
On the Complexity of Pointer Arithmetic in
Separation Logic

James Brotherston1 and Max Kanovich1,2

1 University College London, UK
2 National Research University Higher School of Economics, Russian Federation

Abstract. We investigate the complexity consequences of adding pointer
arithmetic to separation logic. Specifically, we study an extension of the
points-to fragment of symbolic-heap separation logic with sets of sim-
ple “difference constraints” of the form x ≤ y + k, where x and y are
pointer variables and k is an integer offset. This extension can be con-
sidered a practically minimal language for separation logic with pointer
arithmetic.
Most significantly, we find that, even for this minimal language, polynomial-
time decidability is already impossible: satisfiability becomes NP-complete,
while quantifier-free entailment becomes coNP-complete and quantified
entailment becomes ΠP

2 -complete (where ΠP
2 is the second class in the

polynomial-time hierarchy).
However, the language does satisfy the small model property, meaning
that any satisfiable formula has a model, and any invalid entailment has a
countermodel, of polynomial size, whereas this property fails when richer
forms of arithmetical constraints are permitted.

Keywords: Separation logic, pointer arithmetic, complexity.

1 Introduction

Separation logic (SL) [23] is a well-known and popular Hoare-style framework
for verifying the memory safety of heap-manipulating programs. Its power stems
from the use of separating conjunction in its assertion language, where A ∗ B
denotes a portion of memory that can be split into two disjoint fragments satisfy-
ing A and B respectively. Using separating conjunction, the frame rule becomes
sound [27], capturing the fact that any valid Hoare triple can be extended with
the same separate memory in its pre- and postconditions and remain valid, which
empowers the framework to scale to large programs (see e.g. [26]). Indeed, sepa-
ration logic now forms the basis for verification tools used in industrial practice,
notably Facebook’s Infer [8] and Microsoft’s SLAyer [3].

Most separation logic analyses and tools restrict the form of assertions to a
simple propositional structure known as symbolic heaps [2]. Symbolic heaps are
(possibly existentially quantified) pairs of so-called “pure” and “spatial” asser-
tions, where pure assertions mention only equalities and disequalities between

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/200749323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

variables and spatial formulas are ∗-conjoined lists of pointer formulas x 7→ y
and data structure formulas typically describing (segments of) linked lists (lsx y)
or sometimes binary trees. This fragment of the logic enjoys decidability in poly-
nomial time [11] and is therefore highly suitable for use in large-scale analysers.
However, in recent years, various authors have investigated the computational
complexity of (and/or developed prototype analysers for) many other fragments
employing various different assertion constructs, including user-defined induc-
tive predicates [18, 5, 7, 1, 10], pointers with fractional permissions [22, 13], ar-
rays [6, 19], separating implication (−−∗) [9, 4], reachability predicates [14] and
arithmetic [20, 21].

It is with this last feature, arithmetic, and more specifically pointer arith-
metic, with which we are concerned in this paper. Although most programming
languages do not allow the explicit use of pointer arithmetic (with the exception
of C, where it is nevertheless discouraged), it nevertheless occurs implicitly in
many programming situations, of which the most common are array indexing
and structure / union member selection. For example, a C expression like ptr[i]
implicitly generates an address expression of the form ptr+(sizeof(*ptr)*i).
Thus a program analysis performing bounds checking for C arrays or strings,
say, must account for such implicit pointer arithmetic. We therefore set out by
asking the following question: How much pointer arithmetic can one include in
separation logic and remain within polynomial time?

Unfortunately, and perhaps surprisingly, the answer turns out to be: essen-
tially none at all.

We study the complexity of symbolic-heap separation logic with points-to for-
mulas, but no other data structure predicates, when pure formulas are extended
by a minimal form of pointer arithmetic. Specifically, we permit only conjunc-
tions of “difference constraints” x ≤ y + k, where x and y are pointer variables
and k is an integer. We certainly do not claim that this fragment is appropriate
for practical program verification; clearly, lacking constructs for lists or other
data structures, and using only a very weak form of arithmetic, it will be insuf-
ficiently expressive for most purposes (although it might possibly be practical
e.g. for some concurrent programs that deal only with shared memory buffers
of a small fixed size). The point is that any practical fragment of separation
logic employing pointer arithmetic will almost inevitably include our minimal
language and thus inherit its computational lower bounds.

We establish precise complexity bounds for the satisfiability and entailment
problems, in both quantified and quantifier-free forms, for our SL with minimal
pointer arithmetic. Perhaps our most striking result is that the satisfiability prob-
lem is already NP-complete; the entailment problem becomes coNP-complete for
quantifier-free entailments, and ΠP

2 -complete for existentially quantified entail-
ments (where ΠP

2 is the second class in the polynomial-time hierarchy [25]).
However, the language does at least enjoy the small model property, meaning
that any satisfiable symbolic heap A has a model of size polynomial in A, and
any invalid entailment A |= B has a countermodel of size polynomial in A and
B — a property that fails when richer forms of arithmetical constraints are per-

mitted in the language. In all cases, the lower bounds follow by reduction from
the 3-colourability problem or its 2-round variant [15]. The upper bounds are by
straightforward encodings into Presburger arithmetic, but the ΠP

2 upper bound
for quantified entailments is not trivial, as it requires us to show that all quanti-
fied variables in the resulting Presburger formula can be polynomially bounded;
this follows from the small model property.

The remainder of this paper is structured as follows. In Section 2 we define
symbolic-heap separation logic with minimal pointer arithmetic. Sections 3 and 4
study the satisfiability and quantifier-free entailment problems, respectively, for
this language, and Sections 5 and 6 establish the lower and upper complexity
bounds, respectively, for the general entailment problem. Section 7 concludes.

2 Separation logic with minimal pointer arithmetic

Here, we introduce a minimal language for separation logic with pointer arith-
metic (SLMPA for short), a simple variant of the well-known “symbolic heap”
fragment over pointers [2].

Our choice of language is influenced primarily by the need to ‘balance’ the
arithmetical part of the language against the spatial part. To show lower com-
plexity bounds, we have to challenge the fact that Σ0

1 Presburger arithmetic
is already NP-hard by itself; thus, to reveal the true memory-related nature of
the problem, we restrict the language to a minimal form of pointer arithmetic,
which is simple enough that it can be processed in polynomial time. This leads us
to consider only conjunctions of “difference constraints”, of the form x = y + k
and x ≤ y + k where x and y are variables and k is an integer (even disequality
x 6= y is not permitted). We write bold vector notation to denote sequences of
variables, e.g. x for x1, . . . , xn.

