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Investigation of cerebrospinal fluid (CSF) in the diagnostic work-up in suspected multiple

sclerosis (MS) patients has regained attention in the latest version of the diagnostic criteria

due to its good diagnostic accuracy and increasing issues withmisdiagnosis of MS based

on over interpretation of neuroimaging results. The hallmark of MS-specific changes in

CSF is the detection of oligoclonal bands (OCB) which occur in the vast majority of MS

patients. Lack of OCB has a very high negative predictive value indicating a red flag

during the diagnostic work-up, and alternative diagnoses should be considered in such

patients. Additional molecules of CSF can help to support the diagnosis of MS, improve

the differential diagnosis of MS subtypes and predict the course of the disease, thus

selecting the optimal therapy for each patient.

Keywords: CSF (cerebrospinal fluid), biomarker, multiple sclerosis, oligoclonal band (OCB), neurofilament light

(NfL)

INTRODUCTION

Oligoclonal bands (OCB) of the cerebrospinal fluid (CSF) have been important in the diagnosis of
multiple sclerosis (MS) for many years. The further search for biomarkers is of great importance
in order to improve the diagnosis and therapy of MS. This review is divided into 2 parts. The first
part focuses on OCB as diagnostic biomarker for MS and briefly describes other diagnostic markers
such as aquaporin4 (AQP4) and biomarkers that are about to enter clinical routine, such as anti-
myelin oligodendrocyte glycoprotein (MOG). The second part is about CSF molecules, which have
been described in research as potential biomarkers.

PART I: THE CLINICAL LABORATORY

Cerebrospinal Fluid—General Considerations
Whenever investigations are required either to make or rule out a particular disease, it is of utmost
importance to knowwhat one would normally expect from such an investigation, i.e., to have access
to normal or reference values. This goes of course also for clinical chemistry tests performed in
CSF. As a prerequisite for making reference values global and assay-independent, it is important to
standardize the field through the certification of reference methods and materials that can be used
as external calibrators for assay manufacturers. It is also important to establish external quality
control programmes to make sure laboratories are both accurate and precise. Internal stability
of the measurements also has to be monitored using internal control samples each time a test
is performed.
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It is surprising how little progress has been made in the field
of reference values for CSF analytes since the first systematic
assessment of CSF normal values by Meritt and Fremont-Smith
(1). For one of the most basic CSF variables, i.e., total protein and
albumin, normal values based on modern quality standards have
been evaluated and published only recently (2). Most labs adopt
historical reference values without validating their own (3). Even
if normal values have been established in some labs the methods
of evaluation suffer from methodological shortcomings, such as
selection bias, poor definition of normal cohorts, and statistical
errors (2). Because upper reference limits for total CSF protein
are mostly too low it has been estimated that approximately in
15% of normal CSFs total protein values are falsely reported
as pathologically elevated. Similar issues have been found
with CSF glucose measurements and formulas for intrathecal
immunoglobulin synthesis (4, 5). Glucose measurements must
be done in CSF and serum simultaneously and a ratio needs
to be calculated. The glucose ratio cut-off values depend on
serum glucose levels because the transporter systems across the
blood-brain-barrier (BBB) have limited capacities. This fact is
often not considered by CSF labs. For intrathecal synthesis of
immunoglobulins it is well-known that the widespread Reiber-
formula overestimates particularly intrathecal IgM and IgA
synthesis rates (4, 6).

How Is All This Related to the Diagnosis
of MS?
Because the etiology and specific pathogenesis of MS are
unknown, there is no specific test, be it lab-based or otherwise,
available. In diseases with a known cause, e.g., infections, a
specific test detecting the infectious agent or antibodies against
it is most frequently available. Even in entities in which the cause
is not fully elucidated but the pathomechanism is evident, such
as autoimmune encephalitides, a specific test detecting the auto-
antibody can be used to make the diagnosis (7). In MS there is
no such specific test available which is why one needs to rely
on “circumstantial evidence.” The diagnosis is based on typical,
yet not limited to, clinical findings, magnetic resonance imaging
(MRI), and CSF as well as other investigations (8). Doctors
are well-advised to use all these tools in order to optimize the
diagnostic accuracy.

