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ABSTRACT: Two-photon absorption (2PA) finds widespread application in bio-
logical systems, which frequently exhibit heterogeneous fluorescence decay dynamics
corresponding to multiple species or environments. By combining polarized 2PA with
time-resolved fluorescence intensity and anisotropy decay measurements, we show how
the two-photon transition tensors for the components of a heterogeneous population
can be separately determined, allowing structural differences between the two
fluorescent states of the redox cofactor NAD(P)H to be identified. The results
support the view that the two states correspond to alternate configurations of the
nicotinamide ring, rather than folded and extended conformations of the entire
molecule.

■ INTRODUCTION

NAD and NADP are the principle biological cofactors involved
in cellular redox metabolism.1 The two molecules differ only
by the presence of a phosphate group at the redox-inactive
adenine end of NADP which is absent in NAD, as shown in
Figure 1. This allows enzyme binding sites to be specific to
either cofactor, enabling them to regulate contrasting

biochemical pathways. The hydride-carrying nicotinamide
ring is identical in the two molecules, and it is responsible
for the spectrally identical intrinsic fluorescence of their
reduced forms, NADH and NADPH.2 As alterations in the
redox balance of the NAD and NADP pools are linked to a
range of pathological conditions, NAD(P)H autofluorescence
is often employed to investigate the role of metabolism in
disease.3 Fluorescence lifetime imaging microscopy (FLIM) is
frequently used for this purpose; inside cells, the rate of decay
of NAD(P)H fluorescence is dependent upon the enzymes to
which the molecules are bound, allowing changes in the
metabolic pathways activated in the diseased state to be
detected in a label-free manner.3−8 Maximizing the informa-
tion content of these measurements requires an increased
understanding of how the photophysical quantities reported
reflect the biochemical status of the target molecules.
Even outside the highly crowded and nonuniform environ-

ment of the cell,9 pure aqueous solutions of NADH or
NADPH exhibit fluorescence decay dynamics indicative of an
intrinsically heterogeneous population.10−12 Two species are
present in solutions of either molecule, a majority component
(∼90%) with a lifetime of approximately 0.4 ns and a minority
component (∼10%) of 0.8 ns.10 However, the molecular origin
of these species remains elusive. NAD(P)H is known to exist
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Figure 1. Fluorescence in NADH and NADPH is localized to the
nicotinamide moiety (a), where the amide group can adopt a cis
(shown) or trans form by rotating 180° around the bond linking it to
the pyridine ring. NADPH differs in structure from NADH by the
presence of a phosphate group (b) at the adenine (c) end of the
molecule.
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in two distinct configurations in solution, either folded with
stacked adenine and nicotinamide rings or open and
extended,13 and parallels have perhaps naively been drawn
between these two configurations and the two-component
fluorescence decay of the molecule. For example, it has been
suggested that the short lifetime state results from the folded
configuration inducing dynamic quenching of the excited
nicotinamide by the adenine moiety.14,15 In contrast, the
apparent nonexistence of the longer lifetime state in NAD-
(P)H analogues where the adenine moiety is absent led to
suggestions that the nicotinamide and adenine rings form an
exciplex with an enhanced quantum yield when stacked.11,16

Recent ultrafast transient absorption studies appear to rule this
out.17 Additionally, inconsistencies between the decay
amplitudes of the two components and the fraction of folded
species measured by energy transfer,13 alongside demonstra-
tions of heterogeneous decay kinetics in nicotinamide
mononucleotide,12,18,19 suggest that the two fluorescence
decay times arise from photophysical processes independent
of the adenine moiety.
In previous work, we demonstrated that the high rate of

nonradiative excited state decay in NAD(P)H is due to small
scale motion of the nicotinamide ring.10 Power law models
implied that the specific molecular motion associated with the
conformational relaxation was identical in the two species,
while an activated barrier crossing analysis suggested that the
contrasting lifetimes of the two species arise from differences in
the shape of the intramolecular potential energy surface
experienced by the molecule while undergoing the motion. In
the present study, we gain further insight into the photo-
physical origins of the two excited state populations in
NAD(P)H through a novel approach to determine the
individual two-photon absorption (2PA) properties of a
multiple component system.
Polarization Dependence of Two-Photon Absorption.

A fundamental property of single-photon absorption (1PA) in
an isotropic medium is that the transition probability is
independent of the polarization of the incident light.20

However, for 2PA, the transition does not involve a simple
dipolar rearrangement of electronic charge density but depends

on a sum of products of all the allowed single-photon electric
dipole transition moments between the ground, virtual, and
final states. In essence, the first photon can be thought of as
selecting a nonstationary virtual state that can be caused to
undergo transitions to the final state by a second photon with
only certain polarizations.21,22 The polarization dependence of
2PA is most commonly expressed through the polarization
ratio Ω, defined as the ratio of the 2PA cross sections for
circularly and linearly polarized excitation23

2P
circ

2P
lin

σ
σ

Ω =
(1)

The orientation-dependent transition probability for the
absorption of two identical photons with polarization vectors e ̂
can be expressed as24,25

A e eS2PA
2= | ·̂ · |̂ (2)

where S is the second rank tensor describing the angular
properties of the two-photon transition. Transforming from
the laboratory to molecular frame of reference and performing
the necessary orientational averaging is most conveniently
achieved using a spherical tensor formalism.22,24−27 With this
approach and assuming a planar transition, valid for NAD(P)-
H,2 Ω can be written as
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Normalizing with respect to SXX yields22,24−27
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where S = SYY/SXXand D = SXY/SXX. Values of Ω range from 1/4
to 3/2 depending on the symmetry of the participating
electronic and vibrational states23,26−38 and local solvation
effects.39 The fluorescence anisotropies immediately after
excitation by linearly and circularly polarized 2PA, Rlin(0)
and Rcirc(0) respectively, are also determined by the
components of S according to25
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where θM is the angle made by the emission transition dipole
with respect to the x-axis of the molecular frame. Adopting a
coordinate system in which this is defined by the direction of
the 1PA transition dipole moment, θM can be determined from
the initial anisotropy following 1PA40
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Thus, given experimental measurements of Rlin(0), Rcirc(0),
R1P(0), and Ω, the corresponding two-photon tensor

