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Abstract Pore networks can be extracted from 3D rock images to accurately predict multi-
phase flow properties of rocks by network flow simulation. However, the predicted flow prop-
erties may be sensitive to the extracted pore network if it is small, even though its underlying
characteristics are representative. Therefore, it is a challenge to investigate the effects on
flow properties of microscopic rock features individually and collectively based on small
samples. In this article, a new approach is introduced to generate from an initial network a
stochastic network of arbitrary size that has the same flow properties as the parent network.
Firstly, we characterise the realistic parent network in terms of distributions of the geomet-
rical pore properties and correlations between these properties, as well as the connectivity
function describing the detailed network topology. Secondly, to create a stochastic network
of arbitrary size, we generate the required number of nodes and bonds with the correlated
properties of the original network. The nodes are randomly located in the given network
domain and connected by bonds according to the strongest correlation between node and
bond properties, while honouring the connectivity function. Thirdly, using a state-of-the-art
two-phase flow network model, we demonstrate for two samples that the rock flow proper-
ties (capillary pressure, absolute and relative permeability) are preserved in the stochastic
networks, in particular, if the latter are larger than the original, or the method reveals that the
size of the original sample is not representative. We also show the information that is nec-
essary to reproduce the realistic networks correctly, in particular the connectivity function.
This approach forms the basis for the stochastic generation of networks from multiple rock
images at different resolutions by combining the relevant statistics from the corresponding
networks, which will be presented in a future publication.
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1 Introduction

In recent years, much progress has been made in the prediction of multi-phase flow properties
(capillary pressures and relative permeabilities) of porous media based around solutions of
the (Navier) Stokes equations (NS), including Lattice-Boltzmann methods, in digital rep-
resentations of the irregular pore space. Although these simulations may be considered as
the ideal way of calculating the flow properties, there are currently two main problems with
this approach. The first problem lies in obtaining digital representations, either through 3D
imaging methods or through reconstruction from 2D images, which are sufficiently detailed
and which simultaneously have a sufficiently large, representative volume. If this first prob-
lem could be overcome, then the second problem would be that current computation power
is by far not capable of carrying out the simulations for multi-phase flow in a representa-
tive volume. Multi-phase flow calculations not only involve the NS equations, but also the
equations for the evolution of the interfaces between the fluid phases. Admittedly, for some
very homogeneous porous media and narrow ranges of pore size, the above approach could
just be feasible, but for any realistic rock or soil sample that has heterogeneity at different
length-scales, this is simply not feasible yet. In particular, carbonate rocks, containing nearly
half of the world’s oil reservoirs, typically have microporosity with pore sizes of less than
one micron, as well as large vugs and fractures.

An attractive alternative, with longstanding credentials, is to represent the pore space by
a network of nodes (larger pore bodies) connected by bonds (narrower pore channels) with
effective geometrical and associated multi-phase flow properties (see, for example, the review
by Blunt et al. 2002). This can in principle overcome the second problem, as flow simulations
in these models are not very computationally intensive, and computations on representative
volumes are feasible in most cases. For relatively homogeneous materials, such as Berea
and Fontainebleau sandstones, (relative) permeabilities calculated from pore networks are in
good agreement with measurements (Valvatne and Blunt 2004; Ryazanov et al. 2009).

To overcome the first problem, one needs to integrate critical information from pore space
representations at different length scales. One way of addressing this problem would be to
build a pore network based on information from different length-scales. The aim of this article
is to extract the essential information from a network corresponding to a pore space represen-
tation at a given length-scale and use this to generate networks of arbitrary size, in preparation
for generating networks that contain information from different length-scales. An alternative
approach to overcome the multi-scale issue is to reconstruct continuous pore space repre-
sentations based on sedimentological and diagenetic information (Bakke and Øren 1997;
Biswal et al. 2009). This process-based reconstruction is able to take into account multiple
pore length scales, as, for example, encountered in carbonate rocks (Biswal et al. 2009),
although the representative calculation of multi-phase properties will probably still require
extraction of pore networks.

Many studies have attempted to capture the critically important characteristics of the pore
space with respect to a range of flow and transport properties. From a mathematical point
of view, the geometry and topology of the pore space are characterised by the Minkowski
functionals of (pore) volume, surface area, curvature and connectivity (Vogel et al. 2010).
The latter studies have established links between these Minkowski functionals and, in par-
ticular, single-phase permeability. However, the Minkowski functionals are not sufficient for
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the characterisation of the geometrical properties of a porous structure, which determine
the distribution of two fluid phases, and some of these functionals are very sensitive to the
resolution of the (digital) pore space. In this article, we consider the geometrical properties
(such as length, volume and shape factor) of the elements of extracted pore networks, which
have straight bonds with constant cross section and radially symmetric nodes, as well as
the network connectivity (topology), thus implicitly taking the Minkowski functionals into
account.

There are three commonly used methods to extract pore networks from images of porous
media: the medial axis-based algorithm (Lindquist et al. 1996), the maximal ball algorithm
(Silin et al. 2004; Al-Kharusi and Blunt 2007) and the Voronoi diagram-based algorithm
(Delerue and Perrier 2002). The first approach is the most frequently used and has been
improved significantly by Jiang et al. (2007) with an efficient method to identify pores
unambiguously. The topology (connectivity) of the pore space is strictly preserved in the
extracted network and some geometrical properties, such as inscribed radius, shape factor
and hydraulic radius, are calculated from measuring pore cross-sectional perimeter and area.
Other properties, such as node spatial position, node and bond volume, as well as node coor-
dination number, are directly measured through image analysis of the original pore space
(Jiang 2008).

