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HIGHLIGHTS

Surface irrigation in the Po Plain has al-
tered the area's hydrologic balance.
[rrigation on unconfined aquifers boosts
aquifer recharge and dilutes groundwa-
ter NOs.

Recharge from irrigation sustains
present-day groundwater use by
humans & ecosystems.

This should be considered in surface
water conservation policies.
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ABSTRACT

For several hundred years, farming in the Po Plain of Italy (46,000 km?, 20 million inhabitants) has been sup-
ported by intensive surface irrigation with lake and river water. Despite the longevity of irrigation, its effects
on the quality and quantity of groundwater is poorly known and so is investigated here through seasonal mea-
surements of hydraulic heads and water quality in groundwaters, rivers, lake, springs and rainwaters.
In the north of the study region, an unconfined coarse-grained alluvial aquifer, infiltration of surface irrigation
water, sourced from the Oglio River and low in NOs, contributes much to aquifer recharge (up to 88%, as evi-
denced by a §*°H-Cl/Br mixing model) and has positive effects on groundwater quality by diluting high concen-
trations of NO3 (decrease by 17% between June and September), This recharge also helps to maintain
numerous local springs that form important local micro-environments. Any increase in water-use efficiency in
irrigation will reduce this recharge, imperil the spring environments, and lessen the dilution of NO3 leading to in-
creasing NO5 concentrations in groundwater.
These findings can be extended by analogy to the entire Po Plain region and other surface-water-irrigated sys-
tems worldwide where inefficient irrigation methods are used and similar hydrogeological features occur.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

E-mail address: marco.rotiroti@unimib.it (M. Rotiroti).

https://doi.org/10.1016/j.scitotenv.2019.03.427

0048-9697/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2019.03.427&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scitotenv.2019.03.427
marco.rotiroti@unimib.it
https://doi.org/10.1016/j.scitotenv.2019.03.427
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv

M. Rotiroti et al. / Science of the Total Environment 672 (2019) 342-356 343

1. Introduction

Groundwater is the main source of freshwater in many regions
worldwide (Filimonau and Barth, 2016). To guarantee sustainable use
of groundwater by humans and ecosystems (EC, 2000, 2006), its
quantity must be protected against depletion and its quality protected
from pollution. Strategies for the protection and sustainable manage-
ment of groundwater resources should be based on a detailed, pre-
exploitation, knowledge of aquifer properties, groundwater flow, and
water quality in the aquifer and sources of recharge. Including surface
waters in such studies is vital, since surface waters may recharge aqui-
fers and be linked to groundwater in a hydrologic continuum (Menci6
et al., 2014; Rozemeijer and Broers, 2007; Sophocleous, 2002; Zhang
et al., 2016). In addition to the natural elements composing a hydrolog-
ical system (i.e. groundwater, rivers, lakes, springs, rainfall), anthropo-
genic activities may add new components and/or change the natural
hydrological cycle by, for example, abstracting groundwater, diverting
rivers, creating artificial channels and introducing irrigation, so that
the concept of the human-modified hydro-system should be adopted
(Nalbantis et al., 2011; Wagener et al., 2010).

Irrigation is a human practice capable of altering both quality and
quantity of groundwater resources (Bouwer, 1987). Previous works in
many regions worldwide reported a variety of effects of irrigation on
groundwater resources (Leng et al., 2015), such us increased aquifer re-
charge in areas irrigated with surface water (Jiménez-Martinez et al.,
2009; Kendy and Bredehoeft, 2006; Ochoa et al., 2007); depletion of
groundwater resources where it supplies irrigation demand (Leng
et al., 2014; Pfeiffer and Lin, 2014; Scanlon et al., 2012), and impairment
of groundwater quality (Chen et al., 2010; Gallegos et al., 1999; Rattan
et al., 2005; Schmidt and Sherman, 1987; Yesilnacar and Gulluoglu,
2008). An example of a hydro-system modified by irrigation is the Po
Plain (northern Italy), in particular the Lombardy Region, where net-
works of irrigation channel have been used since the Middle Ages (i.e.
since the 12th century; Fantoni, 2008; Marchetti, 2002) to divert
water from rivers and lakes and distribute it to the fields through sur-
face irrigation. This distribution system must have profoundly altered
the natural hydrological cycle, given the large amounts of water that
has been diverted from rivers and lakes and distributed to fields.
Where soils are permeable, much of this irrigation water infiltrate to re-
charge underlying aquifers. Giuliano (1995) reported that irrigation is
the primary recharge of Po Plain aquifers, estimated as 7 x 10° m3/y
for the entire Po Plain. This author also estimated effective precipitation
as 3 x 10° m3/y and loss to aquifer through losing streams as 2.5 x 10°
m?>/y. These global figures illustrate the importance of surface sources to
aquifer recharge in the region, but provide no detail of process nor of the
effects on both water quality and water balance.

With the considerations outlined above in mind, the main aim of this
report is to present an assessment of the effects of irrigation on ground-
water quantity and quality in the intensively irrigated Po Plain, in Lom-
bardy Region, northern Italy. We provide a conceptual model of the
system in order to support the protection and sustainable management
of water resources in the region. Our report also provides a framework
for future numerical modeling of groundwater flow and groundwater/
surface-water interactions. To these ends, an holistic approach investi-
gating both surface water (lakes, rivers, springs and rain waters) and
groundwaters is used (Wagener et al., 2010). Groundwater/surface-
water interactions, and the effects of irrigation on groundwater, are in-
vestigated through Darcy's law and mass-balance methodologies
(Menci6 et al., 2014). In particular, stable water isotopes, Cl/Br and
major ions measurements with seasonal frequency are interpreted
and an end-member mixing model, using Cl/Br and 6H, is used to assess
the contribution of irrigation to aquifer recharge and its impact on
groundwater quality. Particular attention is given to the main environ-
mental problems affecting the groundwaters of the Po Plain, which are
pollution by nitrate (Lasagna et al., 2016; Martinelli et al., 2018;
Masetti et al., 2008; Sacchi et al., 2013) and arsenic (Carraro et al.,

2015; Dalla Libera et al., 2016; Rotiroti et al., 2014, 2015). Pollution by
nitrate arises from agricultural and animal husbandry (Martinelli et al.,
2018), although point sources from sewage systems can be relevant
(Rotiroti et al., 2017; Sacchi et al., 2013), whereas arsenic pollution is
of natural origin (Carraro et al.,, 2013; Rotiroti et al., 2014, 2018).