Definition 2.1 (Syntax). A symbolic heap is given by

∃z. Π : F

where z is a tuple of variables from an infinite set Var, and Π and F are respec-
tively pure and spatial formulas, defined along with terms t by:

t ::= x | x+ k

Π ::= x = t | x ≤ t | Π ∧Π
F ::= emp | t 7→ t | t 7→ nil | F ∗ F

where x ranges over Var and k over integers Z. If Π is empty in a symbolic heap
∃z. Π : F , we omit the colon. We sometimes abbreviate ∗-conjunctions of spatial
formulas using “big star” notation:

∗ni=1
Fi =def F1 ∗ . . . ∗ Fn ,

which is interpreted as emp if n < 1.

In our SLMPA, the pure part of a symbolic heap is a conjunction of difference
constraints of the form x = y + k or x ≤ y + k, where x and y are variables, and
k is a fixed offset in Z (we disallow equalities of the form x = nil for technical
convenience). Thus x < y + k can be encoded as x ≤ y + (k − 1), x ≤ y − k
as x ≤ y + (−k) and x + k ≤ y as x ≤ y − k; however, note that unlike
the conventional symbolic heap fragment in [2], we cannot express disequality
x 6= y. The satisfiability of such formulas can be decided in polynomial time;
see [12]. The crucial observation for polynomial-time decidability is:

Proposition 2.2. A ‘circular’ system of difference constraints x1 ≤ x2 + k12,
. . . , xm−1 ≤ xm + km−1,m, xm ≤ x1 + km,m+1 implies that x1−x1 ≤

∑m
i=1 ki,i+1,

which is a contradiction iff the latter sum is negative.

Semantics. As usual, we interpret symbolic heaps in a stack-and-heap model
of the standard type, as given, e.g., in Reynolds’ seminal paper on separation
logic [23] (which similarly permits unrestricted pointer arithmetic). For conve-
nience we consider the addressable locations to be the set N of natural numbers,
and values to be either natural numbers or a non-addressable null value nil .
Thus a stack is a function s : Var → N ∪ {nil}. We extend stacks to terms by
s(nil) = nil and, insisting that any pointer-offset sum should always be non-
negative: s(x + k) = s(x) + k if s(x) + k ≥ 0, and undefined otherwise. If s is
a stack, z ∈ Var and v is a value, we write s[z 7→ v] for the stack defined as s
except that s[z 7→ v](z) = v. We extend stacks pointwise over term tuples.

A heap is a finite partial function h : N⇀fin N∪{nil} mapping finitely many
locations to values; we write dom (h) for the domain of h, and e for the empty
heap that is undefined on all locations. We write ◦ for composition of domain-
disjoint heaps: if h1 and h2 are heaps, then h1 ◦ h2 is the union of h1 and h2

when dom (h1) and dom (h2) are disjoint, and undefined otherwise.

Definition 2.3. The satisfaction relation s, h |= A, where s is a stack, h a heap
and A a symbolic heap, is defined by structural induction on A.

s, h |= x = t ⇔ s(x) = s(t)
s, h |= x ≤ t ⇔ s(x) ≤ s(t)
s, h |= Π1 ∧Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e
s, h |= t1 7→ t2 ⇔ dom (h) = {s(t1)} and h(s(t1)) = s(t2)
s, h |= F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃m ∈ N|z|. s[z 7→m], h |= Π and s[z 7→m], h |= F

We remark that the satisfaction of pure formulas Π does not depend on the heap,
which justifies writing s |= Π rather than s, h |= Π.

Remark 2.4. Although our language allows unbounded integer offsets k to be
added to pointer variables, we would have exactly the same expressivity even if
offsets were restricted to 1 and −1. Namely, a difference constraint x ≤ y+k for
k > 0 can be encoded by introducing k auxiliary variables and k equalities:

z1 = y + 1 ∧ z2 = z1 + 1 ∧ . . . ∧ zk = zk−1 + 1 ∧ x ≤ zk .

3 Satisfiability and the small model property

In this section we investigate the satisfiability problem for our SLMPA, defined
formally as follows:

Satisfiability problem for SLMPA. Given a symbolic heap A, decide whether
there is a stack s and heap h with s, h |= A.

(Without loss of generality, we may consider A to be quantifier-free in the
above problem, because A and ∃z.A are equisatisfiable.)

We establish three main results about this problem: (a) an NP upper bound;
(b) an NP lower bound; and (c) the small model property, meaning that any
satisfiable formula has a model of polynomial size.

In fact, the NP upper bound is fairly trivial; there is a simple encoding of the
satisfiability problem into Σ0

1 Presburger arithmetic (as is also done for a more
complicated array separation logic in [6]). Nevertheless, we include the details
here, since they will be useful in setting up later results.

Definition 3.1. Presburger arithmetic (PbA) is defined as the first-order theory
of the natural numbers N over the signature 〈0, s,+,=〉, where s is the successor
function, and 0,+,= have their usual interpretations. The relations 6=, ≤ and <
can be straightforwardly encoded (possibly introducing an existential quantifier).

Note that a stack is just a first-order valuation, and a pure formula in SLMPA

is also a formula of PbA, with exactly the same interpretation. Thus we overload
|= to include the standard first-order satisfaction relation of PbA.

Definition 3.2. Let A be a quantifier-free symbolic heap, of the general form

Π :∗mi=1
ti 7→ ui .

We define a corresponding PbA formula γA by enriching the pure part Π with
the constraints that the allocated addresses ti must be distinct:

γA =def Π ∧
∧

1≤i<j≤m ti 6= tj .

The above γA can be easily rewritten as a Boolean combination of elementary
formulas of the form x ≤ y + k where the ‘offset’ k is an integer.

Lemma 3.3. For any symbolic heap A in SLMPA, we have

(∃h. s, h |= A) ⇔ s |= γA .

Proof. We assume A of the general form given by Definition 3.2.

(⇒) By assumption, we have s |= Π and dom (h) = {s(t1), . . . , s(tm)}, which
implies that all the ti are distinct. Hence s |= γA as required.

(⇐) By assumption, we have s |= Π and all of s(t1), . . . , s(tm) are distinct.
Hence, defining a heap h by dom (h) = {s(t1), . . . , s(tm)} and h(s(ti)) = ui for
each i, we have s, h |= A as required.

Proposition 3.4. Satisfiability for SLMPA is in NP.

Proof. Follows from Lemma 3.3 and the fact that satisfiability for quantifier-free
Presburger arithmetic belongs to NP [24].

Next, we tackle the lower bound. Satisfiability is shown NP-hard by reduction
from the 3-colourability problem [15].

3-colourability problem. Given an undirected graph with n ≥ 4 vertices, de-
cide whether there is a “perfect” 3-colouring of the vertices, such that no two
adjacent vertices share the same colour.

Definition 3.5. Let G = (V,E) be a graph with n vertices v1, . . . , vn. We encode
a perfect 3-colouring of G with the following symbolic heap AG.

