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BACKGROUND: The immune response in Alzheimer's disease (AD) involves activation of microglia which may 

remove amyloid-β (Aβ). However, overproduction of inflammatory compounds may exacerbate neural damage 

in AD. AD pathology accumulates years before diagnosis, yet the extent to which neuroinflammation is involved 

in the earliest disease stages is unknown. 

OBJECTIVE: To determine whether neuroinflammation exacerbates neural damage in preclinical AD. 

METHODS: We utilized cerebrospinal fluid (CSF) and magnetic resonance imaging collected in 192 

asymptomatic late-middle-aged adults (mean age = 60.98 years). Neuroinflammatory markers chitinase-3-like 

protein 1 (YKL-40) and monocyte chemoattractant protein-1 (MCP-1) in CSF were utilized as markers of 

neuroinflammation. Neural cell damage was assessed using CSF neurofilament light chain protein (NFL), CSF 

total tau (T-Tau), and neural microstructure assessed with diffusion tensor imaging (DTI). With regard to AD 

pathology, CSF Aβ42 and tau phosphorylated at threonine 181 (P-Tau181) were used as markers of amyloid 

and tau pathology, respectively. We hypothesized that higher YKL-40 and MCP-1 in the presence of AD 

pathology would be associated with higher NFL, T-Tau, and altered microstructure on DTI. 

RESULTS: Neuroinflammation was associated with markers of neural damage. Higher CSF YKL-40 was 

associated with both higher CSF NFL and T-Tau. Inflammation interacted with AD pathology, such that greater 

MCP-1 and lower Aβ42 was associated with altered microstructure in bilateral frontal and right temporal lobe 

and that greater MCP-1 and greater P-Tau181 was associated with altered microstructure in precuneus. 

CONCLUSION: Inflammation may play a role in neural damage in preclinical AD.  



1. INTRODUCTION 

Inflammation is a well-established feature of Alzheimer’s disease (AD) [1,2]. Several pro-inflammatory cytokines, 

chemokines, and complement proteins are elevated in the AD brain and both human and animal studies suggest  

inflammation may occur early in the AD process [3–7]. The underlying cause of inflammation in AD is not entirely 

known, but is likely secondary to β-amyloid deposition which elicits a pro-inflammatory microglial response via a 

complex cytokine-signaling cascade (perhaps add a reference here; Jennifer Pocock has written some good 

ones on the topic). The extent to which neuroinflammation has a negative effect on neural health in the early 

stages of AD is presently unclear.  While microglial activation and  inflammation may have a beneficial effect in 

clearing β-amyloid, overproduction of pro-inflammatory compounds is suspected as a major contributing factor 

to neuronal damage by causing injury and toxicity to neurons [8].  

Microglial activation, along with cell death and degradation of synaptic connections, are found to a greater extent 

in AD patients post mortem, compared to individuals who were cognitively intact at time of death despite 

comparable levels of amyloid and tangle pathology [6]. Neurofibrillary tangles and β-amyloid plaques are 

hallmarks of AD, however post-mortem histological and in vivo amyloid imaging studies suggest that a 

substantial number of healthy individuals harbor significant AD pathology despite normal cognition [6,9,10].  

Given that inflammatory mediators released by glial cells can be toxic to neurons, one possible mechanism for 

this dissociation is the presence of neuroinflammation. In turn, neuronal loss and synaptic pathology tend to be 

more closely related to cognitive function compared to β-amyloid pathology [11,12], suggesting that 

inflammation-mediated cell loss may contribute to cognitive dysfunction in AD. While there is growing evidence 

that microglial activation may play a role in neural injury and cell loss, very little is known about the timing and 

localization of inflammation-mediated neural damage.  