Vogel and Roth (2001) proposed a method for stochastic network generation, based on a
pore-size distribution and a connectivity function measured directly from the serial sections
of undisturbed soil samples. The connectivity function, which is also used in this article, is
based on the 3D Euler number depending on pore size. Vogel and Roth confirmed through rel-
evant flow simulations that, at least for the silty top soil under consideration, the complexity
of the corresponding network structure was sufficiently determined by these two parameters.
The network model, consisting of cylindrical bonds only, was generated from a face-centred
cubic grid with maximum coordination number 12. A key step was the adaptation of the net-
work topology to match the newly defined connectivity function, which defines connectivity
both within and between different size ranges of pores and which is also used in the present
article. However, the limited choice of network parameters is likely to be insufficient for
more complex materials, such as carbonate rocks, which have a variety of pore shapes and
sizes, as well as complex correlations between different pore properties. Arns et al. (2004)
introduced a similar method for generating stochastic networks, based on a regular lattice,
although only the coordination number distribution, and not the connectivity function, was
honoured. Furthermore, they had to randomise the regular lattice through perturbation of the
node locations. They successfully applied their method to Fontainebleau sandstone samples
to demonstrate the effect of different types of topology (disordered, long bonds, coordination
number distribution etc.) on relative permeablities.

Idowu and Blunt (2008) proposed a new method for stochastic generation of the networks
of arbitrary size based on pore- and throat-size distributions and connectivity. They took into
account not only the geometric properties of individual pores and throats, but also the cor-
relation between radii of pores and connecting throats, as well as between pore volume and
pore coordination number. As indicated by Sok et al. (2002), such correlations have a strong
impact on multi-phase flow. However, the approach ignored the correlations of properties
of individual network elements and, more importantly, it only considered the coordination
number as a measure of network connectivity. Moreover, the calculated relative permeabili-
ties for the original network and for equivalent stochastic networks did not match very well.
It has become evident that global pore topology (connectivity), i.e. the correlation between
pore size and pore topology, is crucial for prediction of multi-phase flow properties and the
corresponding residual saturations (Sok et al. 2002).
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574 Z. Jiang et al.

To overcome the above limitations, we propose a new methodology for characterisation
of the extracted network and the subsequent generation of equivalent stochastic networks. In
Sect. 2 we describe the extraction of the pore network from a 3D rock image and its statistical
analysis, including the correlations between different properties of one element and between
properties of different network elements, as well as the connectivity function. In Sect. 3, we
present the generation of a random network based on the statistics, in particular, the linking
of nodes by bonds based on both coordination number distribution and connectivity function.
In Sect. 4, we validate the statistical description and stochastic network generation methods,
based on two original networks extracted from the X-ray CT images of two rock samples.
First, we assess if the properties of stochastically generated network models of the same size
as the original are faithfully reproduced. Then, we investigate how the flow properties of
generated networks of different sizes compare with the originally sized network. Finally, we
address the representativity of the original network.

2 Pore Network Characterisation

2.1 Network Extraction

From a 3D voxelated rock image (e.g. a micro-CT image), we partition the pore space as a
network of nodes connected by bonds. These extracted or original networks will be used to
generate stochastic networks that have equivalent microscopic structures and similar mac-
roscopic flow properties. Although our network extraction approach accurately reproduces
most geometrical and topological (GT) characteristics of the underlying pore space, a number
of assumptions are made, which affect the (choice of) properties of the extracted networks.
Therefore, we start with a summary of the extraction method indicating the properties that
are assigned to the network and the assumptions that are made in this process. The extraction
method proceeds as follows (Jiang et al. 2007; Jiang 2008):

• Remove isolated pores and floating grain particles from the image.
• Obtain a topology-preserving skeleton or medial axis using a Euclidean distance-based

thinning algorithm.
• Consider skeleton junctions as node centres and identify all the skeleton voxels connected

to a node centre as belonging to a node backbone.
• Remove all node backbones from the medial axis and identify connected components

consisting of the remaining skeleton voxels as bond backbones. This approach is topol-
ogy-preserving and prevents the so-called snow-balling (Sheppard et al. 2005; Silin et al.
2004; Al-Kharusi and Blunt 2007; Lindquist et al. 2000 etc.).

• Assume radially symmetric nodes and straight bonds with a constant cross section. This
requires the choice of properties for nodes and bonds as indicated in Fig. 1.

• Measure the geometrical properties of the nodes and bonds through digital image analysis.
• Further idealise the network model by removing redundant bonds between two nodes and

creating virtual nodes for dead-end pores.

As indicated above, the network elements (nodes and bonds) are described by a set of
geometric properties, whereas the network connectivity is characterised by the coordination
number and the connectivity function, which is described in Sect. 2.2.3. In our network model
(Ryazanov et al. 2009), we consider (inscribed) radius (R), volume (V) and shape factor (S)
for each node (N) and each bond (B), coordination number (C) for each node and length (L)
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Fig. 1 Properties and dependence structure of network elements: primary properties (radius for nodes, volume
for bonds) and the dependence structure of nodes (a) and bonds (b) for a Berea sandstone network

for each bond (see Fig. 1). In addition, idealised shapes, such as circles, triangles and regular
stars, with shape factors approximating the extracted values, are used (Ryazanov et al. 2009).

2.2 Statistical Pore Network Characterisation

To characterise the pore network statistically, we need to describe its geometry and topology
in terms of probability distributions for individual properties (volume, radius, shape factor
etc.) of network elements and correlations between them. Based on the statistics, we first
identify the most important, primary properties and quantify those using empirical proba-
bility distributions. Then, we determine correlations between primary and other properties
based on the correlation strength and quantify the strong correlations with regression models
and the weaker ones with conditional probability distributions. In addition, we quantify the
pore space connectivity.

2.2.1 Correlation-based Definitions

There are two types of correlations in a pore network. One is between different properties
of a single network element and the other is between a property of a node and a property
of a bond, connected to that node. The former is referred to as an internal correlation and
the latter as an external correlation. External correlations are based on a given property of a
bond and the average of the values for a given property of the two adjoining nodes. In Fig. 2,
examples are given of an internal correlation between node volume (NV) and node radius
(NR), and an external correlation between NR and bond radius (BR) for the Berea sandstone
network that will be used for validation in Sect. 4.

Note that we base the statistics on the interior nodes and bonds only. Since all the node
centres are located strictly in the interior of the network domain, all the nodes are assumed
to be interior. However, boundary bonds connecting nodes with the inlet or outlet faces are
taken separately, and the connections with the corresponding nodes are not considered in the
coordination numbers for the latter. We expect this to be a minor assumption for a sufficiently
large network.