components S and D can be calculated by solving eqs 4−7.
This approach has previously been applied to perylene26,27,36

and enhanced green fluorescent protein (EGFP).25 As Ω is
independent of emission dipole moment orientation, it has also
been measured by time averaged (steady state) fluorescence
intensities following linearly and circularly polarized 2PA.
However, as will be seen, this approach is no longer possible in
systems with strongly heterogeneous fluorescence dynamics
such as NAD(P)H, and it is necessary to combine both time-
resolved and steady state fluorescence measurements to
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determine the individual Ω values and corresponding
transition tensor structures of each species.
Polarized Two-Photon Excited Fluorescence in Het-

erogeneous Systems. The simplest heterogeneous system
corresponds to a mixed population containing two species i =
1, 2 with relative (ground state) abundances γi (with γ1 + γ2 =
1), radiative rates ki

rad and fluorescence lifetimes τi. The
fluorescence decays following linearly and circularly polarized
two-photon excitation are given by

I t A k t k

t

( ) exp( / )
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circ
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1 2 2
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2
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where σi
circ and σi

lin are the cross sections for circularly and
linearly polarized 2PA. The parameters Acirc and Alin account
for differences in the amount of fluorescence collected in each
decay measurement arising, for example, from variations in
laser power and collection times. In steady state measurements,
Acirc and Alin can be made equal by measuring time-averaged
fluorescence count rates under constant illumination intensity.
Under these conditions, using eqs 8 and 9 to equate the ratio
of absorption strengths to the ratio of fluorescence intensities29

gives
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where the bar signifies that the single Ω̅ measurement reflects
an underlying mixed population and φi are the quantum yields
of each species. Rearranging for the individual polarization
ratios, we find
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Therefore, in addition to Ω̅, determining Ω1 and Ω2 would
require knowledge of the relative ground state abundances of
each species, their polarization dependent 2PA cross sections
and their quantum yields. However, we now show that this can
also be achieved by combining ensemble polarized 2PA
measurements with the parameters describing the fluorescence
decays of a heterogeneous population for each excitation
condition. These will have the form of eqs 8 and 9 for a two-
component system such as NAD(P)H, which can be written in
terms of the peak fluorescence intensities Icirc(0) and Ilin(0) by
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where α1 + α2 = 1. Equating the pre-exponential factors with
eqs 8 and 9 gives
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Least squares fits to the intensity decay data yield values for
the lifetimes τi and amplitudes αi. The constituent 2PA
polarization ratios are then given by
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Integrating eqs 8, 9, 13, and 14 to obtain the total
fluorescence emission yields
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Dividing eq 21 by eq 22 then gives
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Substituting eq 10 and rearranging, we obtain
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Substituting for Alin/Acirc in eqs 19 and 20 then gives
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These expressions thus allow the Ω values of the
subpopulations to be determined by combining the fluo-
rescence decay parameters with the conventional steady state
Ω̅ measurement. Our use of this approach to determine the
underlying transition tensor structures of the 2PA processes
that give rise to the biexponential fluorescence decay of
NAD(P)H constitutes the first application of this method.

■ EXPERIMENTAL METHODS
NAD(P)H Solutions. NADH (N8129, Sigma-Aldrich,

Dorset, U.K.) and NADPH (N7505, Sigma-Aldrich, Dorset,
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U.K.) were made up fresh on the day of experiment as 1 mM
solutions in Milli-Q water containing 10 mM HEPES (H3375,
Sigma-Aldrich, Dorset, U.K.) adjusted to pH 7.2.
Laser Sources. For experiments with incident wavelengths

between 625 and 720 nm, excitation was provided by the
output of an optical parametric amplifier (OPA 9400,
Coherent, Cambridgeshire, U.K.) pumped by a regeneratively
amplified Ti:sapphire laser (Mira 900F and RegA 9000,
Coherent, Cambridgeshire, U.K.) operating at 800 nm with a
repetition rate of 250 kHz. For wavelengths between 700 and
780 nm, the 76 MHz output of a Ti:sapphire laser (Mira 900F,
Coherent, Cambridgeshire, U.K.) was pulse picked to a
repetition rate of 3.8 MHz (PulseSelect, APE, Berlin,
Germany) for compatibility with the detection electronics.
The 360 nm excitation was obtained by frequency doubling the
pulse-picked Ti:sapphire output when tuned to 720 nm using a
β-barium borate (BBO) crystal.
Fluorescence Measurements. Both time-dependent and

time-averaged polarized fluorescence measurements were
made using a modular time correlated single photon counting
(TCSPC) system (Ortec, Berkshire, U.K.) described pre-
viously.10 The incident illumination was passed through a
Glan-Laser polarizer (Melles-Griot, New York) to ensure
vertical polarization and a 25 mm focal length achromatic
doublet lens (Melles-Griot, New York) was used to focus the
beam onto the sample, held in a 3 mm path length, 50 μL
quartz cuvette (Hellma, Essex, U.K.). Fluorescence was
collected in a 90° excitation-detection geometry using a 25
cm focal length lens and focused into a multichannel plate
photomultiplier tube (MCP-PMT, R3809U, Hamamatsu
Photonics, Hertfordshire, U.K.) with a ∼100 ps instrument
response, passing through a 600 nm short pass filter, to
eliminate laser breakthrough, and an emission polarizer. This
was set to the appropriate magic angle for absolute
fluorescence intensity measurements, recorded from the
count rate display of the TCSPC system. For time-resolved
fluorescence measurements, a stepper motor rotated the
emission polarizer every 10 s to alternately transmit light
polarized parallel or perpendicular to the symmetry axis of the
excitation polarization (vertical for linear, horizontal for
circular). The corresponding decays I||(t) and I⊥(t), spread
across 512 channels covering 27 ns, were stored separately in
computer memory. Emission events were registered for
approximately 60 min for each set of measurements, resulting
in a total number of photons collected on the order of 105−
106, well below the 1 in 100 threshold for avoiding pulse pile-
up effects.41

Two-Photon Action Cross Section Measurements.
Following the approach of Xu and Webb,42 two-photon
excitation of a sample by a pulsed laser source of wavelength λ
results in a time-averaged total fluorescence intensity of