First, we introduce n variables c1, . . . , cn to represent the colour (1, 2, or 3)
assigned to each vertex. The fact that no two adjacent vertices vi and vj share
the same colour will be encoded by allocating two cells with base address eij ∈ N
and offsets ci and cj respectively in AG. To ensure that all such pairs of cells
are disjoint, the base addresses eij are defined by:

eij = i · n2 + j · n (1 ≤ i < j ≤ n) (1)

We then define AG to be the following quantifier-free symbolic heap:∧n
i=1(a+ 1 ≤ ci ∧ ci ≤ a+ 3): ∗(vi,vj)∈E

(ci + eij 7→ nil ∗ cj + eij 7→ nil)

where a is a “dummy” variable (ensuring that AG adheres to the strict formatting
of pure assertions in SLMPA).

The relevant fact concerning our definition of the base addresses eij in Defi-
nition 3.5 is the following.

Proposition 3.6. For distinct pairs of numbers (i, j) and (i′, j′), with 1 ≤
i, i′, j, j′ ≤ n, we have |ei′,j′ − eij | ≥ n.

Although for the present purposes we could have used a simpler definition of
the eij , such that they are all spaced 4 cells apart, the definition by equation (1)
is convenient as it will be re-used later on; see Definition 5.1.

Lemma 3.7. Let G be an instance of the 3-colouring problem. Then AG from
Definition 3.5 is satisfiable iff there is a perfect 3-colouring of G.

Proof. Let G = (V,E) have vertices v1, . . . , vn, where n ≥ 4.

(⇐) Suppose G has a perfect 3-colouring given by assigning a colour bi to each
vertex vi, with each bi ∈ {1, 2, 3}. We define a stack s by s(a) = 0 and s(ci) = bi
for each 1 ≤ i ≤ n. Note that since bi ∈ {1, 2, 3} we have s(a + 1) ≤ s(ci) ≤
s(a+ 3) for each i, and so s satisfies the pure part of AG. Now define heap h by

dom (h) =def

⋃
(vi,vj)∈E ({s(ci) + eij} ∪ {s(cj) + eij})

and h(`) = nil for all ` ∈ dom (h). Clearly, by construction, s, h |= AG pro-
vided that none of the singleton sets involved in the definition of dom (h) are
overlapping.

Since we have a perfect 3-colouring of G, for any edge (vi, vj) ∈ E we have
s(ci) 6= s(cj), so the subsets {s(ci) + eij} and {s(cj) + eij} of dom (h) do not
overlap. Furthermore, by Proposition 3.6, for any two distinct edges (vi, vj) and
(vi′ , vj′) in E, the base addresses eij and ei′j′ are at least 4 cells apart (because
n ≥ 4). Since 1 ≤ s(ci) ≤ 3 for any i, we cannot have s(ci) + eij = s(ci′) + ei′j′

either. Thus all involved singleton sets are non-overlapping as required.

(⇒) Supposing that s, h |= AG, we define a 3-colouring of G by bi = s(ci)− s(a)
for each 1 ≤ i ≤ n. Since s |= a + 1 ≤ ci ∧ ci ≤ a + 3 by assumption, we have
bi ∈ {1, 2, 3} for each i, so this is indeed a 3-colouring. To see that it is a perfect
3-colouring, let (vi, vj) ∈ E. By construction, we have that s, h′ |= ci + eij 7→
nil ∗ cj + eij 7→ nil for some subheap h′ of h. Using the definition of ∗, this means
that s(ci) + eij 6= s(cj) + eij , i.e. s(ci) 6= s(cj), and so bi 6= bj as required.

In fact, given a graph G with m edges, one can see that the proof above still
works by taking the numbers eij to be {0, 4, 8, . . . , 4(m − 1)}. Thus Defn. 3.5
encodes the 3-colouring problem for G inside a heap region of size roughly 4m,
i.e., only a linear size expansion.

Theorem 3.8. Satisfiability for SLMPA is NP-hard.

Proof. From Lemma 3.7 and the fact that 3-colourability is NP-hard [15].

Corollary 3.9. Satisfiability in SLMPA is NP-complete.

Proof. From Proposition 3.4 and Theorem 3.8.

Finally, we tackle the small model property for SLMPA; that is, any satisfiable
formula A has a model (s, h) of size polynomial w.r.t. A (see e.g. [1]). Note that,
by “size”, we do not mean here the number of allocated cells in h (since clearly
any model of A only allocates as many cells as there are 7→-assertions in A) but
the sizes of the addresses and/or values involved in their definition. Indeed, this
property breaks if we increase the expressivity of our system only slightly.

Remark 3.10. The small model property fails if we allow our symbolic heaps to
contain constraints of the form x ≤ y ± z where x, y and z are all variables. In
that case, we could define, e.g.,

An =def

∧n−1
i=0 xi+1 > xi + xi : ∗ni=1

xi 7→ nil

(Note that the constraint xi+1 > xi + xi can be expressed in our syntax, e.g.,
as xi ≤ xi+1 − yi ∧ yi = xi + 1.) Then, for any model (s, h) of An, and for any
i < n, we have that s(xi+1) > 2s(xi), which implies s(xi+1) > 2i+1. Thus, (the
distances between) at least half the addresses in h must be of exponential size.

In order to prove the small model property for our SLMPA, we need a more
workable specification of γA:

Definition 3.11. Given a symbolic heap A , we rewrite the Presburger formula
γA by replacing every formula x = y + k by x ≤ y + k ∧ y ≤ x− k, and every
formula ti 6= tj by ti ≤ tj − 1 ∨ tj ≤ ti − 1. Then γA can be viewed as

γA ≡ fA(Z1, Z2, . . . , Zm) (2)

where fA(z1, z2, .., zm) is a Boolean function, and within (2) the Boolean vari-
able zi is substituted with a difference constraint Zi of the form xi ≤ yi + ki
(where ki is an integer).

Proposition 3.12. Any model s of γA for a symbolic heap A can be conceived
of as a non-negative integer solution to the system γA,ζ̄ given by

Z1 ≡ ζ1, . . . , Zm ≡ ζm (3)

where (ζ1, . . . , ζm) is a tuple of Boolean values (> or ⊥) with fA(ζ1, .., ζm) = >,
where fA(Z1, . . . , Zm) is γA as a Boolean function over difference constraints,
as in Defn. 3.11.

Proof. Rewriting γA as fA(Z1, . . . , Zm) as in Defn. 3.11, we can evaluate each
difference constraint Zi as > or ⊥ under s, which gives an appropriate value for
each ζi such that s is a solution to (3). Clearly, fA(ζ1, . . . , ζm) = >.