In the past two decades the diagnostic criteria for MS
have been updated 4 times (8–11). Starting with the revision
in 2001 (9) CSF was less and less required to confirm the
diagnosis in the subsequent updates until 2010 (11). As some
authors suspected (12), ignorance of diagnostic tools might

Abbreviations: AQP4, aquaporin 4; C1inh, Complement component 1-inhibitor;
CAM, cell adhesion molecule; CDMS, clinical definite MS; CSF, cerebrospinal
fluid; CHI3L, protein chitinase 3-like; CIS, clinically isolated syndrome; CXCL,
chemokine (c-x-c motif) ligand; GFAP, glial fibrillary acidic protein; HC,
healthy control; IL, interleukin; JCV, John Cunningham virus; MOG, myelin
oligodendrocyte glycoprotein; MS, multiple sclerosis; Nf, neurofilament; NfH, Nf
heavy; NfL, Nf light; NIND, non-inflammatory neurological disease; NMOSD,
neuromyelitis optica spectrum disorders; OCB, oligoclonal bands; OCGB,
oligoclonal immunoglobulin G bands; OCMB, oligoclonal immunoglobulin M
bands; OIND, other inflammatory neurological disease; OND, other neurological
disease; RRMS, relapsing-remitting MS; sCD, soluble cluster of differentiation;
sICAM, soluble intercellular CAM; sVCAM, soluble vascular CAM.

have led to insufficient diagnostic performance, in that the
rate of MS misdiagnosis increased, even though there is no
formal proof that this phenomenon occurred due to the
decrease in CSF examinations (13). Mostly, misdiagnosis was
due to overinterpretation and misinterpretation of MRI findings
(13). Moreover, the true diagnoses were most often migraine,
fibromyalgia, unspecific symptoms, or psychogenic disorders
(14). In these diagnoses, CSF findings are usually normal,
including markers of intrathecal immune-activation such as
quantitative elevation of immunoglobulins (e.g., IgG-index) or
detection of OCB. One must keep in mind that the negative
predictive value of OCB in neurological patients who had
undergone LP was 90% (15), and even in patients with clinically
isolated syndromes (CIS—a clinical syndrome highly suspicious
of a first manifestation of MS) the negative predictive value
of OCB was 88% (16). So, the lack of OCB in CSF must
be considered a red flag in the differential diagnostic work-
up. In this context, it should be remembered that the first
reported case of natalizumab-associated progressive multifocal
leukoencephalopathy occurred in a very likely misdiagnosed
patient, who had no detectable OCB in CSF in two consecutive
occasions (17). In fact, the vast majority of misdiagnosed patients
get actually treated with MS drugs (14).

Oligoclonal Bands in CSF—How Likely Is
It MS?
It is well-known that OCB in CSF are not exclusively found in
MS. OCB are thought to indicate chronic immune-activation in
the CNS and therefore, can be found in a variety of chronic
inflammatory diseases. The positive predictive value (PPV) of
OCB for MS depends on the control or reference population—
an inherent issue with PPV—and on the integration of other CSF
findings, such as cell counts or albumin/protein concentrations.
E.g., in neuroborreliosis, OCB are frequently encountered, in
contrast to MS, however, total protein concentration and CSF
cell counts are substantially higher (18). Several authors found
OCB in CSF highly sensitive and specific for MS (19), which
is likely due to the fact that other diseases with OCB in CSF
occur relatively seldom. However, when inflammatory diseases
are particularly considered, the specificity of OCB for MS drops
substantially from 94 to 61%, as shown in a meta-analysis (20).
This highlights again that the diagnostic tools for MS are not uni-
dimensional.

Apart from MS, there is a long list of diagnoses with CSF
OCBs reported: systemic lupus erythematosus, neurosyphilis,
neurological paraneoplastic disorders, Behcet’s disease
neuroborreliosis, aseptic meningitis, neurosarcoidosis, HIV
infection, cerebral tumors including lymphomas, Sjögren’s
syndrome, herpes encephalitis, Morvan syndrome, Anti-
NMDA and other autoimmune encephalitis, neurotuberculosis,
anticardiolipin syndrome, HTLV myelopathy, prion disease,
schistosomiasis, stiff-person syndrome, cerebral cysticercosis,
GBS, CNS vasculitis (20). One must be careful however, in our
experience running a clinical CSF lab for decades, we rarely
detected OCB in solid cerebral tumors, prion disease, or GBS
for instance.
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Some Methodological Considerations
As outlined above, a proper assessment of normal and reference
values should be done in each CSF lab rather than adopting
such values from the literature. Also, validation in case of in-
house developed assays must be done, or at least verification
in case of commercially available, externally validated tests (21).
One of the key CSF tests in query MS including differentials is
the method of isoelectric focusing (IEF) (22). This method has
been developed in the 70ies and has since then undergone several
refinements. Today, IEF followed by IgG specific immunoblot
is the recommended standard for detection of OCB (19). These
guidelines developed some essential rules for CSF IgG detection
as shown in Table 1. Importantly, intrathekal IgG synthesis can
only be assessed if compared to serum. OCB in CSF can only
be considered intrathecally synthesized if the bands selectively
occur in CSF or if there are more bands in CSF than in serum,
referred to as pattern 2 and 3 according to Freedman et al. (19).
Depending on the IgG separation method, serum bands should
be outnumbered by 1–3 bands in CSF (23). Identical bands
in CSF and serum do not reflect pathological immunoglobulin
synthesis in the CNS because the CSF bands have their origin in
the systemic circulation. These findings are referred to as pattern
4 (identical oligoclonal) and 5 (identical monoclonal) according
to Freedman et al. (19).

