
Resource semantics: logic as a modelling technology

David Pym, UCL and The Alan Turing Institute, London

The Logic of Bunched Implications (BI) was introduced by O’Hearn and Pym. The original presentation
of BI emphasised its role as a system for formal logic (broadly in the tradition of relevant logic) that has
some interesting properties, combining a clean proof theory, including a categorical interpretation, with
a simple truth-functional semantics. BI quickly found significant applications in program verification and
program analysis, chiefly through a specific theory of BI that is commonly known as ‘Separation Logic’. We
survey the state of work in bunched logics — which, by now, is a quite large family of systems, including
modal and epistemic logics and logics for layered graphs — in such a way as to organize the ideas into a
coherent (semantic) picture with a strong interpretation in terms of resources. One such picture can be seen
as deriving from an interpretation of BI’s semantics in terms of resources, and this view provides a basis
for a systematic interpretation of the family of bunched logics, including modal, epistemic, layered graph,
and process-theoretic variants, in terms of resources. We explain the basic ideas of resource semantics,
including comparisons with Linear Logic and ideas from economics and physics. We include discussions of
BI’s λ-calculus, of Separation Logic, and of an approach to distributed systems modelling based on resource
semantics.

1. INTRODUCTION
The Logic of Bunched Implications (BI) was introduced by O’Hearn and Pym [89;
95]. The original presentation of BI emphasised its role as a system for formal logic
(broadly in the tradition of relevant logic) that has some interesting properties, com-
bining a clean proof theory, including a categorical interpretation, with a simple truth-
functional semantics. BI has since found significant applications in program verifica-
tion and program analysis, chiefly through a specific theory of BI that is commonly
known as ‘Separation Logic’ [65; 99; 61].

The purpose of the article is to survey the state of work in bunched logics — which,
by now, is a quite large family of systems — in such a way as to organize the ideas
into a coherent (semantic) picture. One such picture can be seen as deriving from an
interpretation of BI’s semantics in terms of resources. How does this interpretation
arise? We need to begin, to set the scene, with a few remarks on the logic itself. We’ll
just talk about conjunction for now.

As we’ll see below, BI can be understood proof-theoretically: indeed, that is where
its name comes from. Consider — eliding for now lots of details, such as the Exchange
rule for swapping the order of formulae — the following two forms of conjunction, ∧1
and ∧2, given in terms of left- and right-rules of a single-conclusion sequent calculus:
the ‘additive’ form,

Γ, φ1, φ2,∆ ` ψ
Γ, φ1 ∧1 φ2,∆ ` ψ

∧1 L
Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧1 φ2
∧1 R,

and the ‘multiplicative’ form,

Γ, φ1, φ2,∆ ` ψ
Γ, φ1 ∧2 φ2,∆ ` ψ

∧2 L
Γ1 ` φ1 Γ2 ` φ2
Γ1,Γ2 ` φ1 ∧2 φ2

∧2 R.

In the presence of the structural rules of Weakening (W) and Contraction (C),

Γ1,Γ2 ` ψ
Γ1, φ,Γ2 ` ψ

W and
Γ1, φ, φ,Γ2 ` ψ
Γ1, φ,Γ2 ` ψ

C,

the two forms, ∧1 and ∧2, are equivalent (proof-theoretically, they are interderivable).
In the absence of these rules, the two conjunctions are distinct.

ACM SIGLOG News 1 0000, Vol. 0, No. 0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/200749312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In BI, we choose to have both forms, and must set up a proof system to handle
them simultaneously. To do this, we move from sequents in which the antecedents are
finite lists of formulae to ones in which they are finite trees with internal vertices
labelled with either a comma, ‘,’, or a semi-colon, ‘;’, and with leaves labelled with
formulae. These antecedents — which are required to satisfy certain equivalences [89;
95], including congruence of substitution and the Exchange rule, are called bunches —
and they have a history in relevant logic (see, for example, [4; 5; 98]).

The comma and the semicolon are both operations that build antecedents, just like
the regular comma in the classical or intuitionistic sequent calculus, but we can now
associate the structural rules of Weakening and Contraction with one of them (semi-
colon) and not the other:

Γ(φ) ` χ
Γ(φ ; ψ) ` χ W and

Γ(φ ; φ) ` ψ
Γ(φ) ` ψ C,

but not for the comma.
Notice that we are now working with ‘deep’ rules, in which we look inside the struc-

ture of the tree, and we will write Γ(∆) to denote that ∆ is a sub-bunch of Γ. We will
give more details of the structure of bunches below. For, it will suffice to observe that
we can now write the two forms of conjunction, which we’ll now call ∧ and ∗, as follows:

Γ(φ1, φ2) ` ψ
Γ(φ1 ∧ φ2) ` ψ ∧ L

Γ1 ` φ1 Γ2 ` φ2
Γ1 ; Γ2 ` φ1 ∧1 φ2

∧1 R,

noting that if Γ1 = Γ2, then Contraction can be applied in the conclusion of the rule
and so the additive form of the rule can be recovered, and

Γ(φ1, φ2) ` ψ
Γ(φ1 ∗ φ2) ` ψ ∗ L

Γ1 ` φ1 Γ2 ` φ2
Γ1,Γ2 ` φ1 ∧2 φ2

∗ R.

noting that even if Γ1 = Γ2, the contraction rule is not applicable in the conclusion of
the rule. Each of these conjunctions — the first one is intuitionistic; the second is linear
— has an associated implication. The first one is intuitionistic implication, written→;
the second one is linear implication, written −∗ , also know as ‘magic wand’.

From a semantic perspective, there are two ways to handle BI: by interpreting the
proof theory categorically and by giving a truth-functional semantics, and they are
intimately related. To set the scene, we’ll consider an elementary, Kripke-style truth-
functional semantics [73; 35; 46]. We will need two main ingredients to set this up.
First, because we need to interpret the intuitionistic connectives, we need a set of
worlds that is preordered (i.e., the order is reflexive and transitive). Second, because
we need to interpret the linear connectives, we need a monoidal operation [7]. The basic
solution is to work with a structure M consisting in a set M of worlds m that enjoys
a preorder v and monoidal operation ◦, with unit e, subject to a coherence condition
that we will mention below:

M = (M,v, ◦, e)
An example of such a structure is given by the natural numbers, including 0, ordered
by less-than-or-equals and with monoidal composition given by addition: (N,≤,+, 0).
Later, we’ll see the need for variations such as partial and non-commutative monoids.

With this set up, we can now interpret our two conjunctions and implications as
follows:

m |= φ1 ∧ φ2 iff m |= φ1 and m |= φ2
m |= φ→ ψ iff for all n s.t. n v m, n |= ψ

ACM SIGLOG News 2 Vol. 0, No. 0, 0000

and
m |= φ1 ∗ φ2 iff there are n1 and n2 s.t. m v n1 ◦ n2 and

n1 |= φ1 and n2 |= φ2
m |= φ−∗ψ iff for all n s.t. n |= φ, m ◦ n |= ψ

It is this semantics that gives rise to use of BI and its associated systems as bases
for modelling technologies, with Separation Logic and its applications being leading a
leading example.

In Section 2, we outline the resource interpretation of BI’s semantics, starting from
some basic observations about the concept of resource. In Section 3, we consider some
of the ideas in substructural logic that form the background to BI. As the rest of this
article is mainly focussed on semantics, here we balance things with a more proof-
theoretic perspective. In Section 4, we describe BI in more detail, summarizing its
proof theory, its categorical semantics, and its truth-functional semantics. We also in-
troduce the ideas of systems of labelled tableaux, which are useful tool in the metathe-
ory of bunched logics. We also mention BI’s lambda calculus, αλ, and its interpretation
in resource semantics. In Section 5, we provide a summary of Separation Logic from
the perspective of resource semantics. In Section 6, we sketch modal epistemic exten-
sions of BI with interpretations that are based on resource semantics. In Section 7, we
explain how the family of bunched logics includes systems that have very weak struc-
tural properties — based on structures that are neither commutative nor associative
— but which nevertheless are interesting both from the logical point view, where they
help us to establish a general framework for bunched logics, and from a modelling
perspective, using their semantics in layered graphs. In Section 8, we explain how the
ideas in the previous sections can be brought together to provide a basis for a theory
and, indeed, implementation of a framework for modelling distributed systems, based
on ideas of location, resource, and process. Finally, in Section 9, we summarize the
story of BI and its associated systems — including logics for layered graphs, modal
variants, and process calculi — as a basis for a modelling technology. concluding with
a brief summarizing discussion of logic as a modelling technology.

This article presumes the reader has some familiarity with a range of basic support-
ing ideas. These include the basics of logic, such as proof systems and truth-functional
semantics, the basics of categorical logic, the basic idea of program verification, and
the basic ideas of concurrent and distributed systems and approaches to modelling
them. References are intended to be illustrative and helpful rather than comprehen-
sive (which would require a vast number). The style of the article is informal through-
out.

The content and organization of the article are based on several presentations given
by the author: first, an invited lecture at the Second SYSMICS Workshop in Vienna,
Austria, 26–28 February 2018; second, a tutorial of four lectures at the SYSMICS
Summer School, Les Diablerets, Switzerland, 22–26 August 2018; third, an invited
lecture an the Dagstuhl Seminar on Logics for Dependence and Independence, Schloss
Dagstuhl, Germany, 14–18 January 2019. The author is grateful to the organizers of
those meetings for their kind invitations to speak. This article draws directly and ex-
plicitly on papers by myself, my colleagues, and my PhD students about BI, its seman-
tics, and its applications in program verification and systems. All such work is fully
cited throughout the article.

2. RESOURCE SEMANTICS BASICS
We have begun by mentioning BI’s logical motivation, which can be seen as lying
within a combination of programmes of research in relevant logic [4; 5; 98], intuition-
istic logic [35; 73; 10; 46], categorical logic [81; 102; 78], and program logic [63; 6; 80],

ACM SIGLOG News 3 Vol. 0, No. 0, 0000

which mathematical, philosophical, and computational logical methods all exercising
some influence over its development.

In this section, we consider an alternative motivation — wholly consistent with the
logical motivation — that is about logical systems modelling. For these purposes, we
consider ‘systems’ in the sense of an abstraction of the concept of a ‘distributed system’
in the theory of computer systems, as described, for example, in the work of Coulouris,
Dollimore, Kindberg, and Blair [31].

This view of the classical theory of distributed systems provides a rigorous concep-
tual basis for our modelling perspective, which can be conveniently abstracted to de-
scribe systems in terms of collections of the following:

- interconnected locations, at which are situated
- resources, relative to which
- processes execute — consuming, creating, moving, and otherwise manipulating re-
sources as they evolve — and so deliver a system’s services [28; 27].

Distributed systems, as described in this way, do not exist in isolation, but within envi-
ronments with which they interact. A system’s environment is both a source of events,
that are incident upon the system, and the recipient of events caused by the execution
of the system’s processes. For the purposes of this article, we will be concerned with the
structural aspects of systems models — locations, resources, and processes. In [27; 17],
it is explained how environment is added this picture through the use of probability
distributions to capture the incidence of events across the boundary of a system model.

In the course of this article, we will discuss all of location, resource, and process in
some detail. For the moment, however, we concentrate on resources as a basis for BI’s
semantics.

Conceptually, resource semantics begins with a simple axiomatization of resource.
Starting with a given homogeneous set of resource elements — for example, bags of
fruit, units of currency, or computer memory – we expect the following properties:

- to be able to combine two units of the given type of resource to form a new unit of
that type of resource;

- to be able to compare (using either a simple equality or an ordering) two units of a
given type of resource;

- that combination and comparison should be appropriately compatible.

Mathematically, this basic set-up is captured by pre-ordered partial monoids of re-
sources (PRMs), defined as follows [89; 52]:

R = (R, ◦, e,v),

where R is a set of resource elements, v is a pre-order (we write = for v ∩ w) and ◦
is a monoidal composition with unit e, subject to the ‘functoriality’ coherence condition
that, where defined,

if r v s and r′ v s′ , then r ◦ r′ v s ◦ s′

An example of such a structure is provided by the natural numbers, including zero (for
which the monoid operation happens to be total):

(N,+, 0,≤)

with addition and less-than-or-equal.
Some basic examples of resources that fit into this framework include the following:

- Money and homogenous commodities — these are essentially the natural numbers,
as above;

ACM SIGLOG News 4 Vol. 0, No. 0, 0000

- Tuples of commodities, with pointwise orderings;
- Petri nets — see [97; 20], and
- Computer memory — the ‘stack–heap’ model of Separation Logic [65; 110].

The last of these, computer memory, makes essential use of partiality.
This basic axiomatization has proved remarkably robust. It supports Separation

Logic — the basic ideas of which we shall describe in more detail later — and its devel-
opments [65; 99; 86; 61; 87] in a vast subsequent literature. It also supports resource
interpretations of modal logics based on BI [19; 20; 50] modalities and illuminates con-
nections with a range of other influential logical perspectives, including Dependence
Logic [108; 1], and quantum information theory [24; 39]. Simon Docherty’s recent PhD
thesis [39] provides an excellent discussion of the scope of resource semantics in a
generalized setting.

3. SUBSTRUCTURAL LOGIC
There is a long history of the study of systems of logic — substructural logics — which
have weaker structural properties than logics based on classical or even intuitionistic
logic (see, for example, [4; 5; 98; 54; 101; 77; 101], to name just a few sources). In this
section, we explain BI in this context.

It is perhaps most convenient to characterize this work using proof-theoretic repre-
sentations consequence. Relevant, or relevance, logic is an attempt to avoid the ‘para-
doxes’ of material (and strict) implication, such as

` φ→ (ψ → φ) and ` (φ→ ψ) ∨ (ψ → χ) .

That these consequences are provable in classical logic follows from the structural rule
of Weakening, which is expressed in the sequent calculus as as the pair of left and right
rules

Γ ` ∆

Γ, φ ` ∆
WL and

Γ ` ∆

Γ ` φ,∆ WR

that allow ‘irrelevant’ assumptions to be introduced to proofs.1
In proof-theoretic terms, relevant logic [11; 98] refers to systems that reject Weak-

ening. The structural rule of Contraction, which allows the removal of duplication as-
sumptions, is expressed in the sequent calculus

Γ, φ, φ ` ∆

Γ, φ ` ∆
CL and

Γ ` φ, φ,∆
Γ ` φ,∆ CR .

