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Abstract: This paper describes a hardware-in-the-loop (HIL) test rig for the test and development 

of electric vehicle battery management and state-estimation algorithms in the presence of realistic 

real-world duty cycles. The rig includes two back-to-back connected brushless DC motors, the 

respective power electronic controllers, a target battery pack, a dSPACE real-time simulator, a 

thermal chamber and a PC for human-machine interface. The traction motor is commanded to 

track a reference velocity based on a drive cycle and the target battery pack provides the required 

power. Except the battery pack and the electric machine which are real, other parts of a vehicle 

powertrain system are modelled and used in the real-time simulator. A generic framework has 

been developed for real-time battery measurement, model identification and state estimation. 

Measurements of current and battery terminal voltage are used by an identification unit to extract 

parameters of an equivalent circuit network (ECN) model in real-time. Outputs of the 

identification unit are then used by an estimation unit which uses an artificial intelligent model 

trained to find the relationship between the battery parameters and state-of-charge (SOC). The 

results demonstrate that even with a high noise level in measured data, the proposed identification 

and estimation algorithms are able to work well in real-time.  

Keywords: battery modelling, electric powertrain, hardware-in-the-loop test, state-of-charge 

estimation, identification. 

1-Introduction 

Development of electrical energy storage systems plays a significant role in the vehicle 

electrification process. Among the existing technologies in this area, batteries are the most widely 

used and still an area of constant development. Regardless of the state of development of various 

battery chemistries, it is important to be able to operate a battery pack in practical applications 

which needs building a fast low-fidelity model for a battery management system (BMS). In an 

EV, it is important to understand state-of-charge (SOC) or ‘remaining capacity’, which is vital for 
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any kind of range prediction. EV range estimation, safe battery charge/discharge and optimal 

usage of batteries, all depend on efficient and accurate battery models. Different approaches can 

be used for cell modelling in which two main groups are electrochemical and equivalent 

electrical circuit models. Electrochemical battery models, with the ability of predicting 

electrochemical species and potential conservation distribution along the cell, are more accurate. 

On the other hand, equivalent circuit network (ECN) models are fast enough to be used in real-

time applications. There are also other modelling approaches in the literature which are reviewed 

in [1]. Because of the low computational effort and relatively good precision, ECN models have 

been the subject of studies in a wide range specifically for automotive application [2]. 

Before applying a battery model or estimation algorithm in a real EV, a battery simulation 

environment is essential for testing the developed models and algorithms. In most conventional 

battery simulators, the duty cycle (or ‘load profile’) is obtained from simple models of the 

powertrain components: equivalent-circuit machine models are used, and the detail of power 

electronics is often neglected or treated as a simple efficiency map with ideal instantaneous 

switching.  The rig described in this study avoids these limitations as real, physical components 

are used within the simulation: in addition to a small battery pack, a brushless DC (BLDC) 

machine driven by three-phase AC is used, together with its associated MOSFET-based power 

electronics. This type of machine is common in electric vehicles, and it would be hard to obtain a 

computational model that was sufficiently representative of real-world transient behaviour. 

Using an ECN model, a fast system identification technique is applied to real-time 

parameterization of the battery pack, and the parameters are used for real-time state estimation.  

While such algorithms can be tested in simulation or through a conventional bench-test involving 

only batteries, using the proposed rig allows the testing of the algorithms in an environment that 

is more representative of real-world duty-cycles and thereby reduces the risk of failure at a later 

implementation stage. 

2-Battery HIL Test Rig 

2-1-HIL structure 

The HIL test rig and its main components are shown in Figure 1.  It includes two back-to-back 

connected electric machines, the respective power electronic controllers, a target battery pack (in 



 

3 

 

this case, containing NiMH cells), a lead-acid battery pack to provide independent power 

sourcing and sinking, a dSPACE real-time simulator, a thermal chamber and a PC for human-

machine interface. The test rig contains two BDLC machines of 5kW each. One of these – shown 

to the left in Figure 1 – is used to represent EV traction motor and the second machine is used to 

apply dynamic loads (‘load’ machine) representing the torques experienced in a vehicle-level 

duty cycle.  The ‘traction’ machine is connected to the battery pack under test. The load machine 

is connected to a bi-directional power source consisting of a separate DC supply built from 

readily available lead-acid batteries.  

