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The aerodynamic performance of the exhaust system is becoming more important in the design 
of engines for civil aircraft applications. To increase propulsive efficiency and reduce specific fuel 
consumption, it is expected that future engines will operate with higher bypass ratios, lower fan pressure 
ratios and lower specific thrust. At these operating conditions, the net thrust and the specific fuel 
consumption are more sensitive to losses in the exhaust. Thus the performance of the exhaust needs 
to be accurately assessed as early as possible during the design process. This research investigates low-
order models for the prediction of the performance of separate-jet exhaust systems, as a function of the 
free-stream Mach number, the fan nozzle pressure ratio and the extraction ratio (fan to core pressure 
ratio). In the current practice the two nozzles are typically considered in isolation and the performance 
is modelled as a function of their pressure ratio. It is shown that the additional degrees of freedom have 
a substantial impact on the metrics describing the performance of the exhaust system. These models can 
be employed at a preliminary design stage coupled with engine performance models, which require as 
input the characteristics of the exhaust system. Two engines, which are representative of current and 
future large turbofan architectures are studied. The low-order models investigated, generalized Kriging 
and radial basis functions, are constructed based on data obtained with computational fluid dynamics 
simulations. The data represents the characteristics of the exhaust of each engine, and they are provided 
for the first time for a wide operational envelope. The influence on accuracy of the type of surragate 
model and its settings have been quantified. Furthermore, the trade-off between the accuracy of the 
model and the number of samples has been identified. It is found that the exhaust performance metrics 
can be modelled using a low-order model with sufficient accuracy. Recommendations on the best settings 
of the model are also provided.

© 2019 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The current trends in civil aviation are characterized by the 
drive to reduce specific fuel consumption. This can be achieved by 
increasing the bypass-ratio and by decreasing the fan pressure ra-
tio and the specific thrust. This strategy, however, leads to config-
urations for which the specific fuel consumption is more sensitive 
to losses in the exhaust [1]. Thus, as early as possible in the de-
sign process, the performance of the exhaust system needs to be 
accurately assessed.

This paper focuses on low-order models, also known as re-
sponse surface models (RSM), for the prediction of the aerody-
namic performance of separate-jet exhaust systems. These kind of 
models are typically employed in industry in a preliminary de-
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sign phase, linked to engine performance cycle models, to couple 
the engine characteristics to that of the exhaust. Engine perfor-
mance cycle models are computer tools used for the prediction 
of engine performance and fuel burn, and they require as input 
the characteristics of the exhaust system. The performance of the 
exhaust system is traditionally quantified through the definition 
of nondimensional discharge and thrust coefficients, C D and C F , 
respectively, [2–4] (section 2.1). These metrics take into account 
the internal pressure and viscous drag components in the noz-
zle stream, which can be substantial sources of thrust loss. The 
discharge and thrust coefficient relate the performance of the ac-
tual nozzle to that of an ideal nozzle that expands isentropically 
the flow to ambient static pressure [5]. In the current practice 
the models of C D and C F are relatively simple and derived from 
classical formulations. For instance, a standard characteristic of the 
nozzle discharge coefficient for a convergent nozzle is a function of 
the cone half-angle (boat-tail angle) and the nozzle pressure ratio, 
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ast.2019.05.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://creativecommons.org/licenses/by/4.0/
mailto:g.giangaspero@cranfield.ac.uk
https://doi.org/10.1016/j.ast.2019.05.027
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2019.05.027&domain=pdf


78 G. Giangaspero et al. / Aerospace Science and Technology 92 (2019) 77–90
Nomenclature

Abbreviations

BPR Bypass Ratio = ṁbypass/ṁcore . . . . . . . . . . . . . . . . . . . . . . . [–]
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
CNPR Core Nozzle Pressure Ratio = P core

0 /pamb . . . . . . . . . . [–]
CST Class Shape Transformation
DSFRN Dual Separate Flow Reference Nozzle
ER Extraction Ratio FNPR/CNPR = P f an

0 /P core
0 . . . . . . . . . [–]

FNPR Fan Nozzle Pressure Ratio = P f an
0 /pamb . . . . . . . . . . . . [–]

LOO Leave One Out
RBF Radial Basis Function
RMS Root Mean Square
RSM Response Surface Model
TSFC Thrust Specific Fuel Consumption

Subscripts

∞ Relative to the far-field
amb Ambient
D Discharge
G Gross
i index
N Net

Symbols

ṁ mass flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg/s]
γ ratio of specific heats
ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg/m3]
σ standard deviation
A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2]
C F Thrust coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [–]
d diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
F Thrust, propulsive force . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N]
n nugget
p Static pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Pa]
P0 Total pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Pa]
T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [K]
V Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]
x independent variable
y dependent variable
Cbypass

D Bypass discharge coefficient . . . . . . . . . . . . . . . . . . . . . . . . [–]
Ccore

D Core discharge coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . [–]
C Fx Overall axial force coefficient . . . . . . . . . . . . . . . . . . . . . . . [–]
Ma∞ Free-stream Mach number . . . . . . . . . . . . . . . . . . . . . . . . . [–]