This rule can also be dropped, so giving a ‘purely relevant’ system in which the number
of uses of a formula is tracked exactly in provable consequences.

Girard’s Linear Logic (LL) [54] is a substructural logic that represents Weakening
and Contraction, within an otherwise purely relevant system, using S4-like modalities,
or exponentials, ! and ?, with left and right rules of the form

Γ, φ ` ∆

Γ, !φ ` ∆
!L and

?Γ ` φ, ?∆

?Γ `?φ, ?∆
?L

and
!Γ ` φ, ?∆

!Γ `!φ, ?∆
!R and

Γ ` φ,∆
Γ `?φ,∆

?R

These modalities are dual via linear negation: (!φ)⊥ =?φ⊥ and (?φ)⊥ =!φ⊥.

1For the purposes of this section, all calculi are assumed to admit the Exchange (permutation) rule.

ACM SIGLOG News 5 Vol. 0, No. 0, 0000

Then the structural rules arise as
Γ ` ∆

Γ, !φ ` ∆
WL and

Γ ` ∆

Γ `?φ,∆
WR

and
Γ, !φ, !φ ` ∆

Γ, !φ ` ∆
CL and

Γ `?φ, ?φ,∆

Γ `?φ,∆
CR .

Alongside this classical, multiple-conclusioned version of Linear Logic (CLL) comes
an intuitionistic version. The single-conclusioned calculus for intuitionistic Linear
Logic (ILL) employs (therefore) just the single modality !, with the sequent calculus
rules corresponding to those above obtained by erasing all of the right-hand side for-
mulae other than the leftmost.

With this control of the Weakening and Contraction, Linear Logic — like relevant
logics [4; 5; 98] — is able to distinguish between multiplicative and additve connectives
(here we use these terms just to denote the forms inference rules, not in Linear Logic’s
semantic sense). For example, in ILL, we have the multiplicative conjunction ⊗ and
the additive conjunction & as right rules

Γ ` φ ∆ ` ψ
Γ,∆ ` φ⊗ ψ ⊗R and

Γ ` φ Γ ` ψ
Γ ` φ&ψ

&R

and left rules
Γ, φ1, φ2,Γ

′ ` ψ
Γ, φ1 ⊗ φ2,Γ′ ` ψ

⊗L and
Γ, φi,Γ

′ ` ψ
Γ, φ1&φ2,Γ′ ` ψ

(i = 1, 2) &L.

In the presence of unrestricted Weakening and Contraction, the two forms of conjunc-
tion are inter-derivable.

Along with the multiplicative conjunction comes ILL’s implication,(, with the fol-
lowing left and right rules:

Γ ` φ ψ,Γ′ ` χ
Γ, φ(ψ,Γ′ ` χ (L and

Γ, φ ` ψ
Γ ` φ(ψ

(R

The key thing to notice here is that the only sensible way to write a different, addi-
tive, implication is to use the modality, !, as follows:

Γ, !φ ` ψ
Γ ` !φ(ψ

and this, in fact, gives ILL’s representation — often known as ‘Girard’s translation’ —
of intuitionistic implication:

φ→ ψ = !φ(ψ.

4. THE LOGIC OF BUNCHED IMPLICATIONS
Linear Logic’s use of the modalities, ! and ?, is not the only way to control the use of
the structural rules. In this section, we will see how an alternative approach, which
employs a richer structure for sequents, results in a very different logic. Starting from
this proof-theoretic perspective, we will sketch a categorical semantics, and then sum-
marize BI’s truth-functional semantics.

Having summarized BI’s basic proof-theoretic and semantic set-ups, in subsequent
sections we can then consider how it — and, in particular, its semantics and its as-
sociated λ-calculus, αλ — can be understood as a basic theory of resource and, conse-
quently, as a systems modelling tool.

ACM SIGLOG News 6 Vol. 0, No. 0, 0000

4.1. Proof Theory
We have seen how Linear Logic controls the use of the structural rules of classical and
intuitionistic logic using modalities. There is, as we have mentioned, a very different
way of handling them. In terms of sequent calculus, in BI we employ a richer under-
lying sequential structure in which the antecedent Γ in a sequent Γ ` φ is structured
not as finite list of formulae, but rather as a finite tree of formulae in which the leaves
of the tree are labelled with formulae and the internal vertices of the tree are labelled
with one of two combinators, ‘;’ and ‘,’, which construct antecedents. These structures
are called bunches.

The semi-colon admits both Weakening and Contraction, and so corresponds to the
list-constructor in intuitionistic sequents,

Γ(φ) ` χ
Γ(φ ; ψ) ` χ W and

Γ(φ ; φ) ` ψ
Γ(φ) ` ψ C

whereas the comma admits neither, and so corresponds to the list-constructor in ILL.
The weakening and contracting can, of course, be generalized to be bunches them-
selves.

Bunches are required to satisify an equivalence (≡) that includes the commutative
monoid equations for ‘;’ and ‘,’ and a congruence property that if ∆ ≡ ∆′, then Γ(∆) ≡
Γ(∆′).

With this set-up, it is easy to define both additive connectives, corresponding to the
intuitionistic connectives, and multiplicatives, corresponding to those of MILL. For
example,

Γ(φ1 , φ2) ` ψ
Γ(φ1 ∗ φ2) ` ψ ∗L Γ ` φ ∆ ` ψ

Γ , ∆ ` φ ∗ ψ ∗R

Γ(φ1 ; φ2) ` ψ
Γ(φ1 ∧ φ2) ` ψ ∧L

Γ ` φ ∆ ` ψ
Γ ; ∆ ` φ ∧ ψ ∧R

and
Γ ` φ ∆(ψ) ` χ
∆(Γ, φ−∗ψ) ` χ −∗L

Γ , φ ` ψ
Γ ` φ−∗ψ −∗R

Γ ` φ ∆(ψ) ` χ
∆(Γ;φ→ ψ) ` χ →L

Γ ; φ ` ψ
Γ ` φ→ ψ

→R

Additive disjunction, as well as all the logical units — >, ⊥, and I (for ∗) — can also be
handled in this way, and many extensions (modal, action, epistemic, quantified) of this
set-up are possible.

BI’s sequent calculus satisfies cut-elimination: if Θ ` φ is provable using the Cut
rule,

Γ(ψ) ` χ ∆ ` ψ
Γ(∆) ` χ Cut,

then Θ ` φ is provable without using the Cut rule.

Other proof systems are available for BI, including Prawitz-style natural deduction
[94], Hilbert-type systems, Display Calculi [15], and Labelled Tableaux.

BI contains MILL and IL as sublogics; the connections can be stated precisely as
follows:

ACM SIGLOG News 7 Vol. 0, No. 0, 0000

- BI is conservative over IL: that is, φ1; . . . ;φn ` φ, where each φi and φ is a formula
containing only additives, is provable in BI iff it is provable in IL;

- BI is conservative over MILL: that is, φ1, . . . , φn ` φ, where each φi and φ is a for-
mula containing only multiplicatives, is provable in BI iff φ∗1, . . . , φ∗n ` φ∗, where (−)∗

replaces each ∗ by ⊗ and each −∗ by(, is provable in MILL.

Note that conservativity does not extend to MAILL (MILL extended with LL’s additive
conjunction and disjunction). The reason is that BI, just as in IL, admits distribution
of additive conjunction over additive disjunction — that is, φ∧ (ψ∨χ) ` (φ∧ψ)∨ (φ∧χ)
— but MAILL does not (for & and ⊕).

4.2. Categorical Semantics
BI’s proof theory can also be understood algebraically, in the tradition of categorical
semantics [81; 102; 78]. BI’s proofs are interpreted in bicartesian doubly closed cate-
gories, or DCCs, for short here [89; 95; 85]. A category is said to be doubly closed if it
enjoys two symmetric monoidal closed structures [7]. A doubly closed category is carte-
sian if one of its closed structures is cartesian, and is bicartesian if it also has finite
coproducts.

The cartesian structure is used to interpret the additive fragment of BI and the other
symmetric monoidal closed structure is used to interpret the multiplicative fragment.
To see this, consider that the two adjunctions, [H ∗E,F] ∼= [H,E−∗F] and [H ×E,F] ∼=
[H,E → F], correspond to the rules for implication,

Γ, φ ` ψ
Γ ` φ−∗ψ and

Γ;φ ` ψ
Γ ` φ→ ψ

For a given DCC, assume an interpretation JpK of BI’s propositional letters, extended
to formulae and contexts in the obvious way. Note the interpretation of ∨L (or ∨ elim-
ination in a natural deduction presentation) needs distribution of both × and ∗ over
+ — but both are left adjoints, and so preserve colimits. Soundness and completeness
then arise as follows: Γ ` φ is provable in BI iff, for every bicartesian DCC D and every
interpretation J−K, the homset D[JΓK, JφK] is non-empty.

This abstract set-up is all very well, but one might ask whether there are natural
examples of bicartesian DCCs. Happily, they are plentiful:

- Cat, the category of small categories, via Gray’s tensor product (see ncatlab.org);
- Set× Set: SMC structure,with unit I = (1, 0), given as

- I = (1, 0)
- (E0, E1)⊗ (F0, F1) = ((E0 × F0) + (E1 × F1), (E0 × F1) + (E1 × F0))
- (E0, E1)((F0, F1) = ((E0 → F0)× (E1 → F1), (E0 → F1)× (E1 → F0)).

- More generally, presheaves SetC
op

for monoidal C (if C is symmetric, so is SetC
op

):
SetC

op

is bicartesian closed, and Day’s tensor product construction [37; 38] gives an-
other SMC structure: the co-end gives the product

(E ⊗ F)X =

∫ Y,Y ′

EY × FY ′ × C[X,Y ⊗ Y ′]

and its right adjoint, which is an end, gives the hom:

(E (F)X =

∫

Y

Set[EY, F (X ⊗ Y)] ∼= SetC
op

[E(−), F (X ⊗−)].

This semantics provides a simple and convenient way to see a key distinction be-
tween MILL and BI. Set × Set, as mentioned above, helps us to understand what is
going on:

ACM SIGLOG News 8 Vol. 0, No. 0, 0000

r |= p iff r ∈ V(p)
r |= ⊥ never
r |= > always

r |= φ ∨ ψ iff r |= φ or r |= ψ
r |= φ ∧ ψ iff r |= φ and r |= ψ
r |= φ→ ψ iff for all s v r, s |= φ implies s |= ψ

r |= I iff r v e
r |= φ ∗ ψ iff there are worlds s and t such that

r v (s · t)↓ and s |= φ and t |= ψ
r |= φ−∗ψ iff for all s such that (r · s)↓ and s |= φ,

r · s |= ψ.

Fig. 1. A simple truth-functional semantics for BI

- Set×Set is a non-degenerate model: I is not a terminal object and ∗ is not a cartesian
product

- There are no maps in the model from 1 to I
- (0, 1) → (1, 0) = (1, 0) and (0, 1)−∗ (1, 0) = (0, 1) (just unpack the definition above).
Hence −∗ and→ are distinct.

- Now we can see a key distinction between MILL and BI:
- There is no endofunctor ! : Set × Set → Set × Set which admits an isomorphism
!E (F ∼= E → F , corresponding to Girard’s translation of intuitionistic logic into
intuitionistic linear logic, φ→ ψ =!φ(ψ;

- To see this, consider that (1, 0)→ (2, 2) = (2, 1), but, for any E, E ((2, 2) = (X,Y),
where the sets X and Y have the same cardinality.

4.3. Truth-functional Semantics
Logic, however, is about much more than proof theory. Critical — in my view at least
— to understanding a system of logic is a truth-functional semantics, which — again,
in my view at least — should be as directly motivated and as simply expressed as
possible. Although the distinction between the proof theory of BI and that of ILL is
quite clear and compelling, it is perhaps in the motivation — in terms of resources
— and expression — as a very straightforward satisfaction relation — of BI’s truth-
functional semantics that BI’s value can be most clearly seen.

BI’s partially defined monoid (or PDM) semantics is defined as follows [89; 95;
52]: (R, ·, e,v) a partially ordered commutative partial monoid, V an interpretation
of propositional letters in ℘(R), and r, s ∈ R such that the satisfaction relation given
in Figure 1 holds. This semantics requires the persistence, or (Kripke) monotonicity,
property: if r |= φ and s v r, then s |= φ.

The resource interpretation, also know as the sharing interpretation, of this seman-
tics is now quite clear:

- the components of additive conjunction (∧), disjunction (∨), and implication (→) may
share resources, whereas

- the components of multiplicative conjunction (∗) and implication (−∗) do not share
resources.

Boolean BI is the variant of this logic in which the additives are taken to be clas-
sical. In the semantics above, we replace the intuitionistic implication with the usual

ACM SIGLOG News 9 Vol. 0, No. 0, 0000

classical one,
r |= φ→ ψ iff r |= φ implies r |= ψ

and take the ordering v to be equality. Boolean BI is the basis of Separation Logic;
this is discussed extensively below. The metatheory of Boolean BI has been studied by
Larchey-Wendling [79].

A multiplicative disjunction and a multiplicative negation can also be defined. These
ideas are discussed in, for example, the work of Brotherston and Villard [16], which
considers the ideas of ‘classical BI’ and ‘sub-classical Boolean BI’ and develops their
theory in some detail. For example, the algebra of worlds can be enriched with a notion
of a ‘dualizing’ operation on worlds, − r, such that − − r = r, so that a multiplicative
negation, ∼ φ, and a multiplicative disjunction, φ + ψ, can be defined, essentially, as
follows:

r |=∼ φ iff −r 6|= φ
r |= φ+ ψ iff for all worlds s and t, if r v −(−s ◦ t), then s |= φ or t |= ψ.

Connectives such as these can be interpreted in terms of the ‘stack–heap’ models of
Separation Logic that we discuss in Section 5.

This analysis is further expanded to a comprehensive treatment of multiplicative
variants of all of the standard propositional connectives, in both the intuitionistic and
classical settings, to be found in the work of Docherty and Pym [41; 42].

Having set up the truth-functional semantics, it is natural to introduce a tableaux
proof system — for, example, Smullyan [9; 104]. Tableaux for classical propositional
logic can be set up as a very simple proof system, which can be seen in two intimately
related ways. First, as representation of proof-search in the sequent calculus. Second,
as a syntactic representation of truth-functional semantics.