Correlation Coefficient: The correlation strength between two random variables S and T
is measured through the correlation coefficient ρ(S, T ) (Pearson 1920; Jensen et al. 2000),
which is the degree to which there is a linear relationship between the two variables. For sev-
eral commonly used nonlinear relationships, transformations into linear models can be found,
which will be given later on in this article. Having an observed sequence {(s1, t1), . . ., (sn, tn)}
of S and T, ρ is estimated as (Jensen et al. 2000)
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Fig. 2 The strong internal correlation a between node volume and node radius, the strong external correlation
b between node radius and bond radius and c the connectivity function for the network extracted from a Berea
sandstone sample. In subfigures a and b the same correlations are shown for stochastically generated networks
of the same size as the original

r(S,T ) = n
∑n

i=1 si ti − ∑n
i=1 si

∑n
i=1 ti

√

n
∑n

i=1 s2
i − (∑n

i=1 si
)2

√

n
∑n

i=1 t2
i − (∑n

i=1 ti
)2

. (1)

For each type of network element (i.e. node or bond), we use the correlation coefficient
to define one of the properties as being primary and to determine the dependence of the
remaining properties on the primary property.

Primary property and dependence structure: Let X1, . . ., Xn be n properties of the node
(bond) X , and Y1, . . ., Ym be m properties of the bond (node) Y ,

• Determine the strongest internal correlation, i.e. maxi �= j | ρ(Xi , X j ) |. If the sum of the
remaining correlations for Xi is greater than that for X j , �k �=i | ρ(Xi , Xk) |≥ �l �= j |
ρ(X j , Xl) |, then Xi is the primary property, X j depends on Xi and both Xi and X j are
now part of the dependence structure for X .

• Determine the strongest internal correlation between the properties Xi in the dependence
structure and the remaining properties X j , i.e. maxi �= j | ρ(Xi , X j ) |, and add the resulting
property to the dependence structure, until no more properties remain.

• Repeat the previous step until all properties of X are added to the dependence structure.
• Record the strength of all correlations in the dependence structure.
• Determine the strongest external correlation, i.e. maxi, j | ρ(Xi , Y j ) |. This will be used

to connect nodes and bonds in the resulting stochastic network.

As an example, Table 1 lists all internal and external correlations for the Berea sandstone
network. The dependence structure for the nodes and bonds in the Berea sample is as shown
in Fig. 1. Note the following: In general, the internal correlations for nodes are stronger than
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Table 1 Correlation coefficients between different properties for a Berea sandstone (a) and a Castlegate
sandstone (b) including both internal (highlighted) and external correlations

NR NV NS NC BR BV BS BL

(a)
NR 1.00 0.75 −0.55 0.58 0.70 0.56 −0.51 0.32

NV 0.75 1.00 −0.40 0.64 0.50 0.48 −0.34 0.23

NS −0.55 −0.4 1.00 −0.36 −0.43 −0.28 0.42 −0.16

NC 0.58 0.64 −0.36 1.00 0.30 0.29 −0.23 0.18

BR 0.70 0.50 −0.43 0.30 1.00 0.33 −0.45 −0.10

BV 0.56 0.48 −0.28 0.29 0.33 1.00 −0.37 0.72

BS −0.51 −0.34 0.42 −0.23 −0.45 −0.37 1.00 −0.23

BL 0.32 0.23 −0.16 0.18 −0.10 0.72 −0.23 1.00

(b)
NR 1.00 0.76 −0.44 0.67 0.59 0.42 −0.36 0.20

NV 0.76 1.00 −0.34 0.75 0.40 0.34 −0.24 0.14

NS −0.44 −0.34 1.00 −0.31 −0.33 −0.19 0.30 −0.07

NC 0.67 0.75 −0.31 1.00 0.28 0.28 −0.18 0.18

BR 0.59 0.40 −0.33 0.28 1.00 0.20 −0.29 −0.23

BV 0.42 0.34 −0.19 0.28 0.20 1.00 −0.32 0.74

BS −0.36 −0.24 0.30 −0.18 −0.29 −0.32 1.00 −0.18

BL 0.20 0.14 −0.07 0.18 −0.23 0.74 −0.18 1.00

for bonds. In addition, there is a strong correlation between bond radius (BR) and node radius
(NR). Unsurprisingly, the largest coefficient is reached for the correlation between NR and
node volume (NV), hence NR is selected as the primary node property. NR has on average
the strongest correlations with the other node properties, although the coordination number
(NC) is most strongly correlated to NV. The dependence structure of the nodes starts with
the primary property NR. Both node shape factor (NS) and NV depend directly on NR, while
NC is indirectly determined by NR via NV. For bonds, BV has the strongest internal correla-
tions, and hence, it is selected as the primary bond property. In the dependence structure of
the bonds, BV strongly determines BL and moderately determines BS, which subsequently
determines BR. Table 1 indicates that the strongest external correlation occurs between NR
and BR.

The correlation strengths, i.e. the absolute values of the correlation coefficients in
the dependence structure, determine how the relations between the various properties are
described.

Correlation Categories: Given two constants α and β(0 < α < β < 1), all correlations
can be divided into three categories, based on the correlation strength | ρ(S, T ) | between
two properties S and T as follows (Rodgers and Nicewander 1988):

(1) for | ρ(S, T ) |< α, the correlation is weak and the corresponding relationship can be
ignored;

(2) for α ≤| ρ(S, T ) |< β, the correlation is moderate, and the relationship will be
described by a conditional probability distribution, as explained in the next section;

(3) for | ρ(S, T ) |≥ β, the correlation is strong, and there may exist a linear (or transformed
nonlinear) relationship given by a regression model.
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Fig. 3 Conditional correlation coefficients ρm for two correlations in the Berea sandstone network, which
approach the original values ρ as the number of classes increases

Following Jensen et al. (2000), we set β = 0.7 in our implementation, but α is defined
indirectly through the following definition.