The primary aim of the current study was to determine the effect of neuroinflammation on neural microstructure 

in asymptomatic adults enriched for AD risk factors including parental family history of AD and apolipoprotein E 

ε4 (APOE ε4) genotype. In this study, cerebrospinal fluid (CSF) markers served as proxies of neuroinflammation, 

and included YKL-40 and monocyte chemoattractant protein 1 (MCP-1). These two proteins are elevated in pre-

clinical AD, mild cognitive impairment (MCI), and early AD [4,13–16]. Neurofilament light chain protein (NFL) in 

CSF, and diffusion tensor imaging (DTI) measures were used to assess neural injury. NFL is a structural protein 

of neurons predominantly localized in axons, and is elevated in CSF in several neurodegenerative diseases, 

including AD [17–20]. In turn, DTI is sensitive to microstructural diffusion of water molecules and has been used 

extensively to assess tissue damage in AD, MCI, and preclinical AD [21–32]. Two summary measures derived 

from DTI were used to assess tissue microstructure: fractional anisotropy (FA), a measure of directional water 

diffusion that is highly sensitive to microstructural features including axonal density, diameter, and myelination, 

and mean diffusivity (MD), a measure of isotropic diffusion that is sensitive to cellular structure, necrosis, and 

edema [33,34]. We hypothesized that greater neuroinflammation would be associated with higher levels of CSF 

NFL and  microstructural damage as revealed on FA and MD maps.  



Because we were specifically interested in the extent to which neuroinflammation may affect neural health in the 

presence of existing AD pathology, analyses incorporated measures of CSF Aβ42, and T-tau. High T-tau and low 

Aβ42 in CSF have been associated with atrophy, cortical thinning, and altered white matter microstructure in 

preclinical AD [35–38] but the extent to which neuroinflammation may moderate these effects are unknown. We 

hypothesized that the negative effects of β-amyloid and tau pathology on neural microstructure would be greater 

among individuals with higher inflammation. A subsidiary aim was to examine whether age, family history, or 

APOE ε4 genotype moderated the effect of AD pathology and inflammation on microstructure. While being a 

clear independent risk factor for AD, APOE ε4 has also been associated with up-regulation of innate immune 

factors, including plasma TNF-α and IL-6 [39]. Likewise parental family history of AD has been shown to confer 

a pro-inflammatory cytokine profile independent of APOE ε4 [7]. We hypothesized that individuals at greater risk 

for AD, indicated by positive family history, APOE ε4 genotype, or older age, would have greater changes in 

tissue microstructure in the presence of higher AD pathology or greater neuroinflammation. Understanding the 

impact of preclinical inflammation is expected to provide valuable information on the pathobiology of AD and 

inform prevention and treatment strategies in the disease.  

2. METHODS 

Study procedures were approved by the University of Wisconsin Health Sciences Institutional Review Board and 

were in accordance with U.S. federal regulations. All participants provided written informed consent.  

2.1 Participants 

Participants were asymptomatic late-middle-aged adults (mean age = 61.2 years, SD = 7.58) from the Wisconsin 

Registry for Alzheimer’s Prevention (WRAP) study and the Wisconsin Alzheimer’s Disease Research Center 

(ADRC) clinical core who underwent brain imaging and lumbar puncture as part of studies on memory, aging, 

and preclinical AD. Both the WRAP and Wisconsin ADRC comprise well-characterized and longitudinally 

followed participants who are either positive or negative for parental history of AD.  Positive parental family 

history of AD classification was defined as having one or both parents with autopsy-confirmed or probable AD 

as outlined by research criteria [40,41], and reviewed by a multidisciplinary diagnostic consensus panel. Detailed 

medical history and phone interviews were conducted to confirm AD negative participants. Absence of family 

history of AD required that the participant’s father survive to at least age 70 years and the mother to age 75 years 

without diagnosis of dementia or cognitive deterioration. Family history was classified as a binary variable. APOE 

ε4 genetic testing was performed at the University of Wisconsin-Madison, Waisman Center. APOE ε4 extraction 

and isoform classification have been described previously [42]. Participants were categorized using a binary 

variable as an APOE ε4 carrier or non- carrier.  

General inclusion criteria consisted of: 1) normal cognitive function determined by neuropsychological 

evaluation, 2) negative history of psychiatric or neurological disease or untreated depression, and 3) no history 

of head trauma. Participants were also required to have previously undergone magnetic resonance imaging 

(MRI) and lumbar puncture for CSF assays.  