I t
g

fw
nC P t( )

4
( )p

2P
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k
jjjjj

y
{
zzzzzπ λ

φεσ⟨ ⟩ = ⟨ ⟩
(27)

where the fluorophore is present at a concentration C in a
medium of refractive index n. ⟨P(t)⟩ is the time-averaged on-
sample power of the illumination pulses with repetition rate f
and gp is a dimensionless quantity dependent on the temporal
profile of the laser pulses of duration (fwhm) w. ε quantifies
the fraction of the total fluorescence emitted by the
fluorophore that is collected, taking into account emission
filtering and the spectral efficiency of the detector. The product

of the two-photon cross section σ2P and the quantum yield φ is
the effective cross section for two-photon excited fluorescence,
often referred to as the two-photon action cross section. This is
frequently quoted in the units of Goeppert-Mayer (GM) where
1 GM is 10−50 cm4 s photon−1. The two-photon action cross
sections of NADH and NADPH solutions could therefore be
obtained by comparing the fluorescence intensity emitted at
each excitation wavelength with that of reference standards
with well characterized 2PA spectra:42 p-bis(O-methylstyryl)-
benzene (bis-MSB, 15090, Sigma-Aldrich, Dorset, U.K.) in
cyclohexane (227048, Sigma-Aldrich, Dorset, U.K.) covering
625 to 740 nm, and rhodamine B (LC6100, Lamdba Physik,
Goettingen, Germany) in methanol (154903, Sigma-Aldrich,
Dorset, U.K.) covering 700 to 780 nm. The bis-MSB reference
spectrum was obtained by combining the relative spectrum
provided by Kennedy et al.43 with the absolute cross section of
69 GM at 585 nm reported by Fisher et al.44 For rhodamine B,
two-photon action cross sections were obtained online from
the Zipfel lab at Cornell University.45 By rearranging eq 27,
assuming all incident laser properties remained constant
between the reference and NAD(P)H measurements, the
two-photon action cross sections could be calculated from

nC
nC

I t

I t
( ) ( )

( )
( )

( )

( )2P NAD(P)H 2P ref
ref

NAD(P)H

NAD(P)H

ref
σ φ σ φ

ε
ε

=
⟨ ⟩
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(28)

Solvent refractive indices n were obtained from the
literature.46,47 Concentrations C were determined using
published extinction coefficients48−50 and a USB spectrometer
(USB4000, OceanOptics, Florida, USA) coupled to a xenon
white light source. Rhodamine B and bis-MSB solutions were
on the order of 10−5 M and 10−4 M respectively. The
parameter ε was calculated as

E F G E( ) ( ) ( ) d / ( ) d
min

max

min

max∫ ∫ε λ λ λ λ λ λ=
λ

λ

λ

λ

(29)

where E(λ) is the emission spectrum of the fluorophore
obtained from the literature.51−53 F(λ) is the transmission ratio
through the 600 nm short-pass emission filter measured using
the absorption spectrometer described above. G(λ) is the
detection efficiency of the MCP-PMT at emission wavelength
λ, provided by the manufacturer. Values of εNAD(P)H =
0.0751(±0.0003), εbis‑MSB = 0.0511(±0.0003), and εRhB =
0.0249(±0.0001) were determined.
Action cross sections were obtained between 625 and 780

nm at 5 nm intervals. Values at wavelengths with multiple
measurements (due to both reference samples being applicable
or in the overlap between laser sources) are reported as
uncertainty-weighted averages.

Polarized Two-Photon Excitation. The excitation polar-
ization was varied between linear and circular by introducing a
zero-order tunable quarter wave plate (Alphalas, Goettingen,
Germany) prior to the focusing lens. Circular polarization was
confirmed by observing that the power transmitted through a
linear analyzing polarizer remained constant throughout its
360° rotation. Measurements of the fluorescence intensity
were taken for each polarization in turn, with the emission
polarizer set to the corresponding magic angle (54.7° and
35.3° from the vertical for linear and circular polarization
respectively). Five ⟨Icirc(t)⟩/⟨Ilin(t)⟩ pairs were taken at each
wavelength, with Ω̅ reported as the mean of these five ratios.
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Fluorescence Intensity Decays. Fluorescence decay
curves were constructed from the polarized decays I||(t) and
I⊥(t) using

I t I t I t( ) ( ) 2 ( )= +|| ⊥ (30)

Fluorescence lifetimes were extracted from the I(t) data sets
using weighted least-squares tail fitting in OriginPro 2015
(OriginLab, Massachusetts, USA). Goodness-of-fit was deter-
mined using the reduced χ2 parameter

n l
I t I t

1 1
( ) ( )R
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k
k k

2

1
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2∑χ
σ

=
−

[ − ]
= (31)

where n is the total number of time bins, l is the number of
freely varying parameters in the model and Imeasured(tk) and
Imodel(tk) are the values of the fluorescence decay data set and
model at the time after excitation corresponding to bin k. As
I||(t) and I⊥(t) constitute separate Poisson processes with

standard deviations I t( )|| and I t( )⊥ respectively, the fit
weighting function can be obtained by propagation of
uncertainty through eq 30, giving

I t I t
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( ) 4 ( )k k k
2σ

=
+|| ⊥ (32)

For each time-resolved intensity measurement, a mono-
exponential fluorescence decay was a poor fit for the data,
resulting in χR

2 values of 33(±9). Addition of a second
component improved this to a satisfactory 1.55(±0.07), with a
triexponential model improving this value no further. All
intensity decays were thus well described by biexponential
functions as in eqs 8, 9, 13, and 14. The fraction of the total
fluorescence emitted by each species i is then given by

f
t t
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Time-Resolved Fluorescence Anisotropy. Anisotropy
decays R(t) were constructed from I||(t) and I⊥(t) according to

R t
I t I t

I t I t
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( ) 2 ( )

=
−
+

|| ⊥

|| ⊥ (34)

