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ABSTRACT

Uncertainty characterisation and validation are critical
phases to generate any Essential Climate Variable (ECV),
and therefore both have been included as key deliverables of
the ESA CCI programme [1]. All products generated by the
CCI are required to have an associated per pixel uncertainty
characterisation. This paper describes both the uncertainty
characterisation framework and the related uncertainty vali-
dation exercise of the Fire-CCI project.

Index Terms— Uncertainty, Burnt Area

1. UNCERTAINTY DEFINITION WITHIN FIRE-CCI

Burnt Area algorithms broadly consist of a classification into
a binary Burnt/Unburnt product. As with all remote sensing
retrievals these algorithms can be phrased within inverse the-
ory:

B = G(d)

Where the outputted burnt area product B is determined
by the data d and the burnt area algorithm G. Remote sensing
measurements contain uncertainty [2]. As such the relation-
ship above is better described by:

B = G(d) + v

Where v represents uncertainty in the value of the mea-
surement d. Often the probability distribution function of v is
assumed normal such that the observation arrives as:

dobserved = dtrue +N (0, σ)

where σ is an estimate of the observation uncertainty. Nat-
urally the uncertainty in the observations leads to uncertainty
in the retrieval of burnt area. To fully describe this uncertainty
requires definitions of uncertainty at the relevant scales of the
products. Within the ESA CCI programme their is an expec-
tation of pixel-level uncertainty information [1]. Further, the

Fire-CCI products are also to be provided at a lower resolu-
tion Climate Model Grid (CMG) (0.25◦).

1.1. Pixel resolution

At the pixel scale we define an appropriate uncertainty char-
acterisation to be the probability that the pixel is burnt Pb.
Pb then provides an probabilistic confidence that the pixel is
burnt given the observations. Pb must follow the axiomatic
laws of probability, e.g the probability that the pixel is not
burnt Pu is:

Pu = 1− Pb
The full pixel level uncertainty is then described by a

Bernoulli distribution B:

B =

{
Pu = 1− Pb, if B = Unburnt
Pb, if B = Burnt

}
1.2. CMG resolution

At the CMG scale the definition of uncertainty is different.
Burnt area at the CMG is classically defined as the summation
of the number of burnt pixels Nb. However to propagate the
uncertainty to the CMG we suggest that the CMG burnt area
BCMG is better described by a Poisson binomial distribution.
The Poisson binomial distribution describes the probability of
N independent Bernoulli distributions. As N grows large the
distribution is well described by a normal distribution with
mean µ and standard deviation σ:

µ =

N∑
i

pi σ =

N∑
i

(1− pi)Pi

This means that at the CMG scale each grid cell is ap-
proximated as a normal random variable which encodes the
uncertainty in the burnt area. Crucially, all pixels are included
in the calculation even if they have a low Pb.
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2. UNCERTAINTY CHARACTERISATION
EXERCISE

An uncertainty validation methodology was developed for
testing the uncertainty characterisation of algorithms within
Fire-CCI. The purpose of the validation exercise was to assess
the presently developed uncertainty characterisations within
a framework which provides realistic estimates of the true
product uncertainties. In this paper we address the validation
of uncertainties for two algorithms within Fire-CCI.

2.1. Algorithm uncertainty estimates P̂b

The two algorithms make an estimate of the per-pixel uncer-
tainty P̂b in different manners. Algorithm A estimates P̂b
based primarily on a pixel’s distance to the nearest active fire
observation. While algorithm B defines P̂b based on the dis-
tance to the classification boundary between the burnt and un-
burnt classes within the algorithm.

2.2. Algorithm true uncertainty Pb

Evidently the true uncertainty Pb is determined by the confi-
dence the algorithm places in the detection given the uncer-
tainty in the data. To take account of the uncertainty in the
observations, algorithms must marginalise over the probabil-
ity distribution of the observation:

Pb =

∫
d

P (d)G(d)δd

2.3. Sampling Framework

However the algorithms presently are unable to perform this
integral. Instead a monte-carlo framework was developed to
approximate this integral. We can derive an estimate of the
true Pb for an algorithm based on sampling from the data dis-
tribution P (d).

Three test sites were selected, representing three signif-
icant pyromes for burnt area: savanna, boreal forest and
tropical forest (which are shown in figure 1). An esti-
mate of daily surface reflectance for each site was provided
from the MODIS Collection 6 surface reflectance products
(MOD/MYD09) .

To generate each realisation of the reflectance Ri(λ),
each recorded measurement from MODIS RMODIS(λ) was
described by a multivariate normal distribution:

Ri(λ) = RMODIS(λ) +N (0,Cλ)

where the observation uncertainties are represented by the
diagonal covariance matrix Cλ = diag(σ2

i . . . σ
2
λ). Per chan-

nel uncertainties σ2
λ where provided from the MODIS uncer-

tainty characterisation (see table 1) vermote2002atmospheric.

Fig. 1: Location of the selected test sites.

To consider that algorithms were properly representing
the uncertainty in P (d), three sets of realisations were com-
puted for each site with three different levels of observational
noise. To do this, the MODIS covariance matrix was scaled
by a noise factor c, with the values of 0.5, 1.0, 1.5. As c
increases, it would be expected that Pb would tend more to-
wards ignorance, as described by Pb values approaching 0.5.
Both algorithms were run on the N realisations of a remote
sensing dataset sampled from P (d) for each site.

