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ABSTRACT 

 

Wear in journal bearings occurs when the operating conditions (high load, high temperature, low 

angular velocity or low viscosity), downgrade the ability of the bearing to carry load. The wear depth 

increases because the rotor comes in contact with the bearing surface. Wear in journal bearings affects 

their characteristics because of its influence on the thickness of the fluid film. This influence can be 

detected in the dynamic behavior of the rotor and especially in the dynamic stiffness and damping 

coefficients.  

In this paper, the effect of wear on the rotordynamic stiffness and damping coefficients (K and C) 

of a short journal bearing is investigated. K and C in this work are estimated by using two methods: a) 

a semi analytical method and b) finite element analysis implemented in the ANSYS software. The 

main goal of this research is to make the identification of wear in journal bearings feasible by 

observing the alternation of their dynamic coefficients. Both of the methods implemented are proven 

to be useful, while finite element analysis can provide more accurate results.  
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Nomenclature: 

Cij (N*s/m) : Damping dynamic coefficients  R (m) : Bearing radius 

c (m) : Clearance r,t : Rotating coordinate system 

D (m) : Bearing diameter S : Sommerfeld number 

d0 (m) : Wear depth W (N) : Axial load 

e0 (m) : Journal eccentricity ε (m) : Eccentricity ratio 

Fi (N) : Forces Θ,θ (rad) : Peripheral coordinates 

F0 (N) : Bearing load μ (N*s/m) : Oil viscosity 

h (m) : Lubricant thickness σ : Modified Sommerfeld number 

Kij (N/m) : Stiffness dynamic coefficients φ0 (rad) : Attitude angle 

L (m) : Bearing length x,y : Inertial coordinate system 

P (Pa) : Hydrodynamic pressure Ω (rad/sec) : Angular velocity 

 

1. Introduction 

The response of a rotor-bearing system depends on the geometric and material characteristics of the 

rotor, the exciting forces and the dynamic coefficients of the supporting journal bearings. The 

lubrication of the supporting bearings is described by the hydrodynamic theory expressed by the 

Reynolds equation.  

A usual situation in such systems is wear occurring on the bearing surface. Wear arises due to 

overload or due to dry friction during startup or shutdown of the system, leading to contact between 
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the rotor and the bearing surface. In such cases, wear affects the oil thickness and subsequently the 

pressure distribution. Moreover, the equilibrium point of the rotor, the dynamic coefficients of the 

bearing and the response of the system are affected as well.  

The onset and development of wear in plain hydrodynamic journal bearings under repeated 

stop/start cycles have been studied experimentally by Mokhtar et al. [1]. The wear that occurred was 

easily discernable; however, localized changes in diametric clearance, surface finish and roundness of 

the bearing bore were measured after various numbers of operating cycles had been completed. A 

study of the wear location within the bearings showed that it was caused entirely by the sliding motion 

that occurred during start up and that no significant contribution to the wear process was observed at 

shutdown. This group also observed that, after an initial rapid phase of wear was completed, the 

surface finish of the hardened steel shaft was reproduced in regions of the surface of the bearing 

subjected to continued wear.  

Kumar and Mishra [2] investigated numerically the effects of geometric change due to wear on the 

stability of hydrodynamic turbulent journal bearings, following Constantinescu's turbulent lubrication 

theory. They drew stability curves for various values of wear depth parameter, considering turbulence. 

Wear causes the stability of the rotor to deteriorate in the case of lightly loaded bearings. In the case of 

worn bearings, a lower L/D ratio gives better stability. Kumar and Mishra also concluded in [3] that 

increasing wear, causes the decrease of the load carrying capacity. Additionally, the frictional drag and 

the flow rate of a journal bearing operating under turbulent flow conditions are increased. The effect 

of wear on load carrying capacity and friction is greater at lower L/D ratios. 

