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ABSTRACT: The processing of mesoporous inorganic coatings typically
requires a high-temperature calcination step to remove organic precursors
that are essential during the material assembly. Lowering the fabrication
energy costs and cutting back on the necessary resources would provide a
greater scope for the deployment in applications such as architectural glass,
optical components, photovoltaic cells, and energy storage, as well as further
compatibilize substrates with low temperature stability. Organic removal
methods based on UV−ozone treatment are increasing in popularity, but
concerns remain regarding large-scale ozone generation and usage of
mercury-containing UV lamps. To this end, we present a method that relies
on non-ozone-generating UV radiation at 254 nm (UV254) and
incorporation of small amounts of photocatalytic material in the
formulation, here demonstrated with TiO2 nanocrystals. At concentrations
as low as 5 wt % relative to the main inorganic aluminosilicate material, the TiO2 nanocrystals catalyze a “cold combustion” of
the organic components under UV254 irradiation to reveal a porous inorganic network. Using block copolymer-based co-
assembly in conjunction with photocatalytic template removal, we produce well-defined mesoporous inorganic thin films with
controlled porosity and refractive index values, where the required processing time is governed by the amount of TiO2 loading.
This approach provides an inexpensive, flexible, and environmentally friendly alternative to traditional organic removal
techniques, such as UV−ozone degradation and thermal calcination.

KEYWORDS: block copolymer, mesoporous thin films, low-temperature processing, photocatalysis, cold combustion,
ellipsometric porosimetry

■ INTRODUCTION

Mesoporous inorganic thin-film architectures have demon-
strated importance in a range of applications including optical
coatings,1 photovoltaic cells,2 energy storage,3 photocatalysis,4

sensing,5 and protective barriers.6 Methods for the generation
of such coatings are multifold and typically involve the use of
organic compounds as surfactants, porogens, or structure-
directing agents. Examples include the porogen-mediated
packing of nanoparticles7,8 and the two-dimensional (2D)
assembly of hollow or mesoporous spheres.9,10 Evaporation-
induced self-assembly combines inorganic precursors with
organic structure-directing agents such as small molecule
surfactants, block copolymers (BCPs), or colloids.11−13 The
use of BCPs in particular offers the ability to closely control the
porosity and pore size of the final inorganic network.14−16

Following substrate coating and film annealing, the final
processing step for all of the above fabrication routes involves
the removal of the organic components to reveal a porous
inorganic network. Typically, high-temperature calcination is

used. However, this method is incompatible with temperature-
sensitive substrates, such as plastics or films composed of thin
metallic materials, and further incurs a high energy cost.
Consequently, viable alternatives have been researched in
recent years. Oxygen plasma-etching techniques apply ionized
gas molecules at low pressures to react with and decompose
the organic material.15,17 While this method is popular in
laboratory environments, the requirement of expensive
specialized equipment and operation at low pressure provides
challenges to process scaling. Acid etching18 and solvent
extraction19,20 methods have proven somewhat successful in
removing the organic template, but environmental concerns
remain regarding large-scale solvent usage and disposal.
An alternative to the above involves the use of high-energy

vacuum ultraviolet (<200 nm) radiation to degrade the organic
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template. At wavelengths below 185 nm, photons generate
ozone radicals from atmospheric oxygen, which can then attack
and remove the organic template.21 UV light at 172 nm
removed surfactant templates within a matter of hours to
expose mesoporous silica thin films,22,23 and variation of
pressure was found to control the time taken for the total
template removal.23 While UV−ozone methods have proven
capable of removing polymer and surfactant templates, health
and safety concerns remain regarding the generation of ozone
radicals in workplace environments, especially when increasing
production up to industrial scales. Exposure to ozone, even at
levels lower than stated by regulations, has the potential to
cause long-term harm and should be avoided.24 Furthermore,
vacuum ultraviolet light is generated by gas-discharge lamps,
which require mercury for their operation. In contrast, UV254
radiation does not generate ozone radicals and is compatible
with light-emitting diode (LED) technology.25 This means that
UV254 radiation can be generated at low cost and in an
environmentally friendly manner. UV254 is also widely used in
water-treatment plants and is thus already well established in
larger-scale applications. Previous attempts to compatibilize
organic template removal with UV wavelengths longer than
200 nm, included photoacid generator precursors26 and dilute
hydrogen peroxide.27