Conversely, given a non-negative solution to (3), we can view this solution as
a stack s and observe that, since fA(ζ1, . . . , ζm) = >, we have s |= γA.

Definition 3.13. Given a model (s, h) for symbolic heap A, we further encode
the equation system γA,ζ̄ (3) in Proposition 3.12 as a constraint graph GA,ζ̄ ,
constructed as follows.

– For each variable x in γA,ζ̄ , we will associate a vertex x̂;

– An equation of the form (x ≤ y + k) ≡ > in (3) is encoded as an edge from

ŷ to x̂ labelled by k: ŷ
k−→ x̂.

– An equation of the form (x ≤ y+k) ≡ ⊥ in (3), meaning that y ≤ x−k−1,

is encoded as an edge from x̂ to ŷ labelled by (−k − 1): x̂
−k−1−→ ŷ.

– Finally, to provide the connectivity we need for models, we always add, if
necessary, a “maximum node” x̂0, with the constraint xi ≤ x0, i.e. edges

x̂0
0−→ x̂i, for all xi.

Example 3.14. Let A be the symbolic heap y ≤ x : x 7→ nil ∗ y 7→ nil. We have:

γA = (y ≤ x) ∧ ((x ≤ y − 1) ∨ (y ≤ x− 1)) .

Following Defn. 3.11, we can view γA as fA(Z0, Z1, Z2), where fA(z0, z1, z2) is
the Boolean function z0 ∧ (z1 ∨ z2), and Z0 = (y ≤ x), Z1 = (x ≤ y − 1) and
Z2 = (y ≤ x− 1) are difference constraints.

Since Z1 and Z2 are mutually exclusive, there are essentially two Boolean
vectors ζ̄ = ζ0, ζ1, ζ2 such that fA(ζ̄) = >:

x̂ ŷ

0

−1

x̂ ŷ

0

−1

(a) γ1 = (y ≤ x) ∧ (x ≤ y − 1) (b) γ2 = (y ≤ x) ∧ (y ≤ x− 1)

Fig. 1. The constraint graphs for γ1 and γ2 from Example 3.14.

(a) ζ̄ = >,>,⊥, giving us difference constraints γ1 =def (y ≤ x) ∧ (x ≤ y − 1).

(b) ζ̄ = >,⊥,>, giving us difference constraints γ2 =def (y ≤ x) ∧ (y ≤ x− 1).

Figure 1 shows the respective constraint graphs for γ1 and γ2. Notice that,
because of y ≤ x, the node x̂ is a “maximum node” in both cases, and so we do
not need to add one.

In the case of (a), we have no solution. Namely, there is a negative cycle of

the form x̂
0−→ ŷ

−1−→ x̂ , which encodes the contradictory x ≤ x− 1.

In the case of (b), the minimal weighted path from x̂ to ŷ has weight −1,
which guarantees that y = x− 1 is a model for γA and thereby for A.

Theorem 3.15 (Small model property). Let A be a satisfiable symbolic
heap in minimal pointer arithmetic. Then we can find a model (s, h) for A in
which all values are bounded by M =

∑
i(|ki| + 1), where ki ranges over all

occurrences of integers in A.

Proof. According to Proposition 3.12, there is a Boolean vector ζ̄ = ζ1, ζ2, .., ζm
such that the corresponding system, γA,ζ̄ , has a solution. Hence, the associated
constraint graph GA,ζ̄ has no negative cycles (see Proposition 2.2).

We define our small model with the following mapping s over all variables xi
in A, such that s |= γA. First we define s(x0) = M for the “maximum node” x̂0.
Then, s(xi) is defined as M + di, where di is the minimal weighted path from x̂0

to x̂i; this is well-defined since GA,ζ̄ has no negative-weight cycles. Note that di
can never be positive, as there is always, trivially, a path from x̂0 to x̂i of weight
0 by construction. Thus s is indeed “small”. To see that it is a model of γA,ζ̄ ,
consider e.g. the difference constraint x ≤ y+ k; thus there is an edge from ŷ to
x̂ with weight k in the graph, and so dx cannot be greater than dy + k, meaning
s(x) ≤ s(y) + k. Hence s satisfies γA,ζ̄ and, by Proposition 3.12, s |= γA. Thus
by Lemma 3.3 there is an h such that s, h |= A; note that h only uses values
given by s(xi) and thus is also “small’.

Remark 3.16. In addition, the corresponding polytime sub-procedures are the
shortest path procedures with negative weights allowed (e.g., the Bellman-Ford
algorithm), which provides polynomials of low degrees.

4 Quantifier-free Entailment

We now turn to the entailment problem for our SLMPA, given as follows:

Entailment in SLMPA. Given symbolic heaps A and B, decide whether s, h |= A
implies s, h |= B for all stacks s and heaps h (we say A |= B is valid).

Without loss of generality, A may be assumed quantifier-free, and any quan-
tified variables in B assumed disjoint from the free variables in A and B.

In this section, we focus on the case of (entirely) quantifier-free entailments,
for which we establish both an upper and a lower bound of coNP.

Definition 4.1. Let A |= B be an SLMPA entailment, where A and B are sym-
bolic heaps of the form

A = ΠA : ∗`i=1
ti 7→ t′i and B = ∃y. ΠB : ∗`′j=1

uj 7→ u′j

We define a corresponding PbA formula εA,B by:

γA → ∃y
(
γB ∧

∧
i

∨
j(ti = uj ∧ t′i = u′j) ∧

∧
j

∨
i(uj = ti ∧ u′j = t′i)

)
(4)

where γ− is given by Defn. 3.2.

Lemma 4.2. For any SLMPA entailment A |= B and stack s, we have

(∃h. s, h |= A implies s, h |= B) ⇔ s |= εA,B .

Proof. We assume A and B of the general form given by Definition 4.1, and
assume w.l.o.g. that y is disjoint from all free variables in A and B. We write
qf(B) for the quantifier-free part of B.

(⇒) Assume that s |= γA, the antecedent of (4). By Lemma 3.3 we have h with
s, h |= A. By assumption, s, h |= B; i.e., for some values v with |v| = |y|, and
defining s′ = s[y 7→ v], we have s′, h |= qf(B). Thus s′ |= γB by Lemma 3.3, and
dom (h) = {s′(u1), . . . , s′(u`′)} (all of which are disjoint), with h(s′(uj)) = s′(u′j)
for each 1 ≤ j ≤ `′. Since no variable in y occurs in A and s, h |= A, we
also have s′, h |= A, and so dom (h) = {s′(t1), . . . , s′(t`)} (all disjoint), with
h(s′(ti)) = s′(t′i) for each 1 ≤ i ≤ `. Thus `′ = ` and each pair (s′(ti), s

′(t′i)) is
equal to some pair (s′(uj), s

′(u′j)). Thus s′ satisfies the quantifier-free consequent
of (4), meaning that s satisfies the entire consequent, as required.