 

Participants were excluded from the analysis based on one or more of the following: a) abnormal radiological 

read on study MRI, including evidence of infection, infarct, or tumor (n=31), b) CSF assay results that were below 

detection threshold on one or more assays (n=4), c) unsatisfactory DTI data quality after processing, such as 

major susceptibility artifact (n=12), or d) an incomplete or failed DTI acquisition or transfer (n=11).  

Of 248 participants identified for possible inclusion in the study, 190 participants met criteria for inclusion. Overall 

the sample was largely female, Caucasian, well educated, had a parental family history of AD or were APOE ε4 

carriers (see Table 1).  

2.2 CSF collection and analysis:  

CSF was collected with a Sprotte 25-or 24-gauge spinal needle at the L3/4 or L4/5 using gentle extraction into 

polypropylene syringes. Samples were collected in the morning after a 12h fast. Approximately 22mL of CSF 

were combined, gently mixed and centrifuged at 2000g for 10 minutes. Supernatants were frozen in 0.5mL 

aliquots in polypropylene tubes and stored at -80oC. Samples were analyzed for T-tau and Aβ42 using 

commercially available enzyme-linked immunosorbent assay (ELISA) methods (INNOTEST assays, Fujiurebio, 

Ghent Belgium) as described previously in detail [43]. MCP-1 levels in CSF were measured using the Meso 

Scale Discovery technique (MSD Human MCP-1; Meso Scale Discovery, Gaithersburg, MD, USA), and YKL-40 

was determined using a sandwich enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Minneapolis, 

Minn., USA). CSF NFL was measured with a sandwich ELISA method (NF-light ELISA kit, UmanDiagnostics AB, 

Umeå, Sweden). Board-certified laboratory technicians who were blinded to clinical diagnosis performed all 

analyses on one occasion. All samples were analyzed according to protocols approved by the Swedish Board 

of Accreditation and Conformity Assessment (SWEDAC) using one batch of reagents (intra-assay coefficients 

of variation <10%).   

2.3 Magnetic Resonance Imaging:  

The average delay between MRI and lumbar puncture was 6.57 days (SD 19.68). Participants underwent 

scanning on one of two identical General Electric 3.0 Tesla Discovery MR750 MRI systems with 8 channel head 

coils and parallel imaging (ASSET). DTI was acquired using a diffusion-weighted, spin-echo, single-shot, echo 

planar imaging (EPI) pulse sequence in 40 encoding directions with b = 1300 s/mm^2, and eight non-diffusion 

weighted (b = 0) reference images. The cerebrum was covered using contiguous 2.5 mm thick axial slices, FOV 

= 24 cm, TR = 8000 ms, TE = 67.8 ms, matrix = 96 × 96, resulting in isotropic 2.5 mm3 voxels. High order 

shimming was performed prior to the DTI acquisition to optimize the homogeneity of the magnetic field across 

the brain and to minimize EPI distortions. A T1-weighted volume was acquired in the axial plane with a 3D fast 

spoiled gradient-echo sequence using the following parameters: inversion time (TI) = 450 ms; repetition time 

(TR) = 8.1 ms; echo time (TE) = 3.2 ms; flip angle = 12°; acquisition matrix = 256 × 256 mm, field of view (FOV) 

= 256 mm; slice thickness = 1.0 mm. 3D T2-weighted fluid attenuated inversion recovery (FLAIR) scans were 

acquired in the sagittal plane using the following parameters: TI = 1868 ms; TR = 6000 ms; TE = 123 ms; flip 



angle = 90°; acquisition matrix = 256 x 256mm, FOV = 256 mm; slice thickness = 2.0 mm, no gap, yielding a 

voxel resolution of 1 mm x 1 mm x 2 mm.  