A tableau checks whether or not a given set of formulae is satisfiable (for a given
satisfaction relation). Checking an entailment φ1, . . . , φm |= ψ amounts to checking the
satisfiability of {φ1, . . . , φm,¬ψ }. The construction of a tableau consists in decompos-
ing the formulae, by the application of tableaux rules in order to identify the presence
of complementary pairs of literals (i.e., of atoms and negated atoms).

The rules come in pairs for each connective, just as in the sequent calculus, one for
a formula having the connective outermost and one for its negation. For example, one
for φ ∧ ψ and one for ¬(φ ∧ ψ). Often, such pairs are written as T(φ ∧ ψ) and F(φ ∧ ψ),
a representation that is convenient in non-classical logics.

Two forms of representation are commonplace. First, using a pictorial representation
of trees and, second, using the the syntactic form of inference rules. For example, the
two rules for ∧ can be written as follows:

Notice that the F rule introduces two branches to the tableau. These branches repre-
sent a disjunction or nondeterminism in the tableaux method: in order to check ¬(φ∧ψ)
for satisfiability, it is sufficient falsify just one of φ and ψ. The representation of the
two rules for ∨ is exactly dual to that of those for ∧.

The second form of representation is more thoroughly syntactic, but is perhaps a
more convenient approach for more complex systems of tableaux, such as those we

ACM SIGLOG News 10 Vol. 0, No. 0, 0000

consider in this article. In this representation, the rules for ∧ have the following form:

T(φ ∧ ψ)

{T(φ) , T(ψ) }
F(φ ∨ ψ)

F(φ) | F(ψ)

where the | symbol encodes the formation of the branches of the tableau. Again, the
form of the two rules for ∨ is exactly dual to that of those for ∧.

If a pair of complementary literals is found on a branch of a tableau, then the tableau
is said to be closed and the root formula is falsified.

For BI, and other non-classical logics, we work not with the basic tableaux of clas-
sical logic, but with labelled tableaux [52] — see Goré [55; 58] for general discussions.
The general approach is quite straightforward, and can be read off from the form of
the truth-functional semantics. We can think of a classical model as having a single
world, where as a model of BI has an ordered partial monoid of worlds, the structure
of which is used essentially in the semantics of ∗. This stands in contrast to the classi-
cal semantics of ∧, which is given within the one-world of the classical model.

The tableaux rules for ∗ reflect this difference quite directly. To determine the sat-
isfaction of φ ∗ ψ it is necessary to assume a world and then use the algebra of the
partially ordered partial monoid to determine worlds at which the satisfaction of the
subformulae, φ and ψ, are satisfied. This algebraic relationship between these three
worlds is a constraint upon the construction of tableaux and must be represented
within their rules.

The solution is, in summary, as follows:

- associate with formulae labels denoting the worlds at which satisfaction is being
considered;

- associate with the tableaux rules the necessary algebraic relationship between the
worlds to which the rules refer using an algebra of labels;

- extend the closure conditions on tableaux to account for the presence of the labels.

The tableaux rules for BI, illustrated in Figure 2, employ a set F of labels for for-
mulae and a set C of constraints on labels. The labels can be composed and constraints
are orderings of labels. The set C comes along with a set of rules for closing constraints
and the closure of C, denoted C, is the least relation closed under these rules. A tableau
for the formula φ is a tableau for 〈{Fφ : c0}, {c0 4 c0}〉. See [52; 20; 40; 43; 44] for more
details of the general — and quite generic — formulation of this set-up.

Notice how the rules for each connective follow the pattern of the corresponding
case of the satisfaction relation. For example, the rule for ∗ requires that the labels
for the components of the conjunction when combined are below the label for their
conjunction in the constraint ordering. For another example, note that the labelling
and constraints play no role in the rules for ∧ and ∨. For the intuitionistic implica-
tion, the constraints capture the requirement from Kripke semantics of satisfiability
at future worlds, which can also be seen as the Gödel-Mckinsey-Tarski translation of
intutionistic logic into S4 modal logic.

Soundness and completeness results for this semantics relative to BI’s proof theory,
expressed either as a Hilbert systems as in [89; 95] or as described above in terms of
labelled tableaux, can be obtained in a variety of settings [95; 52].

The first step is an elementary semantics based simply on partially ordered monoids
(not partial monoids). This semantics is very appealing, but is complete (for BI’s vari-
ous proof systems) only for BI without ⊥. Incompleteness derives from the interaction
between falsity and multiplicative implication. To see this, consider that in the ele-
mentary semantics, we have the following form of consistency for a formula φ: for any

ACM SIGLOG News 11 Vol. 0, No. 0, 0000

Tφ ∧ ψ : x ∈ F
〈T∧〉

〈{Tφ : x,Tψ : x}, ∅〉
Fφ ∧ ψ : x ∈ F

〈F∧〉
〈{Fφ : x}, ∅〉 | 〈{Fψ : x}, ∅〉

Tφ ∨ ψ : x ∈ F
〈T∨〉

〈{Tφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉
Fφ ∨ ψ : x ∈ F

〈F∨〉
〈{Fφ : x,Fψ : x}, ∅〉

Tφ→ ψ : x ∈ F and x 4 y ∈ C
〈T→〉

〈{Fφ : y}, ∅〉 | 〈{Tψ : y}, ∅〉
Fφ→ ψ : x ∈ F

〈F→〉
〈{Tφ : ci,Fψ : ci}, {x 4 ci}〉

Tφ ∗ ψ : x ∈ F
〈T∗〉

〈{Tφ : ci,Tψ : cj}, {cicj 4 x}〉
Fφ ∗ ψ : x ∈ F and yz 4 x ∈ C

〈F∗〉
〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

Tφ−∗ψ : x ∈ F and x 4 y, yz 4 yz ∈ C
〈T−∗ 〉

〈{Fφ : z}, ∅〉 | 〈{Tψ : yz}, ∅〉
Fφ−∗ψ : x ∈ F

〈F−∗ 〉
〈{Tφ : cj ,Fψ : cicj}, {x 4 ci, cicj 4 cicj}〉

with ci and cj being fresh atomic labels

Fig. 2. Some tableaux rules for BI [52]

m,
m |= (φ−∗⊥)→ ⊥ iff there is an n such that n |= φ.

This can be established by unpacking the implications using the satisfaction relation.
It follows, then, that

((φ−∗⊥)→ ⊥) ∧ ((ψ−∗⊥)→ ⊥) |= ((φ ∗ ψ−∗⊥)→ ⊥),

but
((φ−∗⊥)→ ⊥) ∧ ((ψ−∗⊥)→ ⊥) ` ((φ ∗ ψ−∗⊥)→ ⊥)

is not provable. To see this, consider that if k |= φ and l |= ψ, then k ◦ l |= φ ∗ ψ.
Alternatively, we can see that φ, φ−∗⊥ ` ⊥ is provable, but, in the necessary term

model construction the bunch φ, φ−∗⊥ is equivalent to ⊥, so that a world representing
⊥ would be needed.

The second step is to formulate a version of the elementary semantics in
‘Grothendieck topological monoids’ [95]. In this semantics, the topological structure
admits an ‘empty’ world, which satisifies ⊥, and completeness for the full logic is re-
covered. The third step is to formulate BI’s semantics in the tradition of relevant logics,
using ternary relations R satisfying a number of conditions on worlds [4; 5; 98]. In this
semantics, for example, m |= φ∗ψ iff there exist n and p such that R(n, p,m) and n |= φ
and p |= ψ, and there is a distinguished element that satisfies ⊥. Completeness holds
for this semantics. Finally, the PDM semantics, as given above in Figure 1, can be seen
to arise as a special case of the ternary relation semantics [52].

The partiality of PDM semantics is, in practice, very useful. It is used in BI’s ‘Pointer
Logic’ [65], which is a theory of Boolean BI, to which we return below, and which
provides the semantic basis for Separation Logic [99]. The completeness of labelled
tableaux for the partial monoid semantics of Boolean BI has been given by Larchey-
Wendling [79].

This analysis is comprehensively generalized by Docherty and Pym [44].
From the perspective of resource semantics, we might argue that, in practical appli-

cations of resource semantics, partiality of resource composition is a natural require-
ment. Though conceptually convincing quite directly, this naturality will become very
clear when we consider the semantic basis of Separation Logic, below.

ACM SIGLOG News 12 Vol. 0, No. 0, 0000

4.4. Linear Logic, BI, and Resources in Economics and Physics
Linear Logic (LL) famously has an interpretation in terms of resources, due to Lafont
[75]. This interpretation differs from our resource semantics in that it resides in LL’s
proof systems. The classic example is perhaps that of the vending machine.

We denote having a chocolate bar by the atomic proposition Choc and having one
dollar by $1. one can state that one dollar will buy one chocolate bar by an implication
$1 → Choc, using material implication. But then we have $1 → Choc ∧ Choc, which
asserts that one dollar will buy two chocolates. Linear Logic’s proofs analyse this sit-
uation more carefully using linear implication and tensor product to write $1(Choc
and ($1 ⊗ $1) ((Choc ⊗ Choc). From $1 and $1 (Choc we can conclude Choc and
from $2 and ($1 ⊗ $1) ((Choc ⊗ Choc) we can conclude (Choc ⊗ Choc); that is, 2
chocolates. Thus linear implications A(B are interpreted as transforming resource
A into resource B. In this interpretation, A ⊗ B is interpreted as simultaneous occur-
rence of resources A and B, A&B is interpreted as external (consumer) choice between
resources A and B, and A ⊕ B is interpreted as internal (producer) choice between
resources. LL’s modalities, ! and ?, are interpreted as expressing infinite (stream of)
resource(s), and the units denote things such as the absence of resource and waste
baskets for resources.

In contrast, BI’s resource semantics would treat the vending machine using a model
that is essentially the ordered monoid of natural numbers, (N,≤,+, 0), and then make
assertions such as 2 |= Choc ∗ Choc, read as ‘2 dollars is enough money to buy two
chocolates’.

In this vein, BI’s multiplicative implicational formulae, φ−∗ψ, can be interpreted as
functions with a resource cost, and the cost of obtaining the output from the function
is the cost of the input combined with the cost of the function. For example, consider
making dinner, using the cooking formula Ingredients−∗Dinner. Suppose the cost of
the ingredients is $m and the cost of cooking them is $n, then the cost of making
dinner, is $(m+ n):

n |= Ingredients−∗Dinner iff for any m s.t. m |= Ingredients, n+m |= Dinner.

BI includes MILL, and so includes that fragment of LL’s resource interpretation. In-
finite resources can be represented using BI’s additives. BI does not directly represent
the internal–external distinction, but the concepts can readily be replicated within
resource semantics: for example, see the producer–consumer models in [97; 27].

LL’s (relatively recently settled) Kripke semantics [2; 18] does not have BI’s direct
resource interpretation. Understanding what resource interpretations might be avail-
able there would seem to be an interesting challenge. In contrast, as we discuss herein,
Brotherston and Villard [16] and, more comprehensively, Docherty and Pym [41; 42]
have provided comprehensive treatments of multiplicative variants of all the proposi-
tional connectives, including disjunction.

We conclude this section by remarking on the concept of resource in other fields. The
main area of interest for this is perhaps economics, where two ideas are pertinent:
rivalrous goods and excludable goods (though we have also remarked upon connec-
tions to quantum information theory [24; 39], and see below). Here, the term ‘goods’
corresponds to our notion of resources.

A good is rivalrous if, when the good is used by one actor, then it has been consumed
and cannot be used by another actor. For example, if a person eats some food, then
no-one else can eat the same food. Rivalrous resources are thus consumed in the sense
of Linear Logic, and cannot be shared, in the sense of BI’s resource semantics. A good
is excludable if one actor can prevent another from using the good. For example, if one
passenger buys a ticket for a reserved seat on a train, then other passengers cannot

ACM SIGLOG News 13 Vol. 0, No. 0, 0000

use that seat. This latter property of resources belongs more properly in our treatment
of the manipulation of located resources by processes.

The concept of resource also appears in physics, as discussed in Docherty’s PhD the-
sis [39]. In particular, recent work by Coecke et al. [24] and Fritz [48] proposes an
algebraic framework for ‘resource theories’ that is inspired by quantum information
theory. The basic idea closely resembles BI’s semantics: a set of resources carries the
structure of an ordered commutative monoid in which composition represents com-
bination of resources, but the order < is generated by a background (e.g., physical)
theory of the conversion of resources; for example, the conversions of molecules under
chemical reactions.

Two interpretations are of interest, using Docherty’s [39] terminology of ‘invariance’
and ‘sufficiency’.

- In the invariant interpretation, s 4 r is read as ‘s converts to r’. This idea derives
from the interpretation of persistence of formula satisfaction: if φ is a property of s
and s converts to r, then φ is a property of r ; that is, φ is an invariant property of
conversion). For example, in chemical reactions, the invariant is the number of basic
chemical elements (conservation of mass).

- In the sufficiency interpretation, r < s is read as ‘r converts to s’. This idea derives
from the interpretation of persistence of formula satisfaction: if s is sufficient for task
φ and r converts to s, then r is sufficient for φ. In the vending machine notion of BI,
conversion is spending money elsewhere, so the ‘conversion’ order and the greater-
than order coincide. For example, consider the ordered monoid of natural numbers,
(N,≤,+0), that is a model of BI. If $m is sufficient for a given purchase, then any
amount $(m+ n) is also sufficient for that purchase, and $(m+ n) ≥ $m by spending
$n elsewhere.

These ideas are discussed much more thoroughly in Docherty’s PhD thesis [39].

4.5. Propositions-as-types
The usual close relationship between presheaf models and Kripke semantics — which
we might think of as ‘propositions-as-types’ — can be seen to extend to the multiplica-
tives via Day’s construction — notice the immediate correspondence between the cat-
egorical interpretation of (proofs of) ∗-formulae and the truth-functional satisfaction
condition for ∗:

(E ⊗ F)X =
∫ Y,Y ′

EY × FY ′ × C[X,Y ⊗ Y ′]

X |= E ⊗ F iff ∃Y, Y ′ s.t. Y |= E and Y ′ |= F and X v Y ⊗ Y ′

The correspondence for −∗ is similar.
The propositions-as-types correspondence is, of course, properly expressed as a cor-

respondence between, on the one hand, the terms and types of a λ-calculus and, on the
other, the (usually natural deduction) proofs and propositions of a logic. For proposi-
tional BI with intuitionistic additives, the propositions-as-types correspondence holds
for the αλ-calculus.