Superscripts

core relative to the core nozzle
f an relative to the fan nozzle
throat relative to the throat of the nozzle
zone3 relative to the zone3 nozzle
with the discharge coefficient being constant and equal to unity 
for zero boat-tail angle [6]. The discharge coefficient C D may be 
modelled with a monotonic function which depends on the noz-
zle pressure ratio, on the boat-tail angle and on the diameter ratio 
[2]. Similarly, the nozzle discharge coefficient can be interpolated 
from a two-dimensional dataset, with nozzle pressure ratio and 
nozzle half angle as independent variables [7]. Recent gas turbine 
models, [8], use the same approach. Furthermore, the influence of 
the nozzle performance on thrust is typically represented by the 
thrust coefficient C F which is defined as the ratio of the actual 
thrust provided a propelling nozzle to the ideal thrust. The thrust 
coefficient takes into account that the actual nozzle exit veloc-
ity is lower than calculated via isentropic relations due to friction 
and flow non-uniformity [2]. The nozzle thrust coefficient is often 
only a function of the nozzle pressure ratio [2,7], or assumed con-
stant [6]. Thus, in all these relatively simple models the influence 
on performance of the freestream Mach number, which effectively 
changes the ambient conditions seen by the nozzle, and the influ-
ence of the interaction between the two main streams, bypass and 
core, are not taken into account. It will be shown that these vari-
ables have a substantial impact on the performance of the exhaust. 
For this reason they should not be neglected, especially when con-
sidering very high-bypass ratio engines, for which the specific fuel 
consumption is more sensitive to variations in net propulsive force 
compared to current engine architectures.

Current large turbofan engines for civil aviation operate with 
a bypass ratio (BPR) close to 11 [1]. For these engines, the ratio 
of gross to net propulsive force (FG/F N ) is approximately 3 [1,
9]. At the same time, the exchange rate between exhaust perfor-
mance and thrust specific fuel consumption (TSFC) is of the order 
of 3. An improvement of 0.1% in overall exhaust thrust coefficient 
can result in a reduction of TSFC of roughly 0.3% [10,11]. Future 
large turbofan engines are expected to be designed with a by-
pass ratio above 15 [12,1]. This rise in BPR brings an increase in 
the ratio FG/F N , which becomes approximately 4 for a BPR of 
16 [1]. This is due to the larger overall mass flow going through 
the engine which results in an higher inlet momentum drag and 
higher gross propulsive force. Consequently, the TSFC of future en-
gines is expected to be even more sensitive to changes in thrust 
coefficient [1]. Furthermore, in order to increase the propulsive ef-
ficiency, future engines will operate with lower fan nozzle pressure 
ratio (FNPR). While current architectures operate with design FNPR 
of approximately 2.7, future engines will have a FNPR around 2.2 
[2,3]. At lower FNPR the flow in the bypass duct can be either 
choked or unchoked depending on the external conditions. For a 
given FNPR, the mass flow of an unchoked nozzle is not fixed, 
thus its discharge coefficient is not constant and it is sensitive to 
changes in the external conditions. Additionally, the required in-
crease in BPR leads to a higher mass flow exhausted through the 
bypass duct relative to the core flow. Thus the overall performance 
of the engine will be more dependent on the design of the by-
pass nozzle, which could be unchoked over a greater portion of 
the operating envelope. All these considerations indicate that hav-
ing accurate models for the prediction of the exhaust performance 
will be of paramount importance for the design of future turbofan 
engines.

The performance of an exhaust system can vary greatly from 
one engine configuration to another. Ideally a model should be 
able to capture and represent such differences. One way to tackle 
this requirement is to define classes of engines, defined for in-
stance in terms of ranges of bypass ratios or required thrust, and 
to pick a particular engine as representative of each class. The 
underlying assumption is that the exhaust systems of engines be-
longing to a given class have similar performance, both in terms 
of trends and absolute values. Thus, in a preliminary design phase, 
their performance can be represented by one model, i.e. by one 
engine class. Moreover, the selected representative engines should 
be optimised geometries. In this work, low-order models for the 
exhaust systems of two engines (i.e. two classes of engines) for 
civil aircraft are constructed and studied. The engines considered 
are representative of current and future large turbofan architec-
tures.
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Fig. 1. Two-dimensional axisymmetric representation of the investigated engines architectures. E1 is the engine representative of future architectures and E2 is representative 
of current architectures.
In this work, Kriging and Radial Basis Functions (RBF) type of 
models are investigated. In the context of preliminary design and 
engine performance modelling, these low-order models are attrac-
tive as, once generated, they are readily and quickly interrogated. 
Thus they can be easily integrated into existing engine perfor-
mance tools and preliminary design systems. The dataset used to 
build the low-order models is generated by means of computa-
tional fluid dynamics (CFD) simulations. The dataset represent the 
exhaust characteristics of the corresponding engine and they are 
determined for a wide operational envelope. In addition to the in-
fluence of the fan nozzle pressure ratio (FNPR), the influence of the 
free stream Mach number (Ma∞) is taken into account. The inter-
action between the two main streams is also taken into account by 
considering the extraction ratio (ER = FNPR/CNPR), i.e. the pressure 
ratio between the fan and core nozzles, as one of the independent 
variables of the model. In previous works ([11,13]), at least one of 
the three degrees of freedom was kept constant, and the others 
varied across a relatively small interval, or with very few samples. 
Furthermore, previous works focused on engines representative of 
current architectures (BPR ≈10 to 12). In this work, for the first 
time the characteristics of an engine representative of future large 
turbofan architectures (BPR ≥15) are also presented. The goal is to 
have a higher fidelity, physics-based representation of the perfor-
mance of the exhaust system, while still keeping the benefit of a 
model that can provide a result quickly and therefore can be used 
in the context of preliminary design.

