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We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes.
Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this
study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this
method. This procedure bypasses approximations used in semianalytical models for compact binary
coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing
binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar
quantity (the marginalized log likelihood, lnL) evaluated by comparing data to nonprecessing binary black
hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this
procedure for generic sources. We specifically assess the impact of higher order modes, repeating our
interpretation with both l ≤ 2 as well as l ≤ 3 harmonic modes. Using the l ≤ 3 higher modes, we gain
more information from the signal and can better constrain the parameters of the gravitational wave signal.
We assess and quantify several sources of systematic error that our procedure could introduce, including
simulation resolution and duration; most are negligible. We show through examples that our method can
recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin
sources. Our study of this new parameter estimation method demonstrates that we can quantify and
understand the systematic and statistical error. This method allows us to use higher order modes from
numerical relativity simulations to better constrain the black hole binary parameters.

DOI: 10.1103/PhysRevD.96.104041

I. INTRODUCTION

On September 14, 2015 gravitational waves (GW) were
detected for the first time at the Laser Interferometer
Gravitational Wave Observatory (LIGO) in both Hanford,
Washington and Livingston, Louisiana [1]. The LIGO
Scientific Collaboration and Virgo Collaboration (LVC)
concluded that the source of the GW signal was a binary
black hole (BBH) system with masses m1 ¼ 26.2þ5.2

−3.8 and
m2 ¼ 29.13.7−4.4 that merged into a more massive black hole
(BH) with mass mf ¼ 62.3þ3.7

−3.1 [2]. These parameters were

estimated by comparing the signal to state-of-the-art semi-
analytic models [3–5]. However, in this mass regime, LIGO
is sensitive to the last few cycles of coalescence, charac-
terized by a strongly nonlinear phase not comprehensively
modeled by analytic inspiral or ringdown models. In [6],
the LVC reanalyzed GW150914 with an alternative method
that compares the data directly to numerical relativity (NR),
which includes aspects of the gravitational radiation omitted
by the aforementioned models. This additional information
led to a shift in some inferred parameters (e.g., the mass
ratio) of the coalescing binary.
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In this work, we assess the reliability and utility of this
novel parameter estimation method in greater detail. For
clarity and relevance, we apply this method to synthetic data
derived from black hole binaries qualitatively similar to
GW150914. Previous work [6] demonstrated by example
that this method could access information about GW sources
using higher order modes that was not presently accessible
by other means. In this work, we demonstrate the utility
of this method with a larger set of examples, showing that
we recover (known) parameters of a synthetic source more
reliably when higher order modes are included. More
critically, we present a detailed study of the systematic
and statistical parameter estimation errors of this method.
This analysis demonstrates that these sources of error are
under control allowing us to identify source parameters and
conduct detailed investigations into subtle systematic issues,
such as the impact of higher order modes on parameter
estimation. For simplicity and to best leverage the most
exhaustively explored region of binary parameters, our
analysis emphasizes simulations of nonprecessing black
hole binaries as in [6], particularly simulations with mass
ratios and spins that are highly consistent with GW150914.
The paper is outlined as follows. Section II lists the

simulations used in the study (both for our template bank
and synthetic sources), describes our method of choice
with regards to waveform extraction, and briefly describes
the method (see Sec. III in [6]). Section III describes the
diagnostics used in our assessment of the systematics,
illustrating each with concrete examples. Section IV
describes several sources of error and their relative impact
on our results. Section V presents three end-to-end runs,
q ¼ 1 zero spin, q ¼ 1.22 antialigned (GW150914-like),
and q ¼ 1.23 short precessing, including both l ≤ 2 and
l ≤ 3 (for the GW150914-like) results. Section VI summa-
rizes our findings. Appendix includes more end-to-end
studies that use intrinsically different sources to explore
more of the parameter space using our method. For context,
the same method used to analyze GW150914 has also
been applied to synthetic data using numerical relativity
simulations [7].

II. METHODS AND INPUTS

A. Numerical relativity simulations

In the years since breakthrough simulations of binary
black holes [8–10], NR techniques have matured and are
now routinely used to simulate the late inspiral, merger and
final ringdown of black hole binary systems. These
simulations provide the foundations and benchmarks
against which our understanding of binary mergers are
developed and calibrated. Detailed predictions of the GWs
for those systems have been recently first observed by
LIGO [1,6,11].
A NR simulation of a coalescing compact binary can

be completely characterized by its intrinsic parameters,

namely its individual masses and spins. We parametrize the
binary using the mass ratio q ¼ m1=m2 with the convention
q ≥ 1 (m1 ≥ m2) and the dimensionless spin parameters

χ i ¼ Si=m2
i : ð1Þ

where i ¼ 1, 2 indexes the component black holes in the
binary. With regard to spin, we define another dimension-
less parameter that is a combination of the spins [12–14],

χeff ¼ ðS1=m1 þ S2=m2Þ · L̂=M: ð2Þ

Figure 1 illustrates our NR template bank, with each
simulation represented as a point in the χeff , q plane.
Finally we quantify the duration of each simulation signal
by a dimensionless parameter Mω0, corresponding to the
dimensionless starting binary frequencymeasured at infinity.
For a given simulation, the GW strain hðt; r; n̂Þ can be

characterized by a spin-weighted spherical harmonic decom-
position at large enough distance: hðt; r; n̂Þ ¼ Σl≥2Σl

m¼−l
hlmðt; rÞ−2Ylmðn̂Þ. In this expression, n̂ is characterized by
polar angles ι;−ϕref ; see [15]. For the majority of sources,
the (2;�2) mode dominates the summation and can
adequately characterize the observationally accessible radi-
ation in any direction to a relative good approximation;
however, other higher modes can often contribute in a
significant way to the overall signal [16]. More exotic
sources (i.e. high mass ratio and/or precessing, high spins)
have significant power in higher modes [17–21].

B. Simulations used

In this work, we use a wide parameter-range of NR
simulations similar to the set used in [6]. We use all of the
300 public and 13 non-public simulations from the
Simulating Extreme Spacetimes (SXS) group for a total

FIG. 1. NR template bank: An illustration of all the simulations
used in this study in the two-dimensional space of 1=q and χeff
[Eq. (2)]. Combined with our interpolation methods, the wide
range of mass ratios and spins represented in this illustration
allows us to reproduce binary parameters for much of the
parameter space.
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of 313 [22]. From the Rochester Institute of Technology
(RIT) group, we use all 126 public and 281 non-public
simulations to bring the total contribution up to 407 [23].
We also use a total of 282 simulations provided from the
Georgia Tech (GT) group [24]. Including all the contribu-
tions from these three groups, we have a total NR template
bank of 1002 simulations. Figure 1 shows all the NR
simulations in the two-dimensional parameter space of χeff ,
as defined in Eq. (2), vs 1=q i.e. the mass ratio. All these
simulations have already been published and were pro-
duced by one of three familiar procedures; see Appendix in
[6] for more details for each particular group.
From these simulations, we selected 17 simulations to

focus on as candidate synthetic sources. Table I shows
the specific simulations used, specifying the mass ratio
(q > 1), component spins of each BH, and total mass. To
simplify the process of referring to these heterogeneous
simulations, in the last column we assign a shorthand label
to each one. These candidates have a variety of mass ratios
and spins including zero, aligned, and precessing systems
from different NR groups. The first three simulations
(RIT-1a, -1b, and -1c) have identical initial conditions/
parameters, carried out with different simulation numerical
resolution. In many of the validation studies, RIT-1a is
used; this is a GW150914-like simulation with comparable
masses and antialigned spins. We use this simulation for its
relative simplicity (higher order modes start to become
important at the total mass we will scale the simulation to,
namely 70 M⊙) and to relate it to our similar work done on
the real event GW150914.
In this paper, we present three end-to-end studies of

our parameter estimation method using data from synthetic

sources. We use a zero spin q ¼ 1.0 NR simulation
(SXS-1) to show that the method recovers the parameters
for the most basic source, an aligned spin GW150914-like
simulation (SXS-0233) to show that higher order modes
and therefore NR is needed to optimally recover the
parameters even with aligned spin cases, and a precessing
source (SXS-0234v2) to show our method arrives at
reasonable conclusions for any heavy, comparable-mass
binary system with generic spins.

C. Extracting asymptotic strain from ψ4ðr;tÞ
From our large and heterogeneous set of simulations, we

need to consistently and reproducibly estimate rhlmðtÞ.
Many general methods for strain estimation exist; see
the review in [25]. The method adopted here must be robust,
using the minimal subset of all groups’ output, function with
all simulations, precessing or not, and rely on only knowl-
edge of asymptotic properties, not (gauge-dependent) infor-
mation about dynamics. For these reasons, we implemented
our own strain reconstruction and extrapolation algorithm,
which as input requires only ψ4;lmðtÞ on some (known)
code extraction radius. This method combines two standard
tools—perturbative extrapolation [26] and the fixed-
frequency integration method [27]—into a single step.
Specifically, we extract rhðtÞ at infinity from ψ4ðr; tÞ at

finite radius using a perturbative extrapolation technique
based on Eq. (29) in [26], implemented in the Fourier
domain and using a low-frequency cutoff [27]. Specifically,
if fmin is identified as the minimum frequency content for
the mode, we construct the gravitational wave strain from
ψ4 at a single finite radius from

r ~hlmðfÞ ¼
~ψ4;lm

ðiωÞ2 ð1 − 2M=rÞ
�
1 −

ðl − 1Þðlþ 2Þ
2r

1

iω
þ ðl − 1Þðlþ 2Þðl2 þ l − 4Þ

8r2
1

ðiωÞ2
�

þ ~ψ4;lþ1;m

ðiωÞ2
2ia

ðlþ 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þðl − 1Þðlþmþ 1Þðl −mþ 1Þ

ð2lþ 1Þð2lþ 3Þ

s �
iω −

lðlþ 3Þ
r

�

−
~ψ4;l−1;m

ðiωÞ2
2ia
ðlÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðl − 2ÞðlþmÞðl −mÞ

ð2l − 1Þð2lþ 1Þ

s �
iω −

ðl − 2Þðlþ 1Þ
r

�
ð3Þ

where the effective frequency is implemented as

iω ¼ i2πsignðfÞmaxðjfj; fminÞ ð4Þ

and where a is an estimate for the final black hole spin.
This method nominally introduces an obvious obstacle to
practical calculation: the last two terms manifestly require
an estimate of a and are tied to a frame in which the final
black hole spin is aligned with our coordinate axis. In
practice, the two spin-dependent terms are small and can be
safely omitted in most practical calculations; moreover,

each group provides a suitable estimate for the final state.
We clearly indicate when these terms are incorporated into
our analysis in subsequent discussion.
When implementing this procedure numerically, we first

clean ψ4;lm using preidentified simulation-specific criteria
to eliminate junk radiation at early and late times, tapering
the start and end of the signal to avoid introducing
discontinuities. For example, for many simulations and
for all modes, any content in ψ4;lm prior to t ≤ rþ t0 was
set to 0, for some suitable t0 (fixed for all modes);
subsequently, to eliminate the discontinuity this choice
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introduces, each mode was multiplied by a Tukey window
chosen to cover 5% of the remaining waveform duration.
Similarly, all data after a mode-dependent time te were
set to 0, where the time te was identified via the first time
(after the time where jψ4;22j is largest) where rjψ4;lmj fell
below a fixed, mode-independent threshold. To smooth
discontinuity, a cosine taper was applied at the end, with
duration the larger of either 15 M or 10% of the remaining
postcoalescence duration, whichever is larger.
The Fourier transform implementation includes addi-

tional interpolation/resampling and padding. First, particu-
larly to enable nonuniform time sampling, each mode is
interpolated and resampled to a uniform grid, with spacing
set by the time-sampling rate of the underlying simulation.
In carrying out this resampling, the waveform is padded to
cover a duration 2T þ 100M, where T is the remaining
duration of the (2,2) mode after the truncation steps
identified above. To simplify subsequent visual interpre-
tation and investigation, the padding is aligned such that
the peak of the (2,2) mode occurs near the center of the
interval (t ¼ 0).
Finally, the characteristic frequency Mfmin;ð1;mÞ is iden-

tified from the starting frequency of each ψ4;lm. In cases
where the starting frequency cannot be reliably identified
(e.g., due to lack of resolution), the frequency is
estimated from the minimum frequency of the 22 mode
as jmjfmin;ð2;2Þ=2.