4.6. The αλ-calculus and its resource-semantics interpretation
The αλ-calculus is the λ-calculus that stands in propositions-as-types correspondence
with BI (with intuitionistic additves). The αλ-calculus has been used to give accounts
of interference and non-interference in the programming languages SCI and Idealized
Algol [85].

ACM SIGLOG News 14 Vol. 0, No. 0, 0000

The role of resource semantics in the αλ-calculus emphasises the interpretation of
multiplicative implication, in contrast to its additive counterpart, in terms of the sep-
aration and sharing of resources in the arguments of functions.

The basic idea — in the context of functional programming, — is that a function f
may have types A−∗B or A→ B:

- f : A−∗B functions f that do not share resources with their arguments — for exam-
ple, the cooking procedure mentioned above.

- f : A → B functions f that may share resources with their arguments; that is, it is
possible that f shares resources with its argument, but it does not necessarily do so.

These interpretations are supported directly by the typing rules associated with such
functions, which stand in the usual proposition-as-types relation to the underlying
propositional logic, as described by Howard [64], extended to include the multiplicative
functions, as described above, and types A ∗B and I . For example,

Γ , x :A `M : B

Γ ` λx :A.M : A−∗B −∗ I
Γ ; x :A `M : B

Γ ` αx :A.M : A→ B
→I

and
Γ `M : A−∗B ∆ ` N : A

Γ,∆ `MN : B
−∗E

Γ `M : A→ B ∆ ` N : A

Γ; ∆ `M@N : B
→E.

The basic properties of αλ are as one would expect:

- Equations:

(αx.M)N = M [N/x] (αx.Mx) = M (x 6∈ FV(M))

(λx.M)N = M [N/x] (λx.M@x) = M (x 6∈ FV(M))

the usual additive projection–pairing equations

let(x1, x2) = M1 ∗M2 inN = N [M1/x1,M2/x2]

let(x, y) = M inx ∗ y = M

- Properties:
- Cut (substitution) is admissible;
- The usual additive forms of the typing rules are admissible;
- β-reduction (equations read left to right) preserves typing.

The use of αλ and its models as a quite general framework for understanding syntactic
control of interference is a substantial topic with a lot of technical content — we cannot
possibly begin to do it justice here. See [85] for the full story.

5. THE RESOURCE SEMANTICS OF SEPARATION LOGIC
Separation Logic [86], introduced by Ishtiaq and O’Hearn [65], and Reynolds [99], is
an extension of Hoare’s program logic which addresses reasoning about programs that
access and mutate data structures. Here we follow a discussion by Pym, Spring, and
O’Hearn [96].

The usual presentation of Separation Logic is based on Hoare triples — for reasoning
about the state of imperative programs — of the form {φ }C {ψ } , where C is a pro-
gram command, φ is pre-condition for C, and ψ is a post-condition for C. Reynolds’ pro-
gramming language is a simple language of commands with a Lisp-like set-up for cre-
ating and accessing cons cells: C ::= x := E | x := E.i | E.i := E′ | x := cons(E1, E2) |

ACM SIGLOG News 15 Vol. 0, No. 0, 0000

... . Here the expressions E of the language are built up using booleans, variables, etc.,
cons cells, and atomic expressions. Separation Logic thus facilitates verification proce-
dures for programs that alter the heap.

A key feature of Separation Logic is the local reasoning provided by the so-called
Frame Rule,

{φ}C {ψ}
{φ ∗ χ}C {ψ ∗ χ} Modifies(C) ∩ Free(χ) = ∅,

where the side-condition ensures that χ does not include any free variables modified
by the program C; that is, that the state that is manipulated by C is separate from
that which is described by the property χ.

The value of the Frame Rule lies in its support for local reasoning about state. This
is best understood by reading the rule from conclusion to premisses, as in proof-search.
Then, in seeking to establish the provability or truth of the conclusion, identification
of a part of the model — here computer memory — that is characterized by χ allows
that part of the model to be discarded, so enabling significant simplification of the
computation.

Static analysis procedures based on the Frame Rule form the basis of Facebook’s
Infer tool (fbinfer.com) that is deployed in its code production. The decomposition of the
analysis that is facilitated by the Frame Rule is critical to the practical deployability
of Infer.

The resource semantics described above, somewhat richer than that which is avail-
able in Linear Logic [54], allows the construction of specific logical models for a char-
acterization of computer memory. Characterizing memory addressed challenging prob-
lems in program verification. Over the following 15 years, Separation Logic has devel-
oped into a reasoning tool successfully deployed at large technology firms like Facebook
and Spotify. In this section, we explain how the semantics of (Boolean) BI as described
above forms the basis of separation logic.

Ishtiaq and O’Hearn [65] introduced ‘BI Pointer Logic’, based on a specific example
of Boolean BI’s resource semantics. Three points about BI Pointer Logic are key.

- First, its resource semantics is constructed using the stack, used for static, compile-
time memory allocation, and the heap, used for dynamic, run-time memory alloca-
tion:

- Second, the semantics of the separating conjunction, ∗, splits the heap, but not the
stack: the stack contains the allocations required to define the program, which are
unchanged at run-time; the heap contains the allocations made during computation.

- Third, it employs a special class of atomic propositions constructed using the ‘points
to’ relation, 7→: E 7→ E1, E2 means that expression E points to a cons cell E1 and E2.
(It also employs a class of atomic propositions which assert the equality of program
expressions, but this is a standard formulation.)

These factors combine to give an expressive and convenient tool for making statements
about the contexts of heap (cons) cells. For example, the separating conjunction

(x 7→ 2, y) ∗ (y 7→ 3, x)

says that x and y denote distinct locations. Further, x is a structured variable with two
data types; the first, an integer, is 2, and the second is a pointer to y. The variable y
denotes a location with a similar two-part structure in which the first part, also called
the car, contains 3 and the second part, sometimes called the cdr (‘could-er’), contains
a pointer back to x [65]. Note that the pointers identify the whole two-part variable,
not just the car. Figure 3 displays this linked list relationship in pictures.

ACM SIGLOG News 16 Vol. 0, No. 0, 0000

x y

2 3

Fig. 3. Variable names are placed above their boxes, and contents of the variable are inside the box. Overall,
the diagram represents the logical assertion (x 7→ 2, y) ∗ (y 7→ 3, x).

Separation Logic can usefully and safely be seen (see [65; 110] for the details) as a
presentation of BI Pointer Logic — indeed, this is the semantics of Separation Logic,
as described by Reynolds [99].

BI Pointer Logic, a theory of (first-order) Boolean BI (BBI), is an instance of BBI’s
resource semantics in which the monoid of resources is constructed from the program’s
heap; that is, we employ a model in which ‘resource’ corresponds to ‘portion of computer
memory’. (Note: a version of Separation Logic based on BI, not Boolean BI, is also
possible [65].)

In detail, this model has two components, the store and the heap. The store is a
partial function mapping from variables to values, a ∈ Val, such as integers, and the
heap is a partial function from natural numbers to values. In logic, the store is often
called the valuation, and the heap is a possible world. In programming languages, the
store is sometimes called the environment. Within this set-up, the atomic formulae
of BI Pointer Logic include equality between expressions, E = E′, and, crucially, the
points-to relation, E 7→ F . To set all this up, we need some additional notation: dom(h)
denotes the domain of definition of a heap h and dom(s) is the domain of a store s; h#h′

denotes that dom(h) ∩ dom(h′) = ∅; h · h′ denotes the union of functions with disjoint
domains, which is undefined if the domains overlap; [f | v 7→ a] is the partial function
that is equal to f except that v maps to a; expressions E are built up from variables
and constants, and so determine denotations JEKs ∈ Val. With this basic data, the
satisfaction relation for BI Pointer Logic is defined as in Figure 4.

The judgement, s, h |= φ, says that the assertion φ holds for a given store and heap,
assuming that the free variables of φ are contained in the domain of s. Note the case
for ∗,

s, h |= φ ∗ ψ iff there are h0, h1 s.t. h0 #h1, h0 · h1 = h,
s, h0 |= φ and s, h1 |= ψ,

includes the condition h0 #h1, that the heaps h0 and h1 are disjoint — we consider only
those compositions of heaps that satisfy this constraint and consider ◦ to be undefined
if this constraint is not satisfied.

The remaining classical connectives are defined in the usual way: ¬φ = φ → ⊥;
> = ¬⊥; φ ∨ ψ = (¬φ)→ ψ; φ ∧ ψ = ¬(¬φ ∨ ¬ψ); and ∀x . φ = ¬∃x .¬φ.

The multiplicative negation and disjunction, discussed in Section 4.3, can be inter-
preted in terms of intersections of heaps [16] in the resource semantics of Separation
Logic. This provides, in the presence of appropriate structure on worlds, an example of
the richness of resource semantics; for example, intersections support a rich language
for expressing properties of memory.

A systematic theory of labelled tableaux proof systems for separation theories,
supporting systematic soundness and completeness theorems has been presented by

ACM SIGLOG News 17 Vol. 0, No. 0, 0000

s, h |= E = E′ iff JEKs = JE′Ks
s, h |= E 7→ (E1, E2) iff JEKs = dom(h) and h(JEKs) = 〈JE1Ks, JE2Ks〉

s, h |= emp iff h = [] (the empty heap)
s, h |= φ ∗ ψ iff there are h0, h1 s.t. h0 #h1, h0 · h1 = h,

s, h0 |= φ and s, h1 |= ψ
s, h |= φ−∗ψ iff for all h′, if h′#h and s, h′ |= φ, then s, h · h′ |= ψ

s, h |= ⊥ never
s, h |= φ→ ψ iff s, h |= φ implies s, h |= ψ
s, h |= ∃x . φ iff for some v ∈ Val, [s | x 7→ v], h |= φ

Fig. 4. The satisfaction relation for BI Pointer Logic [65].

Docherty and Pym [44]. The tableaux systems employed follow the pattern of those we
have described for above BI and of those that we describe below for a modal variation
of BI and for layered graph logics.

As we have seen, BI Pointer Logic, with its truth-functional semantics — a specific
example of (B)BI’s resource semantics —- of the form

s, h |= φ

provides an elegant semantics for reasoning about the correctness of programs that
manipulate computer memory. However, as we have seen, for reasoning directly about
the behaviour of programs, Hoare logic, based on triples {φ}C {ψ}, is both natural and
convenient.

The main reason why Hoare triples are so convenient is that they include directly
code, C, whereas BI Pointer Logic is formulated wholly in terms of properties of the
contents of memory. We connect these two points of view by providing a semantics of
Hoare triples in terms of BI Pointer Logic [65; 110]. There are essentially two ways
of going about this, depending on the strength of requirements on the behaviour of
the code. The behaviour of code is expressed in terms of the evaluation of a program
C — using stack s and heap h — with respect to sequences of steps defined by its
operational semantics, , and essentially denoted by C, s, h ∗ s′, h′, read as ‘the
program C transforms the memory configuration s, h into the memory configuration
s′, h′’. There is a special configuration, fault, indicating a memory fault or abnormality.

The first semantics for Hoare triples, called partial correctness, relies on the notion
of safety,

C, s, h is safe if C, s, h 6 ∗ fault

and is the ‘fault-avoiding’ interpretation, as explained in [110]:

Partial correctness semantics: {φ}C {ψ} is true in a model of Pointer Logic if, for all
s, h, s, h |= φ implies

-C, s, h is safe, and
- if C, s, h ∗ s′, h′, then s′, h′ |= ψ.

The second, called total correctness [110], does not require the safety condition because
it requires the ‘stronger’ property of ‘normal’ termination; that is, the program returns
a value that lies within its intended range of outputs:

Total correctness semantics: {φ}C {ψ} is true in a model of Pointer Logic if, for all
s, h, s, h |= φ implies

ACM SIGLOG News 18 Vol. 0, No. 0, 0000

-C, s, h must terminate normally, and
- if C, s, h ∗ s′, h′, then s′, h′ |= ψ.

With these definitions, and some non-trivial technical development, soundness (that
the rule transforms true properties into true properties) and completeness (that the
rule derives one specification statement from another just when this inference holds
semantically) theorems for the Frame Rule,

{φ}C {ψ}
{φ ∗ χ}C {ψ ∗ χ} Modifies(C) ∩ Free(χ) = ∅,

can be established [110]. These theorems give precise mathematical expression to the
coincidence of the logical and engineering models of computer memory allocation.

In this section we have provided some detail on the novel aspects of Separation
Logic’s semantics, and how they support reasoning about computer memory as a re-
source. At heart, the atoms of the logic are composable in a way that mirrors the way
that the physical substrate is composable. The physical transistors come apart, and
one can make meaningful claims about affixing or pulling apart bits of silicon that
have reliable impacts on the changes to the electrical and computational properties
of the physical system. The structure of the logical model using partial commutative
monoids and ∗ that we have introduced allows for logical claims to naturally mirror
this physical fact.

The following section details the cluster of properties surrounding the proof theory
of Separation Logic that make it a successful engineering tool. Part of these also re-
late to the composability of ∗ through the Frame Rule, as it is leveraged for efficient
computation of results. Equally important to the deployability of the proof theory is
the automation of bi-abduction for generating hypothetical pre- and post-conditions
to drive proof solutions. The abductive rules we use are essentially encodings of engi-
neer’s heuristics when reasoning about computer memory usage, further demonstrat-
ing the deep ways in which the logical and engineering aspects of the task merge in
Separation Logic.

Docherty and Pym [41; 42] have developed Stone-type duality theorems for Separa-
tion Logic — which requires the idea of ‘BI hyperdoctrines’; q.v. [12] — and have placed
these results in the broader context of the family of bunched logics [43]. These results
establish a systematic analysis of the relationship between (Kripke-style) resource se-
mantics and algebraic characterizations of bunched logics.

