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Optimisation is aimed at enhancing aircraft design by identifying the most promising wing planforms at the early stage while
discarding the least performing ones. Multiple disciplines must be taken into account when assessing new wing planforms, and
a model-based framework is proposed as a way to include mass estimation and longitudinal stability alongside aerodynamics.
Optimisation is performed with a particle swarm optimiser, statistical methods are exploited for mass estimation, and the vortex
lattice method (VLM) with empirical corrections for transonic flow provides aerodynamic performance. Three surrogates of the
aerodynamic model are investigated. The first one is based on radial basis function (RBF) interpolation, and it relies on a
precomputed database to evaluate the performance of new wing planforms. The second one is based on an artificial neural
network, and it needs precomputed data for a training step. The third one is a hybrid model which switches automatically
between VLM and RBF, and it does not need any precomputation. Its switching criterion is defined in an objective way to avoid
any arbitrariness. The investigation is reported for a test case based on the common research model (CRM). Reference results
are produced with the aerodynamic model based on VLM for two- and three-objective optimisations. Results from all surrogate
models for the same benchmark optimisation are compared so that their benefits and limitations are both highlighted. A
discussion on specific parameters, such as number of samples for example, is given for each surrogate. Overall, a model-based
implementation with a hybrid model is proposed as a compromise between versatility and an arbitrary level of accuracy for
wing early-stage design.

1. Introduction

Multidisciplinary optimisation represents the new frontier of
aircraft design [1]. It promises to reduce cost and time for
developing new products by providing better configurations
at an earlier stage [1, 2]. This can be achieved with
gradient-free techniques which do not rely on differentiable
objective functions [3] and can be applied to aircraft design
as shown in [4] by taking into account a large number
of design variables. Their main limitation is the repeated
evaluation of the objective function which can lead to high
computational cost. Regarding aircraft, an example of
gradient-free optimisation for early-stage design is available
in [5] where genetic algorithms andmultifidelity aerodynam-
ics are exploited to identify the optimal location for propellers.

Remedies have been proposed in literature to lower the
computational cost of optimisation by exploiting surrogate

models, also known as metamodels. In general, surrogate
modelling is widely employed in engineering design loops
to speed up the process since they reduce the time for perfor-
mance assessment [6]. It can be applied to any branch of
engineering [7, 8], and, for example, application to aerofoil
shape optimisation is described in [9]. A summary of sur-
rogate modelling methods for evolutionary optimisation is
available in [10, 11] while an application to aircraft con-
ceptual design is given in [12]. Regarding aerodynamics,
multiple techniques have been proposed in literature to
build surrogates for both steady and unsteady flows. They
usually rely on methods such as Kriging interpolation [13,
14], radial basis function (RBF) interpolation [15], proper
orthogonal decomposition [16], eigenvalue decomposition
[17], and artificial neural network [18, 19]. An additional
class of models, called herein hybrid models, are able to
exploit information coming from both the original model

Hindawi
International Journal of Aerospace Engineering
Volume 2019, Article ID 4327481, 15 pages
https://doi.org/10.1155/2019/4327481

http://orcid.org/0000-0002-0180-2537
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4327481
e805814
Text Box
© The Authors. Published by Hindawi Publishing Corporation This is the Author Accepted Manuscript issued with: Creative Commons Attribution CC BY 4.0. Please refer to any applicable publisher terms of use.



and its surrogate. Applications of this approach to include
multiple fidelity levels can be found in literature for wing
design optimisation [20] as well as airfoil design [9, 15]
using Kriging interpolation. In such cases, information
from the original model is employed to locate the next
sampling point which improves the prediction of the
underlying Kriging and a reduction up to one order of
magnitude in computational time is achieved [20]. Hybrid
models can exploit information in a dynamic way too by
selecting, for example, the basis function of the surrogate
during the optimisation process as proposed in [21].
Another approach is a first estimation of the error with
the surrogate model for the new point in the parametric
space, and, if the error is larger than a given threshold,
the assessment of the same new point is performed with
the original model. This approach is employed in [22] to
speed up turbomachinery design, and the threshold value
is chosen arbitrarily. It affects the number of evaluations
performed with the surrogate and, in the end, the level
of error in the final results. However, an objective way
to switch between models, which does not rely on engi-
neering experience, is still needed. In addition, a comparison
of multiple surrogates applied to the optimisation of tran-
sonic wing planforms is missing in literature. This paper
addresses both needs by suggesting an objective criterion
for the switching between the surrogate and its original
model as well as benchmarking multiple surrogates.

Besides aerodynamics, additional disciplines must be
included to perform a successful wing planform optimisation
and a summary of possible architectures is presented in [23].
An example of a multidisciplinary framework is given in [24]
where a genetic algorithm is adopted to optimise general
aviation aircraft at the conceptual design stage. In addition,
the industrial designer requires a flexible framework which
incorporates existing tools [25] and possibly interchange
them at any time. Frameworks based on model-based
principles [26] satisfy both requirements, i.e., the possibility
of multifidelity aerodynamics levels as well as software units
for distinct disciplines. Although model-based principles
have been available in literature since the beginning of the
90s, their application to aircraft design is a recent develop-
ment. For example, a model-based framework is employed
to study the performance of general aviation aircraft in
[25]. Besides aerodynamics, the system includes models for
physical parts such as engines and fuel tanks.