1 In Sec. IV B we demonstrate the
reliability of this procedure to extract hðtÞ from ψ4.

D. Framework for directly comparing simulations
to observations I: Single simulations

In this section, we briefly review the methods introduced
in [6,15] to infer compact binary parameters from GW data.
All analyses of the data begin with the likelihood of the
data given noise, which always has the form (up to
normalization)

lnLðλ; θÞ ¼ −
1

2

X
k

hhkðλ; θÞ − dkjhkðλ; θÞ − dkik

− hdkjdkik; ð5Þ

where hk are the predicted response of the kth detector due
to a source with parameters (λ, θ) and dk are the detector
data in each instrument k; λ denotes the combination of
redshifted mass Mz and the numerical relativity simulation
parameters needed to uniquely specify the binary’s dynam-
ics; θ represents the seven extrinsic parameters (four
spacetime coordinates for the coalescence event and three
Euler angles for the binary’s orientation relative to the
Earth); and hajbik ≡

R∞
−∞ 2df ~aðfÞ� ~bðfÞ=Sh;kðjfjÞ is an

inner product implied by the kth detector’s noise power
spectrum Sh;kðfÞ. In all calculations, we adopt the fiducial
O1 noise power spectra associated with data near
GW150914 [1]. In practice we adopt a low-frequency
cutoff fmin so all inner products are modified to

hajbik ≡ 2

Z
jfj>fmin

df
~aðfÞ� ~bðfÞ
Sh;kðjfjÞ

: ð6Þ

The joint posterior probability of λ, θ follows from Bayes’
theorem,

ppostðλ; θÞ ¼
Lðλ; θÞpðθÞpðλÞR

dλdθLðλ; θÞpðλÞpðθÞ ; ð7Þ

where pðθÞ and pðλÞ are priors on the (independent)
variables θ, λ. For each λ, we evaluate the marginalized
likelihood

Lmarg ≡
Z

Lðλ; θÞpðθÞdθ ð8Þ

via direct Monte Carlo integration, where pðθÞ is uniform
in 4-volume and source orientation. To evaluate the like-
lihood in regions of high importance, we use an adaptive
Monte Carlo as described in [15]. We henceforth refer
to the algorithm to “integrate over extrinsic parameters”
as ILE. The marginalized likelihood is a way to quantify the
similarity of the data and template. If we integrate out all
the parameters except total mass, we get a curve that looks
like Fig. 2. Having lnL in this form is the most useful for
our purposes, and plots involving lnL will be as a function
of total mass.

E. Framework for directly comparing simulations
to observations II: Multidimensional fits

and posterior distribution

The posterior distribution for intrinsic parameters, in
terms of the marginalized likelihood and assumed prior
pðλÞ on intrinsic parameters like mass and spin, is

ppost ¼
LmargðλÞpðλÞR
dλLmargðλÞpðλÞ

: ð9Þ

As we demonstrate by concrete examples in this work,
using a sufficiently dense grid of intrinsic parameters,
Eq. (9) indicates that we can reconstruct the full posterior
parameter distribution via interpolation or other local
approximations. The reconstruction only needs to be
accurate near the peak. If the marginalized likelihood
Lmarg can be approximated by a d-dimensional Gaussian,
with (estimated) maximum value Lmax, then we anticipate
that only configurations λ with

1This fallback approximation is not always appropriate for
strongly precessing systems. However, for strongly precessing
systems, the relevant starting frequency can be easily identified.
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lnLmax=LmargðλÞ > χ2d;ϵ=2 ð10Þ

contribute to the posterior distribution at the 1 − ϵ credit-
able interval, where χ2d;ϵ is the inverse-χ

2 distribution. (The
practical significance of this threshold is more apparent in
Sec. III B, which implicitly illustrates it using one dimen-
sion.) Since the mass of the system can be trivially rescaled
to any value, each NR simulation is represented by
particular values for the seven intrinsic parameters (mass
ratio and the three components of the spin vectors) and is
represented by a one-parameter family of points in the
eight-dimensional parameter space of all possible values
of λ. Given our NR archive, we evaluate the natural log of
the marginalized likelihood as a function of the redshifted
mass lnLmargðMzÞ. As in [6], our first-stage result is this
function, explored almost continuously in mass and dis-
cretely as our fixed simulations permit. This information
alone is sufficient to estimate what parameters are con-
sistent with the data: for example, using a cutoff such as
Eq. (10), we identify the masses that are most consistent for
each simulation.
As demonstrated first in [6] and explored more system-

atically here, this likelihood is smooth and broad extending
over many NR simulations’ parameters. As a result, even
though our function exploration is restricted to a discrete
grid of NR simulation values, we can interpolate between
simulations to reconstruct the entire likelihood and hence
entire posterior. We can do this because of the simplicity
of the signal, which for the most massive binaries involves
only a few cycles. More broadly, our method works

because many NR simulations produce very similar radi-
ation, up to an overall mass scale; as a result, as has been
described previously in other contexts [28], surprisingly
few simulations have been needed to explore the model
space (e.g., for nonprecessing binaries).
Finally, as we demonstrate repeatedly below by example,

lnLmarg is often well approximated by a simple low-order
series, typically just a quadratic. Moreover, for the short
GW150914-like signals here, many nonprecessing simu-
lations fit both observations and even precessing simula-
tions fairly well. As a result, we employ a quadratic
approximation to lnLmarg near the peak under the restric-
tive approximation that all angular momenta are parallel
using information from only nonprecessing binaries. Using
this fit, we can estimate lnLmarg for all masses and aligned
spins and therefore estimate the full posterior distribution.
Section IV B in [6] gives the results of this method based
on the LIGO data containing GW150914. In this work, we
apply this method to a larger set of examples.

III. DIAGNOSTICS

Many steps in our procedure to compare NR simulations
to GW observations can introduce systematic error into
our inferred posterior distribution. Sources of error include
the numerical simulations’ resolution, waveform extrac-
tion, finite duration, Monte Carlo integration error, the
finite, discrete, and sparsely spaced simulation grid, and
our fit to said grid. In the following sections, we describe
tools to characterize the magnitude and effect of these
systematic errors. First and foremost, we introduce the

FIG. 2. Example of lnLmargðMÞ: comparing a simulation to itself: Left panel: Blue and yellow points (with error bars) show results of
evaluating lnLmargðMÞ with RIT-1a as a source compared to itself. The yellow color represents the points used for the fit. The shaded
region is derived by fitting a quadratic to these data via least squares [Eq. (25)], providing a mean and confidence interval (shown). The
reference source has total mass M ¼ 70 M⊙ and an inclination { ¼ 0.785; all calculations are carried out using fmin ¼ 30 Hz. This
curve will be duplicated as a black curve in the bottom left-panel of Fig. 3 and Fig. 4. Right panel: Nominal one-dimensional posterior
distributions [Eq. (22)] derived from the fit to left. This figure shows five examples, randomly drawn from the fit coefficient distribution
derived by least squares, drawn to exemplify the propagated systematic uncertainties due to Monte Carlo integration error. For studies
similar to this one (i.e., high-mass investigations where direct comparison to numerical relativity is most appropriate), this figure
suggests that Monte Carlo error is much smaller than the posterior width (i.e., has little relevance given the substantial statistical
uncertainty introduced by the limited number of GW cycles available for comparison from short NR simulations).
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broadly used match, a complex-valued inner product which
arises naturally in data analysis and parameter inference
applications. Following many previous studies [29], we
review how systematic error shows up as a mismatch and
parameter bias. Second, we describe an analogy to the match
which uses our full multimodal infrastructure and is more
directly connected to our final posterior distribution: the
marginalized likelihood versus mass lnLmargðMÞ, or equiv-
alently (one-dimensional) posterior distribution implied by
assuming the data must be drawn from a specific simulation
up to overall unknown mass and orientation. Due to
systematic error, the inferred one-dimensional distribution
(or match versus mass) may change, both globally and
through any concrete confidence interval (CI) derived from
it. To appropriately quantify the magnitude of these effects,
we introduce two measures to compare similar distributions.
On the one hand, any change in the 90% CI provides a
simple and easily explained measure of how much an error
changes our conclusions. On the one hand, the KL diver-
gence (DKL) gives a simple, well-studied, theoretically
appropriate, and numerical measure of the difference
between two neighboring distributions. In this section we
describe these diagnostics and illustrate them using concrete
and extreme examples to illustrate how a significant error
propagates into our interpretation.

A. Inner products between waveforms: the mismatch

The match is a well-used and data-analysis-driven tool to
compare two candidate GW signals in an idealized setting.
Unlike most discussions of the match, which derive them
from the response of a single idealized instrument, we
follow [30] and work with the response of an idealized two-
detector instrument, with both colocated identical interfer-
ometers oriented at 45° relative to one another, and the
source located directly overhead this network.2 As is well
known, the match arises naturally in the likelihood of a
candidate signal, given known and noise-free data—or,
in the notation of this work, from Eq. (5) restricted
to this idealized network, setting d to h0 ¼ hðt; λ0Þ and
hðλ; θÞ ¼ h,

lnL ¼ −
1

2
fhh − h0jh − h0i − hh0jh0ig

¼ −
1

2
fhhjhi − 2ℜhh0jhig; ð11Þ

where ℜ is the real part. Again hajbi is the complex
overlap (inner product) between twowaveforms for a single
detector as shown in Eq. (6); the GW strain h ¼ hþ − ih×
contains two polarizations, and is assumed to propagate
from directly overhead the network; the likelihood reflects

the response of both detectors’ antenna response and noise.
Equation (11) is slightly different than the likelihood
obtained in Eq. (17) of [30] by an overall constant. What
we use, described in [31], is the likelihood ratio (divided by
the likelihood of zero signal). If we add this constant back
into the equation, we recover Eq. (17) from [30],

lnLsingle ¼ −
1

2
fhh0jh0i þ hhjhi − 2ℜhh0jhig: ð12Þ

This single-detector likelihood depends on the parameters λ,
θ of h and λo, θ0 of h0. For the purposes of our discussion,
we include systematic error parameters that enhance or
change the model space in λ (e.g., changes in simulation
resolution).
The parameters which maximize the likelihood identify

the configuration of parameters that makes h most similar
to h0. For a fixed emission direction from the source,
three key parameters in θ dominate how h can be changed
to maximize the likelihood: the event time tevent, the source
luminosity distance DL, and the polarization angle ψ ,
characterizing rotations of the source (or detector) about
the line of sight connecting the source and instrument. In
terms of these parameters,

h ¼ e−2iψ
DL;ref

DL
hrefðt − teventjλ; θrestÞ; ð13Þ

where href is the value of h at DL ¼ DL;ref ; tevent ¼ 0,
and ψ ¼ 0 and θrest denotes the four remaining extrinsic
parameters besides these three. As noted in [30], a
change of the polarization angle ψ corresponds to a rotation
of the argument of the complex strain function, hðψÞ ¼
e−2iψhðψ ¼ 0Þ. As a result, maximizing the likelihood
versus ψ corresponds to choosing a phase angle so hhjh0i
is purely real,

maxψ hh0jhi ¼ jhh0jhij: ð14Þ

Similarly maximizing the likelihood versus distance, the
likelihood becomes

max
ψ ;DL

lnLsingle ¼ −ρ2ð1 − P�Þ; ð15Þ

where in this expression ρ2 ¼ hh0jh0i ¼ hhjhi(where ρ is
the signal to noise ratio or SNR) and the function P is