Moving beyond basic Separation Logic, there has been a great deal of work in the
last nearly two decades. Much of that work is based, directly or indirectly, in the stack-
heap semantics of Pointer Logic as presented in [65]. More recently, however, we have
seen work in Separation Logic that exploits more seriously the strength of resource
semantics. Leading examples of this direction can be see in the work Birkedal and
Dreyer and their colleagues; see, for example, [69; 70]. These ideas are discussed in
the setting of resource semantics in [88; 13].

Finally, we note that all existing algebraic approaches to Separation Logic are in-
cluded within Docherty and Pym’s duality framework for relating algebraic models
and relational models of (B)BI, and this allows us to prove them sound with respect to
the standard store-heap semantics [41; 42].

6. MODAL AND EPISTEMIC BUNCHED LOGICS
Modal logics, including epistemic logics, extend propositional and predicate logics with
concepts such as ‘necessitation’ and ‘possibility’, and allow the logical study of concepts
such as knowledge, belief, obligation, and time. These concepts essentially derive their

ACM SIGLOG News 19 Vol. 0, No. 0, 0000

meaning from their interpretation in ‘possible worlds’, often as formulated in terms of
Kripke models.

The techniques for defining the semantics and proof theory of modal logics that are
based on classical and intuitionistic systems translate well to defining modal logics
that are based on substructural systems.

In this section, we consider a modal logic, LSM, based on BI and its resource seman-
tics, that is a conservative extension of S4 [20]. We explain the basic set-up of the logic
(truth-functional semantics, a tableaux system) and consider some systems examples
— taken from [20] and which build on [97; 28; 29; 27] — that illustrate resource se-
mantics in this setting: mutual exclusion and producer–consumer; in [20], timed Petri
nets are also considered. We conclude by mentioning briefly an epistemic modal logic
that is based on BI and its resource semantics.

6.1. LSM
We can set up a conservative extension (a ‘Logic of Separating Modalities’ or LSM
[20]) of the modal logic S4 which adds multiplicative modalities; that is, modalities
that are parametrized on local resources. These modalities are defined relative to two-
dimensional worlds, one of which captures the S4 accessibility relation and one of
which supports the resource parametrization.

Roughly speaking, an LSM model is a 4-tuple (W,M,R,V), where W is a set of
worlds,M is a partial monoid of ‘resources’, (Res, •, e), • ⊆ (W × Res) × (W × Res) is
a relexive and transitive relation, and V is an interpretation of propositional letters in
℘(W ×Res). Then we have

w, r |=M ♦sφ iff there exist w′ ∈W and r′ ∈ Res such that r • s ↓,
(w, r • s)R(w′, r′) and w′, r′ |=M φ

w, r |=M �sφ iff for all w′ ∈W and all r′ ∈ Res, if r • s ↓ and
(w, r • s)R(w′, r′), then w′, r′ |=M φ.

Here, s is the local resource, associated with the modality, and r, in the model, is the
ambient resource. The modalities are read as asserting that φ is possibly (respectively,
necessarily) true at the world (w, r) subject to the availability of additional resource s.

Note that two other pairs of modalities are derivable from these:

- The basic additive modalities:
w, r |=M ♦φ iff there exist w′ ∈W and r′ ∈ Res such that (w, r)R(w′, r′)

and w′, r′ |=M φ
w, r |=M �φ iff for all w′ ∈W and all r′ ∈ Res, if (w, r)R(w′, r′) then

w′, r′ |=M φ.

- Multiplicative modalities with undetermined additional resource parameters:

w, r |=M ♦•φ iff there exist w′ ∈W and s, r′ ∈ Res such that r • s ↓,
(w, r • s)R(w′, r′), and w′, r′ |=M φ

w, r |=M �•φ iff for all w′ ∈W and all s, r′ ∈ Res, if (r • s ↓ and
(w, r • s)R(w′, r′)) then w′, r′ |=M φ.

Full details, including conservativity of LSM over S4, may be found in [20].

6.2. Examples of LSM’s resource semantics
Mutual exclusion. This example is quoted more-or-less directly from [20]. We consider

two processes (E1 and E2) that are in mutual exclusion. The automaton that describes
the behaviour of the processes is given in Figure 5.

ACM SIGLOG News 20 Vol. 0, No. 0, 0000

ap

av

nc c acanc

Fig. 5. Example of processes in mutual exclusion.

The processes have two states: nc, meaning that the process is in the non-critical
section; and c, meaning that it is in the critical section. We denote by S = {nc, c} the
state set of the processes.

In order to enter into the critical section, a process must hold a token, denoted J ,
and it releases the token when it leaves the critical section. The processes can perform
four actions: anc a non-critical action, ac a critical action, ap the action that consists
in taking a token and av the action that consists in releasing a token. We denote by
A = {anc, ac, ap, av} the action set that can be performed by the processes.

We represent the resources (the token J) with M = ({Jn | n ∈ N},+, J0), where
Jm + Jn = Jm+n. In other words, Jn represents n tokens that are available for the
system (the processes E1 and E2). We remark thatM is obviously a partial monoid of
resources. Now, we need a function that captures resource consumption and production
when an action is performed. Following the approach taken in [97; 28; 27], we define a
partial function µ : A× {Jn | n ∈ N}⇀ {Jn | n ∈ N} such that

µ(a, Jn) =

Jn if a ∈ {anc, ac}
Jn+1 if a = av
Jn−1 if a = ap and n > 1
↑ if a = ap and n = 0

where ↑ means ‘undefined’ and ↓ means ‘defined’. We remark that performing a criti-
cal or a non-critical action (ac and anc) consumes and produces no token, releasing a
token (av) produces a token (Jn+1) and taking a token (ap) consumes a token (Jn−1). Of
course, µ(ap, J

n) is defined if and only if there is at least one available token (n > 1).
We introduce a relation that captures the transitions of a process and their effects on
the available resources: s, Jn a→ s′, Jm iff s a→ s′ is a transition of Figure 5, µ(a, Jn) ↓
and µ(a, Jn) = Jm. For instance, we have nc, J1 ap→ c, J0, but nc, J1 av→ c, J0 does not
hold (because there is no transition nc av→ c in the automaton of Figure 5). This relation
is very close in spirit to the judgements introduced in the SCRP calculus [97; 28; 27],
which are of the form R,E

a→ R′, E′, meaning that a process E performs an action
a on a resource R and then provides the resource R′ and the process E′: this idea is
discussed further in Section 8.

In order to deal with concurrent transitions, we need to define a set of
concurrent states W = {s1#s2 | s1, s2 ∈ S} (where si is the state of
the process Ei), a set of concurrent actions A# = {a1#a2 | a1, a2 ∈ A}
(where ai is the action performed by the process Ei) and the following relation:
s1#s2, J

n1 + Jn2
a1#a2
=⇒ s′1#s′2, J

m1 + Jm2 iff s1, J
n1

a1→ s′1, J
m1 and s2, J

n2
a2→

s′2, J
m2 .

ACM SIGLOG News 21 Vol. 0, No. 0, 0000

For example, the concurrent state nc#c is a state that captures E1 in
state nc and E2 in state c. Moreover, the concurrent action ac#ap repre-
sents E1 performing the action ac and E2 performing the action ap. Con-
cerning the relation =⇒, as nc, J1 ap→ c, J0 and nc, J0 anc→ nc, J0 hold,
then we have nc#nc, J1 + J0 ap#anc

=⇒ c#nc, J0 + J0. Thus nc#nc, J1 ap#anc
=⇒

c#nc, J0.
We are able to model the behaviour of the processes E1 and E2 and the token manip-

ulation using the following LSM modelM = (W,M,R,V), where

-W = {s1#s2 | s1, s2 ∈ S},
-M = ({Jn | n ∈ N},+, J0),
- R is the reflexive and transitive closure of =⇒, and
- V is defined by

p (w, r) ∈ V(p) iff
J r = J1

nc1 w = nc#nc or w = nc#c
nc2 w = nc#nc or w = c#nc
c1 w = c#nc or w = c#c
c2 w = nc#c or w = c#c

We illustrate R. As c#nc, J0 av#anc
=⇒ nc#nc, J1 and nc#nc, J1 anc#ap

=⇒ nc#c, J0 hold,
then (c#nc, J0)R(nc#nc, J1) and (nc#nc, J1)R(nc#c, J0). By transitive closure, we
have (c#nc, J0)R(nc#c, J0). Concerning the valuation V, J is the proposition mean-
ing that there is one and only one available token, ci is the proposition meaning that
the process Ei is in critical section and nci is the proposition meaning that the process
Ei is not in critical section.

We consider that the initial state of the system is nc#nc (each process is in non-
critical section) and there is only one available token (J). We can obviously express
that, in this initial state, each process is in non-critical section and there is only one
available token as follows: nc#nc, J |=M nc1 ∧ nc2 ∧ J .

The first important point is that LSM is a modal logic and it is possible to express
properties on reachable states and available tokens. For example, we can express that
it is impossible that the processes will be together in the critical section: nc#nc, J |=M
¬♦(c1 ∧ c2) and also that it is always possible that each process can enter the critical
section: nc#nc, J |=M �♦c1 ∧�♦c2.

The second important point is that LSM is a modal logic extended with the resource
composition (denoted •) that allows us to express properties of resources on the tokens
that are produced and consumed. In particular, we can express that, in any reachable
state, it is impossible that there can be more than one available token: nc#nc, J |=M
�¬(J ∗J ∗>). It is also possible to express that if one process is in a non-critical section,
then there is no available token nc#nc, J |=M �((c1 ∨ c2)→ I). Indeed, only the unit
resource satisfies I and, in our example, this unit resource is J0 which encodes no
available token.

Notice that the formula ¬♦(c1 ∧ c2), with the S4-like modality, fails to capture a vul-
nerability in the system. This security breach is highlighted by the new modalities:
nc#nc, J 6|=M ¬♦•(c1 ∧ c2). Indeed, if we assume that an intruder introduces one to-
ken into our system, then both processes can enter the critical section, because of the
presence of a second token: nc#nc, J1 + J1 ap#ap=⇒ c#c, J0.

ACM SIGLOG News 22 Vol. 0, No. 0, 0000

It follows that we can identify a new solution for the mutual exclusion problem such
that nc#nc, J |=M ¬♦•(c1 ∧ c2); that is, such that the processes cannot both enter into
the critical section, whatever number of tokens is added.

Producer–consumer. This example also is quoted more-or-less directly from [20]. We
consider an example based on the producer–consumer problem, but with a different
approach: one in which the set of worlds W encodes the actions that the processes are
performing and does not encode the current state of the processes. In this example, we
consider two processes: a producer Pp and a consumer Pc that manipulate resources
represented withM = ({Rn | n ∈ N},+, R0), just as in the previous example.

The producer can perform just two actions: p (it is producing a new resource)
and np (it is not producing). The consumer can also perform only two actions,
which are c (it is consuming a resource) and nc (it is not consuming). Thus W =
{p#c, np#c, p#nc, np#nc} is the set of all concurrent actions that can be performed
by the processes.

For instance, p#nc means that Pp is producing (p) and Pc is not consuming (nc).
Clearly, only the following transitions hold, for all w ∈W :

1. np#nc,Rn =⇒ w,Rn;
2. p#c,Rn =⇒ w,Rn;
3. np#c,Rn =⇒ w,Rn−1 only if n > 1; and
4. p#nc,Rn =⇒ w,Rn+1.

We remark that np#c,Rn =⇒ w,Rn−1 holds only if n > 1. Indeed, if there is no
resource (R0) and if Pp does not produce a new resource (np), then Pc cannot consume
a resource (c).

Concerning the relation R, we consider the reflexive and transitive closure of =⇒.
Like in the previous example, we are able to propose a model for this system, that is
M = (W,M,R,V) such that V is defined by

p (w, r) ∈ V(p) iff
R r = R1

np w = np#nc or w = np#c
p w = p#nc or w = p#c
nc w = np#nc or w = p#nc
c w = np#c or w = p#c

In this model, by definition of R and reflexivity, (np#c,R0)R(w,Rn) only if w = np#c
and n = 0, and we can express that if there is no resource (R0), if Pp is not producing
a new resource, and if Pc is consuming a resource, then the system is blocked (it never
changes its state). In LSM, we can express this property as follows, for any w ∈ W
and any n ∈ N: w,Rn |=M �((I ∧ np ∧ c) → �(I ∧ np ∧ c)). It means that, for all
reachable states (pairs of world/resource) and starting from any state, if there is no
resource (I) and if Pp is not producing a new resource (np) and if Pc is consuming a
resource (c) then the system always remains in this state (�(I ∧ np ∧ c)). Now, using
multiplicative modalities, we can express that it is possible to unblock the system by
adding a resource, as follows: w,Rn |=M �((I ∧ np ∧ c)→ ♦•¬(I ∧ np ∧ c)).

6.3. Tableaux for LSM
Figure 6 gives the labelled tableaux rules for the modalities of LSM, presented in
detail in [20]. The S4-like additive modalities are included for comparison with the
multiplicative ones. Notice that there are a few differences between these rules and the
previous ones for basic BI. These differences, in the handling of the labelling algebra,
derive from the nature of the modalities.

ACM SIGLOG News 23 Vol. 0, No. 0, 0000

T♦yφ : ux ∈ F
〈T♦y〉〈{Tφ : sici}, {(u, x ◦ ‖y‖) ; (si, ci)}〉

F♦yφ : ux ∈ F and (u, x ◦ ‖y‖) ; (v, z) ∈ C
〈F♦y〉〈{Fφ : vz}, ∅〉

T�yφ : ux ∈ F and (u, x ◦ ‖y‖) ; (v, z) ∈ C
〈T�y〉〈{Tφ : vz}, ∅〉

F�yφ : ux ∈ F
〈F�y〉〈{Fφ : sici}, {(u, x ◦ ‖y‖) ; (si, ci)}〉

T♦φ : ux ∈ F
〈T♦〉

〈{Tφ : sici}, {(u, x) ; (si, ci)}〉
F♦φ : ux ∈ F and (u, x) ; (v, y) ∈ C

〈F♦〉
〈{Fφ : vy}, ∅〉

T�φ : ux ∈ F and (u, x) ; (v, y) ∈ C
〈T�〉

〈{Tφ : vy}, ∅〉
F�φ : ux ∈ F

〈F�〉
〈{Fφ : sici}, {(u, x) ; (si, ci)}〉

with si, ci and cj being new label constants and ‖r‖ = 1 if r = e, otherwise r.