More recent developments regarding measurements of
intrathecal immune activation include detection of free light
chains (FLC). There are several reports that, particularly, kappa
FLC are equally sensitive and specific for clonal expansion
as detection of OCB in MS (24). The advantages of FLC
measurements are its methodological simplicity and its objective
read-out by instrumental measurements of concentrations
rather than visual inspection of OCB. However, before general
implementation of FLC detection or even replacement of IEF
there is more work needed including independent confirmation
by different labs and validation of specificity using broader ranges
of control groups, particularly other inflammatory diseases.

A comprehensive overview regarding methodological aspects
of CSF investigations in general can be found in recent
publication (23).

TABLE 1 | Guidelines for IgG detection in CSF according to Freedman et al. (19).

CSF immunoglobulins must be separated by IEF

CSF immunoglobulins must not be separated by electrophoresis

CSF must not be concentrated

CSF immunoglobulins should be immunofixed/blotted

CSF and parallel serum must have similar amounts of immunoglobulin on the

same analytical run

IEF is always more sensitive than any quantitative formula for immunoglobulins in

CSF/serum

To use “only” a quantitative formula is not recommended

Non-linear formulations are recommended over linear formulations

A quantitative formula may be more useful in treatment/prognosis than in

diagnosis

Light chain immunofixation can extend the value of IgG immunofixation

Expected CSF Changes in MS
As MS is considered an inflammatory CNS disease with focal
breakdown of the BBB one could expect markers of these events
in CSF to be altered (Figure 1). Markers of these changes are CSF
leukocyte counts as an indicator of inflammation (apart from
elevated immunoglobulin levels), and total protein or albumin
concentrations as an indicator of BBB disruption (23) (Table 2).

In about one half of MS patients CSF leukocyte counts will
be elevated up to 50 cells per uL (22). Higher leukocyte counts
occur in only 1–2% of patients and should give raise to consider
alternative diagnoses, particularly infectious CNS diseases. On
differential cell count lymphocytes dominate by far, accounting
for more than 90% of cells, 90% of which are T-cells and 10%
B-cells, which excludes lymphocyte subtyping as a distinctive
feature of MS (25). The remainder is constituted by monocytes
although other leukocyte types may be encountered such as
plasma cells, macrophages, and very rarely granulocytes. Again,
a substantial deviation from this pattern should be regarded as
red flag regarding the correctness of the diagnosis.

Glucose CSF to serum ratios are normal in MS (26).
Total protein or albumin quotient is normal in the vast

majority of patients (22, 27), which is in line with the very focal
and transient BBB leakage in MS.

The hallmark of typical CSF changes in MS however, is the
increased production of intrathekal immunoglobulins (28). To
demonstrate this, the MS diagnostic guidelines refer to two
different methods: first, quantitatively elevated IgG as shown
by e.g., the IgG index, and second, detection of OCB by IEF
(9). It must be kept in mind that any quantitative formula
is less sensitive than OCB detection with elevated IgG being
found in ∼60% of MS patients compared to 95% being OCB
positive (i.e., diagnostic sensitivity) (19, 29). Even though it is
not an MS specific test, the diagnostic specificity lies between
61 and 93% depending on the reference group (30). The lowest
specificity rates occur if other inflammatory CNS diseases are
exclusively included in the comparator group. In a mixed
reference population, one would expect the diagnostic specificity
to be probably in the middle of these values, which means that
OCB have a very acceptable diagnostic performance comparable
to, e.g., amyloid-beta and tau proteins in Alzheimer’s disease (30).