P�ðh0; hÞ≡maxψ
jhh0jhijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh0jh0ihhjhi

p : ð16Þ

This partially maximized likelihood depends strongly on
the event time. If we furthermore maximize over event
time, we find the final and important relationships

2Equivalently, we work in the limit of many identical detectors,
such that the network has equal sensitivity to both polarizations
for all source propagation directions.
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lnLsingle;max ¼ max
ψ ;DL;tevent

lnLsingle ¼ −ρ2ð1 − PÞ; ð17Þ

Pðh0; hÞ≡maxψ ;tevent
jhh0jhijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh0jh0ihhjhi

p : ð18Þ

In the rest of this paper, we use the mismatchM between
two signals,

Mðh0; hÞ ¼ 1 − Pðh0; hÞ: ð19Þ

Because of its form—an inner product—the mismatch
identifies differences between the two candidate signals;
substituting this expression into the maximized ideal-
detector likelihood [Eq. (17)] yields

lnLsingle;max ¼ −ρ2M: ð20Þ

As the above relationships make apparent, a candidate
signal h which has a significant mismatch cannot be scaled
to resemble h0 and therefore must be unlikely. This
relationship has been used to motivate simple criteria to
characterize when two signals h; h0 are indistinguishable
(or, conversely, distinguishable); working to order of
magnitude [cf. Eq. (10)], two signals are indistinguishable
if [32–35]

M ≤
1

ρ2
: ð21Þ

In this work, we apply the match criteria to assess when two
simulations of the same or similar parameters (or the same
simulation at a different mass) can be distinguished from a
reference configuration.
As a concrete example, discussed at greater length in

Sec. III E, the top-right panel in Fig. 3 shows two plots of
mismatch versus total mass. In the black curve, we
calculate the match of two identical waveforms from the
RIT-1a simulation: one is set at a fixed total mass
M ¼ 70 M⊙ while the other changes over a given mass
range. At the true total mass, the mismatch goes to 0. For
comparison, the red curve in that figure shows the mis-
match between another simulation h and a fixed RIT-1a
(h0), versus total mass for h. As illustrated in the top-left
panel of Fig. 3, the two simulations are not identical; hence,
the mismatch in the top-right panel between h and h0 never
reaches 0. Moreover, due to differences in the source ho and
template family h, the location of the minimum mismatch
and hence best fit occurs at a different, offset total mass,
close to 50 M⊙.
As the reader will see in subsequent sections, we can also

calculate the mismatch as a function of particular properties
of NR simulations to see how much error is introduced;
see Sec. IV.

B. Marginalized likelihood versus mass

Another simple diagnostic is the result lnLmargðMÞ for a
single simulation on some reference data (e.g., the simu-
lation itself, or a signal with comparable physical origin).
This function enters naturally into our full parameter
estimation calculation; therefore, it allows us to test all
of the quantities that influence our principal result directly
including NR resolution, extraction radius, etc. as described
below. For simplicity, as computed for the purposes of this
test, this function depends on part (only l ≤ 2modes) of the
NR radiation and the data. Figure 2 shows a null example
run with RIT-1a, a GW150914-like simulation, as a source
compared against itself. As previous work from both real
LIGO and synthetic data has suggested, lnLðMÞ can be
well approximated by a locally quadratic fit (see Sec. III D
for a more in-depth discussion of this example).

C. Probability density function/KL divergence

To quantitatively assess whether two given versions of
lnLðMÞ are demonstrably different, we employ an obser-
vationally motivated diagnostic to prioritize agreement in
regions with significant posterior support. Motivated by the
applications we perform when comparing results of this
kind, we translate lnLðMÞ into a probability density
funciton (PDF) (i.e., assuming all other parameters are
fixed),

pcðMÞ ¼ 1R
dMelnL

elnL: ð22Þ

In practice, this distribution is always extremely well
approximated by a Gaussian, so we can further simplify
by characterizing any one-dimensional distribution by its
mean M� and variance 1=ΓMM ¼ σ2�. Using this ansatz, we
can therefore define a quantity to assess the difference
between any pair of results for lnLðMÞ. In this work, we
use the KL divergence between these two approximately
normal distributions,

DKLðp�jpÞ ¼
Z

dxpðxÞ lnpðxÞ=p�ðxÞ

¼ ln
σ

σ�
−
1

2
þ ðx̄ − x̄�Þ2 þ σ2�

2σ2
: ð23Þ

We also plot the derived PDF pcðMÞ and evaluate the
implied one-dimensional 90% CI derived from it.
The implications of a significant disagreement for

this diagnostic—already illustrated via high mismatch in
Fig. 3—can be clearly seen in the one-dimensional pos-
terior distributions derived from the fit of lnLmargðMÞ as
shown in Figs. 3 and 4. Loosely following the work in [29]
for estimating parameter errors due to mismatch, we
expect that the parameter error will be a significant
fraction of the statistical error. Using the notation above
and approximating P≃ 1 − 1

2
Γ̄xxδx2 for some nominal
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perturbed parameter x, we estimate the statistical error
to be σx;stat ≃ 1=ρ

ffiffiffiffiffiffiffi
Γxx

p
. Conversely, balancing mismatch

and parameter biases, similar changes in likelihood occur
when

δx≃ 1

Γ̄1=2
xx

M1=2; ð24Þ

however, much more detailed calculations are presented in
[29]. The above relationship illustrates how a high mis-
match causes a deviation in the lnLmargðMÞ curve as well
as its corresponding posterior distribution. Figure 3 shows
a comparison between two waveforms from RIT-1a and

RIT-2 (red curve). With significantly different parameters
(see Table I), the mismatch is significantly high. This
causes a radical shift in the lnLmargðMÞ result as well as its
corresponding PDF compared to its true value. This
example is described in greater detail in Sec. III E.

D. Example 0: Null test/impact of Monte Carlo error

To illustrate the use of these diagnostics, we first apply
them to the special case where the data contain the response
due to a known source. In this case, by construction, the
match is unity when using the same parameters. Following
a similar procedure to that we would apply if we did not
know the source mass, we can also plot the mismatch

FIG. 3. Example 1—assessing differences between two NR simulations with different parameters: Two representations of the different
predictions of RIT-1a and RIT-2, which are aligned spin binaries with mass ratios q ¼ 1.22 and q ¼ 2.0 respectively, illustrating how
dramatic differences propagate into our diagnostics. Top-left panel: The strain along a line of sight inclined at ι ¼ 0.785 and evaluated
for a total mass M ¼ 70 M⊙, with RIT-1a in black and RIT-2 in red. Top-right panel: The mismatch between synthetic data and
candidate templates as a function of the template’s mass. In both cases, the RIT-1a simulation is used as the template [i.e., as h in
Eq. (16)]. For the black curve, RIT-1a for a 70 M⊙ binary is also used as the source (i.e., h0 ¼ hRIT−1a). For the red curve, the source is
RIT-2 set at M ¼ 70 M⊙, while RIT-1a has a changing mass. Bottom-left panel: Points show the marginalized likelihood versus total
mass calculated by applying the same template simulation (RIT-1a) to two different sources: RIT-1a in black and RIT-2 in red. Each
source has fixed mass M ¼ 70 M⊙ and inclination { ¼ 0.785; as in Fig. 2, we evaluate L using a low-frequency cutoff fmin ¼ 30 Hz.
For context, red and black solid curves show a corresponding quadratic least-squares fit to these data. Bottom-right panel: The
corresponding one-dimensional posteriors pcðMÞ [Eq. (22)]. Both bottom panels illustrate how an ill-suited simulation with large
mismatch (i.e., the red curve) correlates with a drastic shift in parameters (here, total mass) relative to the true best-fit solution (here, the
black curve) [see Eq. (24)]. Also, the ill-matched simulation cannot recover all the information available to the true solution, so the peak
lnLmarg for the red curve is substantially lower (≃20) than the peak of the black curve.
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hhAðMÞjhAðM�Þi=khAðMÞkkhAðM�Þk. Referring to the
notation in Eq. (16), we assign the RIT-1a waveform to
h0 ¼ hRIT−1a (source) and again the RIT-1a waveform to
h ¼ hRIT−1a (template). This plot can be seen in any of the
following examples as the black curve (top-right panels
from Figs. 3 and 4). It has a peak value of unity (not plotted)
and rapidly falls as one moves away from the mass
corresponding to the peak match value. The left panel of
Fig. 2 shows the log likelihood lnLmarg provided by ILE as
a function of mass. From here we fit a local quadratic to the
lnLmarg close to the peak. Using the fit, we generate five
random samples and use them for subsequent calculations

(i.e. one-dimensional distributions). We derived a one-
dimensional distribution using Eq. (22).
First and foremost, these figures illustrate the relation-

ships between the three diagnostics. As suggested by
Eq. (20), the match and log likelihood lnLmarg are nearly
proportional up to an overall constant. Second, as required
by Eq. (22), the one-dimensional posterior is proportional
to Lmarg. This visual illustration corroborates our earlier
claim implicit in the left panel of Fig. 2: only the part of
lnLmarg within a few of its peak value contributes in any
way to the posterior distribution and to any conclusions
drawn from it (e.g., the 90% CI).

FIG. 4. Example 2—assessing differences in SEOB and NR waveforms that have the same parameters: This figure shows how subtle
differences between a NR solution and an approximation to GR [here, effective-one-body (EOB)] can propagate into mismatch and
parameter estimation. These two companion figures follow the pattern of Fig. 3. Top-left panel: The black and blue curves show the (2,2)
mode evaluated from RIT-a and SEOBNRv2, respectively, for a source with identical parameters. Source parameters and strain results
for the black curve are identical to Fig. 3. In this illustration, the two waveforms have been time and phase aligned at their maximum
value. Top right-panel: Following the top-right panel of Fig. 3, this figure shows the match between the two waveforms on the top left
with the corresponding template from RIT-1a. Bottom-left: The marginalized likelihood lnLmarg for the two waveforms shown above,
evaluated using both RIT-1a and SEOBNRv2 as templates: NR source compared to the same NR template in black, the SEOBNRv2
source to a SEOBNRv2 template in red, the SEOBNRv2 source to a NR (RIT-1a) template in blue, and the NR (RIT-1a) source to a
SEOBNRv2 template in cyan. Bottom-right: The one-dimensional posterior distributions pcðMÞ derived from the quadratic fits shown
in the bottom-left. Both bottom panels show a clear change along the total mass for SEOBNRv2 sources. The NR/NR comparison has
the highest lnLmarg with a corresponding total mass ∼70 M⊙. The NR/SEOBNRv2 template curve correctly finds the total mass
∼70 M⊙; however, the lnLmarg is orders of magnitudes different than the null example. The differences between NR simulations and the
SEOBNRv2 model are significant for parameter estimation.
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Each evaluation of the Monte Carlo integral has limited
accuracy, as indicated in Fig. 2. By taking advantage of
many evaluations of this integral, we dramatically reduce
the overall error in the fit. To estimate the impact of this
uncertainty, we use standard frequentist polynomial fitting
techniques [36] to estimate the best-fit parameters and
their uncertainties (i.e., of a quadratic approximation to lnL
near the peak): if lnLmarg ¼

P
αλαFαðMzÞ and γkk ¼ 1=σ2k

is an inverse covariance matrix characterizing our meas-
urement errors, then the best-fit estimate for lnLmarg and its
variance is

lnLmarg;est ¼ FðFTγFÞ−1γy ð25aÞ

ΣðxÞ ¼ FαðxÞ½ðFTγFÞ−1�αβFβðxÞ; ð25bÞ

where y is an array representing the lnLmarg estimates at the
data points and F is a matrix representing the values of the
basis functions on the data points: FαðxkÞ. The left panel of
Fig. 2 shows the 90% CI derived from this fit, assuming
Gaussian errors.
To translate these uncertainties into changes in the

one-dimensional posterior distribution pc, we generate
random draws from the corresponding approximately
multinomial distribution for fit parameters, and thereby
generate random samples and hence one-dimensional
distributions for pcðMÞ consistent with different realiza-
tions of the Monte Carlo errors. The right panel of Fig. 2
shows five random samples from the fit in the left panel.
This figure demonstrates that this level of Monte Carlo
error, by design, has negligible impact on the posterior
distribution. To quantify the impact of Monte Carlo error on
the posterior, we calculate the KL divergence from
Eq. (23). In all cases, the KL divergence was small, of
order 10−4; see Table II for more details on DKL and the
90% CI. In Sec. IVA, we further verify this conclusion by
repeating our analysis many times.