Anisotropy decay fitting was carried out in OriginPro 2015
using the corresponding weighting function10
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Figure 2. Two-photon action cross section spectra and absorption polarization ratios of (a) NADH and (b) NADPH in aqueous HEPES buffer. No
differences in the 2PA absorption characteristics of NADH and NADPH were evident, including in their relative susceptibility to circularly and
linearly polarized excitation which remained invariant to excitation wavelength across the two-photon resonance, averaging 0.776(±0.002). The
two-photon action cross sections peak at 690 nm at a value of 0.15 GM. This occurs at a similar energy to the 1PA spectrum50,58 (c and d).
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In a two-species system such as NAD(P)H, the observed
fluorescence anisotropy is given by the time-dependent

weighted average of the component anisotropies, known as
the associated anisotropy54

R t
R t t R t t

t t
( )

(0) exp( / ) exp( / ) (1 ) (0) exp( / ) exp( / )
exp( / ) (1 ) exp( / )

1 1 1 1
rot

1 2 2 2
rot

1 1 1 2

α τ τ α τ τ
α τ α τ

=
− − + − − −

− + − − (36)

where R1(0) and R2(0) are the initial anisotropies of the two
subpopulations and τ1

rot and τ2
rot are their rotational correlation

times.10 However, in this work, the time-resolved fluorescence
anisotropies of NADH and NADPH arising from both linear
and circularly polarized 2PA were suitably fit by a
monoexponential decay

R t R t( ) (0) exp( / )lin/circ lin/circ lin/circ
rotτ= − (37)

with average χR
2 values of 1.46(±0.07). χR

2 improved no
further by increasing the complexity of the fitting function,
indicating equal initial anisotropies and rotational correlation
times in the two subpopulations, to within experimental
uncertainties.
Transition Tensor Structure. Equations 4−7 were solved

by using a Monte Carlo method in MATLAB (MathWorks,
Massachusetts, USA). The measured Rlin(0), Rcirc(0), R1P(0)
and Ωi were input alongside their uncertainties, defining the
mean values and standard deviations of normal distributions of
each parameter. Parameter values were picked at random from
these four distributions using the normrnd() function and the
equations were solved for this set of parameters using fsolve().
This was repeated 10,000 times, with the means and standard
deviations of the S and D distributions obtained taken as the
solution and its associated uncertainty. 2D polar plots of the
tensor structures were constructed by expressing S in 2D polar
coordinates

A D S( ) cos 2 sin cos sin2 2θ θ θ θ θ= + + (38)

Error bounds were added to the polar plots by numerical
propagation of error through eq 38 in MATLAB.

■ RESULTS
Two-Photon Absorption Spectra. Wavelengths ranging

from 700 to 780 nm have been used to interrogate NAD(P)H
in living tissues,15,55 but its 2PA spectrum has never been fully
determined below the Ti:sapphire tuning limit.18,56,57 Using an
optical parametric amplifier (OPA) to bypass this threshold,
we measured the two-photon action cross section spectra of
NADH and NADPH to be identical, peaking at 690 nm with a
value of 0.15(±0.01) GM (see Figure 2). Without explicit
knowledge of the relative ground state abundances γi, it is not
possible to determine the individual two-photon cross sections
of the subpopulations of NADH and NADPH. The values of
the action cross sections reported here therefore represent an
ensemble average. While the peak transition energy in both
molecules was similar to that of 1PA, maximized at 340 nm,58

the two-photon resonance was narrower (fwhm 0.45 vs 0.72
eV), as previously predicted for molecules in the Cs point
group59 to which nicotinamide belongs.60 The parameter Ω̅
remained constant across the range of excitation wavelengths
measured and was identical in NADH and NADPH, with a
mean value of 0.787(±0.002). This is consistent with recent Ω
measurements on NADH which assumed a homogeneous
population61 and emphasizes the lack of influence over the
excited state photophysics of the nicotinamide chromophore

by the distant phosphate group that differentiates between the
two cofactors.
In both NADH and NADPH, single- and two-photon

excitation resulted in similar lifetimes for the two fluorescence
decay components, in accordance with Kasha’s rule,62 with
average values of 0.362(±0.001) and 0.750(±0.006) ns (see
Figure 3 and Table 1). Importantly, while linearly polarized
excitation with both single- and two-photon absorption caused
84(±2)% of the short lifetime species to be excited, circularly
polarized 2PA resulted in a significantly smaller proportion of
the short lifetime state, at 78(±1)%. The individual polar-
ization ratios Ωi were calculated using eqs 25 and 26, giving
values of Ω1 and Ω2 that lie below and above Ω̅ respectively.
Averaging across the absorption spectrum yielded 0.73(±0.02)
and 1.08(±0.07) for NADH with 0.76(±0.04) and
1.07(±0.09) for NADPH. This indicated that the two-photon
transitions leading to emission from the short and longer lived
states in these molecules have fundamentally different
transition tensor structures.

Polarization-Dependent 2P Excitation Spectra. For
the heterogeneous populations encountered in NAD(P)H, the
2PA cross section measured here will be a weighted average of
the individual cross sections of the two species. Under these
conditions, the steady state fluorescence intensity at each
excitation wavelength can be related to the constituent
concentrations C1 = Cγ1 and C2 = Cγ2 using eq 27 according to

I t
g

fw
n P t C( )

4
( )p 2

1 1 1 2 2 2

i
k
jjjjj

y
{
zzzzzπ λ

ε γφ σ γ φ σ⟨ ⟩ = ⟨ ⟩ [ + ]λ
(39)

We assume a common radiative decay rate krad for both
species10

I t K I t I t( ) ( ) ( )1 1 1 2 2 2 1 2γτ σ γ τ σ⟨ ⟩ = [ + ] = ⟨ ⟩ + ⟨ ⟩λ λ λ (40)

where

K k
g
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4
( )p

rad
2i

k
jjjjj

y
{
zzzzzπ λ

ε= ⟨ ⟩
(41)

From the fluorescence decay dynamics (eqs 17 and 18) we
know that the normalized pre-exponential factors are given by

k1 1 1α γσ= (42)

k2 2 2α γ σ= (43)

where k is a constant of proportionality. Using eq 33, we can
write

I t I t( ) ( )1
1 1

1 1 2 2

α τ
α τ α τ

⟨ ⟩ = ⟨ ⟩
+λ λ

(44)

I t I t( ) ( )2
2 2

1 1 2 2

α τ
α τ α τ

⟨ ⟩ = ⟨ ⟩
+λ λ

(45)