Here, we present a photocatalytic method for the fabrication
of well-defined mesoporous inorganic coatings derived from a
poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO)
amphiphilic BCP structure-directing agent. We incorporate
small amounts of prefabricated TiO2 nanocrystals (NCs)28

into the hybrid thin films and study the efficiency of “cold
combustion” of the organic material under UV254 light
exposure.29 Prefabricated TiO2 NCs were previously incorpo-
rated into mesoporous thin-film coatings for low temperature
crystallization,30 capacitive charge storage,31 photocataly-
sis,32,33 self-cleaning, and antireflective applications.15 Herein,
we evaluate their use for low-temperature, energy-efficient, and
environmentally friendly mesoporous inorganic film process-
ing.

■ EXPERIMENTAL SECTION
Preparation of Mesoporous Aluminosilicate Thin Films.

PIB39-b-PEO36 was synthesized by BASF as reported previously (Mn
4.85 kg/mol; polydispersity index 1.26).34 The aluminosilicate sol was
prepared as previously described.1,15 Following complete hydrolysis of
the aluminosilicate sol, it was diluted in the toluene/1-butanol
azeotrope solvent mixture at 1000 mg/mL and mixed with the other
materials as required. TiO2 NCs were prepared via a nonhydrolytic
sol−gel route as described in detail elsewhere.15,28,33 The glassware
was cleaned, dried under vacuum, and flushed several times with
argon for an inert, dry atmosphere. Then, chemicals were added in the
following sequence: 5.75 mL of ethanol (>99.8% Analar); 1 mL of
TiCl4 (99.9%, Acros Organics); 19.2 mL of benzyl alcohol (99.8%
anhydrous, Sigma-Aldrich); and 0.23 mL of 1,3-propanediol (Merck).
The solution was heated to 80 °C and stirred for 12 h under an inert
atmosphere. The resultant mixture was washed with diethyl ether and
centrifuged (3500 rpm; 10 min). The process was repeated three
times, and the resulting precipitate was allowed to air-dry for 30 min
before resuspending in the toluene/1-butanol azeotrope mixture at a
concentration of 19.2 mg/mL. To confirm the TiO2 content in the
solution, an aliquot of the solution was dried and calcined in a furnace
at 450 °C. All hybrid solutions were prepared with a polymer-to-
aluminosilicate ratio of 1:3 to maintain similar porosity values for all
samples. Each sample contained 5 mg of polymer and 15 mg of
aluminosilicate material. Samples were then prepared with increasing
amounts of TiO2 relative to the aluminosilicate content as outlined in

Table 1. Note the nomenclature “NC” with a percentage value to
indicate the weight percentage of TiO2 nanocrystals present in the
sample.

Hybrid solutions were spin-coated on silicon wafers at 2000 rpm
for 20 s to produce thin films. Oxygen plasma (Diener Electronic
Pico, 0.4 mbar, 5 min) was initially used to treat the silicon surface
followed by cleaning with a high-pressure liquid-withdrawal CO2
cleaning apparatus (Megatech Ltd.) prior to deposition. All hybrid
films were thermally annealed (130 °C target temperature, 1 °C/min
ramp, 30 min dwell time).1 Annealed samples were then exposed to
UV radiation (Vilber VL-325.G lamp, 254 nm, 3 × 15 W) at a
distance of 10 mm in an enclosed chamber for specified periods of
time. Selected reference samples were calcined in a furnace at 450 °C
(10 °C/min ramp, 30 min dwell time).