2. Study area

The study covers a ~2000 km? area beside the ~95 km long stretch of
the Oglio River (N Italy) extending from the outflow from Lake Iseo to
the confluence with Mella River (Fig. 1). The Oglio River is one of the
longer tributaries of the Po River and has a total length of ~280 km. It
originates in the Alps and flows ~80 km in Alpine terrain, crossing the
Camonica Valley before enters Lake Iseo, a subalpine lake with a surface
of 65.3 km? and a maximum depth of 251 m (Site LTER_EU_IT_008 -
“Southern Alpine Lakes”; www.lter-europe.net). Lake Iseo is a warm
monomictic in which water temperatures do not drop below 4 °C. Ver-
tical mixing occurs during or close to winter. Owing to its morphological
characteristics and climatic conditions, however, Lake Iseo does not
overturn completely every year; the last, recorded, complete overturns
since 1978 occurred in March 2005 and March 2006 (Leoni et al., 2014).
In the last five years, the thickness of vertical water mixing has been be-
tween 30 and 75 m below surface, thus damping seasonal variations in
water quality at the outlet into the Oglio River. From its origin in Lake
Iseo, the Oglio River crosses the Po Plain for a length of 156 km before
entering the Po River. Within the study area, the Oglio River collects wa-
ters from 5 main tributaries (Fig. 1): the Cherio River, the Scolmatore di
Genivolta Channel, the Saverona Stream, the Strone River, and the Mella
River.

The climate of the study area is temperate continental, with cold
winters and wet and warm summers. Mean annual precipitation and
temperature in the area (Chiari station) are ~900 mm/y and ~12.5 °C
(Bonomi et al., 2008). Precipitations are usually higher in spring and au-
tumn than in winter or summer, although in recent years this pattern
has been less evident, as shown by precipitations during 2016
(Fig. S1). The northern part of the study area is located at the transition
between the Alps and the Po Plain, and is marked by moraines of the Al-
pine foothills. Across the rest of the area, the Po Plain decreases gently in
elevation from north to south with a gradient of 0.3-4 m per km (Fig. 1).
The plain area can therefore be subdivided into higher (northern) and
lower (southern) plain. The transition is marked by the so-called
“springs belt” (Fig. 1), a narrow area with numerous (semi)natural
groundwater outflows (Balestrini et al., 2016; De Luca et al., 2014;
Fumagalli et al., 2017). These springs form important local micro-
environments (i.e. groundwater-dependent ecosystems; Abdelahad
et al,, 2015; Pieri et al., 2007; Rossetti et al.,, 2005). The Oglio River and
other rivers are losing streams north of the springs belt and gaining
stream south of it (Bartoli et al., 2012; Delconte et al., 2014).

Beneath the higher plain, the aquifer is monolithic and comprised of
coarse sediments (gravel and sand). Southward toward the lower plain,
the sediments become finer and split into a multilayer aquifer system
comprised of multiple sand bodies intercalated within silt and clay
(Bonomi et al., 2014; Perego et al., 2014). The higher plain is the re-
charge area of the whole (i.e. higher and lower) aquifer system
(Eupolis Lombardia, 2015; Pilla et al., 2006; Rotiroti et al., 2017). In
the lower plain, groundwater has a sluggish circulation and so has a lon-
ger residence time than the higher plain aquifer under natural condi-
tions of flow (Martinelli et al., 2014). Land use in the study area is
mostly for agriculture (Fig. S2). Corn cultivation dominates, mainly
used as animal fodder. The crop's high requirement for water under
the climatic condition of the Po Plain (Perego et al., 2012) is met by irri-
gation water supplied by two sources: a) the Oglio River and
b) groundwater. Irrigation water from the Oglio River is distributed
through an extensive network of centuries-old irrigation channels that
bring water to fields of both right and left banks in the higher plain,
and of the right bank only in the lower plain (Fig. 1). In the lower
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Fig. 1. a) Location of the study area. b) Digital Elevation Model (DEM) of the study area; 1-1’,2-2’, A-A’, and B-B' indicate the location of the cross-sections shown in Fig. 2. ¢) Surface water
bodies, irrigation channels, irrigation wells and location of Oglio River discharge stations in Fig. S1; in purple the fields irrigated with Oglio River water distributed through the irrigation-

channel network managed by the Consorzio dell'Oglio.

plain, the area of the left bank of the Oglio River is irrigated with ground-
water abstracted through hundreds of irrigation wells (Fig. 1). The di-
versions of Oglio River water that feed the irrigation channel network
occur within 35 km of the outflow from Lake Iseo. At the outflow from
Lake Iseo into the Oglio River, a dam regulates water release in response
to irrigation demand, while maintaining in the Oglio River flow suffi-
cient to sustain the health of downstream ecosystems (the so-called

“environmental flow”; D. G. R. Lombardia 6990/17, 2017). This mini-
mum flow varies in the study area from 5.8 to 9.9 m?/s (D. G. R.
Lombardia 7391/17, 2017). Oglio River discharges, irrigation diversions,
and local precipitations for 2016 are given in Fig. S1 as an example of the
functioning of the hydro-system under analysis: during the irrigation
period of June to September, the water discharged from Lake Iseo to
Oglio River (Sarnico station, location in Fig. 1) increases in order to
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feed the irrigation diversions, which accounted for a total ~0.6 x 10° m>
from June to September (Consorzio dell'Oglio, 2016), and the level in
the Oglio River downstream (Ostiano station, location in Fig. 1) is
lowered to its environmental flow when no precipitations occurred.

3. Materials and methods
3.1. Characterization of aquifers

A schematic of the aquifer structure was constructed from 66 litho-
logical logs of boreholes in the TANGRAM database (Bonomi et al.,
2014), combining 4 lithological cross-sections, two oriented N—S and
two oriented W-E (for locations, see Fig. 1b). Sediments were classified
as conglomerate, pebble and gravel, sand, silt and clay, or peat.

3.2. Hydrodynamic data

Groundwater heads in up to 57 wells and river stages at up to 33 lo-
cations (Fig. S3) were measured during 5 field surveys in February,
April, June and September 2016 and in March 2017. Groundwater
heads and river stages (m asl) were measured relative to datums deter-
mined using differential GPS (TOPCON HIPER PRO®) with an average
error of 8 mm for latitude and longitude and 14 mm for altitude after
post-processing correction, over a total range in head of ~125 m.

3.3. Hydrochemical and isotopic data

During 4 field surveys (February, June, September 2016 and March
2017), 43 groundwater, 17 Oglio River and its main tributaries, 1 Lake
Iseo and 6 springs samples (67 total samples for each survey) were col-
lected; the locations of sampling points are reported in Fig. S4. In addi-
tion, rainwater was collected during each rainfall event between
November 2015 and December 2017 at 2 locations (P151 and P152 in
Fig. S4) using rain collectors designed to minimize re-evaporation
(Groning et al.,, 2012). At each rainwater-collection point, 12 cumulative
samples were acquired over periods ranging between 1 and 4 months,
depending on the amount of precipitation.

Groundwater was sampled from wells supplying water for irriga-
tion, livestock farming, domestic use and public water-supply. Before
sampling, wells were purged until pH, electrical conductivity (EC),
water temperature and dissolved oxygen (DO) were constant, which
was usually after the removal of 2-3 well volumes. Samples were fil-
tered in the field through 0.2 pm filters, those for As, Fe and Mn analysis
were acidified to be 1% with respect to nitric acid. After collection, sam-
ples were stored in a portable fridge at 4 °C.