Surrogate models (or low order models) have been used suc-
cessfully in many areas of aerospace. For instance, a Gaussian 
process was developed for preliminary design of aircraft engine 
nacelles [14]. Kriging and radial basis functions have been inves-
tigated for the prediction of the aerodynamic loads (lift, drag and 
momentum coefficients) of an aircraft [15], focusing on optimal 
sampling criteria. A gradient-enhanced Kriging model has been de-
veloped for the aerodynamic coefficients and drag polar of an RAE 
2822 airfoil by combining direct and adjoint CFD solutions [16]. 
Kriging and gradient-enhanced Kriging models have also been em-
ployed in the context of uncertainty quantification [17]. However, 
to the authors knowledge, they have never been substantially em-
ployed in the context of exhaust system performance. Thus the aim 
of this research work is to assess whether or not Kriging or RBF 
low-order models can provide a robust and accurate prediction of 
nozzle characteristics in the context of a preliminary design phase. 
For each engine the nozzle characteristics are provided for large 
variations of the independent variables (Ma∞ , FNPR, ER). They 
constitute novel performance maps used to build surrogate models, 
the accuracy of which is assessed for the first time for this kind of 
datasets. Within this context, it is also of interest to provide guide-
lines regarding the most appropriate settings of the model as well 
as regarding the number of samples for a given target accuracy. 
Accuracy requirements are of particular significance when consid-
ered alongside the fact that, for future large turbofan architectures 
(BPR ≥15), higher exchange rates are anticipated between exhaust 
aerodynamic performance and engine TSFC.
Table 1
Engines operating conditions at design point (re-
produced from [9]).

Cycle parameters E1 E2 Unit

FNPR 2.2 2.8 -
ER 1.4 2.0 -
BPR 15+ 11 -
Ma 0.85 0.85 -
Altitude 10668 13106 m
Cruise net thrust ≈ 60 ≈ 40 kN

2. Background

The representative geometries chosen for this research have 
been designed and optimised in a previous work [9]. They have 
been defined in order to be representative of future (E1) and cur-
rent (E2) large turbofan engines. Their thermodynamic cycles at 
design-point (mid-cruise) are given in Table 1. The exhaust sys-
tems of these geometries have been obtained via a comprehensive 
optimisation strategy which consists of the following steps: design 
space exploration (DSE), response surface modelling, and optimi-
sation via genetic algorithm (applied to the surface model) [9]. 
The optimisation was targeted at the maximisation of the axial 
force coefficient C Fx (section 2.1). This work focuses on building 
low-order models to be used in the context of preliminary de-
sign. Furthermore, the intention is to replicate a typical industry 
practice, for which the design effort is dedicated exclusively to 
the exhaust system, without any detailed knowledge of the na-
celle nor of the intake of the engine. Thus, for the purposes of this 
work, the engines previously designed ([9]) are simplified and a 
standard exhaust system test configuration is adopted. The 2D ax-
isymmetric geometries of both engines are shown in Fig. 1. This 
configuration is representative of a typical experimental model ex-
haust, where the support sting contains the instrumentation and 
the flow streams that feed the nozzles [13,11,18]. Note that a third 
smaller ventilation duct, denoted as ‘Zone3’, is included in the ge-
ometry.

2.1. Performance metrics

The metric of interest to describe the performance of the ex-
haust system are the discharge coefficient (C D ) and the overall 
axial force coefficient (C Fx ). For a given nozzle, the discharge coef-
ficient is defined as:

Cnozzle
d = ṁactual

ṁideal
(1)

where the ideal mass flow is:

ṁideal = Athroat

(
ṁ

A

)
ideal

=

= Athroat P0

(
1

)1/γ
min(λ,λcrit)
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Fig. 2. Illustration of the accounting forces for the gross propulsive force FG .

×

√√√√√ 2γ

(γ − 1)RT0

⎛
⎝1 −

(
1

min(λ,λcrit)

) γ −1
γ

⎞
⎠ (2)

with

λ = P0/pamb, λcrit =
(

γ + 1

2

) γ
γ −1

. (3)

The discharge coefficient gives a measure of the efficiency (i.e. of 
the losses) of a single duct/nozzle. The overall axial force coeffi-
cient C Fx is a global parameter that accounts for the performance 
of the entire exhaust system [13]. It includes the losses on both 
internal and external walls up to the point of nacelle afterbody 
maximum radius Rmax as well as the gauge stream forces at the 
inlet of the ducts, see Fig. 2. It is defined as:

C Fx = FG

ṁbypass
actual V bypass

ideal + ṁcore
actual V

core
ideal + ṁzone3

actual V
zone3
ideal

(4)

where

V ideal =
√√√√ 2γ RT0

(γ − 1)

(
1 −

(
1

λ

)(γ −1)/γ
)

(5)

and FG is the gross propulsive force, defined as the sum of all 
forces on the walls plus the axial gauge stream forces at the inlet 
planes of the nozzles:

FG = F bypass
G + F core

G + F zone3
G −

∫
walls

(p − pamb) sinαdA

−
∫

walls

(τw cosα)dA (6)

The variable p indicates the local pressure on the wall, pamb is 
the ambient static pressure, α is the local surface angle measured 
from the axial direction, τw is the local shear stress and dA is the 
infinitesimal surface area. The gauge stream forces are obtained by 
integrating the axial gauge stream forces across the inlet plane of 
the corresponding nozzle:

F nozzle
G =

∫
inlet

ρV 2
axialdA +

∫
inlet

(p − pamb)dA. (7)

3. Methodology

3.1. Computational model for the generation of performance maps

The performance maps have been generated via CFD simu-
lations. The computational approach is consistent with previous 
studies [13,1]. The engines have been parametrised using two 
dimensional axisymmetric class shape transformation (CST) func-
tions [19], which consist of a class function weighted by a shape 
Fig. 3. Computational domain and boundary conditions.