In this paper, surrogate modelling for multidisciplinary
optimisation of wing planform for transonic aircraft at
early-stage design is investigated. In particular, three surro-
gate models are discussed, specifically RBF interpolation,
neural network, and a hybrid approach which switches
automatically between surrogate and its original model.
Regarding the latter, a novel, objective criterion for the
switching is proposed. The investigation is made possible
by the versatile model-based framework which is suggested
as ideal architecture for multidisciplinary and multifidelity
problems. The paper proceeds with a description of frame-
work and surrogate modelling methods in Section 2. The
infrastructure is presented in detail with focus on the var-
ious models employed for this paper. Surrogate modelling

techniques, normalisation of data, and error quantification
are described in that section too. The wing planform opti-
misation problem is formulated in Section 3. A generic
transonic wing planform is employed to formulate the
problem so that the optimisation is not tied to any specific
test case. Besides the mathematical form, a graphical inter-
pretation of both parameters and constraints is provided.
Results from the surrogate modelling investigation are
given in Section 4 for the particular case of optimising
the common research model (CRM) wing. First, results
are produced with the model-based framework using the
aerodynamic model based on VLM for two- and three-
objective optimisations. Such results are the benchmark
for the performance of surrogate models. Secondly, surro-
gates based on RBF or neural network are assessed in
Section 4.1. A comparative analysis is provided between
their results and the reference solution. Thirdly, the appli-
cation of the hybrid model is described in Section 4.2
where numerical details are given about the criterion for
switching between the surrogate and its original model.
A final comparison is provided between all surrogates
and the reference. Conclusions and a description of future
developments are given in Section 5.

2. Model-Based Framework and
Surrogate Modelling

The optimisation loop is implemented using a model-based
approach [26], and the implementation is coded in an
object-oriented way [27]. Interfaces declare input and output
capabilities for each distinct class of models. In turn, a model
belonging to a given class must meet the requirements set by
the interface. Communication between models is only
allowed through channels defined by interfaces. As a result,
the software is composed of models and definitions of
their interactions. Each model can use one or more tools
to undertake its task so that multifidelity approaches and
reusing of existing data and software are possible.

The optimisation workflow is depicted in Figure 1 where
four blocks are shown, specifically a baseline configuration,
an optimiser, a performance model for the assessment of
new wing planforms, and the final set of optimal configura-
tions. The optimiser is based on the particle swarm opti-
misation (PSO) algorithm implemented in parallel [28].
It performs a search for global optimality with a gradient-
free method. Its objective function is a weighted sum of single
objectives. Specifically, any combination of drag coefficient
CD, operating empty weight (OEW), and aerodynamic effi-
ciency E can be chosen as objective function. Their values
are normalised with respect to the performance of the base-
line, as usually done in industrial practice at early-stage
design, before computing the weighted sum. Constraints
are geometric as well as related to aircraft stability. The
optimiser interrogates the performance model to compute
the objective function for new configurations. Optimal solu-
tions are returned when the maximum number of iterations
is reached or a convergence criterion is met.

In Figure 1, a close-up on the performance model is
provided which shows inputs and outputs placed on the left
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and right sides of the block, respectively. Four models
concerning geometry, aerodynamics, mass estimation, and
centre of gravity are employed by the performance model.
This represents a typical pattern for the model-based
framework since each model relies on one or more models
to compute its output. The computation starts from parame-
ters given as input by the optimiser, and a new geometry is
produced by the parametric computer-aided design (CAD)
model. It is an in-house code developed at Airbus Operations
Ltd. for the purpose of early-stage design. Based on the CAD
model, the mass estimation model provides a value for the
aircraft OEW and its spacial distribution by exploiting
semi-empirical methods discussed in [29]. Specifically,
contributions to the total aircraft mass from wing, tail,
fuselage, and engines are taken into account. Equations
linking directly the components’ masses to their geometric
properties, such as volume, height, and width, are derived
from statistical analysis of existing aircraft [29], Ch. 8. They
are employed to compute the masses for the new configura-
tions produced by the optimiser. As an example, require-
ments in terms of structural stresses for the wing are taken
into account by assuming a conventional wing structure,
i.e., made of ribs, stringers, skin, etc., and computing the
amount of material required to withstand the forces [29],
Ch. 11. The centre of gravity (CG) position is obtained from
the mass distribution by a model written on purpose since
such information is needed to compute stability derivatives
accurately. Consecutively, the aerodynamic model uses the
CAD model, the estimated OEW value, and the CG position
to trim the aircraft for the specific flight condition. The
design lift coefficient is computed by balancing the lift force
and maximum take-off weight. At the end, the aerodynamic
model provides the lift, drag, and moment coefficient,
angle of attack, horizontal tail rotation angle, lift distribu-
tion, and longitudinal stability derivative. A set of these
quantities describes the aerodynamic performance for a
given configuration.

Regarding the aerodynamic model, its reference imple-
mentation is based on the vortex lattice method (VLM)
[30]. Specifically, the open-source VLM code AVL [31] is
exploited as a tool to compute the lift distribution and
moment coefficient, evaluate the stability derivatives, and
predict the induced drag coefficient. The angle of attack
and rotation of horizontal tail are both computed with a
trimming procedure which is in charge of obtaining the
desired lift coefficient and a null pitching moment. When
the trimming procedure returns values of angle of attack
and horizontal tail rotation outside the ranges −6 5,6 5
and −4, 4 , respectively, results from AVL are considered
unreliable due to intrinsic limitations of VLM at a large angle
of attack [30] and the corresponding wing planform is
discarded. Empirical methods from ESDU [32, 33] are
employed to enhance the estimation of the drag coefficient
by taking into account transonic flow and viscous effects.
This aerodynamic model constitutes the reference for the
surrogate models which are described next.