Collected samples were analysed for pH, EC, DO, water temperature,
alkalinity, Cl, NOs, SO4, NH4, Ca, Mg, Na, K, As, Fe, Mn, Br (the latter only
in June and September 2016) and 5'30/5°H in water. Rainwater was
analysed for '80/6?H in water and Cl/Br, the latter only from November
2015 to November 2016.

In the field, measurements were made of temperature, EC, pH, and
DO using the WTW® Multi 3430 meter in a closed flow-cell. Alkalinity
was analysed by H,SO,4 titration within 24 h of samples collection.
Major ions were analysed by ion chromatography (Thermo Scientific®
Dionex™ ICS-1100). Ammonium was analysed by spectrophotometry
with Nessler's reagent (PerkinElmer® Lambda™ EZ 201) within 24 h
of samples collection. Iron and manganese were analysed by Inductively
coupled plasma - optical emission spectroscopy (ICP-OES;
PerkinElmer® Optima™ 7000 DV). Arsenic was analysed by graphite
furnace atomic absorption spectrometry (GFAAS; PerkinElmer®
AAnalyst™ 600) for samples collected in February and March and by
inductively coupled plasma mass-spectrometry (ICP-MS; Varian®
820-MS) for samples collected in June and September. Bromide was
analysed by ICP-MS (Varian® 820-MS) and water isotopes by
wavelength-scanned cavity ring-down spectroscopy (WS-CRDS;
Picarro® L2120-i). Each chemical analysis was performed on the same

machine by the same operator using the same standards. Concerning
trace elements, all samples were analysed at the end of each respective
sampling survey; for bromide and arsenic by ICP-MS, samples of June
and September were analysed together at the same time. Method detec-
tion limits (DL) are reported in Table S1. The average (mean + standard
deviation) analytical uncertainty (i.e. % deviation of measured
values from known values of standards) for all analysed parameters
was 2.5 4 2.7%. The average charge-balance error (CBE) was —0.05 +
0.75%; in terms of absolute values, the average CBE was 0.55 + 0.51%,
largely below the recommended threshold of 2% (Fritz, 1994).

34. Data elaboration

Potentiometric maps were reconstructed for the shallow and for the
deep aquifers using water levels collected in March 2017, the time for
which most data was available. Groundwater heads in wells and rivers
stages along gaining river stretches were interpolated using ordinary
kriging with breaklines (Legleiter and Kyriakidis, 2008); breaklines
(i.e. lines along which known values are maintained in the interpola-
tion) were used in the northern part of the area to ensure conformity
of contours with the morphology of the foothills of the Alps. Higher
and lower plain data were interpolated separately since they showed
different spatial features, i.e. the former required a detrending process,
the latter none.

Hydrochemical data for 67 sampling points were clustered into 8
groups on the basis of water types, geomorphology (i.e. higher or
lower plain), groundwater/surface water interactions (i.e. losing or
gaining stream) and results of a cluster analysis made on previous mea-
surements in the area (Rotiroti et al., 2019). These groups are (Fig. S4):
a) Lake Iseo water (LI; one location); b) Oglio River water in its losing
stretch (OR lo; 3 locations); c) Oglio River water in its gaining stretch
in the higher plain (OR ga-HP; 4 locations); d) Oglio River water in its
gaining stretch in the lower plain (OR ga-LP; 5 locations); e) surface
water of tributaries of the Oglio River (Tr; 5 locations); f) groundwater
in the higher plain (GW HP; 14 locations); g) spring water (Sp; 6 loca-
tions); h) groundwater in the lower plain (GW LP; 29 locations).

An evaluation of the significance of seasonal variations of groundwa-
ter concentrations with respect to the analytical error was done. This is
of great importance since seasonal variations of chemical composition
in recharge are smoothed by hydrodynamic dispersion in the aquifer,
resulting in seasonal amplitudes that decline along flow-lines. Small
variations in concentration are therefore hard to separate from analyti-
cal variability. In the present study, the variations with season of species
concentrations in groundwater are considered real only where the var-
iations have a magnitude greater than analytical uncertainty. In order to
assess analytical uncertainty, standards of known composition were
inserted into analytical runs as unknowns and the uncertainty calcu-
lated as % deviation of measured values from known values. This evalu-
ation was done for the main pollutants affecting the area, that is, NOs in
groundwater from the higher plain and As in groundwater from the
lower plain. Seasonal concentration variations were evaluated using
median values which is less affected by outliers and skewed data than
is the mean.

A local meteoric water line (LMWL) was calculated using reduced
major axis (RMA) regression of collected rain samples, excluding a
few samples that had clearly suffered some evaporation in the sampler
(summer samples of location P151, spring and summer samples of loca-
tion P152; Fig. S5). Evaporated samples were used in the calculation of
volume-weighted means of 6'80 and &2H values (Table S2), after ex-
trapolation back along evaporation lines to their intersection with the
LMWL (Balestrini et al., 2014).

End-member mixing models using Cl/Br (mass) ratio and 6°H were
developed to identify the source of recharge to aquifers. Values of Cl/
Br are taken here to be a conservative tracer of the origin of water
(Alcala and Custodio, 2008; Davis et al., 2004; McArthur et al., 2012;
Panno et al., 2006; Rotiroti et al., 2017; Vengosh and Pankratov,
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1998); 82H is used since it has a lower kinetic fractionation during evap-
oration than 6'30 (Clark, 2015; Clark and Fritz, 1997). The mixing model
was developed only for the higher plain aquifer, where the composition
of the end-members can be identified. For the lower plain aquifer, a
mixing model was not developed since end-member compositions can-
not be distinguished, e.g. recharge by irrigation through channels fed by
the Oglio River has the same composition as pumping-induced river-
bank infiltration from the Oglio River, that seems to influence composi-
tion in some wells (see Section 5.2.2 for details). Two end-members
were used in the mixing models for the higher plain aquifer:
(a) rainfall and (b) combined Lake Iseo-Oglio River-water in the losing
stretch, taken to reflect the composition of irrigation water feeding the
channel network. The volume-weighted mean precipitation values of
Cl/Br and &°H for rainfall were respectively 119 and — 51.2%., for loca-
tion P151, and respectively 204 and — 50.9%. for location P152. The
values for Oglio River and Lake Iseo represent means of values from sur-
veys of June and September 2016 for points L130 (Lake Iseo; 474 and
— 64.7%., respectively) and R106 (Oglio River; 733 and — 65.1%o, re-
spectively). Indeed, the Oglio River in point R106 has a Cl/Br ratio higher
than that of Lake Iseo, due to the discharge of effluents from the waste-
water treatment plant treating the sewage coming from villages around
Lake Iseo. The use of CI/Br in the mixing model rather than Cl or Br alone
allows precipitations to be used as end-member of recharge in the
higher plain, since the Cl/Br of rainwater (as well as stable water iso-
topes) is mostly conservative during infiltration and circulation in the
subsurface (Alcala and Custodio, 2008), although local exceptions
occur where additional inputs of Cl or Br have been noted (see
Section 4.4 for details). Plots of 8°H vs Cl and 6?H vs Br are reported in
the Supplementary Data (Fig. S6) for a comparison.