Laurant and Childs[4] performed tests which showed that in a plugged-orifice bearing there were 

increases in direct and cross-coupled stiffnesses and direct damping at higher values of eccentricity 

ratios. No similar increases were observed with worn bearings. Load capacity was not significantly 

influenced by large simulated wear on the land. The test results indicated that neither a single plugged 

orifice nor significant wear on the bearing land would disable a well-designed hybrid bearing. 

Awasthi et al.[5] performed an analysis of a non-recessed worn hybrid journal bearing with orifice 

restrictors. They used the Newton-Raphson method (FEM) to solve the Reynolds equation for the flow 

of the lubricant in the bearing clearance space. The results showed that the wear affects the bearing 

performance significantly. The found that: (i) for a specified load and restrictor design parameter the 

changes in the performance characteristic parameters were more pronounced at higher values of the 

wear depth parameter (ii) due to significant variation in the performance characteristic parameters, the 

effect of wear should be considered for running a system satisfactorily over a designed life span. 

Vaidyanathan et al.[6] studied the characteristics of noncircular bearings, considering the effects of 

turbulence and cavitation. They considered four bearing profiles: circular, worn-circular, two-lobe and 

elliptical. The linearized lubrication theory of Ng and Pan was used to simulate the turbulence. 

Reynolds equation was suitably modified to account for both turbulence and cavitation. The equation 

was incorporated into the Elrod cavitation algorithm. This numerical procedure implicitly incorporated 

the JFO boundary conditions at rupture and reformation boundaries.  

Hashimoto et al [7] presented the effect of geometric change due to wear on the dynamic 

characteristics of journal bearings. They analyzed the dynamic characteristics, such as spring and 

damping coefficients, of a rigid rotor supported by two identical symmetrically aligned bearings for 

various wear depth parameters. They concluded that the geometric change due to wear has significant 

effects on the principal spring coefficients and the cross-coupled damping coefficients.  

In a recent study Chasalevris et al. [8] studied the dynamic effect of bearing wear on the rotor-

bearing response. The Rayleigh coupled equations were used to describe the vibration of the rotor 

while the journal bearing forces have been evaluated by solving the Reynolds equation. They 

concluded that bearing wear affects the dynamics of the rotor introducing additional half-harmonics: 

1/2X, 3/2X, 5/2X etc. The 1/2X harmonic is more sensitive when wear is developed and the journal 

whirling is rather large. 

An earlier attempt to connect the wear depth with the dynamic characteristics is presented by 

Gertzos et al. [9]. They used a Computational Fluid Dynamics (CFD) analysis to solve the Navier–

Stokes equations of a worn hydrodynamic journal bearing. They concluded that all the presented 

bearing characteristics are significantly altered as wear depth increases. Eccentricity and attitude angle 

increase as the side oil flow and the friction coefficient decrease. 

Rozeanu and Kennedy [10] found that wear occurs in three different locations in journal bearings, 

with each of the locations showing a different predominant wear mechanism. Finally, they showed 

http://www.researchgate.net/researcher/2002529454_Kumar_Vaidyanathan


 

that the study of the wear problem requires a different model experiment for each of the three different 

wear modes, and each wear mode also requires a different remedy to achieve wear reduction. 

Ronen and Malkin [11] investigated wear mechanisms in hydrodynamic bearings by contaminant 

abrasive particles in the oil film. This type of wear is one of the main factors responsible for the failure 

of hydrodynamic bearings especially when operating in dusty environments. They have conducted 

experiments with two shaft materials and three liner materials, giving a total of six material 

combinations. As a result, they deduced that a smaller hardness ratio resulted in relatively more liner 

wear and less shaft wear.  

Li et al [12] studied the oil film pressure of a hydrodynamic bearing, the stress of bearing bush 

alloy, the simulation movement of the rotor, the reasons of failure and the wear mechanism of bearing 

bush in the Ansys software. 

Bouyer et al [13] focused on two-lobe journal bearings. These mechanical components tend to be 

subjected to numerous startups and stops. During transient periods, direct contact between the journal 

and the bearing induces high friction in the lubricated contact and hence wear of the lining. They 

presented experimental data subjected to numerous starts and stops. Then, a comparison was made 

between the measured bearing performance and numerical results. They observed that hydrodynamic 

pressure increases, whereas the temperature at the film/bush interface slightly decreases on both the 

upper and lower lobes.  