Material Characterization. A spectroscopic ellipsometer
(SE2000, Semilab) with a built-in ellipsometric porosimetry (EP)
module was used to determine film thickness, refractive index (RI),
porosity, and pore size distribution. All measurements were taken at
an incident angle of 73°. The analysis was performed with the
manufacturer software (Spectroscopic Ellipsometry Analyzer) using a
Cauchy dispersion law. Before EP characterization, samples were
placed on a hotplate at 120 °C for several minutes to ensure that the
pores were emptied of any adsorbed water molecules from the
atmosphere. The sample porosity was determined with a Lorentz−
Lorenz effective medium approximation model based on the volume
fraction of liquid water adsorbed within the pores.35 The pore size
distribution was calculated with a modified Kelvin equation.36 Atomic
force microscopy (AFM) was carried out on a Bruker Dimension Icon
in ScanAsyst mode with a Bruker SAA-HPI-SS probe (nominal tip
radius 1 nm). Characterization by grazing incidence small-angle X-ray
scattering (GISAXS) was done on a SAXSLab Ganesha at an
incidence angle of 0.2°. The structural fitting of the GISAXS data was
completed using FitGISAXS software.37 The simulated GISAXS
pattern was obtained with the same software based on a model of
spherical objects arranged in a 2D hexagonal paracrystalline array.
Raman spectroscopy measurements were obtained on a Thermo
Scientific DXR Raman microscope with DXR 532 nm filter at an
excitation wavelength of 532 nm (6 mW power) using an MPlan 50×
objective. Powder X-ray diffraction (XRD) was performed on a
Rigaku Smartlab X-ray diffractometer. Transmission electron micro-
graphs were acquired on a 100 kV JEOL CX 100 transmission
electron microscope (TEM). X-ray photoelectron spectroscopy
(XPS) was carried out on a Thermo Scientific K-Alpha photoelectron
spectrometer. Samples were subjected to ion beam surface etching
prior to acquisition of XPS spectra.

■ RESULTS AND DISCUSSION
Refractive index (RI) and porosity values were monitored
using spectroscopic ellipsometry and environmental ellipso-
metric porosimetry (EP) techniques. RI values served as a first
estimate to evaluate the effect of UV254 exposure on the initial
hybrid films. Figure 1a shows the evolution of the RI of the
coatings as a function of UV254 exposure time for two sets of
samples, with no TiO2 nanocrystals incorporated (NC0%) and
with 5 wt % TiO2 nanocrystals (NC5%). X-ray diffraction
(XRD) analysis (Figure S1, Supporting Information) of the
dried TiO2 nanocrystals confirmed the presence of ≈3 nm
TiO2 nanocrystals in the anatase phase as reported else-

Table 1. List of Samples Prepared During This Work

sample name % TiO2 loading
mass of TiO2

(mg)
volume of azeotrope

(mL)

NC0% 0 0 0.182
NC5% 5 0.75 0.158
NC10% 10 1.5 0.202
NC25% 25 3.75 0.242
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where.15,28,33 Transmission electron micrographs (Figure S2,
Supporting Information) of NC5% films demonstrate that the
TiO2 nanocrystals are distributed throughout the aluminosili-
cate network. Similar results were observed in closely related
studies employing block copolymer co-assembly of photo-
catalytic TiO2 nanocrystals and aluminosilicates.15 Note that
both sets of coatings were subject to thermal annealing at 130
°C to remove volatile components from the film and promote
the condensation of the inorganic network toward comple-
tion.38 An observed decrease in RI at each subsequent
processing step therefore served as an indicator for the
degradation of material in the film. In this instance, the RI
decrease corresponded to the removal of polymer material with
a measured RI value of ≈1.5 with air (RI = 1).
NC0% samples exhibited no RI change even when exposed to