E. Example 1: Two NR simulations with different
parameters/illustrating how sensitively

parameters can be measured

In this example we compare two NR simulations with
significantly different parameters to demonstrate how our
diagnostics handle waveforms of extreme contrast. The two
NR simulations used are RIT-1a and RIT-2. As shown in
Table I, these simulations both have aligned spin with
different magnitudes and mass ratios q ¼ 1.22 and q ¼ 2.0
respectively. To illustrate the extreme differences between
the radiation from these two systems, the top-left panel of
Fig. 3 shows the two simulations’ rhðtÞ.
Our three diagnostics equally reveal the substantial

differences between these two signals. To be concrete,
since these diagnostics treat data and models asymmetri-
cally, we operate on synthetic data containing RIT-1a
with inclination { ¼ π=4 in these applications. First, the
top-right panel of Fig. 3 shows the results of our mismatch
calculations. The black curve is the same null test mismatch
calculation as in the top-right panel of Fig. 4: it has a
narrow minimum (of 0) at the true binary mass (70 M⊙).
For the red curve, we calculate the mismatch while holding
RIT-2 at a fixed mass and changing the mass of RIT-1a.
Using the notation in Eq. (16), we assign the RIT-2
waveform to h0 ¼ hRIT−2 (fixed mass at M ¼ 70 M⊙)
and the RIT-1a waveform to h ¼ hRIT−1a (changing mass).
In this case, the match does not reach unity, differing by a
few percent, while the peak value occurs at significantly
offset parameters (here, in total mass). Second, the bottom-
left panel of Fig. 3 shows the results for lnLmargðMÞ, using
these two NR simulations to look at the same stretch of
synthetic data including our local quadratic fit to them.
Third, the bottom-right panel of Fig. 3 shows the implied
one-dimensional posterior distribution derived from our
fits. There is a clear shift in total mass with the null test
again peaking around 70 M⊙ and this example’s peak
around 50 M⊙. There are also orders of magnitude
differences between the lnLmarg of the two cases. These
diagnostics show something that could be seen just by
looking at the waveforms; however, we now have some
idea on how major differences propagate through our
diagnostics and how the errors in each diagnostic relate
to each other. For completeness, we also include the DKL
and CI for these two waveforms in Table III. The DKL as
well as the CI are both considerably offset, as expected
given the two significantly different simulations involved.
Finally, the parameter shift seen above is roughly con-

sistent in magnitude with what we would expect for such an
extreme mismatch error, given the SNR and match: we
expect using Eq. (24) δM ≃ σMρM1=2 ≃ 5σM ≃ 5 M⊙
(usingM ¼ 6 × 10−2; ρ ¼ 20 and σM ¼ 1.1 M⊙), or a shift
in best fit of several standard deviations and many solar
masses. While noticeably smaller than our actual best-fit
shift, our result fromEq. (24) provides a valuable sense of the
order-of-magnitude biases incurred by specific level of

TABLE II. KL divergence and 90% CI between different
samples from the null test fit: This table shows the DKL and
90% CI for five different sample PDFs. The DKL was calculated
comparing the one-dimensional distributions to the first sample
(i.e. DKL for sample 1 is 0). The CIs are also given to show the
change between them. Both diagnostics suggest that the distri-
butions are nearly indistinguishable.

Sample DKL CI (90%)

1 0 (68.71–71.66)
2 2.5e-4 (68.71–71.68
3 1.2e-4 (68.71–71.68)
4 7.2e-4 (68.71–71.67)
5 2.3e-4 (68.70–71.68)
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mismatch in general. Moreover, this example is a concrete
illustration of the critical need to haveM≤1=ρ2 to ensure that
any systematic parameter biases are small and under control.

F. Example 2: Different physics: SEOB vs
NR/illustrating the value of numerical relativity

Several studies have previously demonstrated the critical
need for numerical relativity, since even the best models do
not yet capture all available physics [37,38]. For example,
these models generally omit higher-order modes, whose
omission impacts inferences about the source [39–41].
To illustrate the value of NR in the context of this work,

we compare parameter estimation with NR and with an
analytic model. In this particular example, we use NR
simulation RIT-1a including the l ≤ 2 modes (see Table I)
evaluated along an inclination ι ¼ π=4. Using this line of
sight and our fiducial mass (M ¼ 70 M⊙), higher harmon-
ics play a nontrivial role. For our analytical model, we use
an Effective-One-Body model with spin (SEOB).We spe-
cifically use the version called SEOBNRv2 as described in
[42], which was one of the models used in the parameter
estimation of GW150914 [43] and which was recently
compared to this simulation [37]. The top-left panel of
Fig. 4 shows the time-domain strains from the NR
simulation and SEOBNRv2 with the same parameters.
To better quantify the small but visually apparent difference
in the two waveforms, we use the diagnostics described
earlier on these two waveforms.
One way to characterize the differences in these wave-

forms is the mismatch [Eq. (16)]. In the top-right panel
of Fig. 4, we calculate the mismatch by holding the
SEOBNRv2 waveform at a fixed mass while changing
the mass of the NR waveform shown in blue. Referring
to the notation in Eq. (16), we assign the SEOBNRv2
waveform to h0 ¼ hSEOBNRv2 and the RIT-1a waveform to
h ¼ hRIT−1a. For comparison, a mismatch calculation was
done with the null test from Sec. III D (RIT-1a compared
to itself) shown here in black. Two differences between the
two curves are immediately apparent. First, the blue curve
does not go to 0; the mismatch is a few times 10−3,
significantly in excess of the typical accuracy threshold
[Eq. (21), evaluated at ρ ¼ 25]. Second, the minimum

occurs at offset parameters. The best-fit offset and mis-
match are qualitatively consistent with the naive estimate
presented earlier: a high mismatch yields a high change in
total mass [see Eq. (24)]. This simple calculation illustrates
how mismatch could propagate directly into significant
biases in parameter estimation.
Another and more observationally relevant way to

characterize the differences between these two waveforms
is by carrying out a full ILE-based parameter estimation
calculation. We carry out four comparisons: the null test [a
NR source compared to same NR template (black)], the
SEOBNRv2 source compared to a SEOBNRv2 template
(red), the NR source compared to a SEOBNRv2 template
(cyan), and a SEOBNRv2 source compared to a NR
template (blue). The bottom panels of Fig. 4 show both
the underlying lnLmargðMÞ results, our quadratic approx-
imations to the data, and our implied one-dimensional
posterior distributions [Eq. (22)]. All ILE calculations
were carried out with fmin ¼ 30 Hz. All four likelihoods
lnLmarg and posterior distributions pc are manifestly
different, with generally different peak locations and
widths. Table IV quantifies the differences between the
possible four configurations, using DKL and 90% CI. The
DKL was always calculated by comparing one of them to
the NR/NR case. These systematic differences exist even
without higher modes, whose neglect will only exacerbate
the biases seen here.
Keeping in mind that the two figures adopt a comparable

color scheme, the shift in peak value and location between
the black and blue curves seen in the bottom panels of Fig. 4
can be traced back to the top-right of Fig. 4: to a first
approximation, systematic errors identified by the mismatch
(M) show up in the marginalized likelihood (lnLmarg).
Again, based on calculations using Eq. (24), we expect the
change in mass location of order unity holding all other
things equal, comparable to the observed offset.
In many ways, one-dimensional biases shown in the

bottom-right panel understate the differences between

TABLE III. KL Divergence and 90% CI between two NR
simulations with different parameters: This table shows the DKL
and 90% CI between RIT-1a/RIT-1a and RIT-1a/RIT-2. The DKL
was calculated comparing the one-dimensional distributions to
RIT-1a/RIT-1a distribution (notice that its DKL is 0, i.e. they are
identical). The CIs are also given to show the difference between
these two distributions.

ILE run (source/template) DKL CI (90%)

RIT-1a/RIT-1a 0.0 (68.8–71.4)
RIT-2/RIT-1a 288.8 (49.3–52.0)

TABLE IV. KL divergence and 90% CI between SEOB and
NR: This table shows the DKL and 90% CI for the four different
configurations using SEOBNRv2 and NR as sources and tem-
plates. The DKL was calculated comparing the one-dimensional
distributions to the NR/NR case (notice its DKL is 0 i.e. they are
identical). The CI is also given to show the change between them.
Based on the DKL results, the one-dimensional posteriors are
similar but not exactly the same distribution. These nontrivial
differences affect our parameter estimation results and also
change our astrophysical conclusions about the source.

ILE configuration (source/template) DKL CI (90%)

SEOB/SEOB 0.086 (69.2–72.1)
SEOB/RIT-1a 0.25 (69.4–72.4)
RIT-1a/RIT-1a 0 (68.8–71.8)
RIT-1a/SEOB 0.050 (68.5–71.5)
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these signals: that comparison explicitly omits the peak
value of lnLmarg, which occurs not only at a different
location but also with a different value for all four cases. As
we would expect, the NR/NR case has the highest lnLmarg

with a peak near the true total mass 70 M⊙. The NR/SEOB
case can also produce a peak near 70 M⊙; however, the
lnLmarg is orders of magnitude lower, which translates to a
lower likelihood that this was in fact the correct template.
When performing a full multidimensional fit, template-
dependent biases in the peak value of lnLmarg can also
impact our conclusions.
To summarize, we have shown that using SEOBNRv2

in place of a more precise solution of Einstein’s equations
introduces non-negligible systematic errors, of a magnitude
comparable to the statistical error for plausible sources, and
that it can impact astrophysical conclusions.

G. Example 3: Signal duration and cutoff
frequency/illustrating the impact of simulation

duration with SEOB

Numerical relativity simulations have finite duration.
Until hybrids [44–47] are ubiquitously available, these finite
duration cutoffs will impair the utility of direct comparison
between data and multimodal NR simulations. To assess this
impact of finite simulation duration, we adopt a contrived but
easily controlled approach, using an analytic model where
we can freely adjust signal duration. While our specific
numerical conclusions depend on the noise power spectrum
adopted, as it sets the required low-frequency cutoff, the
general principles remain true for advanced instruments.
In this example, we plot lnLmarg for a fiducial

SEOBNRv2 source versus itself using different choices

for the low-frequency cutoff (and, equivalently, different
initial orbital frequencies for the binary). The left panel
of Fig. 5 shows lnLmarg versus M. In this figure, the
lnLmarg curves for fmin ¼ 10 Hz and 20 Hz (brown and
green) are significantly narrower and higher compared to
the lnLmarg curves for fmin ¼ 30 Hz or 40 Hz (red and
magenta). As described in [6], even though very little signal
power is associated with very low frequencies for this
combination of detector and source, a significant amount
of information about the total mass is available there
with all other parameters of the system perfectly known.
These differences are immediately apparent in our one-
dimensional diagnostics lnLmargðMÞ and pcðMÞ, which
are both narrower and more informative when more
information is included (i.e., for lower fmin). That said,
our power spectral density (PSD) does not provide access
to arbitrarily low frequencies, and the lowest two frequen-
cies have nearly identical posterior distributions, as mea-
sured by KL divergence, see Table V. This investigation
strongly suggests that our analysis could be sharper with
longer simulations or hybrids. That said, [6] demonstrated
that this procedure will, for GW150914-like data and noise,
arrive at similar results to an analysis which includes these
lower frequencies. As noted in [6], this virtue leverages a
fortuitous degeneracy in astrophysically relevant observ-
ables: the limitations of our high-frequency analysis are
mostly washed out due to strong degeneracies between
mass, mass ratio, and spin.