During acceleration, the traction machine is in the first quadrant of its torque-speed characteristic 

curve and changes to the fourth quadrant during braking.  In addition, during acceleration and 

uphill motion of the vehicle, the load machine acts as a generator, converting the shaft 

mechanical power to electrical power stored in the lead-acid battery. During deceleration and 

downhill motion of the vehicle, the load machine converts electrical power from the lead-acid 

battery to mechanical power in the shaft. 

 

Figure 1: Battery HIL test rig and its components 

2-2-Electric Machines and motor controllers 

As mentioned above, 5 kW brushless DC (BLDC) machines are used in the battery test rig. A 

BLDC machine has a trapezoidal air gap flux distribution obtained through electronic 
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commutation implemented through power electronics.  In a three-phase ac machine of this type, a 

‘current controller’ converts a ‘torque reference’ from an ‘outer’ speed controller to the 

respective current references for each of the three phase windings; to achieve this, the current 

controller outputs gate trigger signals to  MOSFETs in the (hardware) motor controller block [3]. 

The current controller employs nonlinear hysteresis type current comparators, which are the most 

rugged analog controllers. The rotor position required for the correct commutation of the 

windings is obtained from Hall-effect position sensors in the stator. The same rotor position 

signals are used to calculate the rotor speed. Since the machine has eight permanent magnet 

poles, three Hall-effect sensors are placed in the stator, 15 mechanical degrees apart.  In the speed 

calculation algorithm, any change in the Hall-effect sensor output (corresponding to a rotor pole 

movement) is detected and the time between two consecutive such changes is calculated.  The 

inverse of this time multiplied by the angle rotated (15 degrees) gives the rotational speed of the 

machine. 

2-3-Battery packs 

Two battery packs are used in the test rig: the ‘main’ battery pack under test (connected to the 

traction machine) and a ‘secondary’ lead-acid pack (connected to the load machine). The 

secondary pack provides the load and is not the subject of study: the role of the EV traction 

battery is supplied by the main battery pack. The secondary pack consists of five 12 V lead-acid 

batteries connected in series, giving a nominal 60 V which matches the motor controller’s voltage 

range. In this study, for the main battery pack under test, a NiMH battery chemistry has been 

selected as a first attempt while keeping this option to replace it with any other battery type in the 

same scale. The NiMH battery pack was built with the general aim to simplify development of 

the test rig but still being sufficiently representative of the automotive context. NiMH batteries 

have advantages in experimental development due to their high safety in charge and discharge 

and tolerance to abuse (overcharge and overdischarge), their good volumetric energy, power and 

thermal properties, and their simple and inexpensive charging and control circuits [4]. As an 

initial configuration, radio-controlled car cell packs (with six cells each) were used with their 

original charging power supplies, since they charge the packs similarly to a defined point. Here 

nine modules in series are used to create a nominal voltage (64.8 V) within the window of the 

motor controller. The layout of six NiMH cells per module, connected in series, is particularly 

close to automotive applications since it is also used in hybrid cars [5]. Table I summarizes the 
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battery pack configuration for Honda Insight and Toyota Prius from [5], together the pack used 

here.  

Table I: HIL battery pack configuration in comparison to two real EV battery packs 

 Honda Insight Toyota Prius Test Rig Pack 

Battery Type NiMH NiMH NiMH 

Nominal cell voltage 1.2 V 1.2 V 1.2 V 

Rated capacity 6.5 Ah 6.5 Ah 5 Ah 

Cells per module 6 6 6 

Number of modules 20 38 9 

Total voltage 144 V 273.6 V 64.8 V 

Nominal energy storage 936 Wh 1778 Wh 324 Wh 

2-4-EV simulation model 

The parts of the vehicle not represented by the test rig are implemented in software simulation 

model in MATLAB and Simulink: this has been parameterized to represent the Nissan LEAF.  

As the components used in the test rig are not full size, appropriate scaling has been implemented 

to ensure that torques and speeds are appropriately matched to the components in use. The rig is 

used to simulate vehicle-level driving cycles such as the well-known urban dynamometer driving 

schedule (UDDS) [6], and because of the inclusion of physical components, it provides a good 

representative electrical load at battery level. Full details of the proposed EV model can be found 

in authors’ previous study [7] so, it is not just repeated here. 