2.4 MRI Processing 

DTI was processed using a customized pipeline, as described in detail in Adluru et al. [44]. Briefly, images 

underwent eddy current correction, field inhomogeneity correction, and skull stripping using tools from the FMRIB 

Software Library (FSL) (http://www.fmrib.ox.ac.uk/fsl/). Tensor fitting was performed using the University College 

London, Camino Diffusion MRI Toolkit (http://cmic.cs.ucl.ac.uk/camino/). Tensor-based registration was 

implemented utilizing Diffusion Toolkit for DTI analysis (DTI-TK, http://dti-tk.sourceforge.net/pmwiki/pmwiki.php), 

whereby images were registered to a population specific template created with DTI-TK. FA and MD maps were 

calculated using DTI-TK. 

In order to control for ischemic lesion burden, total white matter hyperintensity (WMH) volume for each participant 

was determined using Lesion Segmentation Tool (version 1.2.2) implemented in SPM8 [45]. The T1-weighted 

and T2FLAIR images were processed according to the method detailed in Birdsill et al. [46]. WMH was adjusted 

for variability in head size by dividing total WMH by intracranial volume to yield a WMH ratio (WMHr). Intracranial 

volume was calculated using the “reverse brain masking” method detailed in Keihaninejad et al. [47]. 

2.5 Statistical Analysis 

2.5.1 CSF analyses 

To test the effect of neuroinflammation and AD pathology on axonal damage, a linear regression model was 

implemented in SPSS (IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp) assessing the 

effect of YKL-40, MCP-1, Aβ42 and T-tau on CSF NFL. Age, sex, family history of AD, APOE ε4, and WMHr were 

entered as covariates.  

2.5.2 Voxel-wise DTI analyses  

To test the effect of neuroinflammation and AD pathology on tissue microstructure, voxel-wise analyses of FA 

and MD maps were implemented using statistical parametric mapping software (SPM8; 

http://www.fil.ion.ucl.ac.uk/spm/). Multiple regression models tested main effects of YKL-40 and MCP-1 on FA 

and MD, in addition to interactions between YKL-40 and MCP-1 and CSF Aβ42, T-tau, family history of AD, APOE 

ε4 status, and age. Models used age, sex, family history, APOE ε4 status, and WMHr as covariates. Given that 

anisotropic water diffusion is less interpretable in gray matter compared to white matter, FA analyses were limited 

to white matter. A white matter mask was constructed by thresholding the FA template to values > 0.15. MD 

analyses were conducted in both gray and white matter, using a brain mask constructed by thresholding the 

population based MD template image to 0.10. Both masks were visually inspected to ensure inclusion of tissue 

of interest. The MD template was solely used for constructing the brain mask and as an underlay for results (i.e. 

not used for normalization).  Results were determined using a cluster extent based thresholding approach, with 

a primary voxel level threshold of p < 0.005 and a cluster level threshold of p < 0.05. This method offers increased 



sensitivity to spatially extended signals with moderate effect size [48]. To account for spatial non-stationarity of 

the DTI maps, we used the random field theory based approach documented in Worsley et al. [49]. While the 

approach may be overly conservative, the large sample size and smoothness of our data met the assumptions 

of random field theory (see Hayasaka et al. [48]) minimizing this concern.  

3. RESULTS 

Inflammation, AD pathology, and neural injury: effects on NFL. A linear regression analysis in SPSS 

revealed a significant effect of YKL-40 on CSF NFL concentration. As predicted, higher YKL-40 was associated 

with higher CSF NFL (β=.191, p=.005), suggesting axonal degeneration. Linear regression analyses in SPSS 

revealed that higher Aβ42 and higher T-Tau were associated with greater concentration of CSF NFL (β=.133, 

p=.039 and β=.270, p<.001 respectively). MCP-1 was not associated with CSF NFL levels.  