Then, in terms of circular and linear polarizations, we have
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These quantities are plotted in Figure 4, where it can be seen
that, in both NADH and NADPH, the highest intensity
emission is observed with linearly polarized excitation of the
short lifetime species. In contrast, the longer lifetime state
displays similar emission intensities with circular and linear
polarized two-photon excitation. This again implies differences
in the 2PA tensor structures of the two species; circular
polarization favors off-diagonal elements, requiring simulta-
neous action by the applied electric field along two orthogonal
axes, whereas linear polarization favors diagonal transition
terms, corresponding to two parallel transition moments
requiring simultaneous action twice along a single symmetry
axis.22

Individual Transition Tensor Structures. The initial
single-photon fluorescence anisotropies in NADH and
NADPH were found to be 0.36(±0.07) and 0.35(±0.05)
respectively, corresponding to transition dipole moment angles
θM of 20(±10)° for NADH and 16(±9)° for NADPH (see
Figure 5 and Table 2). Averaged across all excitation
wavelengths, the initial anisotropies following linearly and
circularly polarized two-photon absorption of NADH were
0.52(±0.02) and −0.24(±0.03). For NADPH, the correspond-
ing values were 0.55(±0.05) and −0.25(±0.04). The circularly
polarized rotational correlation times for NADH of
0.253(±0.002) and NADPH of 0.304(±0.005) ns were faster
than the corresponding linearly polarized measurements of
0.323(±0.002) and 0.336(±0.003) ns. Differences between
linear and circularly polarized fluorescence anisotropy decay
times in a homogeneous population can be indicative of the
presence of off-diagonal transition tensor elements.26,27

Treating NADH and NADPH as a homogeneous systems
(using Ω̅) and solving eqs 4−7 suggested a primarily single
element tensor, as shown in Table 3. However, when one
solved for the tensor elements with the separate values of Ω1
and Ω2, differences in 2PA between the two species became
apparent. Specifically, in both NADH and NADPH, while the
short lifetime state was dominated by a single element, the
longer lifetime state contained a significant negative diagonal
element averaging S = −0.32(±0.04). Polar plots of the 2PA
tensors63 of the two species are shown in Figure 6, which
demonstrates that the effect of the negative value of S in the
longer lifetime species is the presence of distinct negative
amplitude lobes in the polar plot and a rotation of the principal
axis of the tensor. The angle of rotation is calculated by
differentiating eq 38 to find the turning point

A
D S2 cos 2 ( 1) sin 2 0turn turn

turn
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k
jjj

y
{
zzzθ

θ θ∂
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= + − =
θ θ=

(50)
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2

arctan
2
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i
k
jjj

y
{
zzzθ =

− (51)

The combined values in Table 3 imply θturn = 3(±4)° for the
long lifetime species.

Figure 3. Representative fluorescence intensity decays of 1 mM
NADH in aqueous solution excited at 705 nm using (a) linearly
polarized 2PA, (b) circularly polarized 2PA, and (c) 1PA at 360 nm
excitation. Weighted residuals (W.R.) are the ratio of the difference
between the model and the data and the expected standard deviation,
calculated using eq 32.
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■ DISCUSSION

We have identified clear differences in the structures of the

two-photon transitions giving rise to the short and long

lifetime fluorescent species of NADH and NADPH. Our work
therefore rules out two proposed, but unproven, mechanisms
for the heterogeneous intensity decay dynamics observed.
Dynamic quenching by the adenine moiety in the folded state

Table 1. Biexponential Fitting Parameters of Fluorescence Intensity Decays of NADH and NADPH in Aqueous Buffer, across
the Tuning Spectrum of the Ti:Sapphire Laser and with Single-Photon Excitation at 360 nm for Comparison

linear circular

λ/nm α1 τ1/ns τ2/ns α1 τ1/ns τ2/ns

NADH 705 0.73(±0.06) 0.344(±0.009) 0.69(±0.02) 0.69(±0.05) 0.315(±0.007) 0.70(±0.01)
715 0.86(±0.06) 0.367(±0.009) 0.93(±0.08) 0.78(±0.09) 0.34(±0.02) 0.79(±0.06)
725 0.86(±0.02) 0.380(±0.004) 0.78(±0.01) 0.72(±0.03) 0.330(±0.005) 0.68(±0.01)
735 0.83(±0.02) 0.366(±0.004) 0.77(±0.01) 0.78(±0.03) 0.350(±0.005) 0.76(±0.01)
745 0.82(±0.02) 0.378(±0.004) 0.78(±0.01) 0.86(±0.03) 0.391(±0.004) 0.84(±0.02)
755 0.87(±0.03) 0.395(±0.005) 0.84(±0.03) 0.80(±0.03) 0.357(±0.006) 0.78(±0.02)
765 0.88(±0.02) 0.396(±0.004) 0.90(±0.03) 0.82(±0.03) 0.365(±0.005) 0.81(±0.02)

mean 0.85(±0.01) 0.379(±0.002) 0.78(±0.01) 0.79(±0.01) 0.357(±0.002) 0.74(±0.01)
360 0.83(±0.02) 0.382(±0.005) 0.72(±0.02) − − −

NADPH 705 0.8(±0.2) 0.41(±0.03) 0.9(±0.1) 0.7(±0.1) 0.27(±0.01) 0.73(±0.01)
715 0.79(±0.05) 0.349(±0.008) 0.72(±0.02) 0.76(±0.06) 0.321(±0.009) 0.72(±0.02)
725 0.80(±0.06) 0.36(±0.01) 0.73(±0.03) 0.7(±0.1) 0.29(±0.01) 0.68(±0.02)
735 0.81(±0.04) 0.354(±0.007) 0.78(±0.02) 0.68(±0.08) 0.285(±0.009) 0.72(±0.02)
745 0.83(±0.04) 0.373(±0.007) 0.77(±0.02) 0.79(±0.05) 0.327(±0.009) 0.73(±0.02)
755 0.86(±0.05) 0.40(±0.01) 0.84(±0.05) 0.80(±0.04) 0.348(±0.008) 0.79(±0.02)
765 0.81(±0.06) 0.37(±0.01) 0.83(±0.03) 0.75(±0.06) 0.319(±0.009) 0.78(±0.02)

mean 0.82(±0.02) 0.366(±0.003) 0.77(±0.01) 0.76(±0.02) 0.315(±0.003) 0.73(±0.01)
360 0.85(±0.03) 0.378(±0.006) 0.77(±0.02) − − −

combined 2PA 0.84(±0.01) 0.374(±0.002) 0.78(±0.01) 0.78(±0.01) 0.346(±0.002) 0.73(±0.01)
1PA 0.84(±0.02) 0.380(±0.004) 0.74(±0.01) − − −