Fig. 4. C Fx for engine E1. Every other datapoint for Ma∞ and FNPR is shown. Note 
that only the data relative to ER=1.4 is shown because the variations of C Fx with 
respect to ER are very small compared to the variations with respect to the other 
two variables.

function of superimposed Bernstein polynomials, plus an vertical 
offset. In a normalized Cartesian space x ∈ (0, 1), defining x = X/L
and y = Y /L with L being the axial scale, a CST function can be 
written as follows:

y(x) = C(x) · S(x) + x · yoffset, x ∈ (0,1) (8)

where S(x) and C(x) are the shape and class function, respectively. 
The shape function S(x) is defined as

S(x) =
n∑

r=0

(
Ar Kr,nxr(1 − xn−r)

)
, Kr,n = n!

r!(n − r)! (9)

and it corresponds to the n − th order Bernstein polynomial

B Pn =
n∑

r=0

(
Kr,nxr(1 − xn−r)

)
, (10)

scaled by the coefficients Ar . In this work the class function is 
equal to unity, i.e. C(x) = 1 [1]. The bypass as well as the core 
duct and nozzle aerolines have been reduced to a set of analytical 
expression as eq. (8). Also analytical expressions are obtained for 
the external lines, like the nacelle after-body, the core cowl and the 
plug. As recommended by a previous study [13], the computational 
domain consisted of a two-dimensional circular far-field with a di-
ameter of 60D and an inviscid sting which extends 7D upstream 
from the point of maximum radius of the exhaust system, Fig. 3.

The far-field boundary was modelled with a pressure far-field 
boundary condition. The static pressure and total temperature im-
posed at the far-field boundary were kept constant across all nu-
merical simulations. In particular, it was chosen to impose values 
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Fig. 5. Ccore
D for engine E1. Every other datapoint for each variable (Ma, FNPR, ER) is shown.
similar to those used for the Dual Separate Flow Reference Nozzle 
(DSFRN) benchmark test case ([11,13]). The freestream Mach num-
ber was altered via an increased total pressure in the far-field. It 
was found that the minimum Mach number for which it was pos-
sible to obtain a converged solution was 0.02. The inlets of the fan, 
core and vent streams were modelled with pressure inlet bound-
ary conditions. The inlet total temperature of all three streams 
was kept constant and equal to T ducts

0 = 294 K, consistent with 
the experimental setup of the DSFRN case. The fan and core total 
pressures were set to achieve the desired fan nozzle pressure ra-
tio (FNPR= P bypass

0 /pamb) and extraction ratio (ER= P bypass
0 /P core

0 ), 
while the total pressure of the zone3 was kept constant and equal 
to the design value of the given engine. The experimental support 
sting was modelled as an inviscid (slip) wall. All other walls were 
modelled as no-slip adiabatic walls.

The computational mesh was generated using a fully structured 
multi-block approach, with a target y+ of less than one and 50
nodes in the boundary layer, giving a mesh size of approximately 
0.8 × 106 cells. This mesh and a coarser one of ≈ 0.4 × 106 cells 
provide a grid convergence index (GCI) [20] of 0.017%, 0.83% and 
0.058% for Cbypass

D , Ccore
D and C Fx , respectively [1].

An implicit, density-based, axisymmetric compressible RANS 
solver was used. All conservation equation were discretized spa-
tially with a second order scheme, and gradients were computed 
with Green-Gauss node-based discretization. The k − ω Shear 
Stress Transport (SST) turbulence model was chosen to close the 
Favre-averaged equations. The convergence strategy consisted of 
a gradual increase of the Courant–Friedrichs–Lewy (CFL) number 
throughout the solution from 0.5 to 40. Residuals of all conserved 
variables were monitored with convergence of at least four orders 
of magnitude achieved.

This CFD methodology used in this work has been validated in 
a previous study ([13]). In previous work by Otter et al. [13] the 
computational approach was validated with a 3D model of the DS-
FRN, obtaining a root-mean-square error against the experiments 
for C Fx , Cbypass

D and Ccore
D of 0.03%, 0.36% and 0.31%, respectively. 

Similar error levels are found in related works [11]. The trends of 
all three performance metrics were correctly captured. This CFD 
approach was then adopted for an axisymmetric representation of 
the DSFRN configuration [13] where, for a wide range of FNPR, the 
root-mean-square error against experiments for C Fx , Cbypass

D and 
Ccore

D was 0.36%, 0.02% and approximately 1.1%, respectively. The 
higher difference levels of C Fx found for the axisymmetric model 
were attributed to the lack of the pylon in the axisymmetric model 
which was included in the 3D model and experimental setup. More 
Fig. 6. Cbypass
D for engine E1. Every other datapoint for Ma∞ and FNPR is shown. 

Note that only the data relative to ER=1.4 is shown because the variations of Cbypass
D

with respect to ER are very small compared to the variations with respect to the 
other two variables.

details of the validation of the CFD method adopted in this work 
are presented in Otter et al. [13]. Overall it is considered that the 
CFD approach is sufficiently validated for the purposes of the cur-
rent study.

3.2. Performance maps

From the description of the computational approach outlined 
above (section 3.1), it follows that the numerical simulations are 
uniquely defined once the freestream Mach number Ma∞ , the 
FNPR and the ER have been prescribed. These three variables can 
be varied independently and, for a given geometry, they constitute 
the degrees of freedom of the problem. The ranges of variation 
were chosen wide enough to include a typical range of operating 
conditions.

3.2.1. Engine representative of future architectures E1
The nozzle performance maps for the geometry representative 

of future large civil aero-engines, E1, are presented in Figs. 4 to 6. 
The dataset generated for this engine consists of 1625 CFD sim-
ulations, obtained with the following sampling strategy: 13 Mach 
numbers (0.02, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 
0.9), 25 FNPR (from 1.8 to 3.0 with steps of 0.05) and 5 ER (from 
1.25 to 1.55 with steps of 0.075). This full-factorial sampling strat-
egy enables a better representation of the design space at the 
boundaries compared to other more advanced strategies, such as 
Latin Hypercube Sampling (LHS) [21,22] which has been used in 
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Fig. 7. Mach number contours for E1 at Ma∞ = 0.20, ER = 1.4 and at different FNPR.