Inflammation, AD pathology, and neural injury: effects on DTI. A voxel-wise analysis revealed significant 

interactions between YKL-40 and MCP-1 and markers of AD pathology although there were no main effects of 

either YKL-40 or MCP-1 on FA or MD (Table 2). Significant interactions were observed between MCP-1 and 

Aβ42 on MD in the bilateral inferior frontal lobe and right inferior temporal lobe (Table 2B). The relationship was 

such that among participants with lower CSF Aβ42 (suggesting cerebral amyloid deposition), higher MCP-1 was 

associated with higher MD, suggestive of tissue damage. The interaction between MCP-1 and Aβ42 was non-

significant in other brain regions but was trending in right fusiform (p = 0.054) and left inferior temporal gyrus (p 

= 0.067). The interaction between YKL-40 and Aβ42 did not reach significance, but trended toward significance 

in right posterior orbital gyrus (p = 0.065). Again, among participants with lower CSF Aβ42 levels, higher 

inflammation (CSF YKL-40) was associated with higher MD.  

A voxel-wise analysis of FA revealed an interaction between YKL-40 and CSF T-tau (Table 2B). Specifically, 

among participants with higher CSF T-tau, higher YKL-40 was associated with higher FA in both the right and 

left internal capsule and cerebral peduncles. In the corresponding MD analysis, this interaction was noted in 

diffuse regions throughout the brain, with peak associations in frontal white matter (Figure 1). In both of these 

interactions, greater neuroinflammation (high YKL-40) in the presence of greater tau pathology (high CSF T-tau) 

was associated with both higher FA and MD. No significant interactions were observed between MCP-1 and T-

tau, although bilateral post-central gyri were trending (Table 2B). Brain regions where main effects of T-tau were 

observed differed from the regions where interactions were noted. For example, as is detailed under main effects 

in Table 2A, higher CSF T-tau was associated with significantly higher FA in fornix and bilateral thalamus, and 

higher MD in a large portion of lateral parietal lobe and bilateral fusiform gyri.  

Inflammation and neural injury: regional localization. Given that our sample was characterized on NFL, a 

protein that is primarily localized to axons, we conducted voxel-wise analyses to determine whether CSF NFL 

levels alone, or in combination with neuroinflammation were associated with regional gray and white matter 

microstructure. The voxel-wise analyses revealed widespread associations between CSF NFL and MD across 

lateral and medial temporal, parietal, and frontal lobes (Table 2A, Figure 2). As detailed in Table 2C, YKL-40 



showed a significant interaction with CSF NFL on FA in bilateral internal and external capsule, in addition to 

effects on MD, with a peak association in precuneus. Finally, CSF NFL also interacted with T-tau, where elevated 

T-tau combined with elevated CSF NFL was associated with higher MD (Table 2C).  

Inflammation, AD pathology, and neural injury: interactions with AD risk. In order to determine if risk factors 

for AD moderated the effect of neuroinflammation and AD pathology on neural health, we tested for interactions 

between CSF markers of inflammation and CSF biomarkers of AD pathology, parental family history status, 

APOE ε4, and age. Neuroinflammation interacted with both APOE ε4 and parental family history of AD. 

Specifically, we found an interaction between MCP-1 and APOE ε4, whereby higher MCP-1 in APOE ε4 carriers 

was associated with higher MD (Table 2D). Neuroinflammation also interacted with parental family history of AD, 

whereby higher MCP-1 among individuals with a positive family history of AD showed higher FA and MD, a 

relationship not observed among individuals without parental family history of AD. Neither a linear regression 

analysis nor voxel-wise analyses yielded significant effects of Aβ42 x APOE ε4, Aβ42  x family history, T-tau x 

APOE ε4 or T-tau x family history interactions on CSF NFL, FA, or MD.  

Age showed significant interactions with several variables. While we expected that older age would be 

associated with greater effects of AD pathology on neural health, across all significant interactions it was among 

younger middle-aged individuals that we found the greatest effects. Brain regions where significant interactions 

with age were observed are detailed in Table 2D. With regard to amyloid pathology, there was a significant Aβ42 

x age interaction on MD, where younger individuals with higher CSF levels of Aβ42 had higher MD, a relationship 

not observed among older adults.  With regard to tau pathology, there was a significant interaction between T-

tau and age, whereby younger individuals with high CSF T-tau showed higher FA and higher MD, a relationship 

not observed in older adults.  Finally, YKL-40 also showed an interaction with age, where younger individuals 

with higher YKL40 had higher FA and higher MD, a relationship not observed in older adults (Figure 3). While 

age was analyzed as a continuous variable, we plotted the interaction using a mean split on age (younger or 

older than 61.2 years) to determine the direction of the interaction.   