When it comes to the implementation, models commu-
nicate using a Python infrastructure; specifically, all data is
stored in the memory belonging to the Performance model.
This is the preferred way to store data since it minimises
the time spent in transferring information. In fact, when a
new model is executed, data available in the Performance
model can be reused for further calculations. In the specific
case of external tools such as AVL, inputs and outputs are
performed using files. A Python wrapper is in charge of
writing the input file, executing the external tool, and loading
the results from files. Data is then stored in the Performance
model. Parallel execution is performed using the multipro-
cessing module, and results are stored in the Performance
model by exploiting interprocess communication.

2.1. Surrogate Modelling for Aerodynamics. Three surrogate
modelling techniques are investigated in this paper, specifi-
cally RBF interpolation, an artificial neural network, and a
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Figure 1: Workflow for the optimisation loop.
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hybrid model. A normalisation procedure is applied to input
and output data of all three surrogate models, and it is
described next. Denote u as a vector containing the same
scalar quantity u for multiple configurations. It is then
expressed as u = u + u where u is its average value and u is
the vector of fluctuations. Minimum and maximum values
of the fluctuation u are identified and denoted umin = min u
and umax = max u, respectively. The normalised vector η is
defined as

η = 2
u − umin

umax − umin
− 1 1

Its components are in the range −1, 1 . Reconstruction of
the original dataset is achieved by isolating u in equation (1)
and adding the average value u to the result.

2.1.1. Radial Basis Function Interpolation. The RBF model
implements interpolation of aerodynamic data using radial
basis function (RBF) [34, 35]. The process is based on three
steps. First, a database of output aerodynamic data corre-
sponding to input wing planform configurations is populated
with either experimental or precomputed data. Second, the
RBF coefficients are obtained by exploiting the input/output
relations in the database. Third, the actual interpolation is
performed by computing sums of RBFs. Although the pro-
cess is quite common [34], two main parameters affect
directly the quality of results and they depend on the problem
investigated, specifically number of samples and formulation
of the radial basis function (also known as RBF kernel).
Regarding the latter, three types are considered in this paper
and reported here:

TPS ϕTPS ρ = ρ2 log ρ, 2

Gaussian ϕG ρ = e−ρ
2 , 3

Mod Gaussian ϕMG ρ = e−ϵρ
2 with ϵ = 4 ln 2 4

They all assign different importance to configurations in
the parameter space according to their distance ρ from the
interpolation point. This is done on purpose to assess the
quality of RBF interpolation when only nearby configura-
tions are employed. In fact, if considering nearby configura-
tions is sufficient for an accurate interpolation, a reduction
in computational cost could be achieved by focusing on a
smaller area of the parameter space. The thin spline plate
(TPS) in equation (2) takes into account all configurations
in the database, and it assigns greatest importance to the ones
far away. Conversely, Gaussian function in equation (3)
focuses on configurations closer to the interpolation point.
Its value is 1 when ρ = 0, and it halves at ρ = ln 2 ≈ 0 832
so that almost no importance is given to far configuration.
Modified Gaussian takes into account just few configurations
around the interpolation point since its value halves exactly
at ρ = 0 5.

2.1.2. Artificial Neural Network. An artificial neural network
[36] based on multilayer perception algorithm [37] and a

logistic activation function is employed as a surrogate for
the aerodynamic model. Weights for the neurons are com-
puted with backpropagation [38]. One hidden layer is
adopted, and its number of neurons is the object of investiga-
tion. Guidelines for its estimation are given in [39] where a
value between the number of inputs and outputs is suggested.
The implementation relies on an open-source machine
learning framework implemented in Python [40].

2.1.3. Hybrid Model. A third approach to modelling for
aerodynamics is proposed as a trade-off between the surro-
gate and VLM. The method, called hybrid model, switches
automatically between the underlying VLM model and its
RBF surrogate when aerodynamic data is requested. This
avoids the precomputation of data which is needed by both
RBF and neural network. A first approximation of aerody-
namic performance is obtained with the surrogate model
based on RBF. Quality of results is assessed using a criterion,
which is discussed in the next paragraph, and two scenarios
are then possible. If the criterion is satisfied, aerodynamic
data is returned and no further action is taken. If not, a
VLM simulation is performed and its results are returned
as well as stored in a database to improve the surrogate
model. Note that only VLM solutions populate the database
for RBF interpolation. When a number of new configurations
are assessed with VLM, RBF coefficients are recomputed by
inverting the RBF matrix and stored for successive interpola-
tions. In practice, this happens at every iteration of the opti-
misation loop. Until the first iteration is complete, only VLM
aerodynamics is adopted since a database of aerodynamic
data is only available starting from the second iteration.

Regarding the criterion for switching between VLM and
RBF, it exploits information about configurations previously
assessed using VLM. The process is illustrated in Figure 2(a)
with a simplified representation of the parameter space.
Assume P is the new configuration to be assessed. At first,
its aerodynamic performance is computed with RBF interpo-
lation and stored in a vector aP. A number n of neighbours is
then identified based on their Euclidean distances. Their
aerodynamic performance are stored in vectors a1, a2,… an.
The standard deviation σ is then computed with the
differences aP − ai with i ∈ 1, n .