4. Results
4.1. The aquifers of the study area

Four lithological cross-sections through the field area are shown in
Fig. 2. These show a) a mono-layer aquifer mainly composed of pebble
and gravels, fractured or poorly consolidated conglomerate or sands in
the higher plain and b) a multi-layer aquifer in the lower plain com-
prised of vertical alternation of sands with silty clays and peat, with 3
main aquifer subunits: shallow (<40 m bgs), intermediate (between
40 and 100 m bgs) and deep (>100 m bgs). Our findings confirm the
typical structure of alluvial aquifers in the Alpine sector of the Po Plain
reported in previous studies (Carcano and Piccin, 2002; Eupolis
Lombardia, 2015).

4.2. Groundwater heads and Oglio River stages

The potentiometric maps of March 2017 for the shallow and deep
aquifers are shown in Fig. S7. In the lower plain, the former map in-
cludes data for the shallowest aquifer (depth <40 m bgs) whereas the
latter map includes data for intermediate and deep aquifers (depth
> 40 m bgs). Both maps include all data for the higher plain aquifer
since no groundwater head variations with depth can be observed on
this scale in this monolithic aquifer. Groundwater heads ranged be-
tween ~160 m asl in the north-western part of the study area to
~35 m asl in the south-eastern part. In the shallow aquifer, groundwater
flows generally from NW to SE although its strong interactions with sur-
face water bodies impart strong local variations to its flow direction, in
particular in the lower plain where the rivers (i.e. Oglio, Saverona,
Strone and Mella) are gaining. These variations are more evident on
the right bank area of Oglio River where groundwater flow is from SW
to NE owing to the proximity of the gaining Oglio River. Conversely,
the deep aquifer in the lower plain has a regular groundwater flow di-
rected from NW to SE, that reflects the regional flow direction
(Eupolis Lombardia, 2015). The mono-layer aquifer of the higher plain
is unconfined, with a groundwater level around 50 m bgl in the

northern part. The water level decreases progressively toward the
springs belt reaching depths <5 m bgl and 0 m at the springs. The aqui-
fers of the lower plain are generally confined, expect where the confin-
ing layer thins locally to create semi-confined or unconfined conditions.

Groundwater heads in the shallow aquifer fluctuated over the mon-
itored period (Fig. 3). The lowest heads were registered in spring (April)
due to low precipitation in winter and spring (Fig. S1). During the irriga-
tion period from June to September, fluctuations in groundwater head
were locality-dependent: an increase of around 4 m was registered in
the higher plain (well HL13); stability can be observed around the
spring belt (well LL65); a decrease of ~0.8 m was registered in the
lower plain on the left bank area of Oglio River (well LL50). In the
lower plain on the Oglio River's right bank, heads increased ~1 m
(well LR55) or were stable (well LR58). For the deep aquifers of the
lower plain (Fig. S8), a decrease of ~1.5 m was seen in both right bank
(well OV76, screen interval of 110-120 m bgl) and left bank (well
LL74, screen interval of 120-150 m bgl).

In the lower plain, a progressive decrease of head occurs from shal-
low to deep confined aquifers, e.g. in the three nearby wells LR59, LR61
and LR60 (Fig. S7). These are screened 21-25, 97-153 and 167-182 m
bgl, respectively. In March 2017, their hydraulic heads were 41.84,
35.60 and 33.50 m asl, respectively. In the river valleys (Fig. S9), in par-
ticular in the Oglio River valley, where ground elevations are low, hy-
draulic heads of deep aquifers are higher than those of the shallow
aquifer and levels in the Oglio River, and some wells are artesian (e.g.
OV70 and OV72). For example, hydraulic heads in March 2017 in
wells OV76 and OV77 were 38.37 and 36.59 m asl whereas Oglio River
stages in nearby points were 31.60 (point RO13) and 30.10 (point
RO14) m asl (see Fig. S7 for points location).

The elevation of the Oglio River ranged from ~185 m asl at the out-
flow from Lake Iseo to ~30 m asl at the confluence with Mella River.
Fluctuations of Oglio River stages in the monitoring period were <1 m
and generally around 0.5 m. Fig. S10 shows the comparison between
Oglio River stages and groundwater heads in wells located close to the
river where the Oglio river transitions from losing to gaining behaviour
(Delconte et al., 2014). The transition point is identifiable as the point
where contours of Oglio River stage intersect contours of groundwater
head. Fig. S10 shows that this transition point moved from around the
134th km of Oglio River (WGS 84 Long: 9° 51' 12.784" and Lat: 45° 32'
23.816") in October 2016, when groundwater heads were the highest
in the higher plain aquifer, to around the 139th km (WGS 84 Long: 9°
51'40.049" and Lat: 45° 30" 20.800") in the other sampling periods.

4.3. Water quality

Water quality in the monitoring period is summarized by the statis-
tical parameters reported in Table S1. Results of selected species and pa-
rameters are shown through box-plot graphs in Fig. 4 and S11, the latter
reporting a focus on lower plain groundwaters divided by shallow
(depth <40 m bgs), intermediate (between 40 and 100 m bgs) and
deep (>100 m bgs) aquifers. Water quality in Lake Iseo and the losing
stretch of the Oglio River was better (lower EC, Cl, NOs3 and trace ele-
ments) compared to groundwater. In many groundwaters of the
lower plain, concentrations of As, Fe, Mn and NH, exceeded Italian reg-
ulatory limits of 10, 200, 50 and 500 pg/L, respectively (D. Lgs. 152/06,
2006; D. Lgs. 30/09, 2009). In the higher plain, NO3; concentrations in
many groundwaters exceeded the regulatory limit of 50 mg/L (D. Lgs.
30/09, 2009). Spring water reflected the composition of groundwater
in the higher plain aquifer. The quality of Oglio River tributaries was
worse than that of Oglio River itself, as evidenced by EC, Cl, NOs, etc.

The O, content was highest in Lake Iseo (median of 10.0 mg/L)
and Oglio River in its losing stretch (median of 10.4 mg/L). Groundwater
was oxic in the higher plain, with a median O, concentration of
6.0 mg/L, but very low in the lower plain (median concentration
of 0.02 mg/L). The EC and Cl had low values in Lake Iseo (median of
250 pS/cm and 3.2 mg/L, respectively) and show increases along the
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Oglio River up to 565 puS/cm and 16.1 mg/L in its gaining stretch along
the lower plain; tributaries of Oglio River had higher values (median
of 653 puS/cm and 16.5 mg/L). Groundwater in the higher plain and
springs had comparable values of EC and Cl with medians of 640 and
655 pS/cm and 12.3 and 9.9 mg/L, respectively, whereas groundwater
in the lower plain had lower values (median of 471 uS/cm and
3.0 mg/L, respectively).