4. DISCUSSION 

Pathological changes associated with AD appear years before the onset of clinically relevant symptoms [50]. 

Prospective treatments or therapies may be most beneficial in the preclinical stage, before extensive and 

permanent neural damage. In the present study, we assessed whether neuroinflammatory processes play a role 

in preclinical neural injury, particularly in the presence of amyloid and tau pathology. As predicted, a 

neuroinflammatory response was associated with neural damage, in addition to interacting with both AD 

pathology and risk factors for AD.  

Microglial activation and inflammation play a role in β-amyloid clearance, however, the associated inflammatory 

cascade is suspected of contributing to neuronal damage. In this study, we show evidence that this may in fact 

be the case. Higher MCP-1 combined with lower Aβ42 was associated with altered neural microstructure in brain 

regions known to be affected by amyloid pathology, including bilateral frontal cortex, and lateral temporal lobe. 



MCP-1 is a chemokine expressed in response to inflammatory signals, and primarily serves to attract immune 

cells (monocytes) to sites of inflammation. In humans, MCP-1 is increased in MCI and AD and can predict 

cognitive decline [4,51]. Indeed cellular studies show that human monocytes and microglia produce MCP-1 in 

response to Aβ fragments and larger amyloid plaques [52,53]. We also found that neuroinflammation, specifically 

CSF YKL-40 was associated with higher CSF levels of NFL, a structural protein primarily localized to axons. 

Axonal degeneration has been hypothesized to be an early feature of the AD process [54], although the specific 

effect of neuroinflammation on axonal degeneration is incompletely characterized [55]. Histological, cellular, and 

molecular studies show that microglia localize with and are reactive toward amyloid plaques [56,57]. While 

neuroinflammation is an adaptive response to pathology such as amyloid accumulation or tissue damage, the 

immune response can in turn lead to a cascade that causes neural injury [1]. Significant interactions between 

neuroinflammation, amyloid and tau pathology observed in this study suggest that this may be the case in the 

early stages of developing pathology.  

In addition to relationships with amyloid pathology, we also observed interactions between inflammation and tau 

pathology—specifically a significant interaction between YKL-40 and T-tau. The combination of high CSF T-tau 

and high CSF YKL-40 was associated with both lower FA and MD. Lower FA has been associated with axonal 

injury in animal models [58] and across several disorders including traumatic brain injury, multiple sclerosis, and 

AD [59–61], while lower MD suggests restricted diffusion possibly secondary to microglial proliferation. YKL-40, 

a 40k da glycoprotein, is expressed by activated microglia and is elevated at all stages of AD. However, as of 

yet, no studies have specifically linked YKL-40 expression to tau reactivity on a cellular level. Histological studies 

have found that activated microglia are regionally correlated with extracellular neurofibrillary tangles (NFTs) and 

dystrophic tangle-bearing neurons even in the early stages of tangle formation [62,63]. Interestingly, the 

interaction between YKL-40 and T-tau spatially paralleled the interaction of YKL-40 and NFL, perhaps suggesting 

that CSF tau and NFL protein arising from inflammation-mediated neural damage, originate in similar brain 

regions undergoing degeneration. 

Both CSF markers related to neuroinflammation (YKL-40 and MCP-1) also interacted with factors that increase 

risk for AD.  Parental family history of AD significantly interacted with YKL-40 and trended toward a significant 

interaction with MCP-1. In both cases, presence of parental family history combined with higher 

neuroinflammation was more deleterious.  Likewise, APOE ε4 genotype interacted with MCP-1, where APOE ε4 

carriers with higher MCP-1 showed higher MD. Given that both parental family history and APOE ε4 genotype 

have been linked with a pro-inflammatory phenotype, it’s possible that these risk factors could confer vulnerability 

to neural damage via inflammatory mechanisms.  Expression of specific inflammation-related genes is 

associated with risk for AD [64], but further work is needed to understand genetic profiles that may link family 

history of AD to inflammation. 