Fig. 8. Mach number contours for E1 at Ma∞ = 0.85, ER = 1.4 and at different FNPR.
previous works [1,9,14]. This is desirable especially when consid-
ering Ma∞ , for which the lower bound of the design space is a 
physical one (Ma∞ > 0) thus it cannot be chosen arbitrarily. Fur-
thermore, it allows appropriate sample resolution for the dominant 
exhaust parameters. For example, for C Fx the primary variables 
are FNPR and Ma∞ (Fig. 4). Finally, this sampling strategy allows 
the delineation of the effects associated with each of the inde-
pendent variables (FNPR, ER, Ma∞), the impact of which can be 
studied individually. This would not be possible with LHS due to 
the cross-contamination of the aerodynamic mechanism. This is 
because with LHS, by construction, no two samples are obtained 
for the same value of any of the independent variables.

Note that the influence of all three variables ER, FNPR and Ma∞
is pronounced for Ccore

D , while the freestream Mach number and 
the FNPR are the dominating factors for the value of Cbypass

D and for 
C Fx . Furthermore, Ccore

D , Fig. 5, exhibits the least smooth behaviour 
compared to the other performance metrics, Figs. 4 and 6. This is 
because the static pressure field at the exit of the core nozzle is 
strongly influenced by the shock pattern in the bypass stream as 
well as by the free stream Mach number (Figs. 7 and 8). The com-
plex pattern of shocks in the bypass stream can create close to the 
core exit plane a static pressure field characterized by local values 
considerably higher than the ambient pressure, thus suppressing 
the mass flow discharged by the core. Furthermore, the shocks are 
weaker at the higher freestream Mach number, Figs. 7b and 8b. 
The non-linear nature of the shock formation can cause sudden 
changes in the behaviour of the core discharge coefficient, which 
deviates considerably from the classical assumption ([2]) that the 
discharge coefficient is a monotonic function of the nozzle pres-
sure ratio. Thus the non-linear nature of the underlying problem 
of a transonic flow in and around a complex geometry translates 
into the non-linear relationship between the inputs (Ma∞ , FNPR, 
ER) and the outputs (C Fx , Cbypass

D , Ccore
D ) of the model. Non-smooth 

data might cause unphysical oscillations in the surrogate model 
if not addressed properly [14], and might cause difficulties in the 
generation of the RSM. Nevertheless, as shown in section 4, the in-
vestigated surrogate models are able to reflect the non-linearity of 
the problem.
Fig. 9. C Fx for engine E2. Every other datapoint for Ma∞ and FNPR is shown.

3.2.2. Engine representative of current architectures E2
Engine E2 is representative of current architectures. It has a BPR 

of 11 and a design FNPR of 2.8 (Table 1). The database of CFD sim-
ulations for this engine consists of 663 CFD simulations: 13 Mach 
numbers (0.02, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 
0.9), 17 FNPR (from 2.4 to 3.2 with steps of 0.05) and 3 ER (1.85, 
2.0, 2.15). The value of axial force coefficient is almost constant at 
the higher FNPR, Fig. 9, while for engine E1 there was a clear value 
of the FNPR for which the C Fx was the largest, for a given ER and 
Ma∞ . As for engine E1, the metric that exhibits the larger varia-
tions is the core discharge coefficient Ccore

D , Fig. 10. Because this 
engine’s cycle is characterized by much higher FNPR than engine 
E1, the bypass nozzle is choked over the entire range of data, thus 
the bypass nozzle discharge coefficient Cbypass

D is almost constant. 
Its value changes of 0.02% over the entire range of conditions.

3.3. Low-order models

The variables (Ma∞ , FNPR, ER) can be varied independently, 
and for each combination a CFD simulation was run to obtain 
the performance metrics C Fx , Cbypass

D and Ccore
D . The goal of the 

work is to construct surrogate models to enable rapid predictions 
of the performance metrics of a given exhaust system, for a given 
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Fig. 10. Ccore
D for engine E2. Every other datapoint for Ma∞ and FNPR is shown.
Table 2
Radial basis functions φ. r is the local 
radius and r̄ represents the average dis-
tance between the data points [25].

multiquadratic
√

((r/r̄)2 + 1)

inverse 1.0/
√

((r/r̄)2 + 1)

gaussian exp(−(r/r̄)2)

linear r
cubic r3

quintic r5

thin plate r2log(r)

set of (Ma∞ , FNPR, ER). One model was constructed for each per-
formance metric. The models are based on datasets generated with 
the numerical procedure outlined above in section 3.1. In this work 
the focus is on two well-known families of response surface mod-
els: generalized Kriging, also known as Gaussian process [23], and 
Radial Basis Functions (RBF) [24].

3.3.1. Radial basis functions
A surrogate model ỹ for the function y(x) constructed with 

RBFs (φ) has the form:

ỹ(x) =
N∑

i=1

wiφ(||x − xi||) =
N∑

i=1

wiφ(r) (11)

where N is the total number of points in the dataset, and wi
are the weights of the functions to be estimated under the as-
sumption that the model should recover the original data for all 
training points. The different types of radial basis functions (φ) in-
vestigated in this work are those provided by Scip-Py [25] and are 
summarised in Table 2.