Phalle et al.[15] studied the influence of wear on the performance of a membrane compensated 2-

lobe four-pocket hybrid journal bearing system. The modified Reynolds equation governing the flow 

of lubricant in the clearance space of a journal bearing system was solved using FEM and Newton–

Raphson methodand The numerically simulated results clearly indicated that the performance of the 

bearing wass greatly affected by wear. 

Scharrer et al.[16] solved the Reynolds equation the turbulent flow of liquid hydrogen through an 

orifice compensated hydrostatic bearing with a worn stator element. The clearance function for the 

worn bearing was defined by the depth and circumferential location of wear and the resulting 

intersection of the journal and housing radii. The results showed that the performance of the bearing 

degrades steadily for wear amounts greater than 5 percent of the radial clearance and is relatively 

insensitive to the geometrical location of the wear. 

Nikolakopoulos et al. [17] presented an analytical model in order to find the relationship among the 

friction force, the misalignment angles and wear depth. The Reynolds equation was solved 

numerically and the friction force was calculated in the equilibrium position. The friction coefficient 

was presented versus the misalignment angles and wear depths for different Sommerfeld numbers, 

thus creating friction functions dependent on misalignment and wear of the bearing. The variation in 

power loss of the rotor-bearing system was also investigated and presented as a function of wear depth 

and misalignment angles.  

In this study, the well-known Dufrane [18] wear model has been implemented to introduce wear 

into the mathematical model. The model of a short bearing has been investigated. The oil forces acting 

on the rotor are analytically calculated and presented in closed form for the intact and the worn case. 

The same method has been applied for the dynamic stiffness and damping coefficients. The model has 

been validated using a finite element (FE) model of a hydrodynamic journal bearing using the ANSYS 

software. The dynamic coefficients are presented versus the wear depth parameter.  

The purpose of this work is to give closed form expressions for the rotor dynamic coefficients 

(stiffness and damping), for short worn journal bearings or for worn journal bearings with a low L/D 

ratio, where the wear effect is greater, according to Kumar and Mishra [1, 2]. The second objective is 

to validate these closed form expressions using the CFD capability of ANSYS software. Then, the 

stiffness and damping coefficients versus the wear depth parameter will be presented and validated 

numerically. 

 

2. Wear model 

In this paragraph, the wear model that has been used is introduced. The wear model in this project 

was proposed by Dufrane [10] and it is shown schematically in figure 1. 

The film thickness h0 in the non-worn region ( ands f     ) is given by the equation:  

 

 0 0 cosh c e     (1) 



 

 

where c is the radial clearance of the journal bearing.  

The starting and final points of the worn region (θs and θf) are given by the solution of the equation: 
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The lubricant thickness h0 in the worn region ( s f    ) is described by the equation: 
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Figure 1: Worn journal bearing 

 

3. Analytical solution 

For the purposes of the present analysis, an input script was created in the Matlab software. Its 

basic functions are presented below: 

 Determination of the geometrical and operational characteristics (eccentricity and attitude 

angle). 

 Calculation of the dynamic coefficients of a non-worn journal bearing in the rotating 

coordinate system. 

 Transformation of the dynamic coefficients from the rotating to the Cartesian coordinate 

system. 

 Estimation of the relationship between the attitude angle and eccentricity in worn journal 

bearings within a loop. 

 Estimation of the dynamic coefficients of a worn journal bearing in the rotating and Cartesian 

coordinate system. 

 

Note: Intact (non-worn) journal bearings have not been considered as a special case, but as worn 

journal bearings with wear depth equal to zero (d0 = 0). 

The mathematical background and the method implemented in the Matlab script are presented in 

the following lines. 