Conditional Correlation Coefficients: Consider the set of observed pairs M =
{(s1, t1), . . ., (sn, tn)}, with s1 ≤ · · · ≤ sn , of two variables S and T with correlation coef-
ficient ρ(S, T ), estimated using Eq. 1. Divide the observed values of S in M into m ≤ n
classes, say of equal intervals of s values with length (sn − s1/m), and let Msibe the set
of s values and Mti the corresponding set of t values for a given class i = 1, . . ., m. Now,
randomly re-assign the t values in Mti to the s values in Msi to create the randomised class
M ′

i . Combine all randomised classes M ′
i into the set of observations M ′ and calculate the

conditional correlation coefficient ρm .
Note that, for m = 1,, the entire observation set is randomised; hence, ρ1 ≈ 0. On the

other hand, the sequence of conditional correlation coefficients ρ1, ρ2. . . converge to the
original correlation coefficient ρ(S, T ), since, for m = n, the set is not randomised. For
the Berea sandstone, the curves of correlation coefficients, ρm versus the number of classes
m, are presented in Fig. 3 for two pairs of properties. Note that the properties BR and BS
are weakly correlated in that ρm is close to ρ for only a few classes, and we may consider
these properties as uncorrelated. The latter provides a criterion for the determination of the
constant α that delineates the weak correlation category. On the other hand, the relatively
strongly correlated NV and NC need many classes for ρm to be close to ρ. Based on this
curve, in the next section, a criterion will be set for the number of classes of the conditional
probability distribution describing the relation between two properties.

2.2.2 Statistical Descriptions

Both primary properties and other independent properties (which are weakly correlated to
all remaining properties) are described by their cumulative distribution function (CDF) or,
equivalently, their probability distribution function (PDF). A strong relationship between a
property S and its dependant T may be described by a regression equation or trend curve
T = f(S), if available, using the least-squares method (Jensen et al. 2000). Note that a number
of nonlinear regression equations can be converted into linear ones, as indicated in Table 2
for five commonly occurring nonlinear models. In the transformed linear regression model
T ′ = f ′ (S′) + ε′, the random error ε′ is assumed to be normally distributed, ε′ ∼ N (0, σ ′),
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Table 2 Linear and nonlinear models and their transformations commonly used in regression

Nonlinear model Transformation Linear model

y = b0 + b1x1 + · · · + bpx p x ′
i = xi , i = 1, . . . , p y = b0 + b1x ′

1 + · · · + bp x ′
p

1
y = a + b 1

x y′ = 1
y , x ′ = 1

x y′ = a + bx ′

y = axb y′ = logy, x ′ = logx, a′ = loga y′ = a′ + bx ′

y = aebx y′ = logy, a′ = loga y′ = a′ + bx

y = a + blogx x ′ = logx y = a + bx ′
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Fig. 4 A conditional probability distribution (CPD) consisting of three PDFs for the coordination number
(NC), for small, medium and large node volumes (NV) respectively

where for the pairs of transformed observed values {(s′
1, t ′1), . . . , (s′

n, t ′n)}of S′andT ′, the
standard deviation σ ′ is estimated as

σ ′ ≈
√∑n

i=1(t
′
i − f ′(s′i ))2

n
(2)

In Fig. 2a, the strong correlation between NR and NV for the Berea sample is given by a
power law with exponent 3.15. The deviation for the untransformed data of NV ranges from
0.000012 mm3 to 0.00057 mm3 for the smallest and the largest radii, respectively.

Dependencies between variables S and T with moderate correlations or strong correlations
for which no suitable regression models are available are described by conditional probabil-
ity distributions (CPD), similar to the probability field simulation (Coburn et al. 2007). The
CPD is related to the conditional correlation coefficients of Sect. 2.2.1, where the set Ms of
observed values of S is divided into m number of (equally sized) classes of s values Msi,
with the corresponding set of t values Mti. Then, for each class, i = 1, . . ., m, the probability
distribution of the t values in Mti is determined. Consequently, a CPD consists of a set of
probability distributions (CDFs or PDFs) that are conditional to classes of S. From Fig. 4,
note that the CPD is able to reveal the dependence of NC upon NV as the distribution curves
tend to shift from to the right, indicating that larger nodes have more connections.
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To determine how many classes m of S for T should be used, we consider the curve of the
conditional correlation correlations, for which examples are shown in Fig. 3. Then, choose a

sufficiently small ‘tolerance’ τ > 0 and choose m such that
∣
∣
∣
ρm−ρ

ρ

∣
∣
∣ ≤ τ <

∣
∣
∣
ρm−1−ρ

ρ

∣
∣
∣.

For example, Table 1a and Fig. 3 show a correlation strength | ρ(N V, NC) |= 0.64 for
node volume and node coordination number. Using τ = 0.01, we find that m = 47 for the
corresponding CPD. The chosen value for τ represents a practical balance between accuracy
and computational efficiency.

2.2.3 Pore Connectivity

The connectivity of the pore space plays an important role in rock hydraulic properties and
their hysteretic behaviour (Vogel and Roth 2001; Jiang et al. 2010). The local connectivity
is given by the node coordination number NC, which is defined as the number of bonds
connected to a given node. Nevertheless, the NC distribution and its statistical properties (i.e.
mean and standard deviation) do not provide sufficient global topological information about
the pore structure. On the other hand, the specific Euler number χv , for a given rock volume
V , is widely considered as a suitable measure of average connectivity or topology for a rock
as a whole (Vogel and Roth 2001) and is defined as

χv = N − C + H

V
. (3)

The Euler number χ is the number of isolated objects (components) N minus the number of
redundant connections (tunnels) C plus the number of completely enclosed cavities (isolated
solid particles floating in the pore space) H . Jiang (2008) introduced an efficient method to
compute the Euler number for a binary image, which is based on the concept of the topological
number presented by Bertrand (1994).

However, the Euler number is unable to reveal the detailed pore space connectivity. To
solve this problem, Vogel and Roth (2001) introduced the connectivity function (see Fig. 2c),
which is defined as the specific Euler number calculated for the reduced pore space of pore
size (radius) equal to or larger than a given value. This quantity provides information of
pore connectivity both within and between different classes of pores. By removing levels of
the smaller sized pores step by step, the connectivity gradually decreases (and the specific
Euler number increases), until a globally unconnected state is reached (and the specific Euler
number is positive).