Investigation of CSF biomarkers of AD with DTI measures in a preclinical population provides unique insights 

regarding brain regions that may show early pathological changes. It is known that tau pathology is associated 

with disruption of cytoskeletal equilibrium, synaptic dysfunction, and axonal degeneration [65,66] and tau protein 



measured in CSF indicates cellular damage, as damaged cells “leak” tau protein [67,68]. In this study, higher 

CSF T-tau was associated with higher FA and MD in brain regions that are known to undergo pathological 

changes in early stages of AD such as in the fornix, thalamus, precuneus, cuneus and cingulum. Ryan et al. 

(2003) reported higher FA among asymptomatic carriers of the PSEN1 mutation that causes autosomal dominant 

AD, likely due to early and selective loss of axonal fibers [69].  Similarly, associations between higher T-tau and 

higher FA in this study suggest evidence of fiber loss. Further, we found a robust relationship between CSF 

levels of NFL, and both FA and MD, involving several brain regions affected in AD. Overall, these findings 

suggest axonal loss is an early and measurable feature of preclinical AD.   

While older age is the strongest predictor of AD, results from the current study indicated that neuroinflammation 

and AD pathology had a greater deleterious effect among the younger participants in our middle-aged cohort. In 

the MD analysis, younger individuals with high Aβ42 had higher MD in several brain regions including bilateral 

superior frontal gyri and left transverse temporal gyrus and higher T-tau was associated with higher MD in frontal 

gray matter. Higher inflammation was also more deleterious in younger individuals, higher YKL-40 was 

associated with higher MD in diffuse regions including frontal cortex. In some cases, younger participants also 

showed higher FA, such as higher FA in the internal capsule with higher T-tau, and higher FA in thalamus in 

association with higher MCP-1. In the context of higher MD and other indicators of preclinical pathology, we 

suspect that higher FA here suggests loss of fibers. The results are interesting because it well established that 

AD related pathological changes, inflammation, and structural brain changes increase with age. However, with 

regard to the timing of AD pathology and inflammation, midlife may be an especially vulnerable period. Several 

risk factors for AD when appearing in middle-age, but not older age, confer increased risk for AD [70], and the 

results of this study suggest that inflammation may be a modifiable risk factor that could be targeted in midlife to 

prevent or delay AD. Indeed, a growing literature suggests that while anti-inflammatory treatment in AD and even 

MCI is largely ineffective, preclinical use of anti-inflammatory medications may confer a reduced risk for 

developing AD in addition to preserving gray and white matter volume [30,71,72]. 

Amyloid in combination with neuroinflammation was associated with neural injury; however, CSF Aβ42 alone did 

not show a significant association with DTI measures. While amyloid deposition is known to be an early feature 

of AD, it is thought that the toxic effects on neurons only appear after significant levels of amyloid burden are 

reached [73]. Another possibility for the lack of direct effect of Aβ42 may be due to a dynamic fluctuation in CSF 

Aβ42 that has been observed in preclinical AD. While CSF Aβ42 generally declines during the progression of AD, 

studies in individuals with Presenilin 1 mutation show elevated CSF Aβ42 levels compared to non-carriers in the 

asymptomatic stage of the disease [74]. Indeed the CSF analyses in this study showed that higher CSF Aβ42 

was associated with higher CSF NFL, suggesting greater axonal injury in individuals with higher CSF Aβ42. Main 

effects of Aβ42 on DTI were likely not observed in this study because measures used were not sensitive enough 

to detect this relationship. This notion is supported by recent findings from our group showing that preclinical 

amyloid deposition as measured with [C11]PiB-PET is associated with altered microstructure as shown on DTI 

[75]. 