The Reynolds equation, which describes the flow in journal bearings, has been used in the 

analytical solution [11]:  

 

    
3 3

2

1

12 12 2

h P h P
h h

R z z t

 
 

    

         
     

        
 (4) 

 

The assumptions needed to obtain the solution of the Reynolds equation are [2]: 



 

 The amplitude motions around the equilibrium position have to be small, so 
0( ) ( )e t e e t 

 
and

0( ) ( )t t    , where Δe and Δφ are small displacement quantities, respectively.  

 Products of small quantities such as e    should be considered equal to zero. 

 In the case of short journal bearings, the circumferential flow is very small, i.e. 0
P







. As a 

result, the Reynolds equation reduces to: 
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where h can be obtained by the equations (1) or (3) depending on the value of the angle θ. 

According to the assumptions made, the film thickness for the non-worn region can be written as: 
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Considering that 0  ,  sin      and  cos 1  , equation (6) reduces to: 
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The film thickness for the worn region can be written as: 
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Considering that 0   ,  sin      and  cos 1  , equation (8) reduces to:  

 

  0 0 0 0 0cos cos sin cosh d e c e e                (9) 

 

Integrating equation (5) two times, gives: 
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The radial and tangential coefficients of the film force can be obtained by the following equation: 
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The area in which the film pressure is positive (0<θ<π) can be divided into 3 sub-areas: 

a. 0 s   . In this area, the film thickness is equal to: 0 0 cosh c e     

b. s f    . In this area, the film thickness is equal to: 
'

0 0 0 0cos cos( )h d e c         

c. f     . In this area, the film thickness is equal to: 0 0 cosh c e     

The form of the solution of equation (11) is: 
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At this point, the terms 0
0

h
H

c
  and 

'
' 0
0

h
H

c
  are introduced. 

A first order Taylor series expansion was used to solve equation (11): 
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The radial and tangential forces acting on the journal, Fr0 and Ft0 respectively, can be calculated by 

substituting (10) into (11): 
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The dynamic coefficients of the bearing were calculated by solving equation (11) with respect to 

Kij and Cij: 
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The dynamic coefficients listed above, refer to the rotating coordinate system and not to the 

Cartesian coordinate system. The relationship between the dynamic coefficients in both coordinate 

systems can be determined by the following transformations: 
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4. Finite element solution 

A script in the ANSYS software was created for the calculation of the dynamic coefficients of a non-

worn journal bearing. The functions of the script are presented in the following lines. 

 Deletion of old data. 

 Determination of the size of the matrices in which the results (equilibrium position & dynamic 

coefficients) were going to be stored. 

 Mesh consisted of 180 divisions on the circumferential direction, 10 divisions across the 

bearing’s oil film and 10 divisions in the axial direction. 

 Coordinate systems (Cartesian & rotational) situated on the center of the rotor and the bearing. 

 Computation of the linear velocities of the nodes of the rotor. 

 Computation of the film pressure and the forces acting on the rotor. 

 Calculation of the equilibrium position with a loop which implemented the 2-D Newton-

Raphson search technique. This loop was ended when the desired accuracy was achieved. 

 Computation of the stiffness and damping dynamic coefficients according to the following 

equations: 
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5. Results 

In this paragraph, the results related to the dynamic coefficients of the analytical method and the 

finite element model are presented. 

 

5.1. Analytical solution 

As for the analytical solution, figures 2 and 3 depict the dimensionless stiffness and damping 

dynamic coefficients respectively, versus the modified Sommerfeld number, for a non-worn journal 

bearing.  