As a result, for a pixel p we have N realisations of the
product:

P = [b, u, u, b, b, u, b, u, u, u, ..]

where b corresponds to a burnt detection and u and un-
burnt detection. A good approximation to the true algorithm
Pb is then a function of the number of burnt draws to un-
burnt draws. When B is defined as a Bernoulli variable, we
can estimate the maximum likelihood estimate of Pb from the
function:

max Pb
B(1− Pb)U

whereB andU is the number of burnt and unburnt outputs
respectively. Pb is then simply:

Pb =
B

N

Given the limited number of sample runs, this estimate
may be poor [3]. Instead an adjusted estimate is provided by:

Pb =
B(B + 2, N −N + 2)

B(N + 1, n−B + 1)

where B is the Beta function. Each realisation of P̂b was
then aggregated to the grid-scale along with the algorithm true
Pb as outlined in section 1.2.



Table 1: Theoretical per-pixel uncertainty for MODIS channels. From: [?]

MODIS channel 1 2 3 4 5 6 7
central λ 645nm 858nm 469nm 555nm 1240nm 1640nm 2130nm

σ2
λ 0.004 0.015 0.003 0.004 0.013 0.010 0.006

3. RESULTS

Figure 2 shows an example of the pixel level estimates of
Pb from two Fire-CCI algorithms compared to the true un-
certainty characterisation. Primarily we see that the two
algorithms show considerably different uncertainty estimates
while having similar true uncertainties. Algorithm A shows
high P̂b for unburnt areas (0.2-0.4) (with a low true Pb).
Within the burn scars P̂b is highest (typically 0.7-0.9) but
still below the true uncertainty for these areas. Algorithm
B matches more closely to the true uncertainty, especially
in areas of low probability. However in the burn scars the
estimated probabilities are considerably lower than the truth.

Fig. 2: Pixel level estimates of Pb for two Fire-CCI algo-
rithms over the boreal test site. Top) True Pb derived from the
sampling framework. Bottom) Algorithm estimate of Pb

Figure 3 shows the resulting CMG estimates of burnt area
km2 from two Fire-CCI algorithms. The differences in the
pixel level uncertainties clearly propagates to the CMG distri-
butions. The over-estimation of uncertainties in algorithm A
leads to a large over-estimation in the burnt area. Algorithm A
also has an increased standard uncertainty relative to the true
standard uncertainty given the data. Overall algorithm A es-
timate of burnt area does not match the true distribution well.
Estimated distribution: µ: 23267km2 σ: 13306km2 vs the
sampling-based distribution: µ: 6395km2 σ: 4951km2. Al-
gorithm B performs more favourably with a closer estimate to
the true distribution as well as the true burnt area. However it
slightly underestimates the mean due to the under-estimation
of P̂b within the burn scars. Algorithm B shows a slight over-

Fig. 3: Climate Model Grid (CMG) scale estimates of Burnt
Area km2 for two Fire-CCI algorithms.

estimation in the standard uncertainty but is closer to the true
standard uncertainty. Estimated distribution: µ: 4050 km2 σ:
2838km2 vs the sampling-based distribution: µ: 8195.5km2

σ: 5077km2.
Figure 4 shows the error in the algorithm uncertainty esti-

mates for the three test sites. Here, the error in the uncertainty
characterisation is encoded by the difference between the al-
gorithm Pb estimate and the true Pb from the sampling. Gen-
erally therefore, an accurate uncertainty characterisation oc-
curs when this error is near zero. Further, we would expect no
biases in this error as a function of the noise factor c. Such an
outcome indicates that the uncertainty method correctly iden-
tifies the magnitude of the uncertainty in the observations. A
general feature of note is the overall bias in algorithm B to-
wards an underestimate of Pb as was seen for the boreal site
in figure 2. An encouraging feature for algorithm B is that the
error in Pb is not a feature of the degree of noise imposed by
c. We can see that both the bias and distribution of errors in
Pb remain consistent across noise levels. This indicates that
the algorithm provides an estimate of the uncertainty which is
not sensitive to the noise sampling of the input datasets. Al-
gorithm A shows a larger sensitivity to the noise factor c. In
each test site, the distribution of errors in Pb is sensitive to the
level of noise c. This indicates that the present uncertainty
characterisation needs to be refined to remove such sensitiv-
ity. Further, for algorithm A the biases in Pb are inconsistent
across the three sites unlike for algorithm B. In the boreal site,
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Fig. 4: Error in algorithm estimates of Pb for the two FireCCI algorithms. Pb error is the difference between the algorithm P ab
and the estimated true P tb .

the algorithm provided Pb is less than the true Pb. However in
the tropical and savanna sites, the algorithm Pb is larger than
the true Pb. This feature indicates that the present uncertainty
method needs to be refined to be suitable for each biome.

4. FINAL REMARKS

The described framework represents an initial attempt at pro-
ducing uncertainty quantified BA products at both the pixel
and CMG scales. Further a methodology for validating uncer-
tainty estimates based on sampling from the data distribution
is presented. Results indicate that present uncertainty esti-
mates need to agree more closely with the present binary esti-
mates of products. Going forward this can be achieved by full
uncertainty propagation within algorithms following metro-
logical principles. An appropriate best practice framework
for uncertainty characterisation is provided by the Guidelines
for Uncertainty in Measurement (GUM) [4].

Secondly there is a need to consider uncertainty within the
retrieval algorithm itself. The presented framework details the
implications of the uncertainty in remote sensing observations
and the effect these have on the algorithm performance, but
the algorithm is here assumed to introduce no uncertainty.
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