Note that in a network, there are no isolated solids (i.e. floating particles in pore space),
and hence, H = 0 in Eq. 3, and it can be shown easily that the connectivity function for a
network is simply computed as

χV (r) = NN (r) − NB (r)

V
, (4)

where NN (r) is the number of nodes and NB(r) the number of bonds with radii larger than or
equal to r (Vogel and Roth 2001), where each bond for NB(r) is only used to connect nodes
that are counted for NN (r).
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3 Stochastic Network Generation

In this Section, we describe how a network is generated based on the statistical description
and the dependence structure of the geometrical properties and coordination number, while
honouring the connectivity function.

3.1 Generate Random Property Values

First, we discuss how to assign values for the various node and bond properties based on the
statistical descriptions.

Random values from a probability distribution: As discussed in Sect. 2.2.2, values are
generated directly from the cumulative distribution function (CDF) for both primary prop-
erties and for properties that have weak dependencies. For a continuous (strictly monotonic)
CDF FT (t) of a variable T , a random value t of T is easily generated as follows:

• generate a random number u from the Uniform distribution U (0,1) (Jensen et al. 2000),
and

• calculate t = F−1
T (u).

For discrete (not invertable) CDFs, we take for F−1
T the quasi-inverse of the CDF, defined as

(Strelen and Nassaj 2007)

F−1
T (μ) =

{
inf {z|F (z) ≥ μ} , μ > 0
sup {z|F (z) = 0} , μ = 0

. (5)

Random values from a regression equation: If T strongly depends on S and a linear (or
transformed nonlinear) regression model T ′ = f ′(S′) is available (see Sect. 2.2.2), for a
given value s′ of S′, a random number ε′′ is generated from N (0, σ ′), and t ′ = f ′ (s′) + ε′′
becomes the corresponding value of T ′.

Random values from a conditional probability distribution: If T moderately depends on
S (or no regression model is available), then the conditional probability distribution (CPD)
with m classes of S for T is used, as described in Sect. 2.2.2. For a given value, s, of S, the
corresponding conditional CDF of T from the CPD is determined, and a random value t of
T is generated from that CDF using its quasi-inverse (Eq. 5).

3.2 Network Generation Algorithm

Based on the statistical information of an original network, we generate an equivalent network
of arbitrary size, as summarized in the following steps:

1. Choose the domain 
 for the stochastic network with dimensions (L , W, H ) (Fig. 5a).
2. Create the appropriate number of nodes, based on the scaling of the domain, and generate

random values for each node as its radius, volume, shape factor and coordination number
according to the statistics.

3. Randomly position the node centres in the domain 
, while avoiding overlap of the
actual nodes (Fig. 5a).

4. Create the appropriate numbers of internal and boundary bonds and generate random
values for their radii, volumes, lengths and shape factors.

5. Position the boundary bonds between the inlet or outlet faces and nodes, based on bond
lengths (relative to the distances between the respective boundary and the node centres),
(Fig. 5b).
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Fig. 5 Schematic steps for stochastic network generation: a randomly locate nodes in a desired domain of
dimensions (L , W, H), b insert boundary bonds to build up external connections to the inlet and outlet, c create
internal connections by positioning bonds according to the strongest external correlation and the connectivity
function

6. Position the bonds between pairs of nodes with implementation of the strongest external
correlation (Fig. 5c), while observing the connectivity function and the bond lengths
(relative to the distances between nodes).

Based on an original network of dimensions (l, w, h), we set the dimensions (L , W, H) of
the stochastic network using a scaling factor ξ > 0, such that L = ξ l, W = ξw and H = ξh.
Given the number of nodes Nn in the original network, with volume V = lwh, the number
of nodes N ′

n in the stochastic network is simply scaled with its volume V ′ = ξ3V , i.e.

N′
n = ξ3Nn . (6)

Because we did not obtain statistics on the spatial distribution of the nodes, the locations
of the node centres are randomly chosen in the 3D domain 
. However, before a new node
k with radius rk is put in place, we make sure that it does not overlap with already existing
nodes j ( j = 1, . . . , k − 1) by checking that

rk + r j > dkj . (7)

where d jk is the Euclidean distance between nodes, j and k. If inequality (7) is not satisfied,
then a new location for node k is randomly chosen. For computational efficiency, the detec-
tion of overlap is only carried out for node centres in a sub-domain of 
 containing the new
node and in adjacent sub-domains. Obviously, the diameter of each sub-domain must at least
be equal to the sum of radii for all pairs of nodes, maxk, j (rk + r j ). A similar, more general,
overlap detection algorithm was proposed by Biswal et al. (2009).

Assuming that the specific Euler number χv (Eq. 4) is the same for the original and
stochastic networks, similar to Eq. 6 the number of (interior) bonds Nb scales trivially as

N ′
b = N ′

n − χV ξ3V = ξ3 Nb, (8)

The number of boundary bonds Nbb, which connect nodes with the inlet or outlet faces,
scale as N ′

bb = ξ2 Nbb, as they appear only in these 2D planes.
To position the bonds, we proceed as follows. Let O be the set of nodes with the stochasti-

cally generated properties and � the set of generated (interior) bonds. We equally divide the
range of radii of all network elements, rmin to rmax into a sufficiently large number of m − 1
intervals separated by rmin = r1 < · · · < rm = rmax, and obtain the corresponding specific
Euler numbers (values of the connectivity functions), χv(r1) . . . χv(rm), from the original
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network. Furthermore, let Pn and Pb be, respectively, the node and bond properties with the
strongest external correlation (e.g. Pn is NR and Pb is BR in Fig. 2b for the Berea network).