σ = std aP − a1 , aP − a2 , aP − an … 5

When the value of σ < σt where σt is a threshold, the
estimation from RBF interpolation is accepted and aP
returned. Otherwise, a VLM computation is performed and
aP is updated. Although other criteria can be adopted, the
standard deviation is proposed herein as a way to quantify
the variation of aerodynamic performance in a set of neigh-
bouring configurations. This approach mimics a rule of
thumb which usually relies on the engineer’s experience: if
the new data is reasonably similar to the existing one, it
can be assumed reliable.

Regarding the threshold value σt, the arbitrariness is
avoided by choosing its value based on statistical analysis
performed a priori. Specifically, when a number of configura-
tions assessed with VLM are available, each one is considered
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in turn and the standard deviation σ is computed considering
its n closest neighbours. Thus, a cumulative plot similar to
the one depicted in Figure 2(b) can be produced. It shows
the percentage of total configuration whose standard devia-
tion is smaller than the value reported on the horizontal axis.
This provides an objective way to define the threshold value.
For example, the value σt can be chosen to include 95% of
configurations as depicted in Figure 2(b). Please note that
the hybrid model presents itself to the Performance model
as one, monolithic model, i.e., using the same programming
interface of the other two surrogate models, according to
the model-based principles given in Section 2.

2.1.4. Error Quantification. In the context of optimisation,
the error resulting from using the surrogate model is
quantified by focusing on the optimal configurations only.
The objective function is computed with VLM for all
optimal configurations. The difference between the value
from the surrogate model and the one from VLM is scaled
with respect to the latter. Thus, average error and standard
deviation can be computed and they can be then expressed
as a percentage.

3. Formulation of Wing Planform
Optimisation Problem

A wing planform is unequivocally defined by a sequence of
seven parameters, which is herein called configuration, as
shown in Figure 3(a). They represent displacements from
the baseline wing planform to be optimised. Thus, when all
the parameters are zero, the baseline wing is obtained.
Precisely, parameters P1, P2, and P3 define the streamwise
displacement of the trailing edge points with P1 defining
the root chord. Note that the first, straight, part of the wing
in Figure 3(a) is assumed to be inside the fuselage and its
spanwise length is assumed to be constant. Parameters P4
and P5 define the leading-edge location so that chord lengths
at the kink and at the tip are given by P5 - P2 and P4 - P3,
respectively. Apart from the root chord P1 for which a
maximum variation of ±10% from the reference is allowed,
the parameters are not bounded. The set of geometrical

constraints are reported in Figure 3(b). They mainly avoid
planforms with negative sweep angles or M-shaped wings
by requiring a positive clockwise angle between the three
segments which define each edge. In addition, a minimum
length constraint cmin is imposed on the tip chord to avoid
pointy wings. Besides geometrical constraints, a requirement
for a stable configuration is formulated. The corresponding
inequality is based on the value of the dCm/dα stability
derivative which must be negative for longitudinally stable
aircraft. Overall, the parametrisation allows the planform to
assume a variety of shapes ranging from rectangular straight
to tapered swept wings. Regarding the objective function, it
can be chosen among OEW, aerodynamic efficiency, and
drag coefficient. Its value is normalised with respect to the
performance of the baseline geometry according to the
practice usually adopted in early-stage aircraft design. The
mathematical formulation of the problem is given in Table 1.

4. Results

The model-based software architecture was exploited to
optimise the wing planform of the common research model
(CRM) [41] flying at Mach number M = 0 85, altitude of
10000m, take-off weight of 2 472 × 105 kg, and maximum
thrust of 6 86 × 105 N. The baseline geometry is illustrated
in Figure 4 using the parametric CAD. It is composed of
wing, fuselage, and horizontal tail, and the latter can be
rotated around its mid-chord axis. The geometry of the
torsion box, size, and distribution of ribs are defined
parametrically depending on wing geometry.

Optimisations were first performed using VLM with
empirical corrections for transonic flows as a tool for the
aerodynamic model. They represent the reference solutions
for the subsequent application of surrogate modelling.
Optimisations were performed using PSO with a swarm size
of 128 for 48 iterations. Successful convergence of the optimi-
sation process is assumed when the maximum distance
between positions of swarm particles and the swarm best
particle is smaller than 1 × 10−5 at two successive iterations.
Velocity is updated for each particle every iteration by taking
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Figure 2: Criterion used by hybrid model to switch between VLM and RBF models.
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into account 50% of its velocity at the previous iteration,
50% of particle’s change of position, and 50% of swarm
best particle’s velocity.

Results for three two-objective optimisations are
discussed. The first one minimises OEW and maximises
aerodynamic efficiency, and the Pareto front is depicted

in Figure 5(a). Configuration A is chosen as a representa-
tive optimal solution. The wing planform for A is shown
in Figure 5(b) where it is compared to the baseline.
OEW is minimised by 3.7% with a reduction of wingspan.
The kink moves outward so that the trailing edge sweep
angle of the inner wing is reduced. The angle of attack

P1 P2

P3

P4

P5

P6

P7

(a) Parameters

C4

C3

C1
C2

C5

(b) Constraints

Figure 3: Geometric parameters and constraints used for the optimisation.

Figure 4: Baseline geometry of the CRM as depicted with the parametric CAD software.

Table 1: Formulation of the multidisciplinary optimisation problem.