IV. VALIDATION STUDIES

In this section we self-consistently assess our errors
in hðtÞ and lnL. Using the diagnostics described

FIG. 5. Example 3—quantifying the impact of the low-frequency cutoff: Using analytic SEOBNRv2 templates with user-specified
starting frequency and length, this figure quantifies the impact of our choice of low-frequency cutoff on parameter estimation. Left
panel: Plot of lnLmarg versus total mass evaluated using SEOBNRv2 templates with different starting frequencies with fmin ¼ 10 Hz
(brown), fmin ¼ 20 Hz (green), fmin ¼ 30 Hz (red), and fmin ¼ 40 Hz (magenta). In all cases, the source signal is also SEOBNRv2
using the same parameters as RIT-1a, but starting frequency fmin ¼ 5 Hz. Right panel: The one-dimensional posteriors pcðMÞ [Eq. (22)]
implied by the results to the left. As you increase the low-frequency cutoff, the lnLmarg decreases significantly, and both the posterior
and lnLmarg are wider and offset from the true parameters.
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above, via targeted one-dimensional studies, we system-
atically assess the impact of Monte Carlo error, wave-
form extraction error, simulation resolution, and limited
access to low-frequency content. We show via our
diagnostics that the effects from these potential sources
of error can be either ignored or mitigated (e.g., by a
suitable choice of operating point for our analysis
procedure, such as a high enough extraction radius).
For each potential source of error, we use the KL
divergence DKL [Eq. (23)] to quantify small differences
in one-dimensional posterior distributions pcðMÞ
[Eq. (22)] derived from lnLmarg. We relate our results
to familiar mismatch-based measures of error. To be
concrete, we employ a target SNR ρ ¼ 25, similar to
GW150914. For similarly-loud sources, the mismatch
criteria [Eq. (21)] suggest any parameters with mismatch
below log10ðMÞ ¼ −2.8 will lead to “statistical errors”
(associated with the width of the posterior) smaller than
systematic biases.

A. Impact of Monte Carlo error

We have already assessed the error from our Monte
Carlo integration in Sec. III D, directly propagating the
(assumed correct) Monte Carlo integration error into our
fit. To comprehensively demonstrate the impact of the
Monte Carlo integration error, we repeat our entire analysis
reported in Fig. 2 multiple times. Figure 6 shows our
directly comparable results; Table VI reports quantitative
measures of how these distributions change. Based on
these quantities, we conclude that the error introduced by
our Monte Carlo is negligible. Our results are consistent
with Sec. III D.

B. Error budget for waveform extraction

While gravitational waves are defined at null infinity, the
finite size of typical NR computational domains implies
that a computational technique must identify the appro-
priate asymptotic radiation from the simulation [25]. This
method generally has error, often associated with system-
atic neglect of near-field physics in the asymptotic expan-
sion used to extract the wave (i.e., truncation error). Our
perturbative extrapolation method shares this limitation. As
a result, if we decrease the radius at which we extract the
asymptotic strain, we increase the error in our approxima-
tion. In other words, the mismatch between the waveform
extracted at r and some large radius generally decreases
with r; the trend of match versus r provides clues into the
reliability of our results.
Figure 7 shows an example of a mismatch between two

estimates of the strain: one evaluated at the finite, largest
possible radius and one at the smaller (and variable) radius.
For context, we show the nominal accuracy requirement
corresponding to a SNR ¼ 25 [see Eq. (21)] as a black
dotted line. First and foremost, this figure shows that, at
sufficiently high extraction radius, the error introduced
by mismatch errors is substantially below our fiducial

TABLE V. KL divergence and 90% CI of PDFs derived from
SEOB sources with different low-frequency cutoffs: This table
shows the DKL and 90% CI for the four different configurations
using SEOBNRv2 sourcewith a set duration of 5 Hz and compared
against SEOBNRv2 templateswith different low-frequency cutoffs.
The DKL was calculated comparing the one-dimensional distribu-
tions to the fmin ¼ 10 Hz case (notice that its DKL is 0 i.e. they
are identical). The CI is also given to show the change between
them. Based on the DKL results, the one-dimensional posteriors
of fmin ¼ 10; 20 Hz seem to be the same distribution; however,
they differ significantly to fmin ¼ 30; 40 Hz.

fmin for ILE run (Hz) DKL CI (90%)

10 0.0 (69.2–71.1)
20 1.3e-3 (69.2–71.1)
30 0.62 (69.2–72.1)
40 7.1 (69.2–74.6)

FIG. 6. Monte Carlo error revisited: Repeating the fitting process multiple times: This figure shows several repeated, independent end-
to-end calculations of lnLmarg (left panel) and pcðMÞ (right panel), shown in different colors. The calculation performed is identical to
the calculation described for Fig. 2. This figure demonstrates that we understand and have control over our Monte Carlo errors.
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threshold for all choices of cutoff frequency, waveform
extraction location, and waveform extraction technique; see
also [7]. Second, the second panel shows that our pertur-
bative extraction method is reasonably consistent with an
entirely independent approach to waveform extraction.
Agreement is far from perfect: our study also indicates a
noticeable discrepancy between the results of our pertur-
bative extraction technique and the SXS strain extraction
method. Due to the good agreement reported elsewhere
[37], we suspect that these residual disagreements arise
from coordinate effects unique to our interpretation of SXS
data; we assess this issue at greater depth in subsequent
work. Third and finally, as expected, comparisons that
employ more of the NR signals are more discriminating:
calculations with a smaller fmin generally find a higher (i.e.,
worse) mismatch. Nonetheless, our mismatch calculations
significantly improve at large extraction radius, when

perturbative extrapolation is carried out well outside the
near zone.
To assess the observational impact of waveform extrac-

tion systematics, we evaluate lnLmargðMÞ and pcðMÞ using
waveform estimates produced using different extraction
radii. Specifically, we take a simulation, use its large-radius
perturbative estimate as a source, and follow the procedures
used in Figs. 3 and 4 to produce lnLmargðMÞ and pcðMÞ.
Figure 8 shows our results; for clarity, we include only the
last three extraction radii (r ¼ 190M; 162M; 141M). The
errors here are relatively small but bigger than expected
from our match study; however, the error shown in the
match only applies to changes in the peak value lnLmarg,
which can be seen in the left panel. To again quantify these
small differences, we use DKL and CI, as reported in
Table VII. As this table shows, the error introduced is
insignificant as long as we pick a relative large extraction
radius. This is almost always the case for the current
simulations available. Some of the GT simulations require
us to choose a lower extraction radius due to an increase in
the error as the extraction radius increases beyond a certain
point, but this does not affect our overall results.

C. Impact of simulation resolution

Here we analyze errors introduced by different numerical
resolutions. We perform one fiducial analysis for each
NR group used in our investigations. We check all three NR
groups to make sure the differences between the NR
methods do not introduce errors between the different
resolutions. Table VIII shows a match comparison between

TABLE VI. KL divergence and 90% CI between different runs
of the same null test: This table shows the DKL, calculated using
Eq. (23) and 90% CI for three different runs of the same
configuration as described in Sec. III D. The DKL was calculated
comparing the one-dimensional distributions to trial v1 (notice its
DKL is 0 i.e. they are identical). The CI is also given to show the
change between them. Based on the DKL results, the one-
dimensional posteriors of these different trials are identical.

Trial DKL CI (90%)

v1 0 (68.9–71.9)
v2 4.8e-5 (68.9–71.9)
v3 5.6e-5 (68.9–71.9)

FIG. 7. Mismatch between waveforms at different extraction radii using different NR groups and extraction techniques: Both panels
show the mismatch between the radiation extracted from RIT-1a (left panel) and SXS-0233 (right panel) as a function of the extraction
radius r. All calculations are performed using the same configurations as Figs. 3 and 4: a total mass of 70 M⊙ and an inclination
ι ¼ 0.785. In both panels, the green, blue, and red colors represent different choices of low-frequency cutoff: fmin ¼ 20, 30, 40 Hz
respectively. For context and motivated by Eq. (21), the dashed line denotes the mismatch threshold implied by ρ ¼ 25 [i.e.,
log10ð1=252Þ]. Left panel: Mismatch calculations comparing a waveform perturbatively extracted at r ¼ 190M with a waveform that is
perturbatively extracted at other extraction radii [see Eq. (3)]. Right panel: Circles correspond to results using a reference waveform
extracted at r ¼ 545M via perturbative extraction from their ψ4 data; triangles denote calculations using a reference waveform evaluated
using the strain provided by SXS (i.e., using a polynomial extrapolation withN ¼ 2). In both cases, the reference waveform is compared
to a waveform constructed via perturbative extraction using ψ4 data at the specified radius.
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the highest resolution (RIT-1a, SXS-305a, and GT-1a) and
the two lower ones for each NR group (RIT-1b, SXS-305b,
and GT-1b; RIT-1c, SXS-305c, and GT1c). The mis-
matches are orders of magnitudes better than the a priori
accuracy requirement expected based on the signal ampli-
tude (1=ρ2 ∼ 10−2.8), and therefore introduce errors that are
negligible.
Using lnLmarg as our diagnostic to compare these three

simulations, we draw similar conclusions; see the left
panels of Figs. 9–11. We again see an error so small that
changes between the three curves are almost impossible to
see, even far from the peak. As in previous studies, we
convert the fit to a PDF and calculate the KL divergence
values between them to quantify these minor differences;
see Table IX. In short, different resolutions have no
noticeable impact on our conclusions regardless of which
NR group the simulations come from. This study suggests
that NR simulations can be carried out at relatively low

resolution for our parameter inference purposes, since
higher resolution simulations—which are slower and more
costly—do not seem to be required at the level of accuracy
currently demanded by other sources of systematic and
statistical error. Similar resolution and extraction radius
studies have been done for other extraction methods [48].

D. Impact of low-frequency content
and simulation duration

As demonstrated by example 3 in Sec. III G above, the
available frequency content provided by each simulation and
used to interpret the data can significantly impact our

FIG. 8. Propagating systematic error from finite extraction radius into posterior distributions: This figure shows how small systematic
errors from finite NR extraction radius propagate into parameter estimation posterior distributions, by concrete example. Left panel: A
plot of lnLmarg versus total mass. In all cases, the source is RIT-1a at r ¼ 190M; the templates are also RIT-1a, using different extraction
radii as templates. Here, magenta is r ¼ 141.71M, orange is r ¼ 162.34M, and black is r ¼ 190M. We focus our search on only the last
few extraction radii to avoid clutter. The error is relatively small but bigger than what our match study naively suggests (i.e., changes in
lnL of order 10−4ρ2=2≃ 2 × 10−2, though this result only applies to the change in the peak value, which indeed changes by less than
that amount). Right panel: One-dimensional posterior distributions pcðMÞ of each individual fit derived from the three plots [see
Eq. (22)]. Even though there are small differences, these PDFs are virtually identical.

TABLE VII. KL divergence and 90% CI between PDFs with
different extraction radii: This table shows the DKL, calculated
using Eq. (23) and 90% CI for PDFs with three different extraction
radii. The DKL was calculated comparing the one-dimensional
distributions to the PDF with r ¼ 190M (notice its DKL is 0
i.e. they are identical). The CI is also given to show the change
between them. Based on the DKL results, the one-dimensional
posteriors show some differences but are very similar.

Extraction radius (M) DKL CI (90%)

190M=190M 0 (68.8–71.5)
162.34=190M 9.3e-3 (68.9–71.5)
141.71=190M 3.6e-2 (69.0–71.8)

TABLE VIII. Mismatch between waveforms with different
numerical resolutions: Here is a mismatch study between the
different resolutions for one NR simulation. The results were
evaluated at M ¼ 70 M⊙ and { ¼ 0.785. The mismatch between
the different resolutions is very small and is much smaller
than our accuracy requirement. We therefore expect the error
introduced to be negligible.

