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ABSTRACT

Burnt area (BA) products are usually provided as a binary
mask, indicating whether within a particular time interval, a
pixel has or has not burnt. However, this is an inference de-
rived from assessing e.g. the change in reflectance due to the
fire. These calculations are prone to uncertainty from a num-
ber of sources: thermal noise in the sensor, residual atmo-
spheric correction shortcomings or insufficient temporal sam-
pling, etc. In this contribution, we aim to provide a frame-
work for uncertainty characterisation of BA products. The
uncertainty framework is Bayesian in nature, and provides a
way to propagate uncertainty from the observations, across
scales, but also allows one to propagate uncertainty in algo-
rithm parameterisation. We illustrate the framework with a
simple example based on logistic regression. Finally, we dis-
cuss how the uncertainty at the pixel level can be aggregated
to the climate modeller grid (CMG), providing a consistent
way to treat uncertainty from the observations and algorithm
parameters to the final products.

Index Terms— Uncertainty, Burnt Area, ECV

1. INTRODUCTION

The generation of consistent terrestrial remote sensing prod-
ucts with associated uncertainties is necessary for the moni-
toring of the Earth System. The Global Climate Observing
System (GCOS) have outlined 54 observable parameters as
essential climate variables (ECVs) which are crucial to the
characterisation an long-term monitoring of the climate sys-
tem [1, 2]. Burnt Area (BA) forms an integral part of the Fire
Disturbance ECV. The only possible way to monitor Burnt
Area globally over the past three decades is from the process-
ing of remote sensing measurements. The inference of fire
occurrence at both the pixel (10s-100s metres) scale and Cli-
mate Model Grid (CMG, 0.05-0.25°) requires the processing
of these measurement via Burnt Area algorithms. This task,
like any in remote sensing is an inverse problem subject to
uncertainty from measurement errors and uncertainties within
the retrieval algorithm [3, 4]. We therefore argue that there is
a considerable necessity for uncertainty quantified BA prod-
ucts for the production of BA ECVs.

2. UNCERTAINTY PROPAGATION IN BA
ALGORITHMS

A burnt area algorithm F provides a retrieval of whether the
landsurface has burnt or not B given observations d and the
properties of the model w:

B =F(d,w)

Within remote sensing there has been a move towards a
recognition of the uncertainties in observations and retrieval
algorithms [5]. As such we propose an uncertainty framework
suitable for burnt area detection. Fundamentally at the pixel
level the uncertainty in the retrieval can be characterised prob-
abilistically. We define the probability that the pixel has burnt
as pp. Within a Bayesian framework the conditional depen-
dencies between the algorithm retrieval and observations can
be represented by conditional probability distributions. Such
that the retrieval problem can be phrased as:

P(Blw,d) = ]W

To demonstrate this we consider a simple illustrative ex-
ample (see figure 1). An algorithm is trained to select a small
training dataset 7 of burned and unburned pixels for values
of dNBR.

T={Xy}

Where y indicates whether the pixel is a priori known to
be burned or unburned and X are a vector of some suitable
metric that is known to be sensitive to fire (for example, a
vegetation index like dNBR, but not limited to vegetation in-
dices):

T

X:[xiv"'vxl\/']

The uncertainty in the observations X are assumed to be
normally distributed. The distribution of possible values for
X is then described by the covariance matrix X. For this pur-
pose we will assume the observations are independent, each
with a unique standard deviation such that 3 resembles:
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Here, we choose to formulate the BA algorithm as a lo-
gistic regression problem, although any other approach could
be used instead. Logistic regression provides a technique for
learning a discriminative model for the classification P(B|z).
The general form of a logistic regression is:

P(B|z,w) = Ber(B|g(w” z))

where g() is the sigmoid function:

1
P=gwlz) = e

A logistic regression classifier represents a suitably
generic template for a probabilistic BA algorithm. Primarily
most present BA algorithms are solved as an explicit two
class classification problem in which information about the
class conditional distributions of burnt and unburnt pixels are
described and used to evaluate a new observation. Similarly
many present BA algorithms involve discriminative classi-
fiers in which the decision boundary between the burnt and
unburnt classes is determined either by a priori expectation or
via a training methodology. Further logistic classifiers have
been used in many burned area detection studies [6, 7, 8]. As
outlined above the primary step involves training the param-
eters of the model w from a training dataset 7. Given the
training dataset the log posterior of P(w|X,y) is:

log P(w] X, y) = Z yilog(g(w”z;))

+ (1 —y;) log(1 — g(w” ;)

+log(|z — zo|" Cp bz — o) (2)

To propagate the uncertainty in the observations X, we
draw samples from P(w|X,y) via an MCMC sampler [9].
We then wish to predict on an pixel p whether it is burnt or
unburnt with the model. The observation of dNBR in the pixel
is described by a normal distribution with an uncertainty spec-
ified by dNBR,, which for brevity we call the random variable
x. The posterior is therefore at the pixel scale defined by:

P(w|X,y)P(w)

P(B|aw7:c7y): P(a?)