Fig. 6. Some tableaux modal rules for LSM.

Again, full details are to be found in [20], but, briefly:

- The starting point is the tableaux system for BI given in Figure 2, which employs an
algebra of labels corresponding to the algebra employed in BI’s satisfaction relation;

- LSM’s satisfaction relation employs an algebra of labels for the basic connectives (not
the modalities) that is essentially the same as that employed by BI (since LSM has
classical additives, an ordering is not required);

- However, LSM employs a relational structure on worlds and resources for its seman-
tics of the modalities;

- This reintroduces a need for a conversion operation, denoted by ◦ in the rules of
Figure 6, to capture transitions between related world–resource pairs;

- Finally, note that since the language of the multiplicative modalities refers explicitly
to resources — that is, semantic entities — we need a conversion function ‖ − ‖
between resources and labels.

The main point to take away from these rules is that they follow the pattern of the
basic set-up for BI, with variations that track the different semantics. This generic
picture is explored more fully in [44].

Soundness and completeness results for LSM are provided in [20].

6.4. Epistemic modalities in resource semantics
Other modal extensions of BI have been proposed and explored in [50]. Epistemic
modal logics employ modalities of the form Ka that are parametrized on an agent, a.
The agent comes equipped with an equivalence relation ∼a on worlds, so that w |= Kaφ
iff v |= φ, where v ∼a w. In separating epistemic logics, in which worlds are read as
resources, we are able to parametrize the equivalence relation on additional local re-
source, as follows:

- Lsaφ: required resource for outcome is equivalent to ambient resource + agent’s re-
source: expresses that the agent, a, can establish the truth of φ using a given resource
whenever the ambient resource, r, can be combined with the agent’s local resource,
s, to yield a resource that a judges to be equivalent to that given resource:

r |= Lsaφ iff for all r′ such that r′ ∼a r • s, r′ |= φ;

- Ms
aφ: required resource for initiation is equivalent to ambient resource + agent’s

resource: expresses that the agent, a, can establish the truth of φ using a resource

ACM SIGLOG News 24 Vol. 0, No. 0, 0000

that is the combination of its local resource, s, with any resource such that a judges
the combined resource to be equivalent to the ambient resource, r:

r |= Ms
aφ iff for all r′ such that r′ • s ∼a r, r′ • s |= φ.

The epistemic system can be used to express access control policies and their viola-
tions [50]. Other applications of logics such as these remain to be explored.

7. WEAK BUNCHED LOGICS
So far our discussion has focussed on the logic BI, its modal extensions, their resource
semantics, and their application to program verification through Separation Logic.

In this section, beginning again with BI’s logical motivation, we broaden our discus-
sion to a much broader family of logics, characterized by weakening the properties of
BI’s multiplicatives to be neither commutative nor associative. From a logical point
of view, this yields a general framework for understanding the theory of the family
of bunched logics and provides a setting in which a theory of layered graphs provide
models.

This concept of layering also contributes to resource semantics. We have mentioned
the idea of location as a key concept in distributed systems modelling. Typically, in
modelling contexts, locations are captured using directed graphs or similar topological
structures. Sometimes, even simpler structures will suffice: the stack-heap model in
Separation Logic may be seen as consisting of locations (memory cells) with which
are associated resources (values). In complex systems modelling, however, such as is
very commonly encountered in physics and economics [74], the idea of layering is very
widespread. Usually, it amounts to a layering of graphs of some kind.

Here we follow the development of Docherty and Pym [40], which follows on from
[25; 26]. We first give a graph-theoretic account of the notion of layering that captures
the concept as used in complex systems. Informally, two layers in a directed graph are
connected by a specified set of edges, each element of which starts in the upper layer
and ends in the lower layer. Our definition of layering contrasts with prior accounts
in which the layering structure is left implicit [34; 90] and generalizes others which
consider only a restricted class of layered graphs [91].

We begin by fixing notation and terminology. Given a directed graph, G, we refer to
its vertex set by V (G). Its edge set is given by a subset E(G) ⊆ V (G) × V (G). H is a
subgraph of G (H ⊆ G) iff V (H) ⊆ V (G) and E(H) ⊆ E(G). The set of subgraphs of G is
denoted Sg(G).

To introduce layers, we identify a distinguished set of edges E ⊆ E(G). The reachabil-
ity relation ;E on subgraphs of G is then defined H ;E K iff there exists u ∈ V (H) and
v ∈ V (K) such that (u, v) ∈ E . This generates a partial composition @E on subgraphs
of G. Let ↓ denote definedness. For subgraphs H and K, H @E K ↓ iff V (H) ∩ V (K) =
∅, H ;E K and K 6;E H, with output given by the graph union of the two subgraphs
and the E-edges between them. This composition is neither commutative nor — be-
cause grouping can determine definedness — associative.

Figure 7 shows subgraphs H and K for which H @E K is defined, as well as the
resulting composition. We say G is a layered graph (with respect to E) if there exist H,
K such that H @E K ↓ and G = H @E K. If this holds, we say H is layered over K and
K is layered under H.

ILGL — intuitionistic layered graph logic, a variant of BI with intuitionistic addi-
tives in which the multiplicative conjunction is neither commutative nor associative
— is interpreted on directed graphs that have been separated into ordered layers. For-
mally, an ordered scaffold is a structure X = (G, E , X,4) such that

- G is a directed graph;

ACM SIGLOG News 25 Vol. 0, No. 0, 0000

Fig. 7. The graph composition H @E K

- E is a distinguished set of edges;
-X is a subset of Sg(G) satisfying: if G = H @E K then G ∈ X iff H,K ∈ X;
-4 is an order on X that is reflexive and transitive.

We consider structures that are ordered so we can extend Kripke’s ordered possible
world semantics of intuitionistic propositional logic [73]. In Kripke’s semantics, truth
is persistent with respect to the order on possible worlds: if φ is true at a possible world
x and x 4 y, then φ is true at the world y. One can thus think of the intuitionistically
valid propositions as those whose truth persists with the introduction of any new fact.
In our setting, this means ILGL is suitable for reasoning about properties of graphs
that are, for example, inherited from subgraphs, as well as modelling situations in
which the components of the system carry a natural order.

A layered graph modelM = (X ,V) is given by an ordered scaffold X and a valuation
V : Prop→ P(X) satisfying G ∈ V(p) and G 4 H implies H ∈ V(p). For a layered graph
modelM, the satisfaction relation |=M⊆ X × Form is inductively defined in Fig 8. φ is
valid for a layered graph modelM if, for all G ∈ X, G |=M φ. φ is valid if it is valid for
all layered graph modelsM.

G |=M > always
G |=M ⊥ never
G |=M p iff G ∈ V(p)

G |=M φ ∧ ψ iff G |=M φ and G |=M ψ
G |=M φ ∨ ψ iff G |=M φ or G |=M ψ
G |=M φ→ ψ iff for all G 4 H,H |=M φ implies H |=M ψ
G |=M φ I ψ iff there exist H,K s.t. H @E K 4 G

and H |=M φ and K |=M ψ
G |=M φ−−Iψ iff for all H,K,G 4 H, H @E K↓ and

H |=M φ implies H @E K |=M ψ
G |=M φI−−ψ iff for all H,K,G 4 H, K @E H↓ and

H |=M φ implies K @E H |=M ψ

Fig. 8. Satisfaction on layered graph models for ILGL

Consider the order given by G 4 G′ iff G′ ⊆ G. This has a spatial interpretation: the
further up the order, the more specific the location. With this order, we can understand
the semantic clause for φ I ψ as ‘G is contained in a layered graph H @E K such
that H satisfies φ and K satisfies ψ’. Similarly, the clause for φ−−Iψ states that ‘for
all subgraphs H of G, if K satisfies φ and is layered under H then the layered graph

ACM SIGLOG News 26 Vol. 0, No. 0, 0000

H @E K satisfies ψ’. Finally, φI−−ψ is the dual of the case for−−I, withK instead layered
over H.

Proof systems for the layered graph logic ILGL can be given as systems of labelled
tableaux [40; 43] in the same form as such systems can be given for BI and its modal
variants [20] — indeed, the tableaux system for ILGL differs from that for BI only in
having an algebra of labels that is neither commutative nor associative (cf. the proper-
ties of the labelled-graph constructor, @ and its consequences).

Soundness and completeness with respect to the layered graph semantics is estab-
lished in [40; 43], with more general approaches based on duality theory being avail-
able [41; 42]. Weaker results are available for the classical layered graph logic, LGL
[25], for which soundness and completeness results are obtained using rather weak
algebraic structures called magmas [25].

G[R] |=M > always
G[R] |=M ⊥ never
G[R] |=M p iff G[R] ∈ V(p)

G[R] |=M φ ∧ ψ iff G[R] |=M φ and G[R] |=M ψ
G[R] |=M φ ∨ ψ iff G[R] |=M φ or G[R] |=M ψ
G[R] |=M φ→ ψ iff for all G′[R′] such that G[R] 4 G′[R′],

G′[R′] |=M φ implies G′[R′] |=M ψ

G[R] |=M φ1 I φ2 iff for some G1[R1], G2[R2] such that G1[R1] •E G2[R2] 4 G[R],
G1[R1] |=M φ1 and G2[R2] |=M φ2

G[R] |=M φ−−Iψ iff for all G[R] 4 H[S] and all K[T] such that H[S] •E K[T]↓,
K[T] |=M φ implies (H[S] •E K[T]) |=M ψ

G[R] |=M φI−−ψ iff for all G[R] 4 H[S] and all K[T] with K[T] •E H[S]↓,
K[T] |=M φ implies (K[T] •E H[S]) |=M ψ

G[R] |=M 〈a〉φ iff for some well-formed G[R′] such that G[R]
a→ G[R′], G[R′] |=M φ

G[R] |=M [a]φ iff for all well-formed G[R′] such that G[R]
a→ G[R′], G[R′] |=M φ

Fig. 9. ILGL with resources and actions

We extend layered graph models to graphs labelled with resources and extend the in-
terpretation of formulae to the action modalities (cf. Stirling’s intuitionistic Hennessy–
Milner logic [105; 106; 62]) that express resource manipulations. This extension, which
quite closely resembles the modal logic LSM described above, introduces a degree of
dynamics and statefulness to ILGL — and so enables more direct representations of
examples that are about the behaviour of systems — without changing the underlying
semantics. Such an extension — which can be interpreted as adding the notions of re-
source and action to a model based on a notion of location — also provides an explicit
connection between the basic logical work and the application of resource semantics
to an approach to modelling concurrent and distributed systems that we introduce in
Section 8.

For a resource monoid R, a countable set of actions, Act, and a layered graph model
M = (X ,V) over labelled graphs, with the containment ordering on labelled graphs,
we generate the satisfaction relation |=M⊆ X[R] × Form as in Figure 9, in which,
having added resources to our models, we can complete an instantiation of our systems

ACM SIGLOG News 27 Vol. 0, No. 0, 0000

outside road

inside road

security

barrier

missing fence

route of vehicle

Fig. 10. The security barrier and
side channel

E

E
Outside

Inside

Outside

Inside

Security
layer

Routes
layer

Fig. 11. The layered graph model

modelling approach by adding action modalities for possibility and necessity, 〈a〉 and
[a], respectively.

We can use the dynamic and stateful properties of this extension of ILGL to give
some examples that will prefigure the application of resource semantics to an approach
to the modelling of concurrent and distributed systems that we introduce in Section 8.

The first example (see Figure 10) is a situation highlighted by Schneier [100],
wherein a security system is ineffective because of the existence of a side-channel that
allows a control to be circumvented. The security policy, as expressed in the security
layer, with graph G1, requires that a token be possessed in order to pass from the out-
side to the inside; that is, 〈pass〉(φinside → φtoken). However, in the routes layer, with
graph G2, it is possible to perform an action 〈swerve〉 to drive around the gate, as
shown in the Figure 11; that is,

G1 @E G2 |=M (〈pass〉(φinside → φtoken) I 〈swerve〉(φinside ∧ ¬φtoken))

Thus we can express the mismatch between the security policy and architecture to
which it is intended to apply.

Our second example concerns an organization which internally has high- and low-
security parts of its network. It also operates mobile devices that are outside of its
internal network but able to connect to it. Figure 12 illustrates our layered graph
model of this set-up. We can give a characterization in ILGL of a side channel that

EE

HighLow

Mobile layer

r

Fig. 12. Organizational Security Architecture

allows a resource from the high-security part of the internal network to transfer to the
low-security part via the external mobile connection. Associated with the mobile layer
are actions that allow the transference. We have two local compliance properties, in the
high- and low-security parts of the network, respectively: χhigh(r) describes compliance
with a policy allowing resource in the high-security network and χsec(r) is a correctness
condition that if a resource r is not permitted in the low-security network, then it is
not in it. We take actions copy,download,upload associated with the mobile layer G2,

ACM SIGLOG News 28 Vol. 0, No. 0, 0000

allowing data to be copied to another location as well as moved down and up E-edges
respectively, with θ(r) a compliance property such that G2[R] |=M 〈copy〉θ(r) in order
to copy data r. Now we have that

G2[R] |=M 〈download〉((χhigh(r) I θ(r)) ∧ 〈copy〉〈upload〉(θ(r) I ¬χsec(r)))

showing that the mobile layer is a side channel that can undermine the policy χsec.
A range of examples of the use of LGL, ILGL’s classical variant, can be found in [25;

26].
The logical metatheory of the family of bunched logics, as well as the family of sep-

aration logics, has been developed by Docherty and Pym in [40; 41; 42; 43; 44], with
fuller elaboration in Docherty’s PhD thesis [39]. This work develops, in particular, the
theory of Stone-type dualities for the family of bunched logics, connecting their Kripke
semantics and algebraic characterizations. As such, it provides a systematic treatment
of what we might call the logics of resource semantics. The present article should pro-
vide an introduction for readers wishing to explore this theory.

8. BI, PROCESS ALGEBRA, AND CONCURRENCY
Resource semantics has been deployed by O’Hearn and Brookes [87] in the develop-
ment of Concurrent Separation Logic (CSL) and, for example, this is turn has been
deployed by Dreyer and colleagues in reasoning about the safety properties of the pro-
gramming language Rust; see, for example, [36].