Starting from the largest elements, select for each k = m − 1, …,1, the set of Nn(rk)

nodes Ok from O with node radius NR ≥ rk and the set of Nb(rk) bonds �k from � with
bond radius BR ≥ rk . Determine the number Nbk = Nn(rk) − χv(rk)V ′, according to Eq. 4,
where V ′ is the volume of the domain 
. If Nb(rk) > Nbk randomly deselect Nb(rk) − Nbk

bonds from �i . These bonds will again be considered for subsequent rk .
For an unpositioned bond B in �k with value pb of Pb and length lB , we calculate the

value pn of Pn based on the correlation between Pn and Pb. From Ok , we select the subset
of nodes O ′

k with unused connections, i.e. for which the number of already connected bonds
is less than its coordination number NC. Then, choose the node N1 in O ′

k for which its Pn

value pn1 is closest to pn . To choose a second node from O ′
k , an additional condition needs

to be considered. Let d1 j be the Euclidian distance between the centres of N1 of radius rn1

and another node N j of radius rnj in O ′
k . Then, determine the subset of candidate nodes O ′′

k
of O ′

k , for which
∣
∣d1 j − rN1 − rN j − lB

∣
∣ < ωd1 j , i.e. the distances to N1 is close to lB .

ωε (0, 1) is a predefined sufficiently small positive constant (we use ω = 0.1). If O ′′
k is empty,

select another N1in O ′
k and determine again the subset O ′′

k . Otherwise, select the second node
N2 from O ′′

k for which the Pn value pn2 satisfies | p j − pn |≥| pn2 − pn | for all other nodes
N j in O ′′

k . Finally, N1 and N2are connected by the given bond B.
Similar to the above procedure, a boundary bond with length lB is positioned perpendicu-

lar to the inlet or outlet face and connected to a node Ni for which the distance dBi between
its centre and the respective face is the closest to lB .

4 Validation of Stochastic Network Generation

In this Section, we validate the statistical description and stochastic generation methods,
based on two original networks extracted from the X-ray CT images of a Berea sandstone
and a Castlegate sandstone sample. We use a state-of-the-art two-phase flow network model
(Ryazanov et al. 2009), which is similar to the network model described by Valvatne and Blunt
(2004), to calculate network permeabilities, capillary pressures and relative permeabilities.
Since we do not compare the simulation results with data, but only compare different sim-
ulations using the same network model, we omit further description of the network model.
First, we assess if the structural and flow properties of stochastically generated network
models of the same size as the original (ξ = 1.0) are faithfully reproduced, and we show
that ignoring certain correlations between the structural properties leads to incorrect flow
predictions. Then, we investigate how the flow properties of generated networks of different
sizes compare with those of the originally sized network. Finally, we consider the effect of
the absolute size of the original network on the properties of the generated networks. In other
words, we address the representativity of the original network.

4.1 Rock Samples and Original Pore Networks

Berea sandstone is relatively homogeneous, and is made up of well-sorted and well-rounded
predominately quartz grains. Berea sandstone has been widely examined in the petroleum
industry for many years in laboratory core flooding experiments. The Castlegate is a fine-to-
medium-grained high-porosity sandstone made up of primarily quartz and rock fragments
with small clay fractions.
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Table 3 The two original sandstone X-ray CT images with their characteristics (left), the extracted pore
networks with some characteristics (including average node coordination number NC) and calculated perme-
abilities (middle) and extracted networks of the same size (right)

Table 3 shows the X-ray CT images of both sandstone samples and lists their major struc-
tural properties including porosities, pore radii, pore channel lengths and the specific Euler
numbers(χV ). Although the two samples have similar porosities, they differ significantly,
as the Berea has smaller pore sizes and shorter pore channels, but it seems better connected
than the Castlegate (lower χV ).

Furthermore, Table 3 shows the original networks extracted from the two images and also
lists their major (average) properties. Contrary to the specific Euler numbers, the average
coordination numbers of the two samples are very similar. Distributions of several properties
(NR, NC, BS and BL) of both networks are presented in Figs. 6 and 7, as well as the respective
connectivity functions. Observe from Table 1b that the correlation structure for the Castle-
gate network is the same as for the Berea network, although the external correlation between
NR and BR is now moderate. For the Berea network, the strong internal correlation between
NR and NV and the strong external correlation between NR and BR, with their respective
regression models are shown in Fig. 2a and b. The conditional distribution between NV and
NC was demonstrated in Fig. 4.

The drainage relative permeability and capillary pressure curves, assuming zero oil–water
contact angles, for both networks are presented in Figs. 8 and 9. Note that the two networks
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Fig. 6 Probability distributions of node radius (a), node coordination number (b), bond shape factor (c) and
bond length (d), as well as the connectivity function (e) for the original (solid) and stochastic (dashed) Berea
networks of the same size (i.e. ξ = 1). Five stochastic realisations (grey curves) and their averages are shown
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Fig. 7 Probability distributions of node radius (a), coordination number (b), bond shape factor (c) and bond
length (d), as well as the connectivity function (e) for the original (solid) and stochastic (dashed) Castlegate
networks of the same size (i.e. ξ = 1). Five stochastic realisations (grey curves or bars) and their averages are
shown

have almost identical absolute permeabilities (see the second column of Table 3) and capillary
pressure curves, yet their relative permeability curves differ significantly, as can easily be
seen by comparing the crossovers of the water (Krw) and oil (Kro) curves. This corresponds
to the (slight) difference in the shapes of the respective connectivity functions (Figs. 6e, 7e).
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Fig. 8 Drainage relative permeability curves a and capillary pressure curves b of original Berea network
(solid) and 10 stochastic networks (grey solid) with their average (dashed) for scaling factor ξ = 1
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Fig. 9 Drainage relative permeability curves (a) and capillary pressure curves (b) of original Castlegate
network (solid) and eight stochastic networks (grey solid) with their average (dashed) for scaling factor ξ = 1

4.2 Comparison of Original and Stochastic Networks

We have generated stochastic networks of the same size (ξ = 1.0) from both the Berea and
the Castlegate networks, and in the third column of Table 3, one realisation of each is shown.
First, based on five realisations, we find that distributions of all geometrical and topolog-
ical properties, of which a selection is shown in Fig. 6, show very good agreement with
the distributions of the original network. Note, in particular, the close agreement of the NC
(i.e. coordination number) distribution for the Berea network (Fig. 6b), which was gener-
ated from the NV distribution using a CPD (Fig. 4), which was in turn generated from the
NR distribution using a regression equation (see Fig. 1). For the Berea network, we also
demonstrate that the strong internal correlation between NR and NV, and the strong external
correlation between NR and BR have been faithfully reproduced, as shown in Fig. 2a and b.
These close agreements confirm that the statistics of the original network are representative;
in other words, the sizes of the original networks were sufficient for stochastic generation.
Moreover, the connectivity functions (Figs. 6e, 7e) have been accurately reproduced by the
procedure described in Sect. 3.2, thus honouring the detailed topology of the network. The
close agreement of the generated bond length distributions with the originals (Figs. 6d, 7d)
demonstrates that the procedure for connecting nodes by bonds with lengths that closely
match the distances between the nodes works satisfactorily.
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Fig. 10 Drainage relative permeability curves (a) and capillary pressure curves (b) of original Berea network
(solid) and five modified stochastic networks (grey solid) with their averages (dashed), in which the internal
correlation between NR and NV is ignored by randomly exchanging the volumes between pairs of nodes,
while retaining all other properties.