3.3.2. Generalized Kriging
The generalized Kriging model, i.e. Gaussian process, used in 

this work is that of python package Scikit-learn [26], the imple-
mentation of which is based on the work by Lophaven [23]. This 
implementation offers the ability to specify different regression 
models, correlation functions, as well as a nugget value (either lo-
cal or global). A generalized Kriging model approximates the func-
tion y(x) with a model ỹ(x) of the form:

ỹ(x) = μ + z (12)

where μ represents a regression model and z a stochastic (ran-
dom) process assumed to have zero mean and standard deviation 
Table 3
Correlation functions Ri(θ, wi , xi) investigated in this work [26,23], 
with di = wi − xi .

absolute exponential exp(−θ |di |)
squared exponential (Gaussian) exp(−θd2

i )

cubic 1−3χ2
k + 2χ3

k χk = min(1, θ |di |)
linear max(0,1−θ |di |)

σ [23]. The regression models adopted here are linear combina-
tions of known polynomials fk(x) of order 0, 1 and 2, which give a 
constant, linear and quadratic regression model, respectively. Given 
a data set of N samples, the regression model reads:

μ =
p∑

k=1

βk fk(x) (13)

where β = (β1, . . . , βp) is the p-dimensional vector of regression 
coefficients. For instance, for a constant regression model, p = 1
and fk = f1 = 1 and μ reduces to the mean. For a linear regression 
model, p = N + 1 and f1 = 1, f2 = x1, f N+1 = xN [23,15].

The stochastic process has the form:

z =
N∑

j=1

γ j
(θ,x j,x) (14)

where 
 represents the correlation model between the original 
j-th data point x j and x, multiplied by the coefficients γ j . The 
correlation model 
 consists of the products of one-dimensional 
correlation functions, eq. (15):


(θ,w,x) =
dim∏
i=1

Ri(θ, wi, xi) (15)

where dim represents the dimensionality of the problem and xi
is the i-th component of the vector x. In this case, since there 
are three independent variables (Ma∞ , FNPR and ER), dim = 3. 
The correlations function explored here are given in Table 3. The 
parameters βk, γk, θ are determined internally via maximum like-
lihood estimation. θ is kept constant in the three directions, giving 
an isotropic model.

The nugget expresses the measure of confidence in the accuracy 
of a given value. In other words, it is a measure of the noise of the 
data [22]. It is added to the diagonal of the assumed training co-
variance and, in the special case of the squared exponential corre-



84 G. Giangaspero et al. / Aerospace Science and Technology 92 (2019) 77–90
lation function, the nugget mathematically represents the variance 
of the input values [26], eq. (16):

n = (σ j/x j)
2 (16)

where σ j is the standard deviation on the j-th input value x j . The 
dataset has been generated with the same convergence strategy for 
all points. Therefore, as first approximation, the uncertainty of the 
CFD data is considered constant and independent of the boundary 
conditions. Hence all Kriging surrogate models presented here have 
been obtained with a constant value of the nugget throughout the 
design space.

3.3.3. Quality metric
The quality of the RSM is assessed based on the root-mean-

square (RMS) of the leave-one-out (LOO) error. The LOO error is 
based on the classical LOO cross-validation method [27,22]. Given 
a dataset of N samples, N separate surrogate models are gener-
ated. Each separate model is fitted using all N data point except for 
the one point which the separate RSM in being created for. Then, 
the separate surrogate model is queried in the left-out point, and 
this prediction is compared against the original data point. The dif-
ference between the two gives a local LOO error, ei,LOO. Thus the 
selected N − 1 data points constitute the training sample, while 
the left-out point is the prediction. This process is repeated for all 
points and the RMS of the set of local LOO errors is computed, 
eq. (17), giving a global measure of the quality of the RSM.

eLOO =
√√√√ 1

N

N∑
i=1

(ei,LOO)2 =
√√√√ 1

N

N∑
i=1

(
ỹLOO

i − yCFD
i

yCFD
i

)2

(17)

The eLOO may be seen as a representative error of a prediction 
done with the surrogate model in an area of the design space un-
covered by the sampling criteria. To put error values in context, 
it is worth considering how the database of results was built. In 
this work the database used to train the RSM is computed via CFD 
simulations, thus an average error of CFD simulations against ex-
periments could be taken as reference. The DSFRN experimental 
setup [11] is an established test case. Mikkelsen [11] found that 
the absolute difference between the experimental results of the 
DSFRN (with a FNPR ranging from 1.4 to 2.6) and a 3D CFD model 
was between 0.35% and 0.67% for Cbypass

D , and between 0.07% and 
0.60% for Ccore

D . Furthermore, the absolute difference in terms of 
thrust coefficient C F of the whole exhaust system was between 
0.01% and 0.03%. Note that the thrust coefficient C F as referred 
to by Mikkelsen [11] takes into account the forces on the pylon, 
which was present in the experimental setup of the DSFRN. These 
forces do not appear in the definition of the axial force coefficient 
C Fx because this refers to the simplified axisymmetric geometries 
studied in this work. Nevertheless, as the stream forces are the 
leading terms, the values of thrust coefficient and axial force co-
efficient are considered comparable. A 3D model of the DSFRN 
was computed also by Otter [13] and the maximum absolute er-
ror was 0.04%, 0.53% and 0.7% for the thrust coefficient C F , Cbypass

D
and Ccore

D respectively. Note that the CFD model and the compu-
tational methodology adopted by Otter [13] is similar to the one 
chosen for this work.

4. Results and discussion

4.1. Kriging

The Kriging model was trained using different regression mod-
els, correlation models and nugget value (n, eq. (16)). The influence 
of the choice of the these settings on the accuracy of the surragate 
Fig. 11. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the axial force coefficient C Fx for engine E1.

models for C Fx , Cbypass
D and Ccore

D is shown in Figs. 11 to 13, re-
spectively, for engine E1.

Decreasing the nugget value is beneficial as it reduces the LOO 
error eLOO (eq. (17)). Furthermore, the choices of regression and 
correlation functions are less important compared to the choice of 
the nugget value (eq. (16)), which can improve substantially the 
quality of the surrogate model. In particular, the better quality is 
achieved for very small values of the nugget.