Apart from a diagnostic role OCB are of prognostic value in
CIS patients with a hazard ratio of 2.18 (95% confidence interval:
1.71–2.77) for the prediction to convert to clinically definite MS
(31). A fact that has been described for conversion to MS after
optic neuritis 20 years ago (32).

Given the inflammatory process, MS patients also have
increased concentrations of a number of cytokines, chemokines,
and interleukins in their CSF, e.g., CXCL13, IL6, IL8, and
IL10 (33).

CSF Findings in Other Inflammatory
Demyelinating Diseases
At first onset some symptoms are similar between MS and other
inflammatory demyelinating diseases, particularly neuromyelitis
optica (NMO) spectrum diseases. These syndromes can be
diagnosed by IgG antibodies against AQP4 or MOG (34). In
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FIGURE 1 | MS causes neuronal damage (demyelination, axon degeneration, synaptic loss) to the brain and spinal cord. Immune cells, pathological antibodies,

adhesion molecules, cytokines, chemokines, and nucleic acids, which reflect inflammations in the CNS, are present in the CSF of the patients and can serve as

biomarkers to support MS diagnosis and therapy.

TABLE 2 | CSF changes in MS.

CSF variable Expected finding

Total protein/albumin

quotient

Normal, rarely slightly elevated

CSF:serum glucose ratio Normal

CSF leukocyte count Mild pleocytosis in 50% of patients Less than

50 cells/uL in 98%

Cytology Dominated by lymphocytes (90%), some

monocytes. Rarely macrophages, plasma cells,

granulocytes

Immunoglobulins

quantitative

IgG concentration by linear or non-linear

formulae elevated in 60–70% of patients, IgA

and IgM synthesis may be found less frequently

Immunoglobulins qualitative Oligoclonal bands in 95% of definitive MS

cases, 85% in CIS

general CSF work-up there is a distinct feature, which is a lack of
CSF OCB in NMO spectrum diseases in 80–90% of patients (35).
Total leukocyte counts in NMO spectrum disorders are similar
to MS with pleocytosis being found in around 50% of patients,
exceeding rarely 100 cells per uL (36). However, on differential

cell counts granulocytes occur somewhat more frequently in
NMO spectrum disorders compared to MS (36).

In MOG-IgG antibody associated syndromes the frequency of
OCB of 13% is similarly low as in NMO spectrum disorders (37).
It seems however, that CSF pleocytosis occurs more frequently,
i.e., in almost two thirds of patients with a relatively high
proportion of neutrophils making up 22% of all leukocytes (37).
Also, an elevated albumin quotient can be found in roughly one
third of patients with MOG IgG antibodies, particularly if spinal
symptoms occur.

Altogether, the main distinctive feature between these
syndromes andMS is the frequency of OCB, whereas general CSF
changes (i.e., cell counts, cytology, protein) differ slightly but do
not provide compelling evidence for or against one of the entities.

PART II: THE RESEARCH LABORATORY

Spectrum of Biomarkers in CSF
MS is an inflammatory disease characterized by damage and
repair processes. The search for biomarkers focuses not only
on cells and molecules of the immune response, but also on
molecules reflecting the heterogeneity of mechanisms involved
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in the disease. Many findings on potential biomarkers have
been published, including antibodies, cytokines, and chemokines
molecules involved in damage and repair processes, proteins of
the complement system as well as nucleic acids, that could help in
MS diagnosis, differential diagnosis, prognosis, and in disease or
therapy monitoring. In Table 3 we listed information on various
biomarkers mentioned in this article. Of these biomarkers,
neurofilament light (NfL) is currently one of the most promising.

CSF and Serum NfL as a Biomarker of
Disease Intensity in MS
Research over the past three decades have revealed that increased
CSF concentration of the axonal injury marker NfL reflects
disease activity and progression in all forms of MS (81). It
has also become clear the concentrations dynamically change
in response to relapses and treatment; MS patients starting
natalizumab, a disease-modifying therapy (DMT) with high
efficacy, experienced a normalization of their CSF NfL levels
down to those seen in healthy controls within 6–12 months
(82), suggesting that NfL can be used to monitor therapeutic
efficacy. Similar observations have been made for fingolimod in
patients with relapsing remitting (RR) MS and for mitoxantrone
or rituximab and natalizumab in progressive MS (81). Recent
ultrasensitive assays have made it possible to measure the
biomarker in blood (serum or plasma; either matrix works
fine), showing excellent correlation with CSF (99). Blood NfL
behaves similar to CSF, also in response to DMTs, making
it a promising blood biomarker for monitoring of treatment
efficacy (100, 101). Ongoing studies are now also exploring it
as a potential biomarker to detect side effects and suboptimal
treatment efficacy. A limitation of CSF and blood NfL is that the
marker is not specific to any diagnosis; it is a general marker
of axonal injury and increases in all neurological disorders that
involve such a process (81).