Function/variable Description

Minimise f ∈
CD
CDref

,
OEW
OEWref

,−
E
Eref

Objective function chosen
from a set of design targets

With respect to Pi∀i ∈ 1, 7 Wing platform alterations
with respect to the baseline

Subject to

c3 ≥ c4 ≥ 0

c2 ≥ c1 ≥ 0

c5 ≥ cmin

Geometric constraints to
limit the optimisation to
wings with positive sweep
angle and a minimum
chord length at the tip

Subject to
dCm
dα

< 0 Condition for a statically
stable aircraft
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7International Journal of Aerospace Engineering



is 6.22 deg, and it can be compared with the reference
value of 4.15 deg which is obtained by trimming the base-
line geometry. Overall, the wing is more slender and this
factor improves aerodynamic efficiency by 5.2%. The
quarter-chord sweep angle is larger when compared to
the baseline. However, the drag coefficient, which is not
included in the optimisation, increases by 30%.

Regarding the second optimisation, it minimises both
OEW and drag coefficient. Configuration B is located on
the resulting Pareto front as depicted in Figure 5(c). Its wing
planform is very similar to the CRM baseline, Figure 5(d).
The kink is slightly moved outward while few changes
were found for the sweep angle, and the angle of attack
is 4.10 deg. In particular the trailing edge sweep angle does
not change significantly. Results for configuration B sug-
gest that little modifications to the baseline improve both
drag coefficient and OEW by 2.5% and 1%, respectively,
while aerodynamic efficiency decreases by only 0.25%.
Note that the baseline configuration is very close to the
Pareto front and little margin for improvement was available
to the optimiser.

A third optimisation was performed which maximises
aerodynamic efficiency and minimises drag coefficient,
and its results are reported in Figure 5(e). Configuration
C is an optimal solution on the Pareto front. The wing
planform depicted in Figure 5(f) is very slender. The
wingspan is increased by more than 5 meters while the
tip chord is kept at the minimum. The root chord is
slightly reduced, and the kink is moved outward. The
angle of attack is 4.03 deg and sweep angle for the inner
wing decreases whereas it is unaltered for the outer part.
Overall, aerodynamic efficiency increases by 4.5% and drag
coefficient is reduced by 7.3%. However, OEW is not
taken into account and it increases by 2%.

Initial values of location and velocity for swam particles
in the PSO algorithm were generated randomly. Thus, each
of the three optimisations described in Figure 5 was repeated
20 times. The Pareto front approximations were compared

using two methods, specifically the ϵ-indicator [42] and
the hypervolume (hv) indicator [43]. As an example, results
are shown for the optimisations which minimise both OEW
and drag coefficient in Figure 6. The hv indicator is com-
puted referring to the point at OEW/OEWCRM = 1 15 and
CD/CDCRM = 2 5 for all 20 approximations. An average
value of 0.34105 with a standard deviation 0.0011884 was
found as depicted in Figure 6(a). The ϵ indicator was
computed as well and its values for the 20 approximations
are shown in Figure 6(b). The average value is 0.0049434,
and the standard deviation is 0.0010499. Both indicators
suggest that Pareto front approximations are all very close
and the random initialisation of the PSO algorithm does
not affect the quality of the final results. Statistical analyses
were performed for all optimisations, but for the sake of
brevity, graphs are not included here. When OEW is mini-
mised and aerodynamic efficiency is maximised,
Figure 5(a), the hv indicator has an average value of
0.025126 with a standard deviation of 0.00069854 with
respect to the point at OEW/OEWCRM = 1 05 and E/ECRM
= 0 82. The ϵ indicator has an average value of
0.0034692 with a standard deviation of 0.00071947 for
the same case. Regarding the optimisation which maxi-
mises aerodynamic efficiency and minimises drag coeffi-
cient (Figure 5(e)), the hv indicator has an average value
of 0.090507 with a standard deviation of 0.0021697 with
respect to the point at E/ECRM = 0 75 and CD/CDCRM =
1 08. The ϵ indicator has an average value of 0.0058330
with a standard deviation of 0.0013592.

Apart from the two-objective optimisations, the frame-
work can perform multiobjective optimisations as well. In
Figure 7, results are reported for a three-objective optimisa-
tion aiming at minimising both OEW and drag coefficient
as well as maximising aerodynamic efficiency simulta-
neously. The PSO optimiser runs with a swarm size of 128
for 48 iterations. The resulting three-dimensional Pareto
front is shown in Figure 7(a). Identifying the reference con-
figuration for CRM in the plot is quite difficult. It is
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dominated and, thus, located in the cloud of points. A
configuration named D is chosen on the Pareto front
and depicted in Figure 7(b). Regarding the inner wing,
its sweep angle is smaller than the reference’s one. Con-
versely, the outer wing shows a slightly increased sweep
angle. Overall, the wing span increases by 10%, the wing
kink moves outward, and the tip chord is slightly smaller
as well. Aerodynamic efficiency is increased by 5.6%, the
drag coefficient is reduced by 4.1%, and OEW decreased
by 0.8%.