(⇐) Suppose that s, h |= A for some heap h. We have s |= γA by Lemma 3.3, so,
for some s′ = s[y 7→ v], we have that s′ satisfies the quantifier-free consequent of
(4). That is, s′ |= γB , so that s′, h′ |= qf(B) for some h′ by Lemma 3.3. Moreover,
for each pair (s′(ti), s

′(t′i)) with 1 ≤ i ≤ `, there is an equal pair (s′(uj), s
′(u′j))

with 1 ≤ j ≤ `′, and vice versa. Now, since no variable in y occurs in A and s, h |=
A, we also have s′, h |= A, and so dom (h) = {s′(t1), . . . , s′(t`)} (all disjoint),
with h(s′(ti)) = s′(t′i) for each 1 ≤ i ≤ `. Simultaneously, since s′, h′ |= qf(B),
we have dom (h′) {s′(u1), . . . , s′(u`′)} (all disjoint), with h′(s′(uj)) = s′(u′j) for
each 1 ≤ j ≤ `′. Thus `′ = ` and, because of the isomorphism between the
pairs (s′(ti), s

′(t′i)) and (s′(uj), s
′(u′j)), we deduce that in fact h′ = h. Thus

s′, h |= qf(B) and so s, h |= B, as required.

As an immediate consequence of Lemma 4.2, the general entailment problem
for SLMPA is in Π0

2 Presburger arithmetic, which corresponds to ΠEXP
1 in the

exponential-time hierarchy [17]. However, as it turns out, this bound is exponen-
tially overstated; as we show in Theorem 6.7, the problem also belongs to the
much smaller class ΠP

2 , the second class in the polynomial time hierarchy [25].
The crucial difference between Presburger Π0

2 and polynomial ΠP
2 is that, in the

latter, all variables must be polynomially bounded.

However, the construction above does yield an optimal upper bound for the
quantifier-free version of the problem.

Theorem 4.3. The quantifier-free entailment problem for SLMPA is in coNP.

Proof. According to Lemma 4.2, deciding whether A |= B is valid is equivalent
to deciding whether the PbA formula ∀x. εA,B is valid (where x is the set of all
free variables in A and B). Although the latter is in general a Π0

2 formula, it
becomes a Π0

1 formula when B is quantifier-free; the validity of such formulas
can be decided in coNP time.

We now turn to the small model property. We note that this property is
sensitive to the exact form of our arithmetical constraints, and, similar to Re-
mark 3.10, it fails when we allow the addition of two pointer variables.

Theorem 4.4 (Small model property). Suppose that the quantifier-free en-
tailment A |= B is not valid. Then we can find a counter-model (s, h) such that
(s, h) |= A but (s, h) 6|= B, in which all values are bounded by M =

∑
i(|ki|+ 1),

where ki ranges over all occurrences of numbers in A and B.

Proof. (Sketch) The proof follows the structure of the small model property for
satisfiability (Theorem 3.15), noting first that we can rewrite the PbA formula
∀x. εA,B as a Π0

2 Boolean combination of difference constraints x ≤ y+k, similar
to Defn. 3.11.

As for the coNP lower bound, we use a construction similar to Definition 3.5,
based on the complement of 3-colourability.

Definition 4.5. Given a graph G with n vertices, and reusing notation from
Definition 3.5, we introduce a satisfiable symbolic heap A′G by:∧n

i=1(a+ 1 ≤ ci ∧ ci ≤ d) : ∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil

and a satisfiable symbolic heap B′G by d ≥ a+ 4 : A′G.

Lemma 4.6. Let G be an instance of the 3-colouring problem, and let A′G and
B′G be given by Defn. 4.5 above. Then A′G |= B′G is not valid iff there is a perfect
3-colouring of G.

Proof. Let G = (V,E) have n vertices v1, . . . , vn, where n ≥ 4.

(⇐) Suppose G has a perfect 3-colouring given by assigning colours bi ∈ {1, 2, 3}
to vertices vi. By the argument in the (⇐) case of the proof of Lemma 3.7, if we
define s(a) = 0, s(ci) = bi and (new here) s(d) = 3 then there is a heap h such
that s, h |= A′G. However, we do not have s, h |= B′G because s 6|= d ≥ a + 4.
Thus A′G |= B′G is not valid, as required.

(⇒) Conversely, suppose s, h |= A′G but s, h 6|= B′G for some (s, h). By construc-
tion of B′G, this implies that s 6|= a ≤ d−4, which implies s(d) ≤ s(a)+3. We can
then use this fact together with the fact that s, h |= A′G to obtain a 3-colouring
of G exactly as in the (⇒) case of the proof of Lemma 3.7.

Theorem 4.7. The quantifier-free entailment problem for SLMPA is coNP-hard,
even when both symbolic heaps are satisfiable.

Proof. Lemma 4.6 gives a reduction from the complement of the 3-colourability
problem, which is coNP-hard, using only satisfiable symbolic heaps.

Corollary 4.8. The quantifier-free entailment problem for SLMPA is coNP-complete
(even when both symbolic heaps are satisfiable).

Proof. Theorems 4.3 and 4.7 give the upper and lower bounds respectively.

5 Quantified entailment: ΠP
2 lower bound

In this section, and the following one, we investigate the general form of the
entailment problem A |= B for our SLMPA, where B may contain existential
quantifiers. Here, we establish a lower bound for this problem of ΠP

2 in the
polynomial-time hierarchy (see [25]); in the next section we shall establish an
identical upper bound.

To prove ΠP
2 -hardness, we build a reduction from the so-called 2-round ver-

sion of the 3-colourability problem, defined as follows.

2-round 3-colourability problem. Let G = (V,E) be an undirected graph with
n ≥ 4 vertices and k leaves (vertices of degree 1). The problem is to decide
whether every 3-colouring of the leaves can be extended to a perfect 3-colouring
of the entire graph, such that no two adjacent vertices share the same colour.

Definition 5.1. Let G = (V,E) be an instance graph with n vertices and k leaves.
In addition to the variables ci and a and the numbers eij which we reuse from
Definition 3.5, to each edge (vi, vj) we also associate a new variable c̃ij, repre-
senting the colour “complementary” to ci and cj.

To encode the fact that no two adjacent vertices vi and vj share the same
colour, we shall use ci, cj, and c̃ij as the addresses, relative to the base-offset
eij, for three consecutive cells within a memory chunk of length 3, which forces
ci, cj, and c̃ij to form a permutation of (1, 2, 3).