NR group NR label Resolution Mismatch

RIT RIT-1a/RIT-1a n120/n120 0.0
RIT-1b/RIT-1a n110/n120 3.90e-5
RIT-1c/RIT-1a n100/n120 5.27e-5

SXS SXS-305a/SXS-305a Res6/Res6 0.0
SXS-305b/SXS-305a Res5/Res6 3.04e-5
SXS-305c/SXS-305a Res4/Res6 1.24e-4

GT GT-1a/GT-1a M240/M240 0.0
GT-1b/GT-1a M200/M240 3.82e-6
GT-1c/GT-1a M160/M240 4.43e-5
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interpretation of results. In this section, we perform a more
systematic analysis of simulation duration and frequency
content, again using the semianalytic SEOBNRv2model as a
concrete waveform available at all necessary durations.
Before we begin, we first carefully distinguish between
twounrelated “minimum frequencies” that naturally showup
in our analysis. It is easy to get confused between the low-
frequency cutoff (in this work called fmin) and simulation
duration (or initial orbital frequency Mω0). The simulation
duration is the true duration of the simulation, which is a
property of the binary and can be drastically different
over many NR simulations. The low-frequency cutoff is
an artificial cut to the signal that allows us to normalize the

signal duration of all ourwaveforms.As a result, with a lower
fmin, more of the NR simulation enters into our analysis.
The top panels of Fig. 12 show the result of comparing a

RIT-4 source with a duration of 5.0 Hz to itself with
changing fmin. As fmin increases, a smaller portion of the
simulation waveform is being used to analyze the data.
When fmin is high, we end up cutting off more of the
waveform. This results in a sharp decline in lnLmarg since
one is now comparing less of the waveform to itself. In this
panel it is clear that fmin ∼ 10–20 Hz seems to not
significantly affect lnLmarg; however, the curve changes
drastically when fmin ¼ 30–40 Hz. For completeness
Table X shows the corresponding DKL and CI for different

FIG. 9. Single runs of ILE with RIT simulations with changing resolution and their corresponding PDFs: The left panel consists of
lnL vs total mass curves with different numerical resolution. Here we use RIT-1a as the source and compare it to simulations with the
same parameters at different resolutions, specifically RIT-1b and RIT-1c. The results were evaluated with fmin ¼ 30 Hz at a total mass
M ¼ 70 M⊙ with an inclination { ¼ 0.785. Here black is n120, purple is n110, and blue is n100. Even though the error is clearly
minuscule, we convert the fits to PDFs for completeness. The right panel shows the PDFs for the three different resolutions [see
Eq. (22)]. It is clear that these are all the same PDFs, and the error introduced by different resolutions is irrelevant.

FIG. 10. Single runs of ILE with SXS simulations with changing resolution and their corresponding PDFs: The left panel consists of
lnL vs total mass curves with different numerical resolution. Here we use SXS-305a as the source and compare it to simulations with the
same parameters at different resolutions, specifically SXS-305b and SXS-305c. The results were evaluated with fmin ¼ 30 Hz at a total
mass M ¼ 70 M⊙ with an inclination { ¼ 0.785. Here black is Res6, purple is Res5, and blue is Res4. Even though the error is clearly
minuscule, we convert the fits to PDFs for completeness. The right panel shows the PDFs for the three different resolutions [see
Eq. (22)]. It is clear that these are all the same PDFs, and the error introduced by different resolutions is irrelevant.
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fmin, again showing the similarities between the fmin ¼
10; 20 Hz frequencies and the differences of the higher
frequencies. Hybrid NR waveforms nullify this source of
error by allowing us to compare more of the waveform
while at the same time allowing us to standardize durations.
To investigate the shift in mass seen in Fig. 5 further, we

compare a SEOBNRv2 source to a SEOBNRv2 template
with the same duration/fmin (i.e. the source has a duration
of 10 Hz therefore the template has a fmin ¼ 10 Hz). This
was done to investigate the shift in total mass seen in Fig. 5
for a SEOBNRv2 source with a fixed duration compared to
a SEOBNRv2 template with different low-frequency cut-
offs. As the bottom panels of Fig. 12 now show, this
shift was a product of comparing a source and templates

with different signal lengths. When we now set the same
duration for the source and fmin for the template, the ILE
results and their corresponding PDFs peak around the
same mass point. We still see a widening of the curves with
increasing fmin; this corresponds to a wider and shorter
PDF. We calculate DKL and CI for this case as well; see
Table XI. These values show that fmin ¼ 10; 20 Hz are
relatively similar while the higher frequencies are signifi-
cantly different.

V. RECONSTRUCTING PROPERTIES OF
SYNTHETIC DATA I: ZERO, ALIGNED,

AND PRECESSING SPIN

This section is dedicated to end-to-end demonstrations
of this parameter estimation technique. Unless otherwise
specified, we adopt a total binary mass ofM ¼ 70 M⊙ and
use the fiducial early-O1 PSD [43] to qualitatively repro-
duce the characteristic features of data analysis for
GW150914. Without loss of generality and consistent with
common practice, we adopt a “zero noise” realization (i.e.,
the data used for each instrument is equal to its expected
response to our synthetic source). Table I is a list of
simulations we have used as sources in our end-to-end runs;
these include zero, aligned, and precessing systems all at
different inclinations. Here we start with an end-to-end
demonstration with zero spin from SXS.

A. Zero Spin: A fiducial example demonstrating
the method’s validity

We first illustrate the simplest possible and most-well-
studied scenario: a compact binary with zero spin and equal
mass, as represented here by SXS-1. To enable comparison
with other cases where higher order modes will be more
significant, we adopt inclinations { ¼ 0, 0.5, 0.785, 1.0, 1.5,

FIG. 11. Single runs of ILE with GT simulations with changing resolution and their corresponding PDFs: The left panel consists of
lnL vs total mass curves with different numerical resolution. Here we use GT-1a as the source and compare it to simulations with the
same parameters at different resolutions, specifically GT-1b and GT-1c. The results were evaluated with fmin ¼ 30 Hz at a total mass
M ¼ 70 M⊙ with an inclination { ¼ 0.785. Here black is M240, purple is M200, and blue is M160. Even though the error is clearly
minuscule, we convert the fits to PDFs for completeness. The right panel shows the PDFs for the three different resolutions [see
Eq. (22)]. It is clear that these are all the same PDFs, and the error introduced by different resolutions is irrelevant.

TABLE IX. KL divergence and 90% CI between PDFs with
different numerical resolution: This table shows the DKL,
calculated using Eq. (23), and 90% CI for PDFs with the three
different resolutions for RIT-1a, SXS-305a, and GT-1a. The DKL
was calculated comparing the lower resolutions’ PDFs to the
highest resolutions’ PDF (notice its DKL is 0 i.e. they are
identical). The confidence intervals are also given to show the
change between them. Based on the DKL results, the one-
dimensional posteriors are identical.

NR group Resolution DKL CI (90%)

RIT n120/n120 0 (68.8–71.5)
n110/n120 2.0e-4 (68.8–71.6)
n100/n120 6.5e-4 (68.7–71.5)

SXS Res6/Res6 0 (68.8–71.8)
Res5/Res6 4.5e-4 (68.9–71.8)
Res4/Res6 1.1e-5 (68.9–71.8)

GT M240/M240 0 (68.9–71.8)
M200/M240 4.3e-5 (68.9–71.8)
M160/M240 3.1e-4 (68.8–71.8)
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2.35. For the purposes of illustration, we present our end-
to-end plots using an inclination { ¼ 0.
The left panel of Fig. 13 shows χeff vs 1=q; the points

represent the maximum log likelihood lnLmarg of all the
different ILE runs across parameter space. The green
contour is the 90% CI derived using the quadratic fit to
lnLmarg for nonprecessing systems only. The colored points
represent points that fall in the lnLmarg < 127 region with
the red points representing higher lnLmarg and violet
represent lower lnLmarg. The gray points represent points
that fall between lnLmarg ¼ 130 and lnLmarg ¼ 127. The
black points represent points that fall in lnLmarg > 130.
These intervals were determined using the inverse χ2

distribution [see Eq. (10)] adopting d ¼ 4 (two masses
with aligned spin) for the black points and d ¼ 8 (two
masses with precessing spins). This CI is consistent with
the point distribution lnLmarg > 130 (i.e. black points),
which represents the points closest to the maximum. The
right panel of Fig. 13 shows the χeff vs M with the same
green contour and black point distribution. As with the left
panel, the green contour is consistent with the black point
distribution. Both plots recover the true parameters (indi-
cated by the big red dot) with regards to the confidence
interval and the black point distributions.
The left panel of Fig. 14 shows the χ1z vs χ2z where χ1z;2z

is the z component of the dimensionless spin [see Eq. (1)].

FIG. 12. Assessing the impact of low-frequency cutoff 2: Consistent cutoff choices: Revisiting the investigations shown in Fig. 5, this
figure uses (in the top panels) comparisons of a NR simulation to itself as a method to isolate the impact of fmin (the low-frequency
cutoff appearing in the likelihood). The bottom panels repeat a comparable analysis using SEOB. Top left panel: Plots different lnLmarg

vs total mass curves with different fmin. Here we compared a RIT-4 source with a duration of 5.0 Hz source compared to itself at different
fmin values. Specifically brown has a fmin ¼ 10, green has a fmin ¼ 20, red has a fmin ¼ 30, and magenta has a fmin ¼ 40. These results
are similar to the SEOBNRv2 case in Fig. 5. As the cutoff increases, our lnL curve becomes wider, and the peak value lnLmarg is lower.
Top right panel: One-dimensional posteriors pcðMÞ [Eq. (22)]. This figure qualitatively resembles Fig. 5; however, unlike the previous
analysis, while the posterior is wider (i.e., less informative), no significant bias is introduced by the low-frequency cutoff. Bottom left
panel: Similar to prior figures, a plot of lnLmargðMÞ, evaluated using SEOBNRv2. In this comparison, the SEOBNRv2 source with a
certain duration was compared to a SEOBNRv2 template with the same fmin. Specifically brown has a fmin ¼ 10, green has a fmin ¼ 20,
red has a fmin ¼ 30, and magenta has a fmin ¼ 40. As the cutoff increases, our lnL curve becomes wider. Bottom right panel: The
corresponding PDFs to the fits [see Eq. (22)]. We again see similarities between this case and Fig. 5 minus the shift in total mass with
increasing fmin.
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All the colors here represent the same as in Fig. 13.
We again see that the green contour is consistent with the
black point distribution. The right panel of Fig. 14 shows the
one-dimensional posteriors for 1=q for six different incli-
nations. These produce distributions we expect to see; all the
curves from the different inclinations lie on top of each other.
This implies that higher order modes for this particular case
are not expected to provide any extra information. By
construction, this source needs no higher order modes to
completely recover the parameters. Since all inclinations
have the same distribution shape, the results here are
independent of inclination at a fixed SNR.