UV radiation for 8 h. This conforms to expectations that
wavelengths shorter than 185 nm are required to degrade
organic material via the generation of ozone radicals from air,
which, in turn, break the covalent bonds present in the organic
material.21 NC5% exhibited no change in refractive index after 2
h of UV exposure. After 3 h, the RI value decreased
significantly and reached a plateau with a little further
reduction between 4 and 8 h. Further calcination treatment
at 450 °C [Figure 1 (8 h + cal)] elicited minimal RI change.
While the optical constants of the film are an effective route

to observe changes in the film composition, they do not

provide a comprehensive characterization of the porous
network and pore accessibility in particular. Therefore, EP
measurements were performed to probe the relative volume of
the film available for capillary condensation of ambient water
molecules at different stages of processing. Changes in the
optical properties as a function of relative humidity can then be
related to the accessible pore volume via an effective medium
approximation (here, Lorentz−Lorenz), where the measured
RI change of the coating as a whole is related to its constituent
components.15,39 In Figure 1c−e, we compare the EP
adsorption/desorption isotherms for NC5% samples before
UV exposure, after exposure to UV for 8 h, and after additional
high-temperature calcination. In Figure 1c, little change was
observed regardless of humidity, indicating that there were no
accessible pores present in the initial hybrid material. For the 8
h sample (Figure 1d), the EP isotherm exhibited characteristics
associated with type IV IUPAC isotherm designation.40 The
isotherm classification, coupled with an H2 hysteresis loop,
provides confirmation of a mesoporous material with “ink
bottle” connections between the pores. The hysteresis
observed in the desorption isotherm relates to the emptying
of pores within the material, which is slowed by the narrow
pore necks.41,42 No further changes were observed in the
isotherm characteristics when the 8 h sample was subsequently
processed via thermal calcination, confirming that all of the
template was removed via photocatalytic degradation (Figure

Figure 1. (a) Refractive index and (b) porosity change in NC0% and NC5% samples as a function of TiO2 content and UV exposure time. (c−e)
Ellipsometric porosimetry adsorption/desorption isotherms of NC5% (c) before UV254 exposure, (d) after 8 h of UV254 exposure, and (e) after 8 h
of UV254 exposure with additional calcination at 450 °C.
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1e). Emerging porosities of ≈25 and ≈30% were observed for
NC5% samples after 3 and 4 h of UV exposure (Figures 1b and
S3 of the Supporting Information), respectively, with a final
porosity of ≈35% after 8 h of exposure. As expected, the
porosity of NC0% samples remained unchanged regardless of
UV exposure time. This correlates with the trend observed
from the refractive index analysis in Figure 1a.
To confirm that all organic material was removed from the

NC5% samples, Raman spectroscopy and XPS measurements
were carried out (Figures S4 and S5, Supporting Information).
For the Raman analysis, the peak at 920−1030 cm−1 found in
all samples is consistent with the two-phonon silicon band of
the silicon wafer substrate.43 A methylene stretching band was
observed in the hybrid sample after thermal annealing but prior
to template removal.44 However, neither the UV254 nor
thermally calcined samples exhibited a peak in this region,
indicating that in both approaches the organic material was
successfully removed. The C 1s XPS spectrum (Figure S5,
Supporting Information) of the thermally annealed sample
before template removal (Figure S5a) presented an intense
peak centered at 284 eV, attributed to the carbon−carbon
single bonds in the polymer material.45 The intensity of this
peak decreased dramatically following template removal by
both UV254 (Figure S5b) and high-temperature calcination
(Figure S5c), providing further evidence of the effectiveness of
the UV254 technique in removing the template.
To probe the sample morphology and provide confirmation

of the porous nature of the treated materials, AFM images were
taken for NC5% samples after 8 h of UV exposure (Figure 2a)
and for samples that were treated with high-temperature
calcination only (Figure 2b). These images confirm the
presence of a porous inverse opal-type network when either