The largest error levels are obtained for the core discharge coef-
ficient Ccore

D (Fig. 13). For example, the eLOO for Ccore
D is larger than 

0.5% while it is two order of magnitude smaller for C Fx and Cbypass
D . 

Ccore
D is the metric which exhibits the largest variation across the 

sample, going from a minimum of 0.1 to a maximum of 0.9, with 
the minimum values obtained at the lower values of the FNPR and 
higher values of ER (Fig. 5). Furthermore, Ccore

D is also the metric 
whose behaviour is less smooth as it influenced by the suppres-
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Fig. 12. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the bypass discharge coefficient Cbypass

D for engine E1.

sion associated to the bypass flow, which, in turn, is non-linear as 
it depends on the shock pattern on the core cowl (section 3.1). For 
engine E1, the best Kriging model gives a eLOO of 0.003%, 0.003% 
and 0.5% for C Fx , Cbypass

D and Ccore
D , respectively.

The study of the Kriging model performance was carried out 
for engine E2, Figs. 14 to 16. Engine E2 is representative of current 
state of the art architectures and its exhaust system has differ-
ent performance maps from those of engine E1 (section 3.2). For 
this engine too, the nugget values has a strong influence on eLOO
for C Fx and Ccore

D . Furthermore, the Kriging model provides rela-
tively small errors. The smallest eLOO for C Fx and Ccore

D is approx-

imately 0.01% and 1.0%, respectively (Figs. 14 and 16). For Cbypass
D , 

which has small variations across the design space (section 3.2.2), 
the Kriging provides very small errors, with eLOO < 5 × 10−5%
for lower values of the nugget and for any correlation function 
(Fig. 15).
Fig. 13. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the core discharge coefficient Ccore

D for engine E1.

4.2. Radial basis functions

Radial Basis Functions can be considered a sub-class of gen-
eralized Kriging models as they are pure correlation functions 
[22]. In this work well-known basis functions are employed, Ta-
ble 2. Furthermore, the closed form of the basis function model 
is obtained by imposing that the basis functions go through each 
point of the dataset exactly. Hence the resulting model behaves 
as pure interpolation, as opposed to Kriging which is a regression 
model.

The choice of the basis functions has clearly an impact on the 
accuracy of the resulting model, Fig. 17 and Fig. 18. The eLOO is be-
tween 0.5% and 0.007% for C Fx and Cbypass

D , while the error levels 
are between 2.5% and 0.4% for Ccore

D . The Gaussian RBF consistently 
provided error levels almost an order of magnitude higher than the 
other basis functions. Consequently the data from the Gaussian RBF 
is not presented and its use is not recommended. For the datasets 
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Fig. 14. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the axial force coefficient C Fx for engine E2.

presented in this work based on the exhaust system performance 
metrics, the better function is the quintic, which performs remark-
ably well for all metrics. The only exception is for Ccore

D of engine 
E2, for which the multiquadratic RBF gives a better result than the 
quintic (Fig. 18b). For engine E1, the RBF surrogate model built 
with the quintic basis function gives a eLOO of 0.007%, 0.008% and 
0.4% for C Fx , Cbypass

D and Ccore
D , respectively. Similar albeit slightly 

higher values are obtained for engine E2. These values are com-
parable to those obtained using the Kriging model and within the 
CFD uncertainty reported in section 3.3.3. Hence both the Kriging 
and the RBF model are able to represent with sufficient accuracy 
the original dataset and the method is fit for the purpose, i.e. for 
the rapid assessment of performance metrics in the context of pre-
liminary design.
Fig. 15. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the bypass discharge coefficient Cbypass

D for engine E2.

4.3. Influence of the number of samples on the model accuracy

In order to gain understanding on how the accuracy of the 
model changes as a function of the number of samples, coarser 
datasets were defined and the model that gives the lowest eLOO
was identified for each coarse dataset.

For the engine E1, different coarsening strategies have been 
applied. Regardless of the coarsening strategy, the bounds of the 
design space have been kept fixed. A global coarsening has been 
performed, for which every other datapoint is selected from the 
original dataset of Ma∞ , FNPR and ER combinations. Furthermore, 
every other point of one variable at the time has been selected, so 
either coarsening the samples for Ma∞ , ER or FNPR. A summary of 
the resulting samples is given in Table 4.

For each coarse dataset, the quality of the corresponding surro-
gate models was quantified. First the best models of the two fami-
lies, i.e. the models that provided the lowest eLOO, were identified. 
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Fig. 16. Influence of regression function, correlation function and nugget value on 
eLOO of the Kriging model for the core discharge coefficient Ccore

D for engine E2.

Table 4
Coarser datasets for engine E1.

Coarsening 
variable

Level Ma∞
samples

FNPR 
samples

ER 
samples

Total
samples

none (finest dataset) 0 13 25 5 1625
Ma∞ , FNPR, ER 1 7 13 3 273
ER 1 13 25 3 975
FNPR 1 13 13 5 845
FNPR 2 13 7 5 455
Ma∞ 1 7 25 5 875
Ma∞ 2 4 25 5 500

For a Gaussian Process, this was done by studying the influence 
of the choices of the regression function, correlation function and 
nugget value. For RBFs, it was determined which of the radial ba-
sis function (Table 2) performed best. Once the best models of the 
two families had been identified, they were queried in each point 
Fig. 17. Influence of radial basis function on eLOO (%) of the corresponding surrogate 
model for the three performance metrics for engine E1.

of the finest dataset, and the RMS of the relative error, efinest, was 
computed as in eq. (18):

efinest =
√√√√ 1

N

N∑
i=1

(
ỹcoarse

i − yCFD
i

yCFD
i

)2

(18)

where ỹcoarse
i represent the result obtained by querying the RSM 

fitted on the given coarse dataset, and yCFD
i is the reference result, 

i.e. that given by the CFD.
The RBF are pure correlation functions, thus the error with re-

spect to the finest data set is always zero, Figs. 19 to 22. On 
the contrary, the Kriging model has an inherent non-zero error, 
albeit small, also when applied to the finest dataset. Further-
more, it has been shown before that the best results with the 
Kriging model are generally obtained for very small values of 
the nugget. The nugget value can be seen as a relaxation fac-
tor, the smaller its value the more the model is forced locally 
to recover the original datapoint. Thus, for the particular set of 
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Fig. 18. Influence of radial basis function on eLOO (%) of the corresponding surrogate 
model for the three performance metrics for engine E2.

data analysed in this work, the best strategy is to have a rela-
tively rigid model that almost goes through all the original dat-
apoints. This happens exactly, by construction, in case of the 
RBF.