B. Nonprecessing binaries: unequal mass
ratios and aligned spin

In the previous zero spin case, the higher order modes
had a minimal impact. Now we introduce an aligned spin
GW150914-like simulation as the source, SXS-0233. For
our total mass ofM ¼ 70 M⊙, we expect that the impact of

higher order modes borders on being significant. Because
of this, we did two end-to-end runs with SXS-0233: one
with l ≤ 2 and the other with l ≤ 3. The panels in Fig. 15
are the same type of plots as in the previous case; however,
we have also included a contour representing the 90% CI
for l ≤ 3 (green dashed line). In the left panel of Fig. 15, the
posterior corresponding to l ≤ 3 better constrains the mass
ratio than that of the posterior corresponding to l ≤ 2. In
this case, including higher order modes provides more
information about the mass ratio, allowing us to constrain it
more tightly. The right panel of Fig. 15 is the same type of
plot as the left panel of Fig. 13; however, this includes the
results from the l ≤ 3 runs. Since the lnLmarg was higher,
the number of black and gray points slightly decreased. It is
clear from these two plots that higher order modes are
significant and need to be included for this source to get the
best possible constraints on the parameters. The right panel
in Fig. 15 shows the χeff vs M; these show little difference
between the l ≤ 2 and the l ≤ 3 contours. The contours
agree very well with each as well as the black points’
distribution in both panels of Fig. 15. We recover the true
parameters in both plots and with l ≤ 2 and l ≤ 3; however,
we can better constrain q with higher order modes.
As with the zero spin case, we plot lnLmarg as a

function of χ1z and χ2z in the left panel in Fig. 16. Here
again the dashed and solid green contours represent the
confidence interval for l ≤ 2 and l ≤ 3 respectively and
are largely consistent with each other. The right panel of
Fig. 16 shows the one-dimensional distributions for 1=q
for different inclination values. The difference in the
curves here could be explained by higher order modes;
however, more needs to be done to corroborate this
hypothesis.
In this particular case, higher order modes have a

relatively modest impact on the posterior. The minimal
impact is by design: moving away from zero spin and
equal mass within the posterior of GW150914, we have
explicitly selected a point in parameter space where higher
order modes have just become marginally significant.
Even remaining within the posterior of GW150914, as we
move towards more extreme antisymmetric spins and
mass ratios, higher order modes can play an increasingly
significant role. We address this issue further in sub-
sequent work.

C. Precessing binaries: unequal mass ratios and
precessing spin, but short duration

Since all the fits in this study have only used the
nonprecessing binaries, one might come to the conclusion
that this limits us to analyzing only zero spin and aligned
source. We can potentially recover parameters of precess-
ing sources if the duration of these sources is short enough;
this translates to only a few cycles and therefore little to
no precession before merger; see before Eq. (9) in [43].
Figure 17 has the same type of plot as in Fig. 13.

TABLE X. KL divergence and 90% CI of PDFs derived from
RIT-4 sources with different low-frequency cutoffs: This table
shows the DKL and 90% CI for the four different configurations
using a RIT-4 source with a set duration of 5 Hz and compared
against RIT-4 templates with different low-frequency cutoffs. The
DKL was calculated comparing the one-dimensional distributions
to the fmin ¼ 10 Hz case (notice its DKL is 0 i.e. they are
identical). The CI is also given to show the change between them.
Based on the DKL results, the one-dimensional posteriors of
fmin ¼ 10; 20 Hz seem to be the same distribution; however, they
differ significantly to fmin ¼ 30; 40 Hz.

fmin for ILE run (Hz) DKL CI (90%)

10=10 0.0 (69.2–71.2)
20=10 9.2e-3 (69.2–71.3)
30=10 0.34 (69.0–72.0)
40=10 1.9 (67.8–73.0)

TABLE XI. KL divergence and 90% CI of PDFs derived from
SEOB sources: This table shows theDKL and 90% CI for the four
different configurations using a SEOB source compared against
SEOB templates with the same duration/fmin (i.e. if the source
has a duration of 10 Hz, the template has a fmin ¼ 10 Hz). The
DKL was calculated comparing the one-dimensional distributions
to the fmin ¼ 10 Hz case (notice its DKL is 0 i.e. they are
identical). The CI is also given to show the change between them.
Based on the DKL results, the one-dimensional posteriors of
fmin ¼ 10; 20 Hz seem to be the same distribution; however, they
differ significantly to fmin ¼ 30; 40 Hz.

fmin for ILE run (Hz) DKL CI (90%)

10=10 0.0 (69.2–71.0)
20=10 1.7e-5 (69.2–71.1)
30=10 0.33 (68.9–71.8)
40=10 0.85 (68.4–72.1)
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Here the gray points represent points that fall between
lnLmarg ¼ 165 and lnLmarg ¼ 163, and the black points
represent points that fall in lnLmarg > 165. The colored
points represent the points that fall in the region lnLmarg <
163 with the red points representing the higher lnLmarg

values. As with the previous cases, these intervals were
determined using the inverse χ2 distribution [see Eq. (10)]
adopting d ¼ 4 (two masses with aligned spin) for the
black points and d ¼ 8 (two masses with precessing spins)

for the gray points. As we expected, the short duration of
this source allows us to recover the parameters with a fit
that only uses the nonprecessing cases as shown in the left
panel of Fig. 19. Here we plot the lnLmargðMÞ of a single
null run of ILE comparing SXS-0234v2 with itself (black)
and the whole end-to-end lnLmargðMÞ using SXS-0234v2
as the source. By construction, the lnLmarg from the null
run of SXS-0234v2 is the highest lnLmargðMÞ possible. If
the maximum lnLmarg from the whole end-to-end run is

FIG. 13. Parameter recovery for zero spin equal mass binary I: Each point represents a NR simulation and a particular total mass
compared against a SXS-1 source. The left panel shows χeff vs 1=q with q ¼ m1=m2 and χeff defined in Eq. (2), and the right panel
shows χeff vsM. The gray points represent points that fall between lnLmarg ¼ 130 and lnLmarg ¼ 127. The black points represent points
that fall in lnLmarg > 130, i.e. templates that best match the source. The peak value with this run was lnLmarg ¼ 134. These intervals
were determined using the inverse χ2 distribution [see Eq. (10)]. The rest of the colors represent all the points lnLmarg < 127with the red
representing the highest in the region. The green contour is the 90% CI derived using the quadratic fit to lnLmarg for nonprecessing
systems only. The big red dot represents the true parameters of the source. We are able to recover the two-dimensional posterior
distribution that is consistent with the distributions with lnLmarg > 130 (black points).

FIG. 14. Parameter recovery for zero spin equal mass binary II: The left panel shows the lnLmarg as a function of χ1z and χ2z. The
rainbow, gray, and black points represent the same intervals as in Fig. 13. The green contour also represents the same CI as Fig. 13. The
right panel shows the one-dimensional posterior distribution for 1=q. This one-dimensional posterior was derived from the quadratic fit
of to lnLmarg for nonprecessing systems only. Here we show results for six inclinations: { ¼ 0.0 (black), { ¼ 0.5 (red), { ¼ 0.785 (blue),
{ ¼ 1.0 (green), { ¼ 1.5 (gray), { ¼ 2.35 (orange). We see that the results from all the inclinations are the same; i.e. no more information
can be obtained with higher order modes.
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close (Δ lnL ≤ 1), we can recover the parameters of the
simulations without fitting with the precessing systems. In
this case, the Δ lnL ¼ 0.97. We can therefore accurately
recover the parameters of this precessing system as evident
by Fig. 17.3

We again show lnLmarg as a function of χ1z and χ2z in the
left panel of Fig. 18 with all the colors and contours
representing the same as in Fig. 14. The green contours are
consistent with the black point distribution. We again plot
the one-dimensional distribution for 1=q for different
inclinations in the right panel of Fig. 18 with all the colors
corresponding to the same inclinations as in the right panel
of Fig. 14. Here we see relative consistency between the
different inclinations, with a consistent trend towards
extracting marginally more information as the inclination
increases. We have an outlier for { ¼ 1.5: a nearly edge-on
line of sight. For such a line of sight, keeping in mind we

FIG. 15. Parameter recovery for an aligned, GW150914-like unequal mass binary I: Each point represents a NR simulation and a
particular total mass compared against a SXS-0233 source. The left panel shows χeff vs 1=q with q ¼ m1=m2, and the right panel shows
χeff vs M with χeff defined in Eq. (2). The gray points represent points that fall between lnLmarg ¼ 167 and lnLmarg ¼ 165. The black
points represent points that fall in lnLmarg > 167, i.e. templates that best match the source. The rest of the colors represent all the points
lnLmarg < 165 with the red representing the highest in the region. The green contours are the 90% CI derived using the quadratic fit to
lnLmarg for nonprecessing systems only. The dash line is the CI for l ≤ 3, and the solid line is the CI for l ≤ 2. The big red dot represents
the true parameters of the source. We are able to better constrain the posterior by using higher modes for this system.

FIG. 16. Parameter recovery for an aligned, GW150914-like unequal binary II: The left panel shows the lnLmarg as a function of χ1z
and χ2z. The colored, gray, and black points represent the same intervals as in Fig. 15. The green contours also represent the same CI as
Fig. 13. The big red dot represents the true parameters of the source. The right panel shows the one-dimensional posterior distribution for
1=q. This one-dimensional posterior was derived from the quadratic fit of to lnLmarg for nonprecessing systems only. Here we show
results for six inclinations all represented by the same colors as the zero spin case; see Fig. 14. In this case, we see significant differences
between the curves implying that higher order modes could be important for accurate analysis of this source.

3When interpreting the above statement, however, it is im-
portant to note our analysis by construction uses only information
f > 30 Hz. If we had access to a wider range of long simulations,
we could have access to information from precession cycles
between 10 and 30 Hz, even for sources of this kind and in these
data. More work is needed to assess the prospects for recovery for
longer, more generic sources.
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tune the source distance to fix the network SNR, preces-
sion-induced modulations are amplified; this outlier could
and probably does represent the impact of precession.
To investigate this further, we again plot lnLmargðMÞ of a
single null run of ILE comparing SXS-0234v2 with itself
(black) and the whole end-to-end lnLmargðMÞ using SXS-
0234v2 with { ¼ 1.5 as the source; see the right panel of
Fig. 19. By construction, the lnLmarg from the null run of
SXS-0234v2 is the highest lnLmargðMÞ possible. Here we

find a bigger difference between lnLmarg of the null run and
lnLmarg of the entire end-to-end run: Δ lnL ∼ 1.8. We then
take all the individual runs from the end-to-end runs that
compared 0234v2 to itself and plot lnLmargðMÞ for each
inclination. As evident in Fig. 20, the { ¼ 1.5 curve lies
well below the rest of the inclinations. More investigations
are needed to resolve this discrepancy; however, this could
imply that SXS-0234v2 has many modes that are relevant,
reflecting precession-induced modulation most apparent

FIG. 17. Parameter recovery for a precessing, short, unequal mass binary I: Each point represents a NR simulation and a particular
total mass compared against a SXS-0234v2 source with l ≤ 2 modes. The left panel shows the χeff vs 1=q with q ¼ m1=m2 and χeff
defined in Eq. (2), and the right panel shows the χeff vs M. The gray points represent points that fall between lnLmarg ¼ 165 and
lnLmarg ¼ 163. The black points represent points that fall in lnLmarg > 165, i.e. templates that best match the source. The rest of the
colors represent all the points lnLmarg < 163with the red representing the highest in the region. The green contour is the 90% CI derived
using the quadratic fit to lnLmarg for nonprecessing systems only. The big red dot represents the true parameters of the source. We are
able to recover the two-dimensional posterior distribution that is consistent with the distributions with lnLmarg > 165 (black points).

FIG. 18. Parameter recovery for a precessing, short, unequal mass binary II: The left panel shows the lnLmarg as a function of χ1z and
χ2z. The gray, black, and other color points represent the same intervals as in Fig. 17. The green contour represents the same contour as in
Fig. 17. The big red dot represents the true parameters of the source. The green contour is consistent with the black point distribution.
The right panel shows the one-dimensional posterior distribution for 1=q. This one-dimensional posterior was derived from the quadratic
fit of lnLmarg for nonprecessing systems only. Here we show results for the same six inclinations all represented by the same colors as the
zero spin case; see Fig. 14. In this case, we see significant differences between the curves implying that higher order modes could be
important for accurate analysis of this source. We also see large discrepancies between the { ¼ 1.5 distribution and the other inclinations.
See Figs. 19 and 20 for further analyses.

PARAMETER ESTIMATION METHOD THAT DIRECTLY … PHYSICAL REVIEW D 96, 104041 (2017)

104041-23



perpendicular to J̄ the total angular momentum vector. In
future work, where we attempt to recover all spin degrees of
freedom for precessing sources, we will focus in particular
on edge-on lines of sight like this.