In short length journal bearings, the modified Sommerfeld number σ is defined as:  
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The geometrical and operational characteristics of the bearing, considered for the present analysis, 

are: 

 Radial clearance c=20x10-6 m 

 Bearing radius R=25x10-3 m 

 Bearing axial length L=12.5x10-3 m 

 Journal rotational speed Ω=300 rad/s 

 Absolute oil viscosity μ=0.012 Pa.s 

 

In figure 2, the negative values of the Kyx dynamic stiffness coefficient have been replaced by their 

absolute values in order to be represented in a logarithmic diagram. 
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Figure 2: Dimensionless stiffness dynamic 

coefficients vs. modified Sommerfeld number 

Figure 3: Dimensionless damping dynamic 

coefficients vs. modified Sommerfeld number 

 

The effect of the geometric change due to wear, on the dimensionless stiffness and damping 

dynamic coefficients of a bearing is depicted in figures 4 and 5 (modified Sommerfeld number 

σ=0.185). More specifically, the coefficients over the ones corresponding to the intact case (d0 = 0) are 

presented.  
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Figure 4: Dimensionless stiffness dynamic 

coefficients vs. wear depth parameter 

Figure 5: Dimensionless damping dynamic 

coefficients vs. wear depth parameter 

 

5.2. Finite element solution 

In this paragraph, the results of the finite element solution are presented. The geometrical and 

operational characteristics of the bearing for the FEM analysis are identical with those used in the 

analytical approach.  

For the purposes of the current analysis, a dynamic mesh was designed. Specifically, the nodes of 

the mesh were not static, but they could adjust their position analogically, to obtain more accurate 

results. The mesh is depicted in figures 6 and 7. 

 

  
Figure 6: Μesh of a non-worn journal bearing Figure 7: Μesh of a worn journal bearing 

 

The pressure distribution on the circumference of a non-worn and a worn journal bearing 

respectively is depicted in figures 8 and 9. 

 

  
Figure 8: Pressure distribution on the 

circumference of a non-worn journal bearing 

Figure 9: Pressure distribution on the 

circumference of a worn journal bearing 

 

Figure 10 illustrates the variation of the position of the equilibrium point, as a function of the 

Sommerfeld number and the wear depth parameter. 
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Figure 10: Variation of the equilibrium point, as a function of the Sommerfeld number and the wear 

depth parameter 

 

Figures 11 and 12 present the dimensionless stiffness and damping dynamic coefficients 

respectively versus the modified Sommerfeld number, for a non-worn journal bearing, via the FEM 

solution. 
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Figure 11: Dimensionless stiffness dynamic 

coefficients vs. modified Sommerfeld number 
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Figure 12: Dimensionless damping dynamic 

coefficients vs. modified Sommerfeld number 

 

The effect of the geometric change due to wear, on the dimensionless stiffness and damping 

dynamic coefficients of a bearing, is depicted in figures 13 and 14 (modified Sommerfeld number 

σ=0.185). 
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Figure 13: Dimensionless stiffness dynamic 

coefficients vs. wear depth parameter 

Figure 14: Dimensionless damping dynamic 

coefficients vs. wear depth parameter 

 

The differences in the results between the semi-analytical and the FEM results exist due to the 

following reasons:  

 The semi-analytical solution is based on the assumption that eccentricity and attitude angle are 



 

linear functions(
0( ) ( )e t e e t   

, 
0( ) ( )t t   

 
), which does not reflect reality for large rotor 

displacements. 

 The results obtained from the semi analytical solution (figures 4 and 5), do not refer to a 

constant modified Sommerfeld number (modified Sommerfeld number alters slightly while 

the bearing’s geometry changes). In contrast, results obtained by the FEM solution (figures 13 

and 14) refer to a constant modified Sommerfeld number. 

 The Reynolds equation used in the semi-analytical solution has been simplified using a Taylor 

series, to describe the properties of infinitely short journal bearings (L/D0), while the bearing 

studied in this project is not infinitely short (L/D>0). Therefore, deviations from the correct 

results can be justified. 

 

6.  Conclusions 

To conclude, the analytical solution results are not identical to those produced by the FEM 

analysis. However, it can be seen that there are many similarities between the results of the two 

solutions. Therefore, the analytical solution could be trusted, especially when the wear depth 

parameter is small and the computational cost should be reduced. There is deviation of the analytical 

solution from the expected results (FEM solution), because of the assumptions made for the analytical 

solution, which affect the results, especially for high L/D ratios. 
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