The three-objective optimisation performed with the
model-based framework is a useful tool to provide the
designer with a set of optimal configuration which improves
multidisciplinary objectives simultaneously. However, visu-
ally comparing Pareto fronts resulting from different models
is difficult since three-dimensional plots are involved. Amore
immediate comparison is available for the Pareto front
involving two objectives only. Without loss of generality,
the two-objective optimisation aiming at minimising both
OEW and drag coefficient is chosen as benchmark simula-
tion for the surrogate models which are described next.
Specifically, the Pareto front in Figure 5(c) is assumed to be
the reference solution to be reproduced. Although bench-
mark results are available for other two-objective optimisa-
tions, for example aiming at maximising aerodynamic
efficiency and minimising either OEW or drag coefficient,
they are not reported in the paper for the sake of brevity.
Please note that the test case represents an academic case
which is suitable to assessing the proposed methodology.
For example, the structural model, which is described in
Section 2, is limited to traditional wing structures (i.e., com-
posed of ribs, panels, stringers, etc.) for which it can estimate
the OEW based on considerations about structural integrity.
Reliability of the structural model for any industrial configu-
ration is not guaranteed. Inclusion of requirements which are
usually adopted for aircraft design in the industrial context is
not attempted in this paper, and as a consequence, optimal

configurations might not represent the best configurations
from an industrial point of view.

4.1. Surrogate Modelling for Aerodynamics. The capability of
the model-based framework of replacing models at any time
was exploited to replace the aerodynamic model based on
VLM with surrogate models. Results from two types of
surrogate models are presented in this section, specifically
RBF interpolation and neural network. They both rely on a
database of precomputed aerodynamic data to evaluate per-
formance of new configurations. Inputs consist in the seven
geometrical parameters which define the wing planform.
Outputs are 8, specifically lift, drag, and moment coefficient,
angle of attack, horizontal tail rotation, lift distribution,
longitudinal stability derivative, and aerodynamic efficiency.

Regarding the aerodynamic database, it can be popu-
lated with preexisting experimental data when it is avail-
able. For this paper, it will be generated using VLM
instead. The 7 parameters which define the wing planform
(Table 1) are now limited to the range pi ∈ −4, 4 ,∀i ∈ 2, 7
. An exception is made for the root chord which spans a
smaller range p1 ∈ −2, 2 . Aerodynamic data for a number
of configurations uniformly distributed in the parameter
space was computed with VLM. It is normalised in a range
of −1, 1 so that all inputs and outputs have the same order
of magnitude as described in Section 2.1. In addition, only
interpolation is allowed in order to avoid inaccuracy due to
extrapolation.

The surrogate model based on RBF is described first.
Its application is composed of three steps. First, an RBF
function is chosen. Secondly, the RBF matrix is assembled,
inverted, and stored in memory. Thirdly, the interpolation
is computed by exploiting the inverted matrix only when
aerodynamic data is requested by the performance model.
Two choices have to be made when using RBF interpola-
tion, specifically the type of function and the number of
samples. Concerning the radial basis function, it should
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be chosen according to the data to be interpolated. Three
radial functions are compared in Figure 8(a) for values
of distance ρ ∈ 0, 7 . Note that the maximum distance
ρ between any two configurations is 2 7 because of the
input data normalisation. The three functions assign dif-
ferent weights to configurations in the parameter space
as already explained in Section 2.1. In the specific case,
Gaussian function covers the half parameter space and
its modified version spans a quarter of parameter space.
Performances of the three functions were compared by
running a two-objective optimisation aiming at minimis-
ing both OEW and drag coefficient. Results are depicted
in Figure 8(b) where a comparison with VLM is included
as well. Three approximations of the Pareto front were
produced. Using the Gaussian function leads to results
which reproduce the general trend with an average error
of 10.0%. Results produced with the modified Gaussian
function match accurately the reference for configurations
located in the central region of the Pareto front, and an
average error of 11.5% is found. Conversely, TPS, which
focuses on far configurations instead, provides the best
results in any region of the Pareto front with an average
error of 7.62%.

Regarding the number of samples, the benchmark
optimisation was performed using RBF interpolation with
databases containing 5, 10, 50, 100, 200, and 300 samples
uniformly distributed in the parameter space. The average
error was computed as described in Section 2.1 for each
Pareto fronts corresponding to a different sample number.
The resulting convergence curve is presented in Figure 9(a).
Using databases with less than 400 configurations returns
an error larger than 9% with respect to the VLM reference.
The average error is smaller than 8% (precisely 7.62%) when
438 samples are employed. Although a large number of con-
figurations is impractical for industrial application, it could
be useful for academic investigation. Hence, an additional

simulation with a database containing 15220 configurations
was performed and the average error becomes 3.70%. Note
that the TPS function consistently provided the least error
regardless of the number of samples. For example, when
15220 configurations are employed, an average error of
3.70% is found with TPS whereas Gaussian and modified
Gaussian functions provide an average error of 4.0% and
9.34%, respectively. In Figure 9(b), Pareto fronts identified
using TPS for three databases are reported. Increasing the
number of samples by a factor of 43 lowers the average error
from 21.43% (obtained with 10 samples) to 7.62% (computed
for 438 samples). The optimisation based on TPS and 438
samples was repeated 20 times in order to perform a statisti-
cal analysis on the resulting Pareto front approximations.
They were compared with the ϵ indicator, whose average
value was evaluated in 0.0091440 with a standard deviation
of 0.0044769, and the hv indicator, which showed an average
value of 0.36016 with a standard deviation of 0.0022778
with respect to the point at OEW/OEWCRM = 1 15 and
CD/CDCRM = 2 5. The reference point was chosen for con-
sistency with the reference results reported in Section 4 and
summarised in Figure 6(a). Similar results were obtained
for the other optimisations involving a different number of
samples as well as RBF functions. It was found that the
variability related to the stochastic initialisation of the
PSO algorithm is smaller than the error between results
produced with VLM and RBF for any given combination
of function and number of samples.