VI. CONCLUSIONS

We have presented and assessed a method to directly
interpret real gravitational wave data by comparison to
numerical solutions of Einstein’s equations. This method

can employ existing harmonics and physics that has been
or can be modeled. While any other method can do so as
well if suitable models have been developed and calibrated,
this method skips the step of translating NR results into
model improvements, circumventing the effort and poten-
tial biases introduced in doing so.
We also provided a detailed systematic study of the

potential errors introduced in our method. We first used
the overlap or mismatch to assess the difference between
different simulations along fiducial lines of sight. As noted
in Eq. (20), we expect that lnL is approximately propor-
tional to the mismatch by an overall constant. We demon-
strate this relationship explicitly, using NR sources and
synthetic data. Once we obtained lnLmarg, we fitted with a
simple quadratic and derived a PDF using Eq. (22) with its
corresponding 90% CI. Using the PDFs, we can graphically
see any errors that would have been propagated through.
To quantify this change, we calculated a KL divergence
between two PDFs [see Eq. (23)]. By using these diag-
nostics, we addressed and quantified systematic errors that
could affect our parameter estimation results.
Our validation studies systematically assessed the impact

of (a) Monte Carlo error, (b) waveform extraction error,
(c) simulation resolution, and (d) low-frequency cutoff/

signal duration via our diagnostics.
(a) Based on our results from our examples, we were

confident that the error from our Monte Carlo integra-
tion would be small. To quantify the results that seem
apparent by eye, we applied our diagnostics (omitting
the mismatch) and found the DKL between the PDFs
[i.e. DKLðv1;v1Þ, DKLðv1;v2Þ, DKLðv1;v3Þ] to be
all DKL ∼ 10−5.

FIG. 19. Proof of parameter recovery for a precessing, short, unequal mass binary: Here is lnLmargðMÞ of a single ILE null run
comparing SXS-0234v2 with itself (black) and the lnLmargðMÞ for the full end-to-end run with SXS-0234v2 as its source (gray). The left
panel represents runs with a source with { ¼ 0.0, and the right panel represent runs with a source with { ¼ 1.5. The gray points only
include the nonprecessing templates. If we take the difference between the lnLmarg from the whole end-to-end run and the lnLmarg from
the null run, we get a Δ lnL ∼ 0.97 for { ¼ 0.0 and Δ lnL ∼ 1.8 for { ¼ 1.5. Even if we were to include the best template in our end-to-
end runs (which is itself), we only get a slight increase in the lnLmarg for the face-on inclination. However, the edge-on case change
seems significant; see Fig. 20 for an investigation focusing on the peak values.

FIG. 20. Discrepancy in lnLmargðMÞ for { ¼ 1.5: This is a plot
of multiple lnLmargðMÞ comparing SXS-0234v2 with itself at
different inclinations. Here { ¼ 0.0 is black, { ¼ 0.5 is red, { ¼
0.785 is blue, { ¼ 1.0 is green, { ¼ 1.5 is gray, and { ¼ 2.35 is
orange. The edge-on case is clearly different than the rest of the
inclinations; more needs to be done to discover the origin of this
discrepancy; however, this could be due to many significant
higher modes.
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(b) In a similar fashion, we applied our diagnostics to
GW150914-like simulations from the SXS and RIT
NR groups. We validated the utility of the perturbative
extraction technique but noted some differences be-
tween the strain provided by SXS and perturbative
extraction applied to their ψ4 data. Based on excellent
agreement between RIT (with perturbative extraction)
and SXS provided strain, we expect the discrepancies
relate to improper assumptions regarding SXS coor-
dinates. More needs to be done to discover the
origin of this disparity. From our match study, we
determined that the impact of the error due to wave-
form extraction is insignificant at a large enough
extraction radius. This was validated via the DKL
between three PDFs with the highest possible extrac-
tion radii, which were all around 10−2 − 10−3.

(c) When using our mismatch study to assess the impact of
resolution error, it was determined that the mismatch for
all the different resolution was M ∼ 10−5. This seem-
ingly small difference in the waveform was then
reaffirmed by the corresponding DKL ∼ 10−4 − 10−5.
From our diagnostics, it was clear that the error
introduced by numerical resolution was negligible.

(d) We finally used our diagnostics to the assess impact of
low-frequency cutoffs and signal duration. For both
NR and analytic models, the available frequency
content provided can significantly affect our results.
After deriving our PDFs and calculating the DKL, we
found that the lower fminð10; 20 HzÞwere very similar
with a narrow PDF and a high peak while the higher
fminð30; 40 HzÞ produced a wider PDF with a lower
peak. We stress the importance of the hybridization of
the NR waveforms to allow for a low fmin to
standardization NR waveforms while providing the
longest waveform possible.

We also provided three end-to-end examples with
three different types of sources. First, we used a simple
example—zero spin equal mass, where no significant
higher order modes complicate our interpretation—to show
our method works. Second, we examined an aligned,
GW150914-like, unequal mass source. Though the lead-
ing-order quadruple radiation from such a source is nearly
degenerate with an equal mass, zero spin system, this
binary has asymmetries which produce higher order modes.
We used our method with the l ≤ 2 as well as the l ≤ 3

modes and found we could better constrain q using higher
modes. We also found significant differences between the
one-dimensional probability distributions for 1=q; this
implied that higher modes were significant. Third, we used
our method on a precessing but short unequal mass source.
Due to its short duration of the observationally accessible
signal, this comparable-mass binary has little to no time to
precess in band. This allows us to recover the parameters of
the binary even though we construct a fit based on the
nonprecessing binaries. Even though the recovery of

parameters was possible, the edge-on case for our one-
dimensional distributions was significantly different than
the rest. For this line of sight, precession-induced modu-
lations are most significant; the simplifying approximation
that allowed success for the other lines of sight breaks
down. Even though we suspect this is also due to higher
order modes, more needs to be done to validate this claim.
In the future, we will extend this strategy to recover
parameters of generic precessing sources.
The method presented here relies on interpolation

between existing simulations of quasicircular black hole
binary mergers. For nonprecessing binaries, this three-
dimensional space has been reasonably well explored. For
generic quasicircular mergers, however, substantially more
simulations may be required to fill the seven-dimensional
parameter space sufficiently for this method. Fortunately,
targeted follow-up numerical simulations of heavy binary
black holes are always possible. These simulations will
be incredibly valuable to validate any inferences about
binary black hole mergers, from this or any other method.
For this method, in particular, follow-up simulations can be
used to directly assess our estimates, and revise them. We
outline follow-up strategies and iterative fitting procedures
in subsequent work.
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APPENDIX: EXPLORING THE
PARAMETER SPACE

In this appendix, we provide additional examples of our
method using numerical relativity simulations in different
regions of parameter space. We demonstrate our method
works reliably for more exotic sources than those presented
in the main body of the text (Figure 21 and 22) as well as in
regions where few simulations with comparable parameters
are available (Figures 23 and 24). For the parameters of each
source, see the following source labels (in the order that they
appear) in Table I: RIT-5, SXS-high-antispin, SXS-χeff0.4,
and RIT-2.
This appendix (and the resolution study performed in

Figs. 9–11) provides us with an opportunity to assess the
computational cost of our analysis. For context, all studies
used in this work adopt a highly conservative and realistic
detector network and source extrinsic parameters, and we
carefully made no attempt to use our prior knowledge of

FIG. 21. Parameter recovery for a zero spin, q ¼ 2 binary: Each point represents a NR simulation and a particular total mass compared
against a RIT-5 source. The top-left panel shows the χeff vs 1=q with q ¼ m1=m2 and χeff defined in Eq. (2), the top-right panel shows the
χeff vsM, and the bottom panel shows the χ1 vs χ2. The gray points represent points that fall between lnLmarg ¼ 166 and lnLmarg ¼ 164.
The black points represent points that fall in lnLmarg > 167, i.e. templates that best match the source. The rest of the colors represent all
the points lnLmarg < 164with the red representing the highest in the region. The green contour is the 90% CI derived using the quadratic
fit to lnLmarg for nonprecessing systems only. The dashed line is the CI for l ≤ 3, and the solid line is the CI for l ≤ 2. The big red dot
represents the true parameters of the source. We are able to recover the two-dimensional posterior distribution that is consistent with the
distributions with lnLmarg > 167 (black points).
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the true source parameters like mass or sky location to
improve our performance in any way. We employed an
analysis using a two-interferometer network (implying a
poorly localized sky area) and a moderate SNR; as a
result, as in the analysis of LIGO data in O1, our adaptive
Monte Carlo must expend considerable effort identifying
the source extrinsic configuration (i.e., its sky location and
distance). In this context, the resolution study shown in
Figs. 9–11 provides an excellent example of the worst-case
brute-force computational cost needed per NR simulation
per analysis. In this test, we performed 200 likelihood
evaluations on a uniform mass grid, at a cost of roughly
45 minutes per point on a single core. Therefore, the cost of
estimating the likelihood of a single simulation as a function
of mass in this test is roughly 150 SUs/simulation. In
production and thus for the examples illustrated in this
appendix, we by contrast use adaptive mass sampling and

fewer Monte Carlo integral evaluations in an initial sweep
through the mass range (approximately 2–4 minutes per
mass point, evaluated roughly 50 times), followed by
roughly ten 30 to 45-minute follow-up Monte Carlo inte-
grations near the estimated peak, at a cost of roughly 10 SUs/
simulation. The overall cost scales linearly in the number
of simulations, corresponding at present to roughly 20k SUs
per analysis. We intend to employ more efficient
Monte Carlo implementations (e.g., GPUs) in future imple-
mentations, with dramatically reduced overall computational
cost. We point out that three-detector networks also much
more efficiently localize sources on the sky; in our current
setup, we find that well-localized three-interferometer
sources require substantially fewer iterations of our adaptive
integrator to achieve the same level of Monte Carlo inte-
gration accuracy. We defer a careful discussion of code cost
and optimization to future work.

FIG. 22. Parameter recovery for a high, antialigned spin q ¼ 1.31 binary: Each point represents a NR simulation and a particular total
mass compared against a SXS-high-antispin source. The top-left panel shows the χeff vs 1=q with q ¼ m1=m2 and χeff defined in Eq. (2),
the top-right panel shows the χeff vs M, and the bottom panel shows the χ1 vs χ2. The gray points represent points that fall between
lnLmarg ¼ 167 and lnLmarg ¼ 164. The black points represent points that fall in lnLmarg > 167, i.e. templates that best match the
source. The rest of the colors represent all the points lnLmarg < 164 with the red representing the highest in the region. The green
contour is the 90% CI derived using the quadratic fit to lnLmarg for nonprecessing systems only. The dashed line is the CI for l ≤ 3, and
the solid line is the CI for l ≤ 2. The big red dot represents the true parameters of the source. We are able to recover the two-dimensional
posterior distribution that is consistent with the distributions with lnLmarg > 167 (black points).
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FIG. 23. Parameter recovery for a χeff ¼ 0.4 spin q ¼ 1.19 binary: Each point represents a NR simulation and a particular total mass
compared against a SXS-χeff0.4 source. The top-left panel shows the χeff vs 1=q with q ¼ m1=m2 and χeff defined in Eq. (2), the top-
right panel shows the χeff vs M, and the bottom panel shows the χ1 vs χ2. The gray points represent points that fall between
lnLmarg ¼ 167 and lnLmarg ¼ 164. The black points represent points that fall in lnLmarg > 167, i.e. templates that best match the
source. The rest of the colors represent all the points lnLmarg < 164 with the red representing the highest in the region. The green
contour is the 90% CI derived using the quadratic fit to lnLmarg for nonprecessing systems only. The dashed line is the CI for l ≤ 3, and
the solid line is the CI for l ≤ 2. The big red dot represents the true parameters of the source. We are able to recover the two-dimensional
posterior distribution that is consistent with the distributions with lnLmarg > 167 (black points).
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