
2
lRG�̇ sin �j0 + żC2k0

)

= 1
2
lRG cos �

(

�̈ − �̇2 tan �
)

i0 −
1
2
lRG cos �

(

�̈ tan � + �̇2
)

j0 + z̈C2k0

aC3 =
d
dt

vC3

= d
dt

{(

l̇C3 sin � + rC3 �̇ cos �
)

i0 +
(

l̇C3 cos � − rC3 �̇ sin �
)

j0 + żC2k0
}

= cos �
(

l̈C3 tan � + 2l̇C3 �̇ + rC3 �̈ − rC3 �̇
2 tan �

)

i0
+cos �

(

l̈C3 − 2l̇C3 �̇ tan � − rC3 �̈ tan � − rC3 �̇
2) j0 + z̈C2k0 (17)

5 RESULTS

Two numerical examples28,29 are presented to illustrate trajectory generation of a z-guide of maximal height lz = 1.2 m, rigid
guide with lG = 0.55 m and a sliding link with lSL = 0.55 m. The trajectory generation in which the end-effector moves
smoothly27 mix match polar and Cartesian piecewise polynomials. The numerical values of the via-points coordinates are
presented in Table 1.

TABLE 1 Via-points for the 1-st configuration of the robotic arm

Parameter Parameter Value
i 1 2 3 4 5 6 7 8 9=1
�i 20 50 130 150 210 270 310 350 360+20
ri 12 9 2 10 10 5 7 10 12
zi 7 12 3 14 5 9 7 10 7

Path planning for the configuration in Table 1, obtained by mix matching polar and Cartesian piecewise interpolating curves
is shown in Fig. 3. Figures 3a, 3c and 3b represents the projection of end-effector trajectory on the O0x0y0 (radial trajectory of
the end-effector), O0x0z0 and O0y0z0 plane respectively. For this simulation, although a working trajectory is obtained, it can
be seen that the robotic end effector is in the proximity but still outside the working envelope, that is, it cannot handle all the
desired via-points shown in Table 1 when following the computed path (Fig. 3a).
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FIGURE 3 End-effector trajectory generated using Hermite polar and Cartesian interpolation
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FIGURE 4 End-effector velocity curves
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FIGURE 5 3D trajectory position and velocity of the end-effector

The velocity projection on the O0x0y0, O0x0z0 and O0y0z0 planes denoted by vxy, vxz, and vyz are shown in Fig. 4a, Fig. 4b
and respectively in Fig. 4c.
To better understand the system behaviour, the trajectory (position and velocity) of the robotic arm is shown in the 3 dimen-

sional space in Fig. 5a and Fig. 5b. The smoothness of the continuous position and velocity curves shown in Fig. 5 prove the
effectiveness of the trajectory planning of the end-effector of the 3D mechanism. As a result, the forces needed to guide arm of
the robot along the prescribed path, are also continuous. A second numerical example with the associated data shown in Table 2
is then considered. For this second configuration Eq. 7 is verified, that is, the robotic arm is placed inside the working envelope
thus all the via-points in Table 2 and shown in Fig. 7 can be reached.

TABLE 2 Via-points for the 2-nd configuration of the robotic arm

Parameter Parameter Value
i 1 2 3 4 5 6 7 8 9=1
�i 45 90 135 180 225 270 315 360 360+45
ri 10 6 11 7 10 6 11 7 10
zi 6 11 7 12 8 13 9 14 6

The end-effector trajectories of the robotic arm representing the projections on the O0x0y0 (radial trajectory of the end-
effector), O0x0z0 and O0y0z0 plane are shown Fig. 6a, Fig. 6b and Fig. 6c. The end-effector trajectory position and velocity
of the robotic arm is shown in the 3 dimensional space in Fig. 7a and Fig. 7b. The smoothness of the continuous position and
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velocity proves again the performance of the method. Therefore, the forces acting on the end-effector of the robotic arm along
the generated path are also continuous.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

(a) Oxy plane

-10 -8

2

-6 -4 -2 0 2 4

4

6 8 10

6

8

10

12

14

16

(b) Oxz plane

16

14

-10

12

-8-6

10

-4-2

8

0

6

24

4

68

2

10

(c) Oyz plane

FIGURE 6 End-effector trajectory projections

6 CONCLUSION

In this study the modelling and simulation of a robotic arm and the associated 3D trajectory planning of its end-effector is
presented. The robotic arm trajectory – expressed in cylindrical coordinates – is generated using a mix matched polar and
Cartesian piecewise Hermite–type polynomials in order to approximate the radial path and associated height respectively. Due
to the system geometry which constrains the trajectory inside the working envelope, the existence of a solution in relation with
the base of the robotic arm is addressed. Two numerical simulations are performed for two different configurations to validate
the solution in relation with the working envelope.
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