Second, the absolute permeabilities of the original networks are well predicted by the
stochastic networks (see Table 3). More importantly, in Figs. 7 and 8, we compare the rel-
ative permeability and capillary pressure curves for 10 stochastic realisations, with those
for the original networks. We find that the averages of all curves compare very well with
the originals, but the realisations for the relative permeability curves show some variability,
in particular, the Kro curves. These matches are better than those for a Berea sandstone,
obtained using a similar stochastic network generation technique, but without incorporation
of the connectivity function (Idowu and Blunt 2008). The matches are also better than those
for a soil sample, obtained using a generation technique based only on pore-size distribution
and connectivity function on a regular lattice (Vogel and Roth 2001), although in this case,
the comparison was made between stochastic networks and experiments on the underlying
sample.

We have tested the sensitivity of the flow functions to some key correlations and to the
connectivity function. In Fig. 10, we show the relative permeability and capillary pressure
curves, for stochastic networks in which NV is uncorrelated and especially the strong corre-
lation between NR and NV is ignored, but all other statistics are honoured. This was achieved
by generating networks as before, while subsequently exchanging the volume values between
pairs of nodes at random. Interestingly, the absolute permeability values are unaffected; how-
ever, Fig. 10 shows a systematic impact on the Pc and, in particular, the Kr curves. Similarly,
if the external correlation between NR and BR is ignored (see Fig. 11), then by randomly
exchanging pairs of bonds, the flow functions deviate systematically. Moreover, in this case
also, the absolute permeabilities are different, i.e. on average, 1032 mD as compared to 1423
mD for one of the unaltered generated networks. Finally, if we ignore the effect of the con-
nectivity function by simply choosing only one interval of pore radii values (i.e. m = 2) when
incorporating the connectivity function (see Sect. 3.2), then the Pc and the Kro curves are
strongly affected, but the Krw curve is only weakly affected, as shown in Fig. 12. Also the
absolute permeability (averaged over five realisations) changed drastically to 798 mD.

Note that the large effect of ignoring the connectivity function, i.e. reduction of the abso-
lute permeability, increase of Pc and decrease of Kro (see Fig. 12), points to a decrease in the
effective pore radius (bond radius for drainage), i.e. the radius at which the porous medium
percolates during drainage (e.g. O’Carroll and Sorbie 1993). This conjecture was confirmed
by calculating the connectivity functions for the stochastic networks that do not honour the
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Fig. 11 Drainage relative permeability curves (a) and capillary pressure curves (b) of original Berea network
(solid) and five modified stochastic networks (grey solid) with their averages (dashed), in which the external
correlation between NR and BR is ignored by randomly exchanging pairs of bonds, while retaining all other
properties.
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Fig. 12 Drainage relative permeability curves (a) and capillary pressure curves (b) of original Berea net-
work (solid) and five modified stochastic networks (grey solid) with their averages (dashed), in which the
connectivity function is not honoured, but only the coordination number distribution is matched. c shows the
absolute permeability calculated from the original network and the five networks mentioned above. d shows
the comparison between the resulting connectivity functions and the original connectivity function.

original connectivity function (see Fig. 12d). The zeros of these modified connectivity func-
tions, which correspond closely to the percolation radii (Vogel and Roth 2001), were smaller
than those in the networks with the proper connectivity functions.
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Fig. 13 Drainage relative permeability curves (a) and capillary pressure curves (b) of original Berea network
(solid) and 10 stochastic networks (grey solid) with their average (dashed) for scaling factor ξ = 1.2.

4.3 Consistency Tests

In the previous section, we have already demonstrated that for both the Berea and the Cast-
legate networks, our method succeeded in generating networks of the same size (ξ = 1.0)
with structural and (multi-phase) flow properties that very well matched the properties of
the originals. This indicates that the original networks are of representative volume, in the
sense that the number of data points or, more specifically, the number of pore elements, is
sufficient to capture the statistics of the network, for the reproduction of the flow properties.
Moreover, our method has been successful in capturing the statistics of heterogeneities or
spatial correlations at length-scales that are contained within the volumes of the original
networks. The fact that, in particular, ignoring the external correlation between NR and BR
or ignoring the connectivity function has led to significant deviations between generated and
original flow properties (see Figs. 11, 12), indicate that these heterogeneities indeed exist.

To use our networks for the analysis of multi-scale networks or to validate our network
generation method, we need to consider stochastic networks of arbitrary network size while
all the structural features and physical properties of the corresponding original network are
retained. For the two sandstone samples, a set of networks are generated of scaling factors
ranging from ξ = 0.4 to 2.0, three networks for each size, using the statistics of the two original
networks shown in Table 3, which have scaling factor ξ = 1.0. Table 4 shows that the smallest
networks (ξ = 0.4) have only several hundred nodes and bonds, while the largest networks
(ξ = 2.0) have around a hundred thousand nodes and bonds. The resulting average node
coordination number (NC) and the predicted permeabilities are also presented in Table 4.
We find that for scaling factors ξ significantly smaller than 1.0, the property values tend to
deviate from the originals, as the number of pore element is no longer sufficient to realise the
full statistics of the original networks. In addition, boundary effects will have increased for
the permeability calculations. On the other hand, for scaling factors ξ greater than 1.0, the
property values remain close to the originals as expected, since generated networks of ξ = 1.0
already had representative volume. In addition, we present in Fig. 13, the multi-phase flow
properties for a generated Berea pore network with scaling factor ξ = 1.2. Average results
are similar to those shown in Fig. 8 for ξ = 1.0 as expected; however, the variability of the
relative permeability realisations has decreased.