Concentrations of NO3; were higher in groundwater from the higher
plain and spring water (median of 39.8 and 40.6 mg/L, respectively)
than in groundwater from the lower plain, where concentrations were

generally <DL. The upper reaches of the Oglio River, where it is a losing
stream, had low concentrations of NO3 that nevertheless increased
downstream from a concentration of 2.5 mg/L (median) at Lake Iseo
to around 20.6 mg/L (median) in its lower reaches where it is a gaining
stream; Oglio River tributaries had higher concentrations (median of
29.4 mg/L) than the main Oglio River. Concentrations of SO4 had compa-
rable values in most surface waters and groundwaters with medians be-
tween 40.9 and 45.6 mg/L, with the exception of groundwater in the
lower plain which had lower values (median of 11.6 mg/L). A slight in-
crease of SO, was observed along the course of the Oglio River passing
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Fig. 3. Fluctuations of groundwater heads in the shallow aquifer over the monitored period in wells representative of different aquifer behaviours. Potentiometric maps are reported in full

in Fig. S7.

from higher to lower plain (Fig. 8), likely due to the contribution of trib-
utaries that had the highest concentrations (<61.4 mg/L). In groundwa-
ter in the lower plain, concentrations of As, Fe, Mn and NH4 were higher
than Italian regulatory limits, reaching up to 289, 3270, 267 and 5061
ug/L, respectively, proving the presence of anoxic conditions. Sporadic
high values were registered for Mn and NH, also in spring and tribu-
taries water. The lower plain groundwaters did not show any relevant
trend of concentrations over depth, with the exception of Mn that ex-
hibited a decrease over depth (Fig. S11).

4.4. Water isotopes and mixing model

Mean 6'80 and §2H values for each monitoring point are plotted in
Fig. 5a. Rainwater samples are expressed as volume weighted mean
580 and 62H values over the period November 2015-December 2017.
Values are —7.8 and — 51.2%. for point P151 and — 7.9 and — 50.9%.
for point P152, respectively. Fig. 5a plots also the local meteoric water
line (LMWL) for northern Italy (6°H = 7.71 6'0 + 9.40) reported by
Longinelli and Selmo (2003) and the LMWL calculated with RMA re-
gression of rain samples from P151 and P152 (r = 0.99, n = 18). The
slope of the LMWL is 8.45 and the deuterium excess is 15.45. Lake Iseo
had the most depleted 6'80 and 6%H values (—9.6 and — 65.1%., respec-
tively) owing to its catchment being at a higher altitude than other sites
and its more northerly latitude, typically with 6'80 < —9 (Longinelli and
Selmo, 2003). Baseflow of groundwater into the Oglio River progres-
sively enriched the composition downstream, reaching 6'%0 and 62H

values of —9.0 and — 60.8%. in the gaining stretch in the lower plain.
The isotopic composition of tributaries ranged from —9.2 and
— 63.1%,, for the Scolmatore di Genivolta (R104), which is fed partially
by Oglio River water, to —8.1 and — 54.4%., for the Cherio River (R105),
which has an Alpine origin with a catchment area covering lower alti-
tudes and latitudes than that of the Lake Iseo (Longinelli and Selmo,
2003). Groundwater in the lower plain aligns with the LMWL and
mostly ranged between —9.1 and — 8.4% in 6'80 and — 62.0 and
— 55.1 in &%H, with the exception of a few points that were more de-
pleted (up to —9.5 and — 65.0% in 6'80 and &°H, respectively) matching
the values of the closest Oglio River water. Groundwater in the higher
plain clusters into two groups: a) samples with 5'80 and &?H values
ranging respectively from —9.2 and — 62.9%. (approaching those of
Oglio River) to —8.7 and — 59.2%. and b) samples with §'%0 and 6°H
values ranging respectively from —8.0 and — 53.1%. to —7.4 and
— 49.9%., the latter approaching the rainfall signature. Both groups
showed slight evaporative trends. Evaporation percentages, calculated
through the Gonfiantini (1986) equation, were up to 1.1% (well HL11)
in the first group and up to 2.5% (well HL0O9) in the second group.
Springs had 6'80 and 62H values ranging respectively from —9.3 and
— 63.2% to —8.7 and — 59.0%. and matching the more depleted
groundwaters in the higher plain.

Fig. 5b shows the plots of mean §'80 in groundwaters plotted against
well-screen depths. No trends can be observed. The intermediate and
deep wells in the multi-layer aquifer of the lower plain generally fall
within the range — 9.0 to —8.2%. reported by previous studies for the
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Fig. 4. Box-plots of data acquired from 4 surveys (February, June, September 2016 and March 2017); triangles represent outliers (i.e. values less than the first quartile or greater than the
third quartile by >1.5 times the interquartile range). LI: Lake Iseo water; OR lo: Oglio River water in its losing stretch; OR ga-HP: Oglio River water in its gaining stretch in the higher plain;
OR ga-LP: Oglio River water in its gaining stretch in the lower plain; Tr: water of tributaries of the Oglio River; GW HP: groundwater in the higher plain; Sp: spring water; GW LP:

groundwater in the lower plain.

deep aquifers in the Po Plain (Pilla et al., 2006; Rotiroti et al., 2017).
However, a few samples deviate from this range toward more depleted
values that are close to the values for §'%0 of the Oglio River.

Mean values of Cl/Br and 62H in groundwater samples are plotted in
Fig. 6, together with mixing lines between two end-members:
(a) rainfall and (b) Lake Iseo and Oglio River in the losing stretch
(from where irrigation channels are sourced). These groups represent
the main sources of recharge to the higher plain aquifer. Groundwaters
in the higher plain plot within the mixing area (i.e. the area between the

mixing lines), with the exception of 3 samples (HL04, HLO8 and HL09)
that are above it. Reasons why these points plot above the mixing area
include local anthropogenic inputs that may be high in Cl (Vengosh
and Pankratov, 1998). Most groundwaters in the higher plain fall in
the mixing area with >50% of irrigation water whereas the remaining
few points have <20% of it. In the lower plain, groundwaters clusters
into two groups of Fig. 6: a) those shifted toward lower Cl/Br with re-
spect to higher plain groundwaters (i.e. Cl/Br < 340) and &°H values be-
tween —60 and — 55%, and b) those with higher Cl/Br values (i.e. Cl/Br
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>340) and 6H values between —65 and — 50%., with the sole excep-
tion of point LL45 having a more enriched 6*H value. The low Cl/Br of
the first cluster can be related to additional Br entering the waters by
diffusion from decaying organic-rich aquitards (McArthur et al., 2012;
Nissenbaum and Magaritz, 1991; Rotiroti et al., 2017). This process is
more pronounced in those aquifers of the multi-layer system of the Po
Plain that have the longer residence times and so, older recharge
(Rotiroti et al., 2014, 2015). Low Cl/Br also identifies recharge that oc-
curred before anthropogenic influences were felt across the region.
The stable water isotope composition of groundwaters in the first clus-
ter (6°H between —60 and — 55%. that corresponds approximately to
5180 between —8.9 and — 8.4%.) confirms their longer circulation
paths since it falls within the range reported above for the deep Po
Plain aquifers. Therefore, it can be inferred that points falling within
the first cluster indicate groundwaters with older recharge. These
wells have little or no younger recharge from local precipitations or irri-
gation water sourced both from Oglio River and groundwater itself; the
latter would be indicated by the sole increase of Cl/Br values due to the
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Fig. 6. Plot of mean Cl/Br vs §H for groundwater samples and mixing lines between end-
members of recharge in the higher plain aquifer (see Section 3.4 for end-members
composition). Samples labelled with ID number are cited in the text. Percentage labels
on the mixing lines show the fractional contribution to mixing of the high-Cl/Br end-
members. LI: Lake Iseo water; OR lo: Oglio River water in its losing stretch; GW HP:
groundwater in the higher plain; GW LP Shal: groundwater in the lower plain shallow
aquifer (depth <40 m bgs); GW LP Inter: groundwater in the lower plain intermediate
aquifer (between 40 and 100 m bgs); GW LP Deep: groundwater in the lower plain
deep aquifer (>100 m bgs); P: rainwater.