Figure 4. Relative fluorescence intensity of the two NAD(P)H species as a function of excitation wavelength, with the short lifetime linearly
polarized peak of each molecule arbitrarily scaled to 1. While the short lifetime species favors linearly polarized excitation in both NADH and
NADPH (a and b), the longer lifetime species exhibits similar fluorescence intensities with both excitation polarizations (c and d). Shaded areas
represent uncertainty bounds.
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has been widely assumed,14,15 while a kinetic scheme involving
a single emitting excited state species with conversion into a
nonfluorescent product has also been proposed.12 As these are
both postexcitation phenomena, the 2PA transition would be
common to both components, which is clearly not observed
here.
Opposing signs of SXX and SYY in the 2PA tensor of the long

lifetime NAD(P)H species caused negative lobes that were

absent in the short lifetime species. Parallels can be drawn
between these results and the behavior of the 1Lb absorption
band of indole.64,65 Callis63 observed negative lobes to be
present in the 2PA tensor of pure indole, which were then
reduced significantly upon the addition of a single methyl
group to the pyrole ring. The difference in the 2PA tensors of
the short and long lifetime species of NAD(P)H clearly cannot
be attributed to differing substituent groups. However,
alternate configurations of the nicotinamide ring have
previously been suggested to play a role in the spectral
properties of the molecule, particularly those involving the
amide group.2,13 Both 1PA and 2PA are predicted to be
accompanied by charge transfer from the pyridine ring
nitrogen to the oxygen of the amide group,18 which favors
the cis conformation displayed in Figure 1.66 A trans
conformation, in which the amide group is rotated by 180°,
can also be adopted67 (see Figure 1). The contrasting
electronic rearrangement taking place following absorption in
each species, due to the differing location of the oxygen atom
relative to the ring nitrogen in the two configurations, may
then be sufficient to alter the symmetry of the two-photon
transition. Enzyme binding sites are known to favor the trans
conformation of NAD(P)H67 in addition to altering its local
electrostatic environment.68 It is possible that these effects
could also contribute to the photophysical alterations induced
by the binding of NADH and NADPH to different enzymes.
This will be the subject of future studies.
Quantum chemical calculations have predicted a single

element 2PA tensor for the nicotinamide chromophore as we
observed in the short lifetime species, with the principal axis
collinear to the 1PA transition dipole.18 These calculations
involved a free energy minimization step, so were likely carried
out on the cis configuration of the amide group as the free
energy of the trans form is 1 kcal mol−1 higher.67 For a
difference in Gibbs free energy ΔG, the relative amounts of
each species present at equilibrium are given by69

G RT
1

exp( / ) 1cisγ =
−Δ + (52)

G RT
1

exp( / ) 1transγ =
Δ + (53)

where R is the universal gas constant and T is the temperature.
At a lab temperature of 21 °C, 85% of the NAD(P)H
population would be expected to assume the cis configuration
and 15% the trans configuration. These values are in precise
agreement with the linearly polarized decay amplitudes we
measure here. If the two components in the fluorescence decay
of NAD(P)H do indeed correspond to the cis and trans form
of the nicotinamide ring, this would imply α1

lin = γcis = 0.85 and
α2
lin = γtrans = 0.15. By eqs 42 and 43, the linearly polarized 2PA

cross sections of the two species would therefore be equal,
which could explain the absence of characteristic spectral
features corresponding to each fluorescent species in the
absorption spectra.2,50,58 The circularly polarized 2PA cross
section of the short lifetime species would then be a factor of
Ω1 = 0.74 lower, causing the smaller contribution of this
component to the fluorescence decay with circularly polarized
two-photon excitation.
Our previous work suggested that the contrasting lifetimes

of the two fluorescent species of NAD(P)H arise from
differences in the shape of the potential energy surfaces
encountered as they undergo nonradiative conformational

Figure 5. Representative fluorescence anisotropy decays of 1 mM
NADH in aqueous solution excited at 705 nm using (a) linearly
polarized 2PA, (b) circularly polarized 2PA, and (c) 1PA at 360 nm
excitation. Weighted residuals (W.R.) are the ratio of the difference
between the model and the data and the expected standard deviation,
calculated using eq 35.
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relaxation back to the ground state.10 Specifically, the
frequency of the initial potential energy well of short lifetime
species was double that of the long lifetime species, leading to a
nonradiative rate twice as large. The small magnitudes of the
initial well frequencies were consistent with small scale motion
for the conformational relaxation, such as the puckering that
occurs in the nicotinamide ring.70 Interestingly, this puckering
is known to be altered in the trans state,67 which could lead to
the differences in well frequencies and therefore the different
lifetimes. Time-resolved fluorescence anisotropy measure-
ments are potentially sensitive to such differences in molecular
structure. In the present study, rapid monoexponential
anisotropy decay times (approaching the MCP-PMT re-
sponse) were observed for NAD(P)H. In our previous
work,10 the increased fluorescence intensity afforded by 1PA,
together with the enhanced quantum yield and slower
(nanosecond) rotational diffusion times of NAD(P)H in
more viscous environments, revealed associated (heteroge-
neous) anisotropy decay dynamics with distinct rotational
diffusion times of the two subpopulations. In both NADH and
NADPH, the rotational diffusion rates of the long lifetime
species were on average 1.9 times lower than those of the short
lifetime species. From the Stokes−Einstein−Debye equation,
this implies differing form factors or hydrodynamic volumes for
the two species.10 The amide group lies approximately 20° out

of the plane of the nicotinamide ring in the trans
configuration,67 which could provide a physical basis for
these observations.
It had previously been shown16 that the potential energy

barrier encountered by both species during conformational
relaxation was equal at 1.5 kcal mol−1. The barrier encountered
during the cis-trans transition is almost five times larger.67

Alongside our previous data suggesting that the variation in
nonradiative decay rate with viscosity was inconsistent with the
internal conversion involving an isomerization,10 this implies
that no switching between the cis and trans configurations
occurs in the excited state dynamics. The heterogeneous
fluorescence decay dynamics of NAD(P)H solutions therefore
correspond to two distinct ground state species, with separate
2PA transition tensors and dissimilar lifetimes due to different
conformational relaxation rates.