Areas of Application for CSF Biomarkers
Diagnosis
For a more reliable diagnosis of MS, many studies focus on
changes in CSF composition to find markers that distinguish
between MS and neuronal diseases with similar symptoms.
Recently, antibodies against aquaporin 4 (AQP4) were identified
in CSF of NMO, but not in MS patients (38, 39) (Table 3).
Since these antibodies are not present in every NMO patient,
additional markers are needed. Another newly discovered
biomarker is the anti-MOG antibody found in the CSF of
patients with demyelinating diseases such as optic neuritis
(usually recurrent), myelitis encephalitis, brainstem encephalitis,
and acute disseminated encephalomyelitis (ADEM)-like
presentations. Today, MOG-IgG-associated encephalomyelitis
(MOG-EM) is considered a separate disease entity (34).Other
candidates of potential biomarkers are described in the group
of cytokines [e.g., interleukin (IL)-6] (39), adhesion molecules
[such as soluble intracellular and vascular cell adhesion
molecule (sICAM and sVCAM) (89)], damage and repair
associated molecules [like glial fibrillary acidic protein (GFAP)
and haptoglobin] (39) and complement components [e.g.

Complement component 1-inhibitor (C1inh), C1s, C5 and factor
H] (94) (Table 3). Further studies need to evaluate the benefit of
these molecules in diagnosis.

Prognosis
Prognostic CSF markers may influence the choice of therapy for
MS, for example, when it is possible to distinguish between a very
active disease course and a mild progression. Protein chitinase 3-
like1 (CHI3L1) and NfL are today the most promising prognostic
CSF markers to predict conversion of MS on the one hand
and disability on the other (58). Other markers that have been
shown to have prognostic potential for predicting the conversion
of CIS to clinical definite (CD) MS, from RRMS to secondary
progressive (SP) MS and a worse disease progression include
oligoclonal IgM bands (OCMB) and protein 14-3-3 (39).

Monitoring of Therapy Response and Side Effects
For MS various DMTs are approved by EMA and FDA. Different
CSF markers are described in particular molecules of neuronal
damage, pro- and anti-inflammatory cytokines and chemokines,
as well as damage and repair molecules that are influenced by
DMTs and that may reflect the efficacy of therapy (Table 3).
Treatment with Natalizumab, for which most data on CSF
molecules are available, leads, besides a decrease of NfL, to a
downregulation of CHI3L1, neurofilament heavy (NfH), IL-6, IL-
8, and chemokine (c-x-c motif) ligand CXCL13 (33, 39, 82, 102)
in CSF (Table 3). CXCL13 is also downregulated in CSF of
MS patients treated with steroids, B-cell depletion therapy or
fingolimod (39, 59). CHI3L1 is down-regulated in CSF of MS
patients not only by natalizumab but also by treatment with
fingolimod and mitoxantrone (39, 59). Thus, both molecules
could serve as markers for therapy-response, CXCL13 as marker
of anti-inflammatory drugs and CHI3L1 for monitoring the
decrease in cell damage. Recently, elevated levels of soluble
cluster of differentiation (sCD) 27 and sCD21 have been found in
the CSF of MS patients (95) and, in particular, sCD27 has been
highlighted as a therapeutically responsive (natalizumab and
methylprednisolone) potent and sensitive marker for intrathecal
inflammation in progressive MS (96).

DMTs have been available for MS treatment for over
20 years and new DMTs with higher efficacy have been
continuously developed since then. Depending on the mode
of action of individual drugs, the risk of bacterial, viral,
parasitic and/or fungal infection may increase (103). Existing
latent viral infections can become active and trigger a severe
infection under DMT, as the modulation of the immune
system can lead to a decreased anti-viral immune response.
Best known is the development of progressive multifocal
leukoencephalopathy (PML) in MS patients infected with John
Cunningham Virus (JCV) as a severe side effect of natalizumab
therapy. Natalizumab is associated with the highest risk of
PML (incidence: one in 250) of all approved MS therapies
to our current knowledge (104–106). The frequency of PML
increases with the duration of natalizumab and former JCV-
negative patients may change to JCV-positive ones. Several
cases of PML have also been reported in MS patients treated
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TABLE 3 | Selection of molecular and cellular markers and their potential utility in MS diagnosis, prognosis and monitoring.