likely leaching of fertilizers by irrigation water before re-infiltrating the
aquifer; this could be the case of well LL45. Conversely, the points falling
within the second cluster, that have Cl/Br and 6°H values approaching
those of the Oglio River, can indicate groundwaters with a component
of younger recharge.
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Fig. 7. Seasonal variations of median concentrations of groundwater NOs in the higher
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representative of higher (HL13) and lower (LL50) plain aquifers. The comparison
between median concentration and variations in analytical uncertainty is reported in
Table 1.
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4.5. Seasonal variations of NO3 and As concentrations

Seasonal variations of median concentrations of groundwater NOs in
the higher plain and As in the lower plain are shown in Fig. 7, together
with the variation of hydraulic heads in wells representative of higher
(well HL13) and lower (well LL50) plain aquifers. Table 1 evaluates
the significance of time variations of concentrations with respect to
the analytical uncertainty. For As, median concentrations were calcu-
lated for each of the two groups differentiated by Cl/Br and &°H
(Section 4.4; Fig. 6) and so likely differentiated by age. This classification
is adopted, rather than one based on depth, because the former yields a
clear pattern of As concentrations (Fig. S12).

In the higher plain, NOs increased by 13% between February 2016
(40.0 mg/L) and June 2016 (45.3 mg/L), had decreased by 17% by Sep-
tember 2016 (37.7 mg/L), and then increased again by 6% to March
2017 (39.8 mg/L). In the lower plain, As in younger groundwaters in-
creased by 26% between February 2016 (3.3 pg/L) and June 2016 (4.4
yg/L), decreased by 49% by September 2016 (3.0 pg/L) and increased
by 36% by March 2017 (4.6 pg/L). In older groundwaters, As increased
over the study period, with an increase of 16% from February 2016
(12.0 pg/L) to June 2016 (14.3 pg/L) and of 5% and 18% to September
2016 (15.0 ug/L) and March 2017 (18.3 pg/L), respectively. All these me-
dian concentration variations resulted significant (see Section 3.4) with
respect to the variation of analytical uncertainty (Table 1).

5. Discussion

5.1. The role of irrigation on groundwater recharge-discharge in the higher
plain

In the higher plain, irrigation water sourced by the Oglio River is the
main source of recharge in the areas covered by the irrigation channel
network; groundwater samples mainly recharged by this irrigation
water are mapped in (Fig. 8). This assumption is sustained by the in-
crease up to 4 m of groundwater heads during the irrigation period in
this area (Fig. 3, well HL13) and by the percentage of irrigation water
in these samples estimated by the Cl/Br-6H mixing model of Fig. 6 to
be between 55% (well LL35) and 88% (well HR29). These samples are
the more depleted groundwaters shown in Fig. 5a that experienced a
slight evaporation (up to 1.1%, see Section 4.4 for details). Evaporation
in irrigation channels can give an evaporative signature to groundwa-
ters recharged by irrigation (Harvey and Sibray, 2001). The small evap-
orative signature seen in these samples confirms that recharge here is
made by irrigation rather than the Oglio River in its losing stretch, as
the Oglio River samples plot on the LWML (calculated in this study),
thus showing no evaporation.

Where groundwaters contain >50% of irrigation water, stable isoto-
pic composition remained invariant over the monitored year (580
and 6°H of —8.8 and — 60.4%. in February 2016, —8.9 and — 60.5%.
in June 2016, —8.9 and — 60.6%. in September 2016 and — 8.9 and
— 60.8%. in March 2017). Although hydrodynamic dispersion in
groundwater smooths seasonal variations of the isotopic signature
(Clark and Fritz, 1997), it remains surprising that little inhomogeneity
between irrigation and no irrigation periods is detected given (a) the

Table 1
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unconfined and coarse nature of the aquifer sediments beneath the
higher plain, both of which would promote rapid flow, (b) the rapid in-
filtration rate to the aquifer; Masetti et al. (2016) reported penetration
to 30-40 m bgl in <5 days at a site in the Po Plain with hydrogeological
features similar to ours, (c) the huge amount of irrigation water spread
over the fields (~0.6 billion of m derived from the Oglio River from June
to September 2016) and (d) the rapid change of groundwater heads
during the irrigation period of up to around 4 m. The absence of much
isotopic variation highlights the dominant role played by irrigation
channels in providing recharge, in addition to the role played by irriga-
tion water distributed to fields during the growing season. Indeed, main
irrigation channels are kept full all year to prevent collapse of channel
banks and, since most are unlined, they recharge the aquifer year-
round. This agrees with previous studies (Facchi et al., 2004; Vassena
et al., 2012; Alberti et al,, 2016) and is confirmed by our results: indeed,
the wells with the highest percentages of irrigation water (i.e. wells
HR29 and HR31 with 88% and 76%, respectively) are located close to
one of these main channels (Fig.S4). However, the absence of detectable
seasonal isotopic variation could be also related to the long period (i.e.
centuries) of use of these irrigation practises, that could have progres-
sively hidden the isotopic signature of local precipitations with those
of irrigation water.

Irrigation channels are rare north of the main irrigated area, so pre-
cipitation is the sole or main source of recharge. This is evidenced by
wells HLO8, HL09, HR24 and HR25, located in this area (Fig. 8), that
show a high percentage of rainwater in the mixing model and an isoto-
pic signature close to that of local precipitations (Figs. 5a and 6). How-
ever, the fact that these samples showed an evaporative trend,
although minimal (<2.5%, see Section 4.4), could indicate that they are
mainly recharged by precipitations fallen on the Alps and/or the foot-
hills of the Alps that then experienced some evaporation during surface
runoff and flow within the streams or small rivers that bring this water
to the plain. This seems confirmed in the plot of Fig. 5a by the proximity
in composition of the Cherio River point (R105) to the wells HR24 and
HR25 which are located downstream of it. Similarly, the area where
wells HLO8 and HL0O9 are located could be mainly recharged by the
streams flowing down from the foothills of the Alps, such as the
Gandovere stream (Fig. 1). A confirmation of this is given by that the
evaporative lines shown in Fig. 5a intercept the LMWL at more depleted
values with respect to the precipitations measured in the plain and this
agrees with the general trend observed by Longinelli and Selmo (2003)
of more depleted rainwater moving from the Po Plain to the Alps.