■ CONCLUSIONS

Knowledge of the 2PA polarization ratio Ω has proven to be an
invaluable means of determining the 2PA transition tensor and
the symmetry of the participating states. Measurement of Ω
has, until now, been the preserve of steady state or time-
averaged fluorescence intensity measurements. While this is a
valid approach in the study of 2PA in homogeneous
populations, we have shown that for heterogeneous systems

Table 2. Fluorescence Anisotropy Decay Parameters of NADH and NADPH in Aqueous Buffer, across the Tuning Spectrum of
the Ti:Sapphire Laser and with Single-Photon Excitation at 360 nm for Comparison

linear circular

λ/nm RL(0) τL
rot/ns RC(0) τC

rot/ns

NADH 705 0.53(±0.07) 0.277(±0.006) −0.2(±0.1) 0.27(±0.01)
715 0.5(±0.1) 0.279(±0.005) −0.28(±0.08) 0.260(±0.007)
725 0.55(±0.08) 0.290(±0.004) −0.25(±0.08) 0.264(±0.008)
735 0.5(±0.1) 0.324(±0.009) −0.25(±0.08) 0.244(±0.007)
745 0.50(±0.03) 0.346(±0.002) −0.23(±0.05) 0.252(±0.004)
755 0.52(±0.08) 0.323(±0.005) −0.24(±0.08) 0.246(±0.007)
765 0.5(±0.1) 0.360(±0.007) −0.25(±0.08) 0.249(±0.007)

mean 0.52(±0.02) 0.323(±0.002) −0.24(±0.03) 0.253(±0.002)
360 0.36(±0.07) 0.258(±0.006) − −

NADPH 705 0.5(±0.3) 0.28(±0.02) −0.3(±0.1) 0.32(±0.01)
715 0.5(±0.1) 0.308(±0.008) −0.2(±0.1) 0.28(±0.01)
725 0.5(±0.1) 0.364(±0.007) −0.3(±0.1) 0.35(±0.02)
735 0.6(±0.1) 0.316(±0.008) −0.3(±0.1) 0.29(±0.02)
745 0.6(±0.1) 0.357(±0.007) −0.25(±0.08) 0.35(±0.01)
755 0.6(±0.1) 0.338(±0.009) −0.2(±0.1) 0.30(±0.02)
765 0.5(±0.2) 0.364(±0.01) −0.2(±0.2) 0.25(±0.01)

mean 0.55(±0.05) 0.336(±0.003) −0.25(±0.04) 0.304(±0.005)
360 0.35(±0.05) 0.42(±0.01) − −

combined 2PA 0.52(±0.02) − −0.25(±0.02) −
1PA 0.36(±0.04) − − −

Table 3. Tensor Components for the Two Fluorescence Decay Components of NADH and NADPHa

short lifetime species long lifetime species homogeneous treatment

S D S D S D

NADH −0.06(±0.02) −0.02(±0.05) −0.33(±0.05) 0(±0.1) −0.09(±0.01) −0.03(±0.05)
NADPH −0.07(±0.05) 0(±0.1) −0.29(±0.07) 0.1(±0.2) −0.07(±0.03) 0(±0.1)
combined −0.06(±0.02) 0(±0.04) −0.32(±0.04) 0.1(±0.1) −0.09(±0.01) −0.03(±0.05)

aIn both molecules, the long lifetime species exhibits a significant negative diagonal element, in contrast to the primarily single element short
lifetime species. These differences could not be observed if the analysis assumed a homogeneous system. As the tensor components of the two
molecules are identical, suggesting that the phosphate group which differentiates between them plays no role in the transition, the datasets were
combined to reduce uncertainties before plotting in Figure 6.
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Ω is related to the constituent 2PA transitions by a ratio of
decay amplitudes and lifetimes which steady state measure-
ments cannot provide. The introduction of time-resolved
fluorescence measurements is therefore required to extract the
individual Ω values of each species. It is then possible to
determine the 2D tensor elements of the individual 2PA
transitions by introducing linear and circularly polarized
fluorescence anisotropy measurements. We have utilized this
approach to show, for the first time, that the biexponential
fluorescence decay in NAD(P)H arises from two distinct 2PA
processes with different transition tensor structures. Our
results point to the existence of structural differences in the
nicotinamide ring of the two subpopulations as the underlying
cause of the observed difference in their nonradiative activated
barrier crossing decay rates,10 and they do not accord with
postabsorption mechanisms such as intermolecular quenching
or excited state reactions.12,14,15 An enhanced understanding of
NAD(P)H photophysics will assist in promoting its use as an