There are a few limitations that should be noted. Generalizability of the results may be limited. While our study 

is one of the largest to examine the relationship between CSF markers of pathology and neural injury, the sample 

was largely Caucasian, female, and highly educated with access to quality healthcare. It is also important to note 

that the study is cross-sectional. Longitudinal studies will be needed to understand preclinical trajectories of AD 

pathology, particularly as it relates to neuroinflammation. Finally, the significance of in vivo markers of brain 

pathology in a clinically healthy population is still not well understood. We found that higher CSF markers of AD 

pathology and neuroinflammatory processes were associated with evidence for greater neural injury among our 

youngest participants. These findings are novel but will require additional follow-up to be fully understood. 

Further, while the results of the current study suggest that neuroinflammatory processes are associated with 

neural damage, it is important to keep in mind that microglia, the resident immune cells of the central nervous 

system, are needed to control neuropathology. It is possible that the observed association between 

neuroinflammation and neural damage could be the result of activated microglia responding to damaged tissue 

[76], Aβ and cellular debris [77]. Interestingly, El Khoury et al. [78] found that in APP transgenic mice deletion of 

Ccr2, a gene for the MCP-1 receptor, resulted in reduction of microglial accumulation around plaques, an 

increase in Aβ deposition, and decreased survival. Microglial activation may provide a beneficial mechanism for 

the removal of pathology that is not directly related to neural damage. More work is needed to further understand 

the timing of neuroinflammation in the AD process, and to determine whether the role of microgila is beneficial 

or deleterious.  

Summary 

In conclusion, this study found that CSF biomarkers of AD pathology and neuroinflammatory processes are 

related to microstructural brain alterations in asymptomatic individuals. Of particular interest, among certain 

individuals—including those who are younger, are APOE ε4 carriers, or harbor parental family history of AD— 

there appear to be greater neural consequences of AD pathology and inflammation. T-tau and Aβ42 have been 

evaluated extensively and may have diagnostic and prognostic utility in patients with AD and MCI [79–82] and 

have been associated with cognitive decline and conversion from healthy to impaired cognition [83–85]. The 

results of this study provide evidence that examining markers of AD pathology together with markers of 

neuroinflammation may provide greater insight into the pathological processes occurring in preclinical AD.   
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FIGURE LEGENDS:  

Figure 1: MCP-1 x Aβ42 interaction on MD. 

Higher CSF MCP-1 and lower Aβ42 were associated with increased mean diffusivity in several brain regions 

including the inferior frontal lobe, right fusiform gyrus, and inferior temporal gyri. Results were corrected for non-

stationarity using a random field theory based approach with a voxel-level threshold of P<.005 and a cluster level 

threshold of P<.05. Variations in color map correspond to the size of the t-statistic. Right=Left.  

Figure 2: CSF NFL on MD. 

Higher CSF NFL was associated with greater MD in a variety of brain regions related to AD, including bilateral 

precuneus, right superior temporal gyrus, right hippocampus, and right superior parietal lobule. Results were 

corrected for non-stationarity using a random field theory based approach with a voxel level threshold of P<.005 

and a cluster level threshold of P<.05. Variations in color map correspond to the size of the t-statistic. Right=Left.  

Figure 3: YKL-40 x Age interaction on MD (warm) and FA (cool) 

3A: Higher YKL-40 and younger age were associated with increased FA in the bilateral internal capsule and 

diffusely increased MD. Results were corrected for non-stationarity using a random field theory based approach 

with a voxel level threshold of P<.005 and a cluster level threshold of  P<.05. Variations in color map correspond 

to the size of the t-statistic. Right=Left.  

3B: Covariate adjusted MD (left) and FA (right) plotted against YKL-40. MD was extracted from superior frontal 

gyrus, FA was extracted from right internal capsule. While age was a continuous variable in the analyses, we 

used a mean split (</>61.2) to divide participants in to younger and older groups to visualize the interaction. The 

blue line indicates the relationship between YKL-40 and FA or MD for younger participants, while the red line 

indicates the relationship between YKL-40 and FA or MD for older participants. Younger individuals with higher 

YKL-40 had higher FA and MD.   
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