Concerning groundwater discharge, our results suggest that the
higher plain aquifer has four main sinks of groundwater: a) gaining be-
haviour of Oglio River, b) outflow through the springs belt, ¢) outflow to
the lower plain aquifer and d) abstraction through livestock, water sup-
ply, industrial and domestic wells. The increase of groundwater quan-
tity and hydraulic heads in the higher plain due to irrigation during
the growing season is not transferred to the lower plain aquifer due to
the presence of the springs belt, which intercepts and discharges this
excess groundwater. This excess is transferred downstream via in-
creased spring discharge (Balderacchi et al., 2016; De Luca et al., 2014;
Fumagalli et al., 2017), leaving groundwater heads within the spring
belt and just downstream of it almost unaltered (Fig. 3, well LL65).

Median concentration and variations in analytical uncertainty over the monitored period for NOs in higher plain groundwater and As in lower plain groundwater.

Survey NOs in higher plain groundwater As in lower plain groundwater with younger As in lower plain groundwater with older
recharge recharge
Median ~ Median Analytical ~ Uncertainty Median  Median Analytical ~ Uncertainty Median  Median Analytical ~ Uncertainty
(mg/L) variation uncertainty variation (ug/L)  variation uncertainty variation (ug/L)  variation  uncertainty variation
(%) (%) (%) (%) (%) (%) (%) (%) (%)
February 2016 40.0 - —0.2 - 33 - —15 - 12.0 - —15 -
June 2016 453 13 1.8 2 44 26 5.0 7 14.3 16 5.0 7
September 2016 37.7 —-17 23 1 3.0 —49 5.0 0 15.0 5 5.0 0
March 2017 398 6 -13 —4 4.6 36 —0.7 —6 183 18 —0.7 —6
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Fig. 8. a) Map showing type of groundwaters resulted from the interpretation of the Cl/
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lower plain (data and methods for the estimation of k values in Taviani et al., 2017).

5.2. The role of irrigation on groundwater recharge-discharge in the lower
plain

5.2.1. Regional-scale features

In the lower plain, there is no or very slow recharge of irrigation
water and rainwater due to the widespread presence of shallow confin-
ing clays and silts (Fig. 8b). Abstraction for irrigation, coupled to the

increase in domestic water demand in summer, constitutes a significant
discharge from the aquifer system during the growing season, as evi-
denced by the decrease of ~1-1.5 m of groundwater heads observed be-
tween June and September (wells LL50, LL74 and OV76 in Figs. 3 and
S8). Despite ensuing drawdowns, multiple aquitards prevent or restrict
recharge from surface sources so the aquifers are mainly recharged by
the groundwater inflow from the higher plain, leading to long ground-
water residence times. This is evidenced by a) the presence of anoxic
groundwaters (Fig. 4) and b) the transitional state in the isotopic com-
position of wells LL37 and LL39 (Figs. 5 and 6), located at the transition
between higher and lower plain, that matches that of springs and higher
plain groundwater. Irrigation thus plays no or little role in recharging
the aquifers of the lower plain. Rather, excess irrigation water runs off
to the tributaries of the Oglio River. This is confirmed by the higher con-
centrations of EC, Cl and NOs in the tributaries than does the Oglio River
and groundwater in the lower plain (Fig. 4).

Despite the overarching considerations discussed above that explain
why many lower plain groundwaters fall in the group with older re-
charge (Figs. 6 and 8), local variations and exceptions occur, and these
are discussed in the following section.

5.2.2. Local-scale features and site-specific variations

Within river valleys, deeper aquifers have higher groundwater
heads than do shallow aquifers (as reported in Section 4.2), so recharge
of deep aquifers from surface sources is clearly not possible. The Cl/Br-
&2H plot indicated that seven wells located close to the Oglio, Strone
and Mella rivers (wells OV63-73, LL41 and LL54, respectively) have a
component of young recharge (Fig. 8). This cannot be related to re-
charge by irrigation/channel water since there are no channels here
and the deep aquifers have higher groundwater heads than shallow
aquifers, as discussed above. A likely explanation is that groundwater
abstraction through these wells locally induces a fall of hydraulic
heads inducing a reversal of water flow between aquifers and rivers,
which are normally gaining here. For example, well OV70, that is
artesian under static condition, experienced an hydraulic head drop of
around 25 m under working condition. Therefore in the vicinity of
these wells, a pumping-induced recharge from rivers can be assumed.

In the right bank area of the Oglio River, irrigation water is mostly
sourced from channels fed by the Oglio River. Local windows formed
by patchy courser sediments (Fig. 8b) allow some local groundwater re-
charge by return irrigation water or irrigation channels. For example,
well LR55, located close to a main irrigation channel, showed an in-
crease of ~1 m of groundwater head from June to September 2016
(Fig. 3), owing to localised higher hydraulic conductivity (Fig. 8b).
Moreover, groundwater from LR56, a nearby deep well screened at
99-146 m bgl, falls within the groundwaters that have a component
of younger recharge on the Cl/Br-6°H plot (Fig. 6), confirming local re-
charge by the irrigation channel. Given the depth of the well-screen,
this recharge clearly occurs in response to drawdown from pumping.
In a second example, well LR58, located near a main irrigation channel,
but where hydraulic conductivity is lower (Fig. 8b), shows no increase
of hydraulic heads in the irrigation season (Fig. 3) but have 6'80 and
&2H values that approach those of irrigation water sourced by Oglio
River (Fig. 5a), suggesting a component of induced recharge from the ir-
rigation channel. Overall, these minor exceptions prove the rule that lit-
tle recharge occurs from irrigation water in the right bank area of the
Oglio River, mostly depending on the lithology of shallow layers and
the proximity to irrigation channels.

5.3. The effect of irrigation on groundwater NO3 and As

Where irrigation channels are absent or sparse, groundwaters con-
tain <20% of irrigation water (Figs. 6 and 8) and NOs concentrations
are high (mean 56.4, maximum 99.0 mg/L). Where irrigation channels
are common, groundwaters contain >50% of irrigation water (Figs. 6
and 8) and NOs are lower (mean 38.4, maximum 56.6 mg/L). The
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differences arise because irrigation water sourced from the Oglio River
has a low concentration of NO; (median of 8.6 mg/L) and so contributes
to the dilution of the high NOs; derived from other anthropogenic
sources. Seasonal variations of NO5 contents (Fig. 7) confirm this con-
clusion. In June, early in the irrigation season, concentrations of NO3
are higher than in March, before irrigation starts. The increase is sourced
from leaching of surplus nitrogen from the soils (Bartoli et al., 2012),
since most applications of nitrogenous fertilizers are made in the au-
tumn and winter onto bare soils, sometimes followed by a late-spring
supplement (Perego et al., 2012). By September, at the end of the irriga-
tion period, this early NO5 spike has been diluted by infiltration of irriga-
tion water, aided by the nitrogen uptake by the crops. This process is
confirmed also by results of Cl/Br and 6?H mixing model, calculated sep-
arately for the surveys of June and September 2016 (Fig. S13): in June
there is little correlation (r = —0.39) between % of irrigation water
and NOs concentrations for those samples within the mixing area and
with >50% of irrigation water, whereas a significant negative correlation
(r = —0.82) is observed in September (Fig. 9).