We have previously mentioned our inspiration from modelling the behaviour and
properties of distributed systems. We develop an approach to modelling distributed
systems that brings together, in a generalized form, all of the components of resource
semantics that we have considered so far and which, we conjecture, encompasses CSL
and its applications. (Resolving this conjecture would entail interpreting CSL in the
logic MBI we describe below in the sense in which Separation Logic is interpreted in
Pointer Logic [110].)

The full story of this work is beyond the scope of this article, but can summarize the
situation:

- we have considered resource-indexed multiplicative modalities, defined relative to
resource-world pairs, which can be seen as resource-labelled worlds;

- graph models, which can be understood as models of location; and
- graph models enriched with resources labelling vertices and action modalities.

The actions employed in action modalities give us an elementary representation of pro-
cesses. We can, however, adopt a more general approach in which we model distributed
systems directly using concepts of

- location, for now treated mathematically as directed graphs (though more abstract
axiomatizations are possible),

- resource, modelled as in BI as, say, PDMs [52], and
- process, modelled for now as, essentially, SCCS terms [83; 28; 27; 3].

SCCS is a convenient basis for modelling processes because of its simplicity and gen-
erality [83]. Specifically, Robert de Simone’s theorem [103] implies that it is able to
represent a wide class of forms of concurrent behaviour, including asynchrony.

Given these concepts we can set up a process algebra of models, as described and
developed extensively in [28; 27; 3]. The basic idea is that we set up a calculus of
locations, resources, and process that coevolve according to an operational semantics:

L,R,E
a→ L′, R′, E′.

ACM SIGLOG News 29 Vol. 0, No. 0, 0000

The basic rule (in the style of Structural Operational Semantics [92; 93]) is for
action-prefix in the process terms, a : E:

µ(a, L,R) = L′, R′

L,R, a : E
a−→ L′, R′, E

Notice that this rule is parametrized on a ‘modification function’ µ that determines the
effect of the action a at location L with resources R, returning a new location and new
resources. The set of such functions specified in giving a model should be seen as a
signature for a model.

Without much loss of generality, we can drop location from our formal set up and so
reduce our notational overhead somewhat. The operational semantics rule for concur-
rent product is

R,E
a−→ R′, E′ S, F

b−→ S′, F ′

R⊗ S,E × F ab−→ R′ ⊗ S′, E′ × F ′
,

where ⊗ is a monoidal operation on resources, and the rule for sum is

Ri, Ei
a−→ R′i, E

′
i

R1 ⊕R2, E1 + E2
a−→ R′i, E

′
i

i = 1, 2

where ⊕ is a monoidal operation on resources. Other rules for hiding, which associates
resource locally with a process, and recursion are also required [28; 27; 3].

That the two rules above employ two combinators, ⊗ and ⊕, on resources derives
from our desire to obtain, as described below, a completeness theorem in the sense of
van Benthem, Hennessy, and Milner (vBHM) (see, for example, [62; 83; 105; 106; 8]), to
the effect that equivalence in a logic of state coincides with bisimulation equivalence
of processes. If we work with the form of resource semantics taken in the previous
sections, it turns out that vBHM completeness can be obtained only for a fragment of
the natural logic of state. Completeness requires sufficient structure on resources to
track both concurrent product and choice.

This semantics for distributed systems modelling, together with the treatment of
environment mentioned in Section 2 has been implemented both in a bespoke language
called Gnosis [27] and in Julia [68], the latter providing the basis for ongoing work with
packages available at https://github.com/tristanc/SysModels.

How do models become live? Where do actions come from? The answer really lies in
the conceptual approach to distributed systems modelling with which we began. The
key component here is environment. Models become live when actions are incident
upon their boundaries, either inbound or outbound. Note that bits of a system ‘within’
a model may also amount to environment; for example, some black-box component.

As an example, we consider Figure 13, which is a picture of the kind of model we
might construct.

Figure 13 is a picture of a system model of information-flow security in an office.
To the left, we consider the routes that an office worker might take from home to the
office building. In the middle, we consider how people access the office through a lobby
in which access controls are implemented. To the right, we have the office itself. In each
of the three components of the models, there are security vulnerabilities: for example,
devices might be lost on the train, unauthorized personnel might circumvent the access
control in the lobby, by perhaps tailgating legitimate staff, and, having gained access
to the office, they might steal information stored on devices or written on paper, or
might shoulder-surf to obtain computer passwords.

The location-resource-process model can then be used to explore, using Monte Carlo
simulation, the security consequences of different policies in this set-up. For example,

ACM SIGLOG News 30 Vol. 0, No. 0, 0000

Home

Public
Transport

Car

Outside Lobby

Reception

Entryway Atrium Office

Security Guard

Access Control

Queue for Badge

forgot badge?

choice

observed
tailgating?

tailgate

choice

challenge

ignore

caught?

challenged?
yes

no

caught?

challenged?
tailgate

yes

no

search for

send document

choice

Interface Interface

 lose device?

Employee
Attacker

Fig. 13. A system model (for the theory of interfaces, see Caulfield and Pym, Simutools 2015 and IEEE S&P
2015). There are Julia packages for all this stuff:

what are the right levels of staffing of the reception desk and the right numbers of
security guards to ensure that neither legitimate staff (who may have forgotten their
credentials and need to visit reception) or intruders (who wish to remain unnoticed
and uncaptured) are incentivized to try to tailgate through the access control barriers?

Of course, Monte Carlo simulations are not the only way to reason about models.
We may also wish to establish logical properties. These may, for example, be asser-
tions about termination, security, or resource consumption, or measures of the utility
of policies.

There is a well-established theory of process logics, developed by van Benthem, Hen-
nessy, Milner, Stirling, and many others. See [105; 106; 28; 27; 3] for many references.

In our setting, the basic idea is to set up logics to reason about the resource-
semantics models. That is, a logic which is defined by a satisfaction relation of the
form

L,R,E |= φ.

What is this logic? The details are developed fully in [28; 27; 3], but we can summarize
the situation quite efficiently.

- We consider a modal logic of state for this transition system (as before, we drop loca-
tion for now).

- We will describe a classical version (an intuitionistic version is also available).
- Here is the propositional language:

φ ::= p | ⊥ | > | φ ∨ φ | φ ∧ φ | φ→ φ classical propositional additives
| 〈a〉φ | [a]φ classical additive modalities
| I | φ ∗ φ | φ−∗φ propositional multiplicatives
| 〈a〉νφ | [a]νφ multiplicative modalities

Here, the multiplicative modalities are similar to 〈a〉• and [a]• in LSM [20], described
in Section 6, and permit the action to employ unspecified additional resource. The
same variations are available here as in LSM;

ACM SIGLOG News 31 Vol. 0, No. 0, 0000

- In a given modelM, a truth judgement, R,E |=M φ:

R,E |=M 〈a〉φ iff some R,E a−→ R′, E′, R′, E′ |=M φ
R,E |=M φ1 ∗ φ2 iff some R = R1 ⊗R2 E1 × E2 = E,

R1, E1 |=M φ1 and R2, E2 |=M φ2
R,E |=M 〈a〉νφ iff some S, S′ s.t. R⊗ S,E a−→ R′ ⊗ S′, E′,

R′ ⊗ S′, E′ |=M φ.

- Some choices for the last one.

We can also set up both the usual (additive) quantifiers and, perhaps more surpris-
ingly, multiplicative quantifiers.

- For example, the multiplicative existential makes use of the hiding combinator for
process terms mentioned above, νS.F , which associates the resource S locally with
process term F , and goes like this:

R,E |= ∃νx.φ iff there exist S, F and a s.t. R,E ∼ R, νS.F
and R ◦ S, F |= φ[a/x].

We conclude this discussion of distibuted systems modelling by remarking that the
desired coincidence between operational equivalence (bisimulation, R,E ∼ S, F , de-
fined in the evident way [3]) and logical equivalence — in the sense of van Benthem,
Hennessy, and Milner — does indeed hold [3]: let E and F be image-finite processes.
Then, for any resources R and S,

R,E ∼ S, F iff for all φ, R,E |= φ iff S, F |= φ.

9. DISCUSSION: LOGIC AS A MODELLING TECHNOLOGY
We have explained the logical theory of the logic BI, the logic of bunched implications
[89; 95; 52], and its associated systems. These include the αλ-calculus [85], modal and
epistemic systems, [19; 20; 50] and the layered graph logics [40; 43], which point the
way to the general theory of bunched logics [41; 42; 43; 44]. We have also explained
how Separation Logic [99] is a model of a specific theory of BI, through BI’s ‘pointer
logic’ [65; 110].

We have also explained how BI and its associated logics can be motivated as a basis
for logical systems modelling, showing how notions of location, resource, and process
arise throughout.

How are models actually built? The answer is that we deploy the classical methods
of mathematical modelling, which can be summarized by the picture in Figure 14.!!

!
!!!!!

in! out!
observa-ons! models!

consequences!real3world!
consequences!

induc-on!

deduc-on!

interpreta-on!

valida-on!

Fig. 14. The classical mathematical modelling cycle

A few remarks on this approach to modelling are perhaps worthwhile.

ACM SIGLOG News 32 Vol. 0, No. 0, 0000

- Our approach is essentially scale-free: locations, resources, and processes as de-
scribed build in no commitment to any particular scale.

- So, the abstraction level therefore chosen to fit the problem at hand: models should be
as simple as possible, and no simpler. Recall Einstein’s Principle: A scientific theory
should be as simple as possible, but no simpler.

- Predictions about properties of models and the systems they describe can explored
using simulations.

- Model checking, using the logics we have described, is also possible (though much
less developed at this point).

- The map is not the territory (Alfred Korzybski [72]): models always exclude things
that present in the system being modelled.

- Time-value of models: in practice, a less good model obtained quickly can often be
more useful than a better model that is only obtainable much later.

Our reflections on the nature of modelling that is the based of Separation Logic have
been elaborated in [96]. Briefly, we ask why it is that Separation Logic has been such
an effective tool in the development of tools such as INFER [61], now deployed widely
at scale in many large companies. Briefly, we argue in [96] that the coincidence of
‘engineering’ and ‘logical’ models, allowing formal reasoning techniques, giving precise
statements of correctness requirements, to apply directly.

The definition of truth for BI Pointer Logic — that is, its satisfaction relation — pro-
vides a first clear illustration of an argument concerning the merging of logic-models
and engineering-models. The stack and the heap and the ways in which they are ma-
nipulated by programs are considered directly by working programmers: indeed, mem-
ory management at this level of abstraction is a key aspect of the C programming
language.

Additionally, we have

- that the decomposition of models, via the Frame Rule, manages scale, and
- the coincidence and convenience of the logical and pragmatic value of partiality in
the semantics.

These factors lead to an implementable and deployable proof theory, via bi-abduction
applied to the Frame Rule. We would suggest that these reasons for the effectiveness
of Separation Logic may be reflected in other settings in which logic is deployed as a
modelling technology.

The ideas described herein are providing a basis for a substantial research project
in systems modelling and verification that is emphasising the concept of interfaces —
as suggested in Figure 15 — between models as a basis for a compositional theory.

Interfaces:	sketch	of	basic	
mathematical	set-up

• Implement	the	distributed	systems	model:	
– Location	graph	labelled	with	resources
– Explicitly	identify	actions	with	associated	locations	in	interfaces

• Each	model	comes	with	a	specified	set	of	interfaces,	
specifying	input/output	locations,	with	associated	actions

• Decent	basic	algebraic	properties:	commutative,	associative	
composition	of	models	with	compatible	interfaces

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In, Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I
Ini 2 In = ; and

\

i2I
Outi 2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E), A, P, L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 � R2] =

8
<
:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

Fig. 15. An interface between models

There are several ways to approach a theory of interfaces in this kind of setting,
including that sketched in [17] and approaches based on layered graphs. In all cases, it
seems important to establish concepts of local reasoning, supported by forms of Frame
Rules [86], about interfaces.

ACM SIGLOG News 33 Vol. 0, No. 0, 0000

Acknowledgements
I am grateful to Johan van Benthem, James Brotherston, Tristan Caulfield, Jean-René
Courtault, Simon Docherty, Kevin Fong, Didier Galmiche, Peter Jipsen, Pierre Kim-
mel, Alexander Kurz, Daniel Méry, Peter O’Hearn, Jonathan Spring, Hongseok Yang,
and Mike Mislove variously for their interest in, comments upon, and contributions to
the ideas summarized herein, their encouragement of my writing this article, and for
their comments on its contents.

REFERENCES
1. S. Abramsky and J. Väänänen. From IF to BI: a tale of dependence and separation. Synthese,167(2):207–

230, 2009.
2. G. Allwein and M. Dunn. Kripke Models for Linear Logic. Journal of Symbolic Logic 58(2):514–545, 1993.
3. G. Anderson and D. Pym. A calculus and logic of bunched resources and processes. Theoretical Computer

Science 614:63-96, 2016.
4. R. Anderson and N. Belnap. Entailment: Logic of Relevance and Necessity, Volume 1. Princeton University

Press, 1992.
5. R. Anderson and N. Belnap. Entailment: Logic of Relevance and Necessity, Volume 2. Princeton University

Press, 1975.
6. K. Apt. Ten Years of Hoare’s Logic: A Survey — Part 1. ACMTransactions on Programming Languages

and Systems 3(4):431–483, 1981.
7. M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1998. Available at http:

//www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf. Accessed 10 March 2019.
8. J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge University Press, 2014.
9. E. Beth. Semantic entailment and formal derivability. Mededelingen van de Koninklijke Nederlandse

Akademie van Wetenschappen, Afdeling Letterkunde, N.R. Vol 18, no 13, 1955, 309–342.
10. N. Bezhanishvili and D. de Jongh. Intuitionistic logic. Technical Report PP-2006-25, Institute for Logic,

Language and Computation, Universiteit van Amsterdam, 2006.
11. K. Bimbó and J. M. Dunn. Generalized Galois Logics: Relational Semantics of Non-classical Calculi.

CSLI Publications, 2008.
12. B.Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines and higher-order separation logic. In Proc.