2-5-Real-time simulator 

The BLDC machines receive motion signals corresponding to the vehicle dynamics implemented 

in the HIL using dSPACE system.  It consists of a DS1006 processor with the dSPACE 2013b 

real-time operating system, DS2202 input-output card interfaced to the user through ControlDesk 

5.1 proprietary software platform. The simulation files, developed in MATLAB/Simulink 

environment, are converted to readable codes for use in the dSPACE simulator using 

ControlDesk. 

3- Real-Time Battery Model Identification and SOC Estimation 

A generic framework has been developed for real-time battery measurement, model identification 

and state estimation as demonstrated in Figure 2. The measurements of current and voltage are 

used by the identification part to extract battery parameters in real-time. The outputs of the 
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identification part (estimates of unknown parameters) are then used by the estimation unit which 

uses an artificial intelligent technique (described later in the paper) and is trained to find the 

relationship between the battery parameters and SOC. The effect of temperature is also taken into 

account however, the results of this study are presented for a fixed temperature. Number and type 

of the outputs of the identification part is not pre-determined: the number of parameters is chosen 

based on what is required for effective state estimation and can change with regard to the battery 

chemistry [8]. 

 

Figure 2: Battery measurement, identification and estimation in real-time 

3-1-Battery measurements 

The battery measurement consists of recording load current and terminal voltage during the tests. 

Temperature is controlled to be fixed at 25 °C during the experiments by using the thermal 

chamber depicted in Figure 1. Test data is stored with a sampling time of 0.1 second. The tests 

start from fully charged state and continue until the terminal voltage dropped below the cut-off 

voltage (i.e. 54 V for the NiMH pack) which means depleted charge state. The discharge rate 

depends on the power demand from the motor controller however, it is limited to 10 A to protect 

the battery pack. The setup uses a LEMTM 5V maximum output ±19.2 A current transducer 

(model number LTS 6NP) for accurate current measurements. The voltage output of the current 

transducer is fed to the analog-to-digital (AD) input of the dSPACE setup. The voltages are 

measured using simple resistive potential divider circuits. The divider resistors are selected such 

that the current through them is less than 0.1 mA and the output voltages are less than 10 V, 

which is a limit of dSPACE system. 

3-2-Battery parameter identification 

A system identification technique is used to find the battery parameters based on input-output 

battery measurements which are current and terminal voltage. Various ECN model structures and 
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fitting algorithms can be used for this purpose depending on the required level of complexity and 

speed in each application. In the present case that the final target is the NiMH pack’s SOC 

estimation, the results presented in [8] demonstrate that the battery pack’s open-circuit-voltage 

(OCV) would be sufficient. Consequently, the only unknown parameter (referring to Figure 2) 

which should be obtained during the identification process is OCV here. For this purpose, an 

internal resistance model (
intR  model) [1] is used which contains a voltage source and an ohmic 

resistance in series.  

After selecting the battery model structure, the unknown parameters should be found during the 

identification process. The parameter vector (θ) is determined so that the prediction error ( ) is 

minimized, defined as follows [9]:  

1
ˆ( , ) ( ) ( ; )k k k kt y t y t t                                                         (1) 

where ( )ky t  is the measurement data at time k and 
1

ˆ( ; )k ky t t 
 is the model’s prediction at time 

k using the parameters θ. A fitness function like the root mean square error (RMSE) can be used 

in this optimization problem; 
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In this case, the battery model’s parameters are optimized so that the least difference between the 

measured terminal voltage and the model’s output is achieved so we have:   
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where 
tV  and ˆ

tV  are measured and estimated values of the battery terminal voltage respectively. 

Using 
intR  model, the estimated value can be obtained as follows; 

ˆ .t OC OV V R I                                                                      (4) 

The model has just two variable parameters (
OCV  and 

OR ), so RMSE is considered as a function  

(f) of these parameters. Because the minimum value of RMSE is desired, the corresponding 

optimum values of the parameters can be obtained by putting the gradient equal to zero as 

discussed in [9] that gets the following closed-form formulas. 
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These 
OCV  and 

OR  are the optimum battery model parameters that give us the least RMSE. Some 

points that should be considered when using the proposed formula are: 

1) The analytical solution is obtained for the 
intR  model and is not valid for other ECN 

models.  