template removal technique is applied. GISAXS measurements
(Figures 2c−e, S6 and S7, Supporting Information) confirm
that the NC5% samples retained similar in-plane characteristics
after 8 h of UV exposure and thermal calcination. The one-
dimensional GISAXS pattern for the hybrid NC5% before
template removal was fitted to a 2D hexagonal paracrystalline
array of spherical objects 26.3 nm in diameter (Figure 2c).
Simulated 2D GISAXS patterns (Figure S7, Supporting
Information) support this assertion.
Increasing the amount of TiO2 NCs in the formulation

allows for tuning of the UV254 exposure time required for
complete template removal. Figure 3 outlines the evolution of
film porosity as a function of UV254 exposure and TiO2 loading
through the respective adsorption isotherms. In contrast to the
NC5% results, porous networks were revealed in NC10% and
NC25% after only 1 h. In the case of NC10%, the increased
photocatalytic activity was evidenced by an emerging porosity
at intermediate stages, i.e., after 1 h (19%) and 2 h (33%) with
a leveling of porosity observed at 8 h of exposure. NC25%
continued this trend with all of the template being removed
within the first 2 h. A full statistical comparison of the obtained
results as a function of TiO2 loading and UV exposure can be
found in Figure S8 in the Supporting Information.
We note that the porosity observed for UV254-treated

samples was typically 10−20% lower compared to that for
those processed only by high-temperature calcination without
UV254 (Figure S9, Supporting Information). The lower
porosity values remained consistent irrespective of the amount
of TiO2 loading. The results presented for a combinatorial
treatment of UV254 exposure followed by high temperature
calcination provide evidence that this observation was not
related to residual organic material present in the UV

Figure 2. AFM images of (a) mesoporous NC5% thin film following 8 h of UV254 exposure and (b) mesoporous NC5% thin film produced only via
thermal calcination. (c−e) GISAXS pattern linecuts along qy of NC5% samples. (c) After thermal annealing with the BCP template still present. The
dashed line represents a fit for spherical objects (diameter 26.3 nm) arranged in a 2D hexagonal paracrystalline array. (d) After 8 h of UV254
exposure and (e) after thermal calcination at 450 °C (no UV exposure).
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degradation route. Analysis of the film compression provides
an alternative explanation. The thickness of each sample was
measured and compared using spectroscopic ellipsometry
(Figure S10, Supporting Information). In each instance,
samples exposed to UV for 8 h exhibited film shrinkage to a
greater extent than observed in calcined counterparts. The
additional film shrinkage impacted, in turn, the porosity of the
film upon template removal. A combination of GISAXS and
pore diameter data (Table S1, Supporting Information)
obtained from EP measurements36 provides evidence that
the wall thickness of the NC5% was slightly higher in the UV-
treated samples when compared to thermally calcined samples.
As shown by the in-plane GISAXS patterns (Figure 2c−e), all
samples maintained a similar structural composition regardless
of the template removal treatment. While film shrinkage may
impact the pore anisotropy,36 the actual porosity of the final
film can be carefully tuned when using BCPs as structure-
directing agents, i.e., by varying the ratio of organic to
inorganic precursors.1,15 Therefore, any variability of the
porosity due to processing may be accommodated by minor
modifications in the formulation.

■ CONCLUSIONS
We report the use of non-ozone-generating UV254 light for the
low-temperature removal of block copolymer structure-
directing agents to prepare mesoporous aluminosilicate thin
films. The incorporation of prefabricated TiO2 nanocrystals
enables the photocatalytic cold combustion of the polymer
material without the need for high-temperature treatment or
ozone generation. Ellipsometric porosimetry and atomic force
microscopy analyses showed that mesoporous networks could
be generated using TiO2 loadings as low as 5% (with respect to
the inorganic content) and UV exposure of 8 h. Increasing the
TiO2 loading allowed for shorter UV exposure times with
similar results being observed. The UV254/TiO2 template
removal method provides the advantage of reducing processing

costs and allows for coating on temperature-sensitive
substrates. Crucially, this technique offers environmental
benefits as UV254 radiation produces zero ozone emissions
while also enabling the use of next-generation LED technology
whereby mercury is eliminated from the manufacturing
process.
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