14th ESOP, 233–247, Springer-Verlag, 2005.
13. S. Brookes and P. O’Hearn. Concurrent Separation Logic. ACM SIGLOG News 3(3), 47–65, 2016.
14. P. Bródka, K. Skibicki, P. Kazienko, and K. Musiał. A degree centrality in multi-layered social network.

In Proc. CASoN ’11, 237–242, 2011.
15. J. Brotherston. Bunched Logics Displayed. Studia Logica 100(6), 1223–1254, 2012.
16. J. Brotherston and J. Villard. Sub-Classical Boolean Bunched Logics and the Meaning of Par. Proceedings

of CSL-24, LIPlcs, Dagstuhl, 325–342, 2015.
17. T. Caulfield and D. Pym. Modelling and Simulating Systems Security Policy. In Proc. SIMUTools 2015,

ACM Digital Library, ACM Digital Library, 2015.
18. D. Coumans, M. Gehrke, and L. van Rooijen. Relational semantics for full linear logic. Journal of Applied

logic 12(1):50-66, 2014. doi.org/10.1016/j.jal.2013.07.005
19. J.-R. Courtault and D. Galmiche. A Modal BI Logic for Dynamic Resource Properties. In Proc. LFCS

2013, Springer Berlin Heidelberg, 134–138, 2013.
20. J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities. Theoret. Comput. Sci.,

637:30–58, 2016.
21. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis by means of bi-

abduction. J. ACM, 58(6), 2011.
22. L. Cardelli, P. Gardner, G. Ghelli. A spatial logic for querying graphs. In Proc ICALP ’02, LNCS 2380,

597–610, 2002.
23. D. D. Clark. The design philosophy of the DARPA internet protocols. In Proc. SIGCOMM ’88, Computer

Communication Review, 18(4): 106–114, 1988.
24. B. Coecke, T. Fritz, and R. Spekkens. A mathematical theory of resources. Information and Computation

250:59–86, 2016.
25. M. Collinson, K. McDonald, and D. Pym. A substructural logic for layered graphs. J. Log. Comp.,

24(4):953–988, 2014.

ACM SIGLOG News 34 Vol. 0, No. 0, 0000

26. M. Collinson, K. McDonald, and D. Pym. Layered graph logic as an assertion language for access control
policy models. J. Log. Comp., 27(1):41–80 2017.

27. M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Modelling. College Publi-
cations, 2012.

28. M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Math. Struc. Comp.
Sci., 19(5):959–1027, 2009.

29. M. Collinson and D. Pym. Algebra and logic for access control. Formal Aspects of Computing 22(2): 83–
104, 2010. Erratum: Formal Aspects of Computing 22(3):483–484, 2010.

30. G. Conforti, D. Macedonio, and V. Sassone. Spatial logics for bigraphs. In Proc. ICAP ’05, LNCS 3580,
766–778, 2005.

31. G. Coulouris, J. Dollimore, T. Kindberg, and G, Blair. Distributed Systems: Concepts and Design. Pearson,
2011.

32. D. Coumans. Generalising canonical extension to the categorical setting. Ann. Pure. Appl. Log.,
163(12):1940–1961, 2012.

33. J.-R. Courtault and D. Galmiche. A modal separation logic for resource dynamics. Journal of Logic and
Computation, doi:10.1093/logcom/exv031, 2015.

34. A. Fiat, D. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competitive algorithms for
layered graph traversal. SIAM Journal on Computing, 28(2):447–462, 1998.

35. D. van Dalen. Logic and Structure. 4th Edition. Universitext, Springer, 2008.
36. H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer. RustBelt Relaxed. Submitted for publication,

November 2018.
37. B. Day. On closed categories of functors. In: S. Mac Lane, editor, Reports of the Midwest Category Theory

Seminar. Lecture Notes in Mathematics 137:1–38, 1971.
38. B. Day. An embedding theorem for closed categories. In: A. Dold and B. Eckmann, editors, Proceedings

of the Sydney Category Seminar 1972/73. Lecture Notes in Mathematics 420:55-65, 1973.
39. S.Docherty. Bunched Logics: A Uniform Approach. PhD thesis, University College London, 2019.
40. S. Docherty and D. Pym. Intuitionistic layered graph logic. emphProc.IJCAR 2016. LNAI 9706:469–486,

2016.
41. S. Docherty and D. Pym. A Stone-type duality theorem for Separation Logic via its underlying bunched

logics Electronic Notes in Theoretical Computer Science 336 (2018) 101–118.
42. S. Docherty and D. Pym. A Stone-type duality theorem for Separation Logic via its underlying bunched

logics Logical Methods in Computer Science 15(1) (March 14, 2019), 27:1–27:51. https://lmcs.episciences.
org/5284/pdf.

43. S. Docherty and D. Pym. Intuitionistic Layered Graph Logic: Semantics and Proof Theory Logical Meth-
ods in Computer Science 14(4) (October 31, 2018), 1–36. https://lmcs.episciences.org/4942/pdf.

44. S. Docherty and D. Pym. Modular Tableaux Calculi for Separation Theories In: Baier C., Dal Lago U.
(eds) Foundations of Software Science and Computation Structures. FoSSaCS 2018. LNCS 10803:441–
458. Springer. doi.org/10.1007/978-3-319-89366-2 24.

45. J. M. Dunn and G. Hardegree. Algebraic Methods In Philosophical Logic. OUP, 2001.
46. L. Esakia. Topological Kripke models. Soviet Math. Dokl. 15, 147–15, 1974.
47. M. Fitting. Tableau methods of proof for modal logics. Notre Dame J. Fom. Log., 13(2):237–247, 1972.
48. Tobias Fritz. Resource convertibility and ordered commutative monoids. Mathematical Structures in

Computer Science 27(6):850?938, 2017.
49. N. Galatos and P. Jipsen. Distributive residuated frames and generalized bunched implication algebras.

Algebra Univers., 78(3):303–336, 2017.
50. D. Galmiche, P. Kimmel, and D. Pym. A Substructural Epistemic Resource Logic. In Proc. ICLA 2017,

LNCS 10119:106–122, 2017.
51. D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic. J. Log. Comp., 20(1): 189-

231, 2010.
52. D. Galmiche, D. Méry, and D. Pym. The semantics of BI and resource tableaux. Math. Str. Comp. Sci.,

15(06):1033–1088, 2005.
53. D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic. J. Logic Comput., 20(1):189–

231, 2007.
54. J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50(1): 1–101, 1987.
55. R. Goré. Tableau Methods for Modal and Temporal Logics In: D?Agostino M., Gabbay D.M., Hhnle

R., Posegga J. (eds) Handbook of Tableau Methods, 297–396. Springer, Dordrecht. doi.org/10.1007/
978-94-017-1754-0 6.

ACM SIGLOG News 35 Vol. 0, No. 0, 0000

56. L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-constrained minimum
spanning tree problems as Steiner tree problems over layered graphs. Math. Prog., 128(1): 123–148,
2011.

57. D. Grohmann and M. Miculan. Directed bigraphs. In Proc. MFPS XXIII, ENTCS 173, 121–137, 2007.
58. Reiner Hähnle. Tableaux and Related Methods. In: Alan Robinson and Andrei Voronkov, editors, Hand-

book of Automated Reasoning, Springer, 2001, 101–178.
59. Z. Haniková and R. Horc̆ı́k. The finite embeddability property for residuated groupoids Algebra Univers.,

72(1):1–13, 2014.
60. J. Harland and D. Pym. Resource-distribution via Boolean constraints. ACM ToCL, 4(1):56–90, 2003.
61. Facebook. Infer. https://fbinfer.com: accessed 10 March 2019. https://code.fb.com/developer-tools/

open-sourcing-facebook-infer-identify-bugs-before-you-ship/: accessed 10 March 2019.
62. M. Hennessy and G. Plotkin. On observing nondeterminsm and concurrency. Proc. 7th ICALP. LNCS

85:299–309, 1980.
63. C. Hoare. Proof of correctness of data representations. Acta Informatica 1:271–281, 1971.
64. W. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. HindIey, editors, To H.

B. Curry: Essays on Combnatory Logic, Lambda-Calculus, and Formalism, 479–490. Academic Press,
1980.

65. S. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In Proc. Principles
of Programming Languages ’01, ACM Sigplan Notices 36(3):14–26, 2001.

66. P. Jipsen and C. Tsinakis. A survey of residuated lattices. In Ordered Algebraic Structures, Developments
in Mathematics 7:19-56, 2002.

67. P. T. Johnstone Stone Spaces. Cambridge Studies In Advanced Mathematics 3, CUP, 1982.
68. The Julia Programming Language. https://julialang.org. Accessed 10 March 2019.
69. R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris: Monoids

and Invariants as an Orthogonal Basis for Concurrent Reasoning Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 637–650. ACM 2015. 10.
1145/2676726.2676980.

70. R. Jung, R. Krebbers, J.-H. Jourdan, L. Birkedal, and D. Dreyer. Iris from the ground up. Submit-
ted, 2018. Manuscript: https://people.mpi-sws.org/∼dreyer/papers/iris-ground-up/paper.pdf. Accessed
10 March 2019.

71. M. Kivelä, A. Arenas, M. Barthelemy, J. Gleeson, Y. Moreno and M. A. Porter. Multilayer networks. J.
Comp. Net., 2(3): 203–271, 2014.

72. A. Korzybski. Non-Aristotelian System and its Necessity for Rigour in Mathematics and Physics. Pre-
sented to the American Association for the Advancement of Science, New Orleans, Louisiana, 28 De-
cember 1931. Reprinted in Science and Sanity, 1933, 747–761.

73. S. Kripke. A semantical analysis of intuitionistic logic I. In Formal Systems and Recursive Functions,
Studies In Logic and the Foundations of Mathematics 40:92–130, 1965.

74. M. Kurant and P. Thiran. Layered complex networks. Phys. Rev. Lett., 96:138701, 2006.
75. Y. Lafont. Introduction to Linear Logic. Lecture notes from TEMPUS Summer School on Algebraic and

Categorical Methods in Computer Science, Brno, Czech Republic, 1993.
76. J. Lambek. On the calculus of syntactic types. In Studies of Language and its Mathematical Aspects,

166–178, 1961.
77. J. Lambek. From categorical grammar to bilinear logic. In P. Schroeder-Heister and K. Došen, editors,

Substructural Logics, 207–237
78. J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic. Cambridge University Press,

1986.
79. D. Larchey-Wendling. The formal proof of the strong completeness of partial monoidal Boolean BI. J.

Log. Comp., 26(2):605–640, 2016.
80. J. Loeckx and K. Sieber. Foundations of Program Verification. 2nd Edition. John Wiley & Sons, 1987.
81. M. Makkei and G. Reyes. First Order Categorical Logic: Model-Theoretical Methods in the Theory of Topoi

and Related Categories. Lecture Notes in Mathematics 611, 1977.
82. C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of cell biological systems

BMC Sys. Bio., 5(166), doi:10.1186/1752-0509-5-166, 2011.
83. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science 25(3):267–310, 1983.
84. R. Milner. The Space and Motion of Communicating Agents. CUP, 2009.
85. P. O’Hearn. On Bunched Typing. Journal of Functional Programming 13(4), 747–796, 2003.

ACM SIGLOG News 36 Vol. 0, No. 0, 0000

86. P. O’Hearn. A Primer on Separation Logic. Software Safety and Security; Tools for Analysis and Verifica-
tion. NATO Science for Peace and Security Series 33:286–318, 2012.

87. P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Science 375 (1–3), 2007,
271–307.

88. P. O’Hearn. Separation Logic. Communications of the ACM 62(2), February 2019, 86–95. 10.1145/
3211968.

89. P. O’Hearn and D. Pym. The logic of bunched implications. Bull. Symb. Log., 5(2):215–244, 1999.
90. C. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science,

84(1):127–150, 1991.
91. A. Paz. A theory of decomposition into prime factors of layered interconnection networks. Discrete Ap-

plied Mathematics, 159(7):628–646, 2011.
92. G. Plotkin A structural approach to operational semantics, DAIMIFN-19, Computer Science Department,

Aarhus University, 1981.
93. G. Plotkin. The origins of structural operational semantics. Journal of Logic and Algebraic Programming

60–61, 2004, 3–15.
94. D. Prawitz. Natural Deduction. Almqvist and Wiksell, 1965.
95. D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: The semantics of BI. Theor. Comp. Sci.,

315(1):257–305, 2004. (Erratum: p. 285, l. -12: ‘, for some P ′, Q ≡ P ;P ′ ’ should be ‘P ` Q’.)
96. D. Pym, J. Spring, and P. O’Hearn. Why Separation Logic Works. Philosophy and Technology (2018).

https://doi.org/10.1007/s13347-018-0312-8.
97. D. Pym and C. Tofts. A Calculus and Logic of Resources and Processes. Formal Aspects of Computing

18(4):495–517, 2006.
98. S. Read. Relevant Logic. Blackwell, 1988.
99. J. Reynolds. Separation Logic: a logic for shared mutable data structures. In Proc LICS ’02, IEEE Comp.

Soc. Press, 55–74 2002.
100. B. Schneier. The weakest link. https://www.schneier.com/blog/archives/2005/02/the weakest lin.html.

Schneier on Security, https://www.schneier.com, 2005. Accessed 10 March 2019.
101. P. Schroeder-Heister and K. Došen, editors, Substructural Logics. Oxford University Press, 1993.
102. R. Seely. Hyperdoctrines, Natural Deduction and the Beck Condition. Mathematical Logic Quarterly

29(10):505-542, 1983.
103. R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical Computer Science 37:245–

267, 1985.
104. R. Smullyan. First-order Logic. Dover, 1995.
105. C. Stirling. Modal logics for communication systems. Theoretical Computer Science, 49:311–347, 1987.
106. C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.
107. M. Stone. The theory of representations of Boolean algebras. Trans. AMS 40: 37–111, 1936.
108. J. Väänänen. Dependence Logic. Cambridge University Press, 2007.
109. H. Wang, J. Wang and P. De Wilde. Topological analysis of a two coupled evolving networks model for

business systems. Expert Syst. Appl., 36(5):9548–9556, 2009.
110. H. Yang and P. O’Hearn. A Semantic Basis for Local Reasoning. In Proc. FOSSACS 2002, LNCS

2303:402–416, 2002.

ACM SIGLOG News 37 Vol. 0, No. 0, 0000