2) The formula can be used for any battery type (not limiting to NiMH battery).  

3) It gives the average values of 
OCV  and 

OR  by using charge and discharge data at the same 

time. 

3-3-Battery SOC estimation 

An adaptive neuro-fuzzy inference system (ANFIS) is trained to learn the relationship between 

the battery pack’s OCV and SOC. By this way, ANFIS can perform as an estimator which uses 

OCV as the input to predict SOC as the output in real-time as presented in Figure 3. As a 

reference for validation of the estimations, coulomb-counting (CC) is usually used. CC is a 

theoretical method which cannot be used in practice because of its restrictions however; it is a 

good benchmark for checking other techniques [10]. In CC, battery SOC is obtained by 

integrating the current over time. Assuming 
0SOC  as the initial SOC at time 

0t , the battery pack’s 

SOC at time t is: 

0
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where ( )i t  is the current (A) (assumed positive for discharging and negative for charging).   is 

the battery’s coulombic efficiency (dimensionless) and tC  is the total capacity (As). In this 
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representation, the SOC value is a number between 0 and 1 with 0 indicating a fully depleted state and 

1 representing a fully charged state. 

 

Figure 3: ANFIS structure used for NiMH pack’s SOC estimation 

4- Results Analysis 

In a case study, a 64.8 V NiMH battery pack was tested using the rig and the proposed algorithms 

were tested in real-time. Urban dynamometer driving schedule (UDDS) [6] was used as the input 

of the tests. The tests were performed at 25 °C, starting from fully charged state and continued 

until the terminal voltage dropped below 54 V (cut-off voltage of the NiMH pack). The driver 

model followed the driving cycle by generating acceleration and deceleration commands. 

Rotational speed of the electric motors was measured and a velocity tracking error was calculated 

in real-time. The reference velocity and measured velocity are illustrated in Figure 4, 

demonstrating a good tracking performance. Variations of battery pack’s current and voltage are 

also depicted in Figure 4. As shown in this figure, the measurements are very noisy, challenging 

for the identification and estimation algorithms.  

Identification and estimation results are also presented in Figure 5 including ohmic resistance and 

OCV as discussed in section 3.2 and battery SOC estimation using ANFIS explained in section 

3.3. Identification was repeated every 0.1% change in SOC and a time window of 2 minutes ago 

was used to extract the parameters. One of the main advantages of the proposed identification 

formula is its high speed that makes it suitable for real-time applications. SOC estimation was 

performed using the last 20 identifications which means every 2% change in SOC in this case. 

The reason of using a number of identifications (20 times in this case) for every estimation 

attempt is to make it more robust against the identification fluctuations. As shown in Figure 5, 

identification performance is affected by the discharge rate where a continuous high rate of 

discharge can confuse the algorithm to detect the parameters. Since SOC estimation accuracy 

directly depends on the identification precision, this confusion is observed for a short time in the 

estimation results as well. All in all, the algorithms perform well against the high level of noise 
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(caused by using low-cost sensors) which is designed by purpose to test the algorithms in the 

worst scenario.  

5-Conclusions 

A generic framework was explained and tested for real-time battery model identification and state 

estimation. Battery ohmic resistance and open-circuit voltage were obtained in real-time using 

current and voltage measurements. The main feature of the proposed identification algorithm is 

its simplicity and speed that makes it suitable to be embedded on battery management boards. 

Another advantage of the proposed framework is its flexibility that makes it usable for other 

applications like state-of-health estimation and other battery types too. Performance of the 

proposed algorithms was tested using a HIL test rig, representing a scaled-down electric vehicle 

powertrain system. Using such a HIL test rig for battery management algorithm development, is a 

quite useful approach to evaluate the proposed algorithms in a more realistic scenario by 

considering the effects of noise and uncertainties.  

 

Figure 4: velocity and battery measurements during UDDS test 
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Figure 5: real-time battery parameter identification and SOC estimation during UDDS test 
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