Diagnosis Prognosis (risk factor for) Monitoring

CDMS NMOSD CDMS Worse disease

course

Therapy effects Therapy side

effects

References

ANTIBODIES

Anti-AQP4 ↑4,6,8* (38, 39)

Anti-JCV ↑a (40, 41)

Anti-MOG ↓f (42–44)

OCB ↑4 ↓6 x (31, 32, 35, 39,

45, 46)

OCGB ↑1 x x ↓a (39, 47–51)

OCMB ↑4,3,5 x x (39, 51–57)

CYTOKINES/CHEMOKINES

CXCL13 (SDF-1α) ↑9 x x ↓a,b,c,g (33, 39, 51, 58–66)

IL-6 ↑4,6 ↓a (33, 39, 60, 67, 68)

IL-8 ↓a (33, 60)

DAMAGE AND REPAIR MOLECULES

14-3-3 ↑2 x x (39, 69, 70)

CHI3L1 ↑1,4,7 x x ↓a,d,g (39, 58, 59, 61,

71–74)

GFAP ↑1 ↑6 x (39, 59, 61, 64,

75–77)

Haptoglobin ↑6 (39)

NfH ↑ x ↓a (39, 58, 59, 78–80)

NfL ↑1,2 x x ↓a,c,d,g (39, 58, 59, 61,

64, 75, 77, 79–88)

ADHESION MOLECULES

sICAM-1 ↑1,2,6 (89–92)

sVCAM-1 ↑1,2,6 (65, 89, 90, 93)

COMPLEMENT COMPONENTS

C1inh ↑6,9 (94)

C1s ↑6,9 (94)

C5 ↑6,9 (94)

Factor H ↑6,9 (94)

OTHER MOLECULES

sCD21 ↑2 ↓a,b (95, 96)

sCD27 ↑1,2 ↓a,b (95, 96)

NUCLEIC ACIDS

JCV DNA ↑a,c,e,g (97, 98)

Findings of molecular markers in MS-specific clinical contexts are listed in the table. An arrow pointing upwards indicates an elevation and an arrow pointing downwards a decrease in

the amount of the respective molecule in CSF. NMOSD data were only considered when a difference to MS was described. (1) compared to HC; (2) compared to NIND; (3) compared to

OIND; (4) compared to OND; (5) compared to distinct disease groups or mixtures of control groups; (6) compared to MS; (7) compared to CIS; (8) compared to RRMS (* in remission); (9)

compared to control whose composition was not mentioned; (a) natalizumab; (b) steroids; (c) B-cell depletion therapy; (d) mitoxantrone; (e) dimethylfumarate; (f) DNA plasmid vaccine

BHT-3009; (g) fingolimod.

with fingolimod or dimethylfumarate (104–106). Although
there are no known cases of PML from alemtuzumab,
mitoxantrone, B-cell depletion or teriflunomide in MS patients,
a risk cannot be dismissed because these drugs or closely
related compounds have been associated with PML in other
diseases (105). The detection of JCV infection by anti-JCV
indices can be prevented by B-cell depletion therapies such
as Rituximab (107), since antibody production decreases with
decreasing B-cell numbers. Therefore, careful monitoring of
anti-JCV antibodies and/or JCV DNA in the blood and CSF is

necessary, in particular for natalizumab treatment and suspected
PML (108).

Not only JCV, but also other viral infections, which can
even lead to encephalitis, can occur under DMTs. The risk
of severe viral infections increases with cladribine (mainly
herpes zoster), ocrelizumab and natalizumab (herpes), and
fingolimod (herpes and varicella). Two deaths from herpes and
varicella encephalitis have been reported for fingolimod (106).
For this reason, careful monitoring of MS patients treated
with DMTs is recommended. If virus-induced encephalitis
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is suspected, DNA analyses in the CSF may be useful
for diagnosis.

CONCLUSIONS

OCB are important biomarkers that can support MRI diagnostics
and help to avoid false-positive MS diagnoses. Therefore, the
revised McDonalds criteria have increased the importance of
the OCB.

New biomarkers such as AQP4 have now established
themselves in clinical practice, and others such as Anti-MOG and
NfL are about to enter clinical routine.

An important focus in the search for new biomarkers is
the monitoring of therapy efficacy and the prediction of severe
side effects.

Many other CSF molecules such as CHI3L1, IL-6,
or CXCL13 show potential as markers for clinical
practice, but further research is needed to prove
their importance.
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