To provide a final prediction on whether the pixel is
burned or not we need to marginalise over the uncertainty
in the observations and model. This provides the predictive
posterior, pp:

pb://P(B|7waxay)

So p, encompasses how certain one is about the pixel be-
ing burned, and it includes the uncertainty in the observations,
the magnitude of the burn signal, the availability of observa-
tions at the time of the observation, etc. p, = 0 is absolute
certainty in the pixel not being burned, and p, = 1 is abso-
lute certainty of the pixel being burned. Figure 1 shows an
illustrative example with real data.

3. AGGREGATION TO COARSE SCALE

Climate users of Burnt Area products typically prefer prod-
ucts at resolutions equivalent to climate models. This requires
a coarse scale representation of the Burnt Area as the area
burned per e.g. half-degree grid cell. Typically, this has been
achieved by adding up all the pixels that have been classified
as being burned. However, this approach does not account for
uncertainty in each pixel being detected as burned or not. In
this Section, we investigate how to aggregate per pixel infor-
mation provided by py to coarser scales.Under the assumption
that each pixel is independent, and assuming that each pixel
can either be burned or unburned with a probability p;, we
have a combination of N Bernoulli trials. The distribution
of this aggregate is governed by a Poisson Binomial distribu-
tion. While calculating the actual distribution from the set of
N samples is computationally complex, the mean and stan-
dard deviation are quite simple:

N .
p=>p’ (3)
=1
N . .
o= p"1-p}") @)
=1
5)

These two expressions are interesting. The mean burned
area is equal to the sum of burned pixels if the burned pixels
are assumed to have p, = 1 and p, = 0 is assumed to hold
for unburned pixels. In this case, the variance of the distri-
bution is also zero. A more realistic scenario will happen if
0 < py < 1, although one still expects that a good algorithm
will have very high p;, for detected pixels and a very low py
for unburned pixels. Further, note that the Poisson binomial
is a discrete distribution, but if NV is high, it can be approx-
imated by a normal distribution in most cases. We illustrate
this with a simple synthetic experiment. The spatial distribu-
tion of py is shown in Fig. 2. Some burnscars can be seen in
yellow colour, but the “’speckliness” means that not all pix-
els are clearly detected. A standard BA algorithm will apply
some threshold to decide what pixels are burned and which
pixels are not burned. Adding them up results in the vertical
line shown in Fig. 3, with a variance of 0 (no uncertainty).
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Fig. 1. Example of a fully uncertainty quantified BA algorithm on real data. Top left) dNBR over a burn scar. Top right)
uncertainty in dNBR. Bottom left) Draws from the logistic classification model. Bottom right) posterior predictive estimate of

burning pp.

Using the proposed method, one gets the probability density
function (pdf) shown in Fig. 3, where both the Poisson Bino-
mial version and the normal approximation are shown. We
note that in this case, the total number of burned pixels was
2700, and we see how the proposed method actually encom-
passes this value within it’s main lobe. This approach to ag-
gregation is both pragmatic and clear. The main issues with
it are that it relies on p;, being credible, and it makes a strong
assumption of independence of p;, which will not be the case
for algorithms that e.g. do spatial region growing processing.
The first shortcoming is addressed in the rest of this contribu-
tion.

4. RESULTS

The framework introduced provides a probabilistic formula-
tion for fully uncertainty quantified burnt area products across
spatial scales. The framework is demonstrated with a simple
BA algorithm on real and synthetic data to illustrate how the
per-pixel probability of burn p; is evaluated. This so-called
pp can then be aggregated using the scheme presented in the
last section to climate grids.
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Fig. 2. Spatial distribution of p, over a synthetic fire
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Fig. 3. Aggregating the data from Fig. 2 to a corarse resolu-
tion grid. The black vertical line shows the number of burned
pixels obtained adding all the pixels where p, > 0.5 (an arbi-
trary threshold). The green and orange curves are the distri-
bution of burned pixels in the aggregated cells using (respec-
tively) the Poisson binomial pdf and the Normal approxima-
tion. The true value of burned pixels was 2700.