accurate, endogenously fluorescent reporter of intercellular

biochemistry.3−8 The approaches outlined here will also find

immediate application in other biological fluorescence studies

where heterogeneous populations are known to exist, in

particular those involving fluorescent proteins,71,72 and the

state restriction observed in their Förster resonance energy

transfer (FRET) dynamics.25,54,73
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(50) Ziegenhorn, J.; Senn, M.; Bücher, T. Molar Absorptivities of
Beta-NADH and Beta-NADPH. Clin. Chem. 1976, 22 (2), 151−160.
(51) Du, H.; Fuh, R. C. A.; Li, J.; Corkan, L. A.; Lindsey, J. S.
PhotochemCAD: A Computer-Aided Design and Research Tool in
Photochemistry. Photochem. Photobiol. 1998, 68 (2), 141−142.
(52) Patterson, G. H.; Knobel, S. M.; Arkhammar, P.; Thastrup, O.;
Piston, D. W. Separation of the Glucose-Stimulated Cytoplasmic and
Mitochondrial NAD(P)H Responses in Pancreatic Islet Beta Cells.
Proc. Natl. Acad. Sci. U. S. A. 2000, 97 (10), 5203−5207.
(53) Lakowicz, J. R.; Gryczynski, I. Characterization of P-Bis (O-
Methylstyryl) Benzene as a Lifetime and Anisotropy Decay Standard
for Two-Photon Induced Fluorescence. Biophys. Chem. 1993, 47 (1),
1−7.
(54) Blacker, T. S.; Chen, W.; Avezov, E.; Marsh, R. J.; Duchen, M.
R.; Kaminski, C. F.; Bain, A. J. Investigating State Restriction in
Fluorescent Protein FRET Using Time-Resolved Fluorescence and
Anisotropy. J. Phys. Chem. C 2017, 121 (3), 1507−1514.
(55) Blacker, T. S.; Mann, Z. F.; Gale, J. E.; Ziegler, M.; Bain, A. J.;
Szabadkai, G.; Duchen, M. R. Separating NADH and NADPH
Fluorescence in Live Cells and Tissues Using FLIM. Nat. Commun.
2014, 5, 3936.
(56) Zipfel, W. R.; Williams, R. M.; Christie, R.; Nikitin, A. Y.;
Hyman, B. T.; Webb, W. W. Live Tissue Intrinsic Emission
Microscopy Using Multiphoton-Excited Native Fluorescence and
Second Harmonic Generation. Proc. Natl. Acad. Sci. U. S. A. 2003, 100
(12), 7075−7080.
(57) Huang, S.; Heikal, A. A.; Webb, W. W. Two-Photon
Fluorescence Spectroscopy and Microscopy of NAD(P)H and
Flavoprotein. Biophys. J. 2002, 82 (5), 2811−2825.
(58) Rover, L., Jr; Fernandes, J. C. B.; de Oliveira Neto, G.; Kubota,
L. T.; Katekawa, E.; Serrano, S. H. P. Study of NADH Stability Using
Ultraviolet−visible Spectrophotometric Analysis and Factorial Design.
Anal. Biochem. 1998, 260 (1), 50−55.
(59) de Wergifosse, M.; Elles, C. G.; Krylov, A. I. Two-Photon
Absorption Spectroscopy of Stilbene and Phenanthrene: Excited-State

Analysis and Comparison with Ethylene and Toluene. J. Chem. Phys.
2017, 146 (17), 174102.
(60) Ramalingam, S.; Periandy, S.; Govindarajan, M.; Mohan, S. FT-
IR and FT-Raman Vibrational Spectra and Molecular Structure
Investigation of Nicotinamide: A Combined Experimental and
Theoretical Study. Spectrochim. Acta, Part A 2010, 75 (5), 1552−
1558.
(61) Vasyutinskii, O. S.; Smolin, A. G.; Oswald, C.; Gericke, K. H.
Polarized Fluorescence in NADH under Two-Photon Excitation with
Femtosecond Laser Pulses. Opt. Spectrosc. 2017, 122 (4), 602−606.
(62) Kasha, M. Characterization of Electronic Transitions in
Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14.
(63) Callis, P. R. On the Theory of Two-Photon Induced
Fluorescence Anisotropy with Application to Indoles. J. Chem. Phys.
1993, 99 (1), 27−37.
(64) Albinsson, B.; Norden, B. Excited-State Properties of the Indole
Chromophore: Electronic Transition Moment Directions from Linear
Dichroism Measurements: Effect of Methyl and Methoxy Sub-
stituents. J. Phys. Chem. 1992, 96 (15), 6204−6212.
(65) Sobolewski, A. L.; Domcke, W. Ab Initio Investigations on the
Photophysics of Indole. Chem. Phys. Lett. 1999, 315, 293−298.
(66) Kumar, M.; Jaiswal, S.; Singh, R.; Srivastav, G.; Singh, P.;
Yadav, T. N.; Yadav, R. A. Ab Initio Studies of Molecular Structures,
Conformers and Vibrational Spectra of Heterocyclic Organics: I.
Nicotinamide and Its N-Oxide. Spectrochim. Acta, Part A 2010, 75
(1), 281−292.
(67) Wu, Y. D.; Houk, K. N. Theoretical Study of Conformational
Features of NAD+ and NADH Analogs: Protonated Nicotinamide
and 1,4-Dihydronicotinamide. J. Org. Chem. 1993, 58 (8), 2043−
2045.
(68) Nakabayashi, T.; Islam, M. S.; Li, L.; Yasuda, M.; Ohta, N.
Studies on External Electric Field Effects on Absorption and
Fluorescence Spectra of NADH. Chem. Phys. Lett. 2014, 595, 25−30.
(69) Nelson, P.; Radosavljevic,́ M.; Bromberg, S. Biological Physics:
Energy, Information, Life; W. H. Freeman and Company: 2007.
(70) Wu, Y. D.; Houk, K. N. Theoretical Evaluation of Conforma-
tional Preferences of NAD+ and NADH: An Approach to
Understanding the Stereospecificity of NAD+/NADH-Dependent
Dehydrogenases. J. Am. Chem. Soc. 1991, 113 (7), 2353−2358.
(71) Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.;
Rebane, A. Two-Photon Absorption Properties of Fluorescent
Proteins. Nat. Methods 2011, 8 (5), 393−399.
(72) Drobizhev, M.; Tillo, S.; Makarov, N. S.; Hughes, T. E.;
Rebane, A. Absolute Two-Photon Absorption Spectra and Two-
Photon Brightness of Orange and Red Fluorescent Proteins. J. Phys.
Chem. B 2009, 113 (4), 855−859.
(73) Masters, T. A.; Marsh, R. J.; Armoogum, D. A.; Nicolaou, N.;
Larijani, B. B.; Bain, A. J. Restricted State Selection in Fluorescent
Protein Forster Resonance Energy Transfer. J. Am. Chem. Soc. 2013,
135 (21), 7883−7890.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b01236
J. Phys. Chem. B XXXX, XXX, XXX−XXX

M

https://zipfellab.bme.cornell.edu/cross_sections.html
https://zipfellab.bme.cornell.edu/cross_sections.html
http://dx.doi.org/10.1021/acs.jpcb.9b01236