Formally, we define A′′G to be the following quantifier-free symbolic heap:∧k
i=1(a+ 1 ≤ ci ∧ ci ≤ a+ 3): ∗`∈{1,2,3}(vi,vj)∈E

a+ (eij + `) 7→ nil

and B′′G to be the following quantified symbolic heap:

∃z.
∧n
i=1 (a+ 1 ≤ ci ≤ a+ 3) ∧

∧
(vi,vj)∈E (a+ 1 ≤ c̃ij ≤ a+ 3) :

∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil ∗ c̃ij + eij 7→ nil (5)

where the existentially quantified variables z are all variables occurring in B′′G
that are not mentioned explicitly in A′′G; namely, the variables ci for k+1 ≤ i ≤ n,
and the “complementary colour” variables c̃ij. Note that both A′′G and B′′G are
satisfiable.

Lemma 5.2. Let G be an instance of the 2-round 3-colouring problem, and let
A′′G and B′′G be given by Defn. 5.1 above. Then A′′G |= B′′G is valid iff there is a
perfect 3-colouring of G given any 3-colouring of its leaves.

Proof. Let G = (V,E) have vertices v1, . . . , vn of which the first k are leaves.
We assume n ≥ 4.

(⇐) Let (s, h) be a stack-heap pair satisfying s, h |= A′′G; we have to show that
s, h |= B′′G. The spatial part of A′′G yields

dom (h) =
⋃ `=1,2,3

(vi,vj)∈E { s(a) + eij + ` } (6)

where these locations are all disjoint (and h maps each of them to nil); further-
more, s(a) + 1 ≤ s(ci) ≤ s(a) + 3 for each 1 ≤ i ≤ k. Take the 3-colouring of
the leaves obtained by assigning colours bi = s(ci) − s(a) to each of the leaves
v1, . . . , vk. According to the winning strategy, we can assign colours bi to the re-
maining vertices vk+1, . . . , vn, obtaining a 3-colouring of the whole G such that
no two adjacent vertices share the same colour. In addition, we mark each edge
(vi, vj) by b̃ij , the colour complementary to bi and bj .

We extend the stack s to interpret the existentially quantified variables in B′′G
as follows:

s(ci) = s(a) + bi for each k + 1 ≤ i ≤ n
s(c̃ij) = s(a) + 6− bi − bj for each (vi, vj) ∈ E

The fact that no adjacent vertices vi and vj share the same colour means that

(s(ci), s(cj), s(c̃ij)) is a permutation of (s(a) + 1, s(a) + 2, s(a) + 3),

and, as a result, (s, h) is also a model for B′′G; in particular,

s, h |= ∗
(vi,vj)∈E

s(ci) + eij 7→ nil ∗ s(cj) + eij 7→ nil ∗ s(c̃ij) + eij 7→ nil . (7)

(⇒) As for the opposite direction, let A′′G |= B′′G. Since A′′G is satisfiable, there is
a model (s, h) for A′′G so that, in particular, h satisfies (6).

We will construct the required winning strategy in the following way. Assume
a 3-colouring of the leaves is given by assigning colours bi to the leaves v1, . . . , vk.
We modify our original s to a stack s′ by defining s′(ci) = s(a) + bi for each
1 ≤ i ≤ k. This does not change the heap h, but provides

s(a) + 1 ≤ s′(ci) ≤ s(a) + 3 for each 1 ≤ i ≤ k.

It is clear that the modified (s′, h) is still a model for A′′G, and, hence, a model
for B′′G. Then for some stack sB , an extension of s′ to the existentially quantified
variables in B, we get sB , h |= B′′G.

For each 1 ≤ i ≤ k, we have sB(ci) = s′(ci) = sB(a) + bi, which means that
these sB(ci) represent correctly the original 3-colouring of the leaves. By assign-
ing the colours bi = sB(ci)−sB(a) to each of the remaining vertices vk+1, . . . , vn,
we obtain a 3-colouring of the whole G.

The spatial part of B′′G, cf. (7), provides that sB(ci) 6= sB(cj), which implies
that no adjacent vertices vi and vj can share the same colours bi and bj . This
means that we have a perfect 3-colouring of G, as required.

Theorem 5.3. The general entailment problem for SLMPA is ΠP
2 -hard, even

when both symbolic heaps are satisfiable.

Proof. Definition 5.1 and Lemma 5.2 give a reduction from the 2-round 3-colourability
problem, which is ΠP

2 -hard [15].

6 Quantified entailment: ΠP
2 upper bound

Following the ΠP
2 lower bound for quantified entailments in SLMPA given in

the previous section, we show here that the upper bound is also ΠP
2 , as well

as establishing the small model property. Indeed, we shall see that the former
result follows from the latter one.

Theorem 6.1 (Small model property). Suppose that A |= B, encoded as
εA,B in Definition 4.1, is not valid. Let x1, . . . , xn be the free variables in A and
B, and let y1, . . . , ym be the existentially quantified variables in B.

Then we can find a counter-model (s, h) such that s, h |= A but s, h 6|= B, in
which all values of s(xi) are bounded by (n + 1) ·M and all values of s(yj) by
(n + m + 2) ·M , where M =

∑
i(|ki| + 1), with ki ranging over all occurrences

of ‘offset’ integers in A and B.

Proof sketch. Let (s, h) be a counter-model for A |= B. For convenience (but
without loss of generality) we assume that s orders the variables as follows:
s(x1) = 0, and s(x1) < s(x2) < · · · < s(xn), and s(xn) ≤ s(ym), and, for all yj ,
s(x1) ≤ s(yj) ≤ s(ym). In particular, note that x1 is a “zero” variable and ym a
“maximum” variable under the valuation s.

Note that, being a model for A, (s, h) is fully determined by the system:

γA,s =
∧n−1
i=1 (xi+1 = xi + di,i+1) (8)

where for all 1 ≤ i < j ≤ n, the dij is defined as: dij = s(xj)− s(xi).
Following Proposition 3.12, the fact that s, h 6|= B means that for a cer-

tain Boolean function fA,B , whatever Boolean vector ζ̄ = ζ1, .., ζ` such that
fA,B(ζ1, .., ζ`) = > we take, the following system, GA,B,s,ζ̄ , has no integer so-
lution for fixed s(x1), .., s(xn) given by γA,s from (8):

GA,B,s,ζ̄ = γA,s ∧ Z1 ≡ ζ1 ∧ · · · ∧ Z` ≡ ζ` (9)

This constraint system can be seen as a graph, in exactly the same way as is
done in Definition 3.13.