The above consistency should not only apply to our stochastic networks but also to the
choice of the original rock image size. At a proper imaging resolution, larger rock samples
are preferred to obtain sufficient information. However, for 3D image acquirement and image
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Table 4 Predicted permeabilities and some network characteristics for stochastic networks of increasing
scaling factor (ξ = 0.4 … 2.0) for the Berea and the Castlegate sandstone samples shown in Table 3

Rocks Properties Original network Network upscaling factor ξ

0.4 0.6 0.8 1.0 1.2 1.4 2.0

Berea Volume (mm3) 9.773 0.625 2.111 5.003 9.773 16.887 26.817 78.183

Number of nodes 9330 597 2015 4776 9329 16122 25601 74639

Number of bonds 16600 1062 3585 8498 16599 28684 45549 132799

Average NC 3.53 3.48 3.51 3.52 3.52 3.53 3.53 3.54

Perm (mD) 1390 1704 1554 1518 1423 1491 1449 1409

Castlegate Volume(mm3) 11.239 0.729 2.427 5.754 11.239 19.421 30.841 89.915

Number of nodes 7557 483 1632 3869 7557 13058 20736 60456

Number of bonds 13615 870 2940 6970 13615 23526 37359 108920

Average NC 3.57 3.52 3.54 3.56 3.57 3.57 3.58 3.58

Perm (mD) 1505 1583 1591 1497 1474 1517 1477 1535
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Fig. 14 Permeability predictions for networks of different scaling factors based on the network extracted
from a small sub-image (0.176 mm3, 100 3 voxels, ξ = 1.0, 2597 mD (dotted grey)) cut out from the original
image (11.239 mm3, 400 3 voxels, 1505 mD (double-line)) of the Castlegate sandstone sample shown in Table
3. The stochastic networks marked as 100 are based on the network extracted from the small sub-image, while
those marked as 400 are based on the network extracted from the large image.

analysis, small rock samples are preferred. To test the minimum required sample size, we
have cut out a sub-image of dimensions 100×100×100 voxels from the Castlegate sandstone
image shown in Table 3, i.e. 1/64 of the original volume from which we have extracted the
pore network. Using this as the original network (with ξ = 1.0), a series of stochastic networks
were generated with network scaling factors ξ ranging from 0.4 to 7.0 and corresponding
volumes ranging from 0.011 mm3 to 60.236 mm3. The predicted permeability values for
these stochastic networks are presented in Fig. 14. We find that the generated network of
the same size as the subsample (ξ = 1.0) does not predict the permeability of its original
(2597 mD) and that only when the upscaling factor ξ is sufficiently large, i.e. for ξ > 3.0,
the permeability value stabilizes. This demonstrates that the number of network elements
of the subsample is too small. Furthermore, the converged permeability (2776 mD) is very
different from that for the original Castlegate sample (11.23 mm3) shown in Table 3. This
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additionally indicates that the subsample does not capture the full statistics of the Castlegate
sandstone. Therefore, an image of size greater than 1003 must be used to extract the original
network on which the stochastic networks are to be generated. Based on Fig. 14 and Table 4,
we suggest that the sample size of homogeneous sandstones, such as Berea and Castlegate,
must be at least 2 mm3 to be representative (ξ = 0.6 relative to the original sample size).

5 Summary and Conclusions

A new method has been developed to generate stochastic networks of arbitrary size repre-
senting the pore space in porous rocks. The method uses statistical information obtained
from a pore network that is directly extracted from a 3D digital image of the pore space. The
aim of this study is to create multi-scale networks by combining the statistics of networks
at different length scales. First, the original network is characterised in terms of distribu-
tions of the geometrical pore properties (volume, radius, shape factor, etc.) and correlations
between these properties for both network nodes and bonds, as well as the connectivity func-
tion describing the detailed network topology. Based on the correlation strengths, a structure
of the dependencies between the various properties is identified. In general, strong corre-
lations are described by regression equations, while weaker correlations are described by
conditional probability distributions. Then, to create the stochastic network, the appropriate
number of nodes and bonds are generated with the correlated properties of the original net-
work. The nodes are randomly located in the given network domain and connected by bonds
according to the strongest correlation between node and bond properties, while matching
the bond lengths to the distances between nodes and honouring the connectivity function.
The statistical description and stochastic network generation have been validated based on
original networks extracted from the X-ray CT images of a Berea sandstone and a Castlegate
sandstone sample, for which network permeabilities, as well as drainage capillary pressures
and relative permeabilities, have been calculated.

For the given sizes of samples and corresponding networks, the structural property distri-
butions, as well as the connectivity functions have been accurately reproduced in generated
networks of the same size. In addition, excellent agreement has been obtained between the
(average) calculated flow properties of the original and the generated networks, with some
variability mainly around the relative permeabilities. The computation times for generating
individual stochastic networks are very reasonable. For the two sandstone samples shown in
Table 3 generating the stochastic networks with ξ = 1.0 takes less than half the time of extract-
ing the original networks from the rock images. Tests on generated networks in which one
of the correlations have been ignored reveal the importance of each. Interestingly, ignoring
the correlation between node radius and node volume, produced the correct absolute perme-
ability but deviated multi-phase flow properties. Ignoring the correlation between node and
bond radii and ignoring the connectivity function led to large deviations in all flow properties.
This indicates that our method captures heterogeneities at length-scales contained within the
network volumes.

Generating networks of different sizes, based on the original statistics, has revealed that,
as expected, networks larger than the originals reproduced the flow properties of the original
networks, contrary to significantly smaller networks, which had too few network elements
to be statistically representative. Networks generated from the statistics of a smaller network
extracted from a subsample of the original digital rock image were unable to reproduce the
permeability of the subsample or the permeability calculated from the full sample. The latter
indicated that the subsample was not representative.
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