Concerning As in the lower plain aquifer, the effects of irrigation
on its concentrations are evaluated in terms of increased groundwa-
ter abstraction (Section 5.2.1). Groundwaters with a component of
younger recharge show different trends with time of As concentra-
tion than do groundwaters with older recharge (Fig. 7). The younger
groundwaters show a slight decrease of As concentrations when hy-
draulic head is at a minimum, possibly because of induced recharge
of low-As water during increased aquifer exploitation in the sum-
mer. The older groundwaters show an increase of As over all the
monitored period that seems uncorrelated to the hydraulic head
fluctuations.

5.4. Implications for Po Plain aquifers and future scenarios

Irrigation in the higher plain plays an important and positive role on
groundwater quantity by increasing recharge over natural rates, and on
water quality by diluting otherwise-high concentrations of NO3 in
groundwater. Recharge is substantial because surface irrigation, that is
an inefficient irrigation system, is used and main irrigation channels,
that are mostly unlined, are kept full through the whole year. A substan-
tial reduction in the NO5 concentrations of groundwater is achieved by
this recharge because irrigation water sourced from Lake Iseo and the
Oglio River water has a low content of NOs. These are conditions that
characterize also other areas of the higher part of the Po Plain, indeed
a) surface irrigation is widely used (applied on 52% of irrigated lands
in the entire Po Plain; Zucaro, 2011), b) most of the irrigation water
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Fig. 9. Plot of % of irrigation water and NOs concentrations in a) June and b) September
2016 for higher plain groundwaters falling within the mixing area and with >50% of
irrigation water (see Fig. S13 for mixing models). Regression lines were calculated using
RMA method; r: Pearson correlation coefficient.

(67%, Zucaro, 2011) is sourced from surface water bodies, in particular
from the sub-Alpine Lakes Maggiore, Como, Iseo and Garda (Zucaro,
2011), and is distributed through the field by irrigation channels net-
works, having a total length for the entire Po Plain of 11,600 km
(Zucaro, 2011), and c) the NOs concentrations of the sub-Alpine lakes
that feed irrigation channels is generally low (<3.8 mg/L; Premazzi
et al,, 2003). Therefore, the findings of the present study that surface ir-
rigation in the higher plain boosts groundwater recharge and can dilute
groundwater nitrates can be extended by analogy to other areas of the
Po Plain. Moreover, the positive effect of contributing to aquifer re-
charge made by an inefficient irrigation practice and the use of surface
water as irrigation water can be extended to other areas worldwide
where similar hydrogeological features occur.

Surface irrigation using water diverted by surface water bodies has
been employed in the Po Plain since the 12th century, and the distur-
bance to the natural hydrologic cycle this has caused is now a funda-
mental source of water to the aquifer that sustains present-day water
use by humans and ecosystems. If this condition is not considered in
promoting and executing a more efficient surface water-use and surface
water conservation policies, more negative than positive results would
be reached. Employment of, for example, more efficient sprinkler/
drip/micro irrigation methods would decrease recharge, increase ni-
trate concentrations in groundwater and lessen the flow that maintains
the springs of the springs belt. The depletion of water flow through the
springs belt would threaten the preservation of this groundwater-
dependent ecosystem (Balderacchi et al., 2016). Moreover, the decrease
of aquifer recharge would imperil the present-day groundwater extrac-
tion rates from abstraction wells that sustain drinking water supply and
many industrial uses. Finally, if groundwater will be used in the higher
plain instead of the low-NOs water of Oglio River as source of irrigation
water, the concentrations of NO3 in groundwater will probably reach
higher values, as already happens in the area not covered by the irriga-
tion channel network.

The inefficient use of surface water in irrigation should be viewed
as a positive; it is a form of water storage in the subsurface, that is
more efficient than storing water in lakes, since these lose water by
evaporation. Aquifer recharge and storage is a strategy for insuring
against the problem of hydroclimatic extremes (e.g. droughts), that
are increasing in frequency owing to a changing climate; aquifers
are reservoirs of immediately accessible water for use under emer-
gency conditions (Ducci et al., 2017), if their recharge is preserved
over long periods.

6. Conclusions

This work evaluated the effects of intensive irrigation on groundwa-
ter quantity and quality in the human-modified hydro-system of Oglio
River basin in the Po Plain, interpreting hydrodynamic, hydrochemical
and isotopic data.

Our main findings are:

irrigation water, sourced from the Oglio River and distributed by
channels, plays a fundamental role in recharging the aquifer in the
higher plain; it provides between 55 and 88% of the aquifer recharge
and increases groundwater table by up to 4 min the irrigation season;
perennially-filled unlined channels recharge the aquifer year-round;
the extensive irrigation has also positive effects on groundwater qual-
ity in the higher plain: the recharge water has a low concentration of
NO3 and dilutes anthropogenic NO; maintaining concentrations
below the regulatory limit of 50 mg/L;

in the higher plain, abandonment of surface irrigation with low-NO3
water in favour of water conservation through more efficient irriga-
tion methods would decrease recharge, imperil the spring ecosystems
and present-day groundwater abstraction rates, and suppress the di-
lution effect leading to a likely increase of groundwater NO3 concen-
trations in the higher plain;
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in the lower plain, irrigation water is mainly sourced from groundwa-
ter abstraction, so groundwater levels in the confined aquifers de-
crease in the summer irrigation season; vertical recharge is
restricted and localised to small areas of courser deposits in confining
aquitards;

no relevant effects of irrigation, considered as increased groundwater
abstractions, were observed on As concentrations in groundwater of
the lower plain;

the result that surface irrigation in the higher plain boosts groundwa-
ter recharge and dilute groundwater NO3 can be extended by analogy
to other areas of the Po Plain; the positive role of recharging the aqui-
fer played by an inefficient irrigation practice and the use of surface
water as irrigation water can be extended to other hydro-systems
worldwide where similar hydrogeological features occur.

This work showed how the combined hydrodynamic,
hydrochemical and isotopic analysis of surface water and ground-
water is an appropriate method for investigating complex hydro-
systems that have strong groundwater/surface-water interactions
and/or anthropogenic modifications. Therefore, the methodology
used in this study could be applied in other highly irrigated regions
worldwide in order to identify the effects of irrigation on groundwa-
ter resources.
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