Example 6.2 (A running example). Let A andB be the following symbolic heaps:

A : x1 < x2 < x3 < x4 : x1 7→ nil ∗ x4 7→ nil

B : ∃y1∃y4. x2 ≤ y1 − 3 ∧ x3 ≤ y4 + 7: y1 7→ nil ∗ y4 7→ nil

As a ‘large’ counter-model for A |= B, we take (s, h), where s is defined bys(x2) = s(x1) + 3D,
s(x3) = s(x2) + 2,
s(x4) = s(x3) +D,

where D is a very large number (say 21024). To show that (s, h) is not a model
for B, the spatial parts provide two cases to be considered: y1 = x1 ∧ y4 = x4

and y1 = x4 ∧ y4 = x1.

(a) In case of y1 = x1 ∧ y4 = x4, the corresponding system GA,B,s,ζ̄ in (9) has
no solution, e.g., because of the negative cycle:

x̂1
0−→ ŷ1

−3−→ x̂2
−3D−→ x̂1 (10)

(b) In case of y1 = x4 ∧ y4 = x1, the corresponding system GA,B,s,ζ̄ in (9) has
no solution, e.g., because of the negative cycle:

x̂4
0−→ ŷ1

−3−→ x̂2
−3D−→ x̂1

0−→ ŷ4
7−→ x̂3

D−→ x̂4 (11)

The intuitive idea of constructing a small counter-model is as follows.

Definition 6.3. Given a ‘large’ counter-model (s, h) and a small M , we con-
struct a small counter-model (s′, h′) by simply replacing all large gaps di,i+1 in
(8) with M , as follows:

s′(xi+1) :=

{
s′(xi) + di,i+1, if di,i+1 ≤M
s′(xi) +M, otherwise

(The heap h′ is then obtained simply by updating h to use values given by s′

rather than s, in the evident way.)

Lemma 6.4. We can check that (s′, h′) is still a model for A.

A real challenge is to prove that our (s′, h′) is not a model for B.

Example 6.5 (continuing Example 6.2). To show that s′, h′ 6|= B, we have two
cases to be considered: y1 = x1 ∧ y4 = x4, and y1 = x4 ∧ y4 = x1.

(a) In case of y1 = x1 ∧ y4 = x4, the updated GA,B,s′,ζ̄ has no solution. E.g., by
replacing the large 3D in the negative cycle (10) with our modest M , we get
a negative cycle in terms of (s′, h′):

x̂1
0−→ ŷ1

−3−→ x̂2
−M−→ x̂1

(b) In case of y1 = x4 ∧ y4 = x1, however, the same strategy fails. Namely, by
replacing the large D and 3D in the negative cycle (11) with M , we get a
cycle in terms of (s′, h′):

x̂4
0−→ ŷ1

−3−→ x̂2
−M−→ x̂1

0−→ ŷ4
7−→ x̂3

M−→ x̂4

but now with positive weight.

The challenge to our construction can be resolved by the following lemma.

Lemma 6.6. Having got a negative cycle C for (9), we can extract a smaller
negative cycle which is good for (s′, h′) as well.

Proof. (Sketch) We introduce the following reductions on negative cycles C. We

write x̂j
σ

=⇒Y x̂i to denote a subpath of C from x̂j to x̂i with total weight σ
and whose intermediate nodes are all of the form ŷk. Then, assuming i < j, we
distinguish two cases:

Case: C contains x̂j
σ

=⇒Y x̂i. We note that dij > 0, because s(xj) > s(xi) by
assumption. We distinguish two subcases:

Subcase (a1): −dij ≤ σ. In this subcase, we replace the above path with the sin-

gle labelled edge x̂j
−dij−→ x̂i , which ensures that the updated C still has negative

weight, but now also contains fewer nodes of the form ŷk.

E.g., within Example 6.5, replacing x̂4
0−→ ŷ1

−3−→ x̂2, the cycle (11) can
be transformed into the negative cycle:

x̂4
−D−2−→ x̂2

−3D−→ x̂1
0−→ ŷ4

7−→ x̂3
D−→ x̂4 (12)

Subcase (a2): −dij > σ. We identify the negative cycle:

x̂j
σ

=⇒Y x̂i
dij−→ x̂j

Since dij < −σ ≤M , we have d′ij = dij , and hence this smaller negative cycle is
good for (s′, h′) as well. This completes the case.

Case: C contains x̂i
σ

=⇒Y x̂j . In that case, dij < 0, again because s(xj) > s(xi),
and we again distinguish two subcases:

Subcase (b1): dij ≤ σ. In this subcase, we replace this path with the edge

x̂i
dij−→ x̂j , which ensures that the updated C remains negative, but has fewer

nodes of the form ŷk.

Subcase (b2): dij > σ. We identify the negative cycle:

x̂i
σ

=⇒Y x̂j
−dij−→ x̂i

If dk,k+1 ≤M for all k such that i ≤ k < j, then d′ij = dij , and hence this smaller
negative cycle is good for (s′, h′), as well. Otherwise, for some k, dk,k+1 > M , and
thereby by construction d′k,k+1 = M , and, hence, d′ij ≥M . Then the following
cycle defined in terms of (s′, h′),

x̂i
σ

=⇒Y x̂j
−d′ij−→ x̂i

is of negative weight, since σ − d′ij ≤ σ −M < 0.

E.g., within Example 6.5 with: x̂1
0−→ ŷ4

7−→ x̂3, in (12), we obtain the
following cycle in terms of (s′, h′):

x̂1
0−→ ŷ4

7−→ x̂3
−2−M−→ x̂1

which is guaranteed to be of negative weight.

Finally, we show that any chain of reductions must terminate in one of the
subcases (a2) and (b2). To see this, suppose otherwise. Then, having eliminated
all nodes of the form ŷk in C via reductions (a1) and (b1), we would obtain a
negative cycle C (by Lemma 6.6) consisting only of nodes of the form x̂i, e.g.:

x̂i
dij−→ x̂j

−dij−→ x̂i

However, such a cycle necessarily has weight 0, and is therefore non-negative;
contradiction. This concludes the proof of the lemma, and thereby of Theo-
rem 6.1.

Theorem 6.7. The entailment problem in SLMPA is in ΠP
2 .

Moreover, given A and B, for a certain Boolean combination of difference
constraints R(x,y) defined by A and B as in Defn. 4.1, A |= B is equivalent to

∀x. (γA(x)→ ∃y. R(x,y))

where all xi in x and all yj in y are bounded in accordance with Theorem 6.1.

Proof. This follows from the small model property provided by Theorem 6.1.

Remark 6.8. The proof of Theorem 6.1 provides quite efficient procedures for
the entailment problem in Theorem 6.7, in which the corresponding polytime
sub-procedures are the usual shortest paths procedures with negative weights
allowed, providing polynomials of low degrees. Alternatively, Theorem 5.3 and
Definition 4.1 give an encoding of entailment as a Π0

2 sentence of PbA and a poly-
nomial bound for all variables, which could be passed directly to an arithmetic
constraint solver.