For engine E1, the two families of surrogate models perform 
similarly regarding C Fx . For C Fx , the error efinest increases the most 
when performing a global coarsening, for which efinest ≈ 0.35%
(Fig. 19a). By comparing Figs. 20a, 21a and 22a it can be seen 
that the main source of error comes from coarsening the data-
points for the variable Ma∞ . On the first of the coarser levels for 
Ma∞ (Fig. 20a), the error efinest is almost the same as the error 
obtained when performing a global coarsening (Fig. 19a). A coars-
ening for FNPR or ER gives error levels one order of magnitude 
smaller. This indicates that the input variable that has the largest 
impact on the quality of the RSM for C Fx is the freestream Mach 
number Ma∞ . This is consistent with the trends observed in the 
performance maps showed in Fig. 4.
For Ccore
D , focusing on the Kriging model, the main source of 

error comes from the coarsening of ER samples, which gives an 
error of efinest ≈ 1.7%, Fig. 22b. The same tendency can be observed 
for the RBF, which however is more tolerant to the reduction of 
samples and the errors on the first coarser levels are always below 
0.3%.

For Cbypass
D the errors are generally small for both Kriging and 

RBF, with efinest < 0.15% even at the coarser level 2, see Figs. 19c, 
20c, 21c and 22c. The error is manly influenced by the coarsening 
for FNPR and Ma∞ , while the coarsening of ER samples has the 
smallest impact. This is consistent with the performance map in 
Fig. 6 which shows that Cbypass

D is almost independent of ER. For 
the engine representative of future architectures E1, models with 
sufficient accuracy are obtained when one level of coarsening is 
applied to the variables FNPR or ER (Figs. 21 and 22).

5. Conclusions

The aim of this work was to assess the quality of surrogate 
models for the prediction of the performance of the exhaust sys-
tem of civil aero-engines. In the context of preliminary design, the 
characteristics of the exhaust system is typically taken into account 
with relatively simple models, which are derived from inviscid re-
lations applied to isolated nozzles. The method developed in this 
work expands the classical simple models by taking into account 
not only the fan nozzle pressure ratio, but also the free-stream 
Mach number and the extraction ratio.

Two families of surrogate models have been investigated, Krig-
ing and RBF and they have been applied to data relative to two en-
gines, one representative of the future turbofan very-high-bypass-
ratio engines (E1) and one representative of the current state of 
the art (E2). The models have been fit to predict three main per-
formance metrics: the overall axial force coefficient, the bypass 
discharge coefficient and core nozzle discharge coefficient. The 
database of results for each engine has been obtained via CFD sim-
ulations for wide ranges of operating conditions. For engine E1, the 
overall axial force coefficient and the bypass nozzle discharge co-
efficient are influenced mainly by the free-stream Mach number 
and by the nozzle pressure ratio. The core discharge coefficient is 
influenced considerably also by the extraction ratio. Similar con-
siderations can be made for engine E2.

The quality of the models has been analysed in detail. Re-
sults show that with a careful tuning of the settings of the mod-
els, both families can achieve similar results in terms of quality 
of the model. In particular, for the Kriging model, it has been 
shown that the choice of the nugget value has a stronger in-
fluence than the choice of the regression and correlation func-
tions. Regarding the RBF, the quintic radial basis function was the 
better suited for the dataset analysed in this work, as it consis-
tently provided the highest quality of the corresponding surrogate 
model.

It has been shown that the studied method is able to accu-
rately predict the nozzle performance characteristics. For engine 
E1, the Kriging model fit using the finest dataset (1625 samples) 
gave an estimated average error of 0.003%, 0.003% and 0.50% for 
C Fx , Cbypass

D and Ccore
D , respectively. Similar results were obtained 

with the RBF. For engine E2, the Kriging model trained on a dataset 
of 663 samples produced errors of 0.011%, 3.1 × 10−5% and 0.98% 
for C Fx , Cbypass

D and Ccore
D , respectively. The RBF model gave similar 

results. These estimated average errors are within the error levels 
found in literature relating CFD to experiments of nozzles, thus the 
method is considered fit for the purpose. Future work includes the 
investigation of new classes of engines, wider operational envelope 
and more advanced sampling techniques.



G. Giangaspero et al. / Aerospace Science and Technology 92 (2019) 77–90 89
Fig. 19. Influence of the number of samples on the error with respect to the finest dataset efinest for engine E1. Coarser levels obtained by taking every other point for all 
three variables, Ma∞ , FNPR and ER, at the same time (global coarsening).

Fig. 20. Influence of the number of samples on the error with respect to the finest dataset efinest for engine E1. Coarser levels obtained by taking every other point for Ma∞ .

Fig. 21. Influence of the number of samples on the error with respect to the finest dataset efinest for engine E1. Coarser levels obtained by taking every other point for FNPR.

Fig. 22. Influence of the number of samples on the error with respect to the finest dataset efinest for engine E1. Coarser levels obtained by taking every other point for ER.
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