The surrogate model based on the neural network is
described next. Note that the same database with 438 samples
and the same scaling of input and output variables employed
for the RBF model were used to train the neural network too.
A brief investigation was performed to choose the size of the
network. Regarding inner and outer layers, the amount of
neurons is defined by the number of inputs and outputs.
According to the number of inputs (7) and outputs (8),
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guidelines proposed in [39] suggest a number of hidden
neurons ranging from 7 to 20. Thus, three two-objective
simulations aiming at minimising OEW and drag coefficient
were performed with a size of the hidden layer ranging
between 4 and 16. In addition, three large values (specifi-
cally 64, 256, and 512) were included in the investigation
as well. Results are reported in Figure 10(a) and they are
compared to VLM reference. Using 4 neurons produces
configurations which dominate the VLM ones. However,
a quantification of the error showed that the neural net-
work overestimated the performance and an average error
of 10.4% was found. Increasing the number of neurons to
8 improves the results. Using neural networks, the smallest
average error of 9.6% is found for 8 neurons. Further
increasing their number to 16, 64, 256, and 512 leads
to inaccuracies, and the average error becomes 11.2%,
12.7%, 11.2%, and 14.6%, respectively. In Figure 10(b), a
comparison of Pareto fronts produced with neural net-
work and RBF using the same database of 438 samples
is presented. Both surrogate models are able to identify
the Pareto front accurately. However, a better agreement
is found near the central region of the Pareto front when
it comes to neural network.

Results from a statistical analysis are provided here for
the surrogate based on neural network and trained with 438
samples. It was performed on 20 Pareto front approxima-
tions which were produced by running the optimisation with
8 neurons. An average value of 0.0047656 and a standard
deviation of 0.0010489 were found for the ϵ indicator. The
hv indicator has an average value of 0.36429 and a standard
deviation of 0.0033477 with respect to the point at OEW/
OEWCRM = 1 15 and CD/CDCRM = 2 5. This is the same ref-
erence point which was chosen for analysing the reference
results in Section 4 as well. Similar results were obtained
for the optimisation involving a different number of
neurons and the same training set. They confirm that the
error introduced by approximating VLM with a neural

network is larger than the variability associated to the
stochastic initialisation of the PSO algorithm.

A summary concerning the computational cost of
surrogate modelling is given. Statistics is reported here for
the RBF model which uses TSP and the neural network with
8 neurons. Note that only the aerodynamic model is replaced,
and when evaluating the objective function, part of computa-
tional time is still employed to run the mass estimation
model and stability model as well as to transfer data. Compu-
tations were performed using a single core of an Intel i7
4810MQ CPU. The total computational cost is split into
two contributions. The first one is the computation of the
aerodynamic database which was used by both surrogate
models. It took 438 evaluations of the objective function
using VLM for a total of 17m 50 s which includes 1 s for each
evaluation to execute external models and transfer the data.
Regarding RBF, the matrix inversion needed to compute
RBF coefficients took roughly 5 s and it was performed only
once. Secondly, interpolation of aerodynamic data for one
configuration took 0.23 s and this task had to be repeated
for 48 iterations and a swarm size of 128. Thus, the total time
needed to run the MDO simulation with RBF model is 41m
20 s split between building the surrogate model (17m 50 s)
and using it (23m 30 s). Regarding the surrogate model based
on neural network, it needs 25m 51 s to perform the optimi-
sation for a total of 43m 41 s, which is comparable to the
amount of time needed by the RBF model. These numbers
are compared to the VLM reference. The cost of evaluating
the objective function using aerodynamics based on VLM is
1.5 s on an Intel i7 4810MQ CPU, and this task was repeated
for 48 iterations and a swarm size of 128. The total time
employed to perform the optimisation is about 2 h 33m
using a single core.

4.2. Hybrid Modelling for Aerodynamics. The computation of
the threshold for the hybrid model was performed by
applying the procedure described in Section 2.1 to the
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reference results. Specifically, two sets of results were consid-
ered. The first one is composed of all configurations assessed
with VLM during the two-objective optimisation aiming to
minimise OEW and drag coefficient. They were depicted in
Figure 5(c). The second one contains data produced with
RBF model based on the TPS function when performing
the same optimisation. Results were already shown in
Figure 8. Each set is considered in turn, and the cumulative
distribution is given in Figure 11(a). Such distribution is
shown for both databases and for three numbers of neigh-
bours, specifically 2, 4, and 8. Values of σ ranging from 0 to
0.35 are found. Note that aerodynamic data for 95% of con-
figurations has a standard deviation of less than σ < 0 225
when 2 or 4 neighbours are considered. A close-up in the
region around σ ≈ 0 225 is depicted in Figure 11(b). It is
shown that results produced with VLM and RBF converge
to σ ≈ 0 25 when the number of neighbouring configurations
is 8. Information in Figure 11 was exploited to set a threshold
σt = 0 15 and a number N = 5 of neighbours as a criterion to
switch between VLM and RBF model. It means that data
from the RBF model is considered reliable when its standard
deviation from the closest 5 neighbours σ is σ < σt.