In fact we prove that the entailment problem is ΠP
2 -complete, and enjoys the

small model property, even if we allow any Boolean combination of difference
constraints x ≤ y + k in the pure part of our symbolic heaps.

7 Conclusions and future work

In this paper, we study the points-to fragment of symbolic-heap separation logic
extended with pointer arithmetic, in a minimal form allowing only conjunctions
of difference constraints x ≤ y + k for k ∈ Z.

Perhaps surprisingly, we find that polynomial time algorithms are out of
reach even in this minimal case: satisfiability is already NP-complete, quantifier-
free entailment is coNP-complete, and quantified entailment is ΠP

2 -complete.
However, a small consolation is that the small model property holds for all three
problems.

We note that our upper bound complexity results for satisfiability and quantifier-
free entailment can be seen as following already from our earlier results for array
separation logic [6], where we allow array predicates array(x, y) as well as point-
ers and arithmetic constraints. Of course, pointer arithmetic is often an essential
feature in reasoning about array-manipulating programs. The main value of our
findings, we believe, is in our lower bound complexity results, which show that
NP-hardness or worse is an inevitable consequence of admitting pointer arith-
metic of almost any kind. Moreover, the exact upper bound of ΠP

2 for entailment
in SLMPA is new, and not straightforward to obtain.

We remark that our lower-bound results do however rely on the presence of
pointer arithmetic, as opposed to arithmetic per se. Where pointers and data
values are strictly distinguished and arithmetic is permitted only over data, as is
done e.g. in [16], then polynomial-time algorithms may still be achievable in that
case. Another possibility might be to impose further restrictions on the version of
pointer arithmetic used here by adopting a different memory model, e.g. one that
only allows pointers to be compared within specified memory regions (similar to
the way pointers are intended to be used in C). To stand any chance of yielding a
complexity improvement, such regions would need to be bounded “in advance”,
since, as we point out in Section 3, one can encode a 3-colourability graph with m
edges as a satisfiability problem in SLMPA within a heap region of only linear size
in m. In any case, however, we are not aware of any such region-aware models
in the literature on separation logic.

It is worth mentioning the existence of software security measures that com-
bat attacks like “stack smashing” by deliberately reordering the heap memory.

For programs employing such obfuscatory defensive measures, one typically can-
not say anything definitive about the relative ordering of pointers in memory, in
which case pointer arithmetic may be of limited utility as a reasoning tool.

Finally, we believe that our complexity results might well extend to the full
first-order version of SLMPA. For the entailment lower bound, the natural ap-
proach would be to develop a reduction from the k-round 3-colourability problem
to Π0

k entailments, building on the reduction from 2-round 3-colourability to Π0
2

entailments3 with one alternation in Section 5. For the upper bound, the trans-
lation into an equivalent PbA formula in Definition 4.1 extends to quantifiers in
the obvious way; but, moreover, we believe that our small-model technique in
Section 6 might be also extended to alternating quantifiers, thus obtaining poly-
nomial bounds for all variables. If so, then this would result in ΠP

k -completeness
for Π0

k entailments in SLMPA, i.e., the standard polynomial-time hierarchy; but,
of course, that remains to be seen.

Acknowledgements. Many thanks to Josh Berdine and Nikos Gorogiannis for a
number of illuminating discussions on pointer arithmetic, and to our anonymous
reviewers for their comments, which have helped us to improve the presentation
of this paper.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Proc. FoSSaCS-17. pp. 411–425. Springer (2014)

2. Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation logic.
In: Proc. FSTTCS-24. LNCS, vol. 3328, pp. 97–109. Springer (2004)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Proc. CAV-23. pp. 178–183. Springer (2011)

4. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Information and Com-
putation 211, 106–137 (2012)

5. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure
for satisfiability in separation logic with inductive predicates. In: Proc. CSL-LICS.
pp. 25:1–25:10. ACM (2014)

6. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. In: Proc. CADE-26. LNAI, vol. 10395, pp. 472–490.
Springer (2017)

7. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: Proc. POPL-43. pp.
84–96. ACM (2016)

8. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: Proc. NFM-7. LNCS, vol. 9058, pp. 3–11. Springer (2015)

9. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a
spatial assertion language for data structures. In: Proc. FSTTCS-21. pp. 108–119.
Springer (2001)

3 Here we view the complexity of A |= ∃z.B as Π0
2 , noting that the entailment is,

implicitly, universally quantified at the outermost level.

10. Chen, T., Song, F., Wu, Z.: Tractability of separation logic with inductive defini-
tions: Beyond lists. In: Proc. CONCUR-28. pp. 33:1–33:16. Dagstuhl (2017)

11. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Proc. CONCUR-22. LNCS, vol. 6901, pp.
235–249. Springer (2011)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 3rd edn. (2009)

13. Demri, S., Lozes, E., Lugiez, D.: On symbolic heaps modulo permission theories.
In: Proc. FSTTCS-37. pp. 25:1–25:13. Dagstuhl (2017)

14. Demri, S., Lozes, É., Mansutti, A.: The effects of adding reachability predicates in
propositional separation logic. In: Proc. FoSSaCS-21. LNCS, Springer (2018), to
appear

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

16. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: Proc. IJCAR. LNAI, vol. 9706, pp. 532–
549. Springer (2016)

17. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
Proceedings of CSL-LICS. pp. 47:1–47:10. ACM (2014)

18. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Proc. CADE-24. LNAI, vol. 7898, pp. 21–38. Springer
(2013)

19. Kimura, D., Tatsuta, M.: Decision procedure for entailment of symbolic heaps with
arrays. In: Proc. APLAS-15. LNCS, vol. 10695, pp. 169–189. Springer (2017)

20. Le, Q.L., Sun, J., Chin, W.N.: Satisfiability modulo heap-based programs. In: Proc.
CAV-28. LNCS, vol. 9779, pp. 382–404. Springer (2016)

21. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.N.: A decidable fragment in separation
logic withinductive predicates and arithmetic. In: Proc. CAV-29. LNCS, vol. 10427,
pp. 495–517. Springer (2017)

22. Le, X.B., Gherghina, C., Hobor, A.: Decision procedures over sophisticated frac-
tional permissions. In: Proc. APLAS-10. LNCS, vol. 7705, pp. 368–385. Springer
(2012)

23. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. LICS-17. pp. 55–74. IEEE (2002)

24. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. American
Mathematical Society 284(1), 203–218 (1984)

25. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science
3, 1–22 (1977)

26. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.:
Scalable shape analysis for systems code. In: Proc. CAV-20. LNCS, vol. 5123, pp.
385–398. Springer (2008)

27. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Proc. FOSSACS-5.
pp. 402–416. Springer (2002)