Performing a two-objective optimisation to minimise
OEW and drag coefficient with the hybrid model using a
swarm size of 128 for 48 iterations, a threshold σt = 0 15
and a number N = 5 of neighbours took 44m 17 s on an
Intel i7 4810MQ CPU using a single core. Results are
shown in Figure 12. The ratio between the number of
evaluations of the objective function using VLM and
RBF is depicted in Figure 12(a). The first iteration is per-
formed with VLM since no database is available to per-
form RBF interpolation. The following 3 iterations show
no contribution by the surrogate model as well. This is
due to values of σ for interpolated aerodynamic data
which are above the threshold σt = 0 15. Starting from
the fifth iteration, results from the surrogate model are

considered accurate with σ < σt. The number of evalua-
tions performed with RBF increases, and by the end of
the simulation, a total of 43% of configurations was
assessed exclusively with the surrogate model. The Pareto
front obtained with the hybrid model is compared to the
ones computed with RBF and VLM in Figure 12(b). Over-
all, a very good agreement is found between the hybrid
model and the VLM reference. Results for the lower
region of the Pareto front match accurately and the upper
region, for which fewer configurations are available, are
identified too. In addition, a comparison is provided
between the hybrid model and the RBF one. The latter is
able to reproduce the upper region of the Pareto front
properly. Concerning the lower part, the hybrid model
provides more accurate results. This result was confirmed
by performing the hybrid optimisation 20 times and com-
paring the resulting Pareto fronts. The average value of the
ϵ indicator is 0.0061991 with a standard deviation of
0.0026108 whereas the hv indicator has an average value
of 0.36016 and a standard deviation of 0.002277 with
respect to the reference point at OEW/OEWCRM = 1 15
and CD/CDCRM = 2 5. This is chosen for consistency with
the reference results reported in Section 4.

A quantitative summary of the investigation concerning
surrogate modelling for aerodynamics using RBF, neural
network, and hybrid model is provided in Table 2. Results
for the same two-objective optimisation aiming at mini-
mising the OEW and drag coefficient are compared. The
surrogate model based on RBF interpolation identifies
the Pareto front with an average error of 7.62%. The com-
putational cost is reduced to almost a quarter of the VLM,
and this figure is similar for all surrogate models. The
neural network is the least performing of the surrogate
models since its error is 9.60% on average and the
corresponding computational time is decreased to 28.5%.
Conversely, the hybrid model provides the best results
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with an error smaller than 1% at the same computational
cost. The total time needed by the hybrid optimisation is
44m 17 s since evaluations took 1.5 s and 0.23 s using
VLM and RBF, respectively. A higher number of VLM
evaluations (around 1500) is performed for the hybrid

model when compared to the RBF surrogate, which used
438 VLM simulations for the sampling instead. However,
the computational time for data-transferring and execution
of external models is negligible for the hybrid optimisation
since both VLM and RBF are now part of the same model
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Table 2: Performance of surrogate models for aerodynamics. Error and its standard deviation are referred to the exact value computed with
VLM and expressed as a percentage.

Method
Average
error

Standard
deviation

Computational
time

VLM — — 100%

RBF 7.62% 14.6% 27.0%

Neural network 9.60% 17.0% 28.5%

Hybrid 0.784% 2.32% 28.9%
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and no additional overheads are needed. This is the key
element of the cost saving which is reported here. Note
also that the computational time and accuracy of the
hybrid model change as a function of the threshold. For
example, further reduction of time was obtained by
performing the same two-objective optimisation using a
threshold σt = 0 20. An average error of 1.18% was
found, and the total computational time was 27m 41 s
which is 18% of the reference.

5. Conclusions

The paper describes an investigation into surrogate model-
ling for wing planform multidisciplinary optimisation which
exploits a novel model-based framework. The workflow is
composed of a particle swarm optimiser and a performance
model which is in charge of computing the objective function
for each configuration to be assessed. It employs a mass
estimation model to estimate the mass, a stability model
for the computation of longitudinal stability derivative,
and an aerodynamic model.

Four models were exploited for the calculation of aerody-
namic performance. The original model relies on the vortex
lattice method, and it provided the reference results. Three
models provide surrogates for the calculation of aerodynamic
data. The first one is based on radial basis function interpola-
tion whereas the second one employs an artificial neural
network. They both require the precomputation of an aero-
dynamic database prior of their usage. A third, hybrid
approach based on both VLM and RBF is proposed to avoid
the precomputation. Switching between the two underlying
models is based on a novel criterion which is defined in an
objective way. When assessing a new configuration, results
provided by the surrogate model are accepted if their stan-
dard deviation with respect to neighbouring configurations
in the parameter space is below a given threshold. In turn,
the threshold value is obtained by analysing results of previ-
ous optimisations only once. Results and performance of
surrogate models were compared by performing the same
benchmark optimisation. It minimises two objectives, specif-
ically operating empty weight and drag coefficient.

Key findings are summarised as follows. Regarding the
RBF model, employing the thin plate spline function pro-
vides the most accurate results. This is valid for all numbers
of samples which were investigated. The convergence curve
is almost flat since an average error of 10% is obtained with
50 samples, but 438 are needed to go below 8%. The compu-
tational cost is reduced to a third of the original one. Regard-
ing the artificial neural network, the investigation showed
that a number of 8 neurons provide results which are compa-
rable to the ones from the RBF model when using the same
precomputed database. The computational cost is similar
too, and increasing the number of neurons does not improve
the final results in terms of average error. Regarding the
hybrid model, the results show an excellent agreement with
the original model. The threshold affects both average error
and computational cost. Modifying its value, it is possible
to act directly on the percentage of evaluations performed
with the original model or its surrogate. Thus, the level of

accuracy, and the corresponding computational cost, can be
arbitrarily decided.
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