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1 Introduction

The theoretical treatment of weak decays of charm mesons is very challenging. The charm

quark is not light enough for the reliable application of chiral perturbation theory, which

is successfully applied in predictions of kaon decays. The charm quark is also not heavy

enough for the reliable application of the factorisation approach and heavy-quark expansion

tools, as used in predictions of properties of b hadrons. The description of charm meson

decays relies on approximate symmetries and phenomenological models. For such models,

the knowledge of branching fractions and the resonant structures, in the case of multi-body
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decays, are key inputs. In this paper, the first determination of the resonant structure of

the doubly Cabibbo-suppressed decay D+ → K−K+K+ is presented.1 The analysis is

based on a data sample of pp collisions collected with the LHCb detector, corresponding to

an integrated luminosity of 2 fb−1 at a centre-of-mass energy of 8 TeV. The determination

of the resonant structure of this decay is complementary to the recent LHCb measurement

of its branching fraction [1], based on the same data set.

The amplitude analysis of the D+→ K−K+K+ decay is performed using two methods.

The Dalitz plot is fitted with the isobar model, in which the decay amplitude is a coherent

sum of resonant and nonresonant amplitudes [2]. The Dalitz plot is also fitted with a

phenomenological model derived from an effective chiral Lagrangian with resonances [3].

This phenomenological model, referred to as the multi-meson model, or Triple-M, includes

the effects of coupled channels — ππ, K+K−, πη, ηη and ρπ — in the final state interactions

(FSI), in four considered combinations of spin J and isospin I (J=0, 1; I=0, 1). Given the

small phase space of the D+→ K−K+K+ decay and the lack of tensor resonances with

significant coupling to K+K−, the contribution from D-wave is expected to be suppressed.

An additional motivation for the Dalitz plot analysis of the D+→ K−K+K+ decay

is to obtain the K+K− scattering amplitudes. Most information currently available on

ππ and Kπ scattering is obtained indirectly from meson-nucleon interactions [4–6]. In the

regime where the momentum transferred to the nucleon is small enough, the interaction

is assumed to be dominated by the one-pion-exchange amplitude. The asymptotically free

incoming meson interacts with a virtual pion, resulting in what is generally referred as ππ

and Kπ scattering data. The resulting ππ → ππ and Kπ → Kπ phase shifts are affected

by ambiguities and large systematic uncertainties. The ππ → KK scattering was studied

both in πp and πn reactions [7, 8], and in pp̄ annihilation at rest [9]. For the KK → KK

scattering, no meson-nucleon data exists.

Three-body decays of D mesons into kaons and pions are an interesting alternative

for light-meson spectroscopy, as they are complementary to the meson-nucleon reactions.

Large data sets from the B-factories and LHCb exist for these decays. However, it is

necessary to isolate the physics of two-body systems from the rich dynamics of three-body

decays, which involve the weak decay of the c quark, the formation of the mesons and

their FSI. This is achieved with the Triple-M decay amplitude, in which these three stages

are included. The FSI are described in terms of the K+K− scattering amplitudes for the

considered spin-isospin combinations, allowing the determination of these amplitudes from

a fit to the D+→ K−K+K+ Dalitz plot.

This paper is organised as follows. A brief description of the LHCb detector is presented

in section 2. The signal selection is presented in section 3. In section 4, the efficiency

determination and background model are discussed. The formalism for the Dalitz plot

fit is presented in section 5. In section 6, the results of the fit with the isobar model

are presented, whilst the results of the Dalitz plot fit with the Triple-M amplitude are

presented in section 7. Systematic uncertainties are discussed in section 8. A summary

and the conclusions are presented in section 9.

1Charge conjugation is implied throughout the paper.
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2 Detector and simulation

The LHCb detector [10, 11] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c

quarks. The detector includes a high-precision tracking system consisting of a silicon-strip

vertex detector surrounding the pp interaction region, a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-

tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet.

The tracking system provides a measurement of the momentum, p, of charged particles

with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV.2

The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is

measured with a resolution of (15 + 29/pT)µm, where pT is the component of the momen-

tum transverse to the beam, in GeV. Different types of charged hadrons are distinguished

using information from two ring-imaging Cherenkov detectors [12]. Photons, electrons and

hadrons are identified by a calorimeter system consisting of scintillating-pad and pre-shower

detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system

composed of alternating layers of iron and multi-wire proportional chambers.

The online event selection is performed by a trigger, which consists of a hardware stage,

based on information from the calorimeter and muon systems, followed by a software stage,

which applies a full event reconstruction. At the hardware trigger stage, events are required

to have a muon with high pT or a hadron, photon or electron with high transverse energy in

the calorimeters. The software trigger is divided into two parts. The first employs a partial

reconstruction of the candidates from the hardware trigger and a cut-based selection. In

the second stage, a full event reconstruction is applied and various dedicated algorithms

are used in the selection of specific decays. In this analysis, a dedicated algorithm is used

to select D+→ K−K+K+ decay candidates.

In the simulation, pp collisions are generated using Pythia [13, 14] with a specific

LHCb configuration [15]. Decays of hadronic particles are described by EvtGen [16],

in which final-state radiation is generated using Photos [17]. The interaction of the

generated particles with the detector, and its response, are implemented using the Geant4

toolkit [18, 19] as described in ref. [20].

3 Candidate selection

The D+→ K−K+K+ decay candidates are selected offline with requirements that exploit

the decay topology by combining three charged particles identified as kaons according

to particle-identification (PID) criteria. These particles must form a good-quality decay

vertex, detached from the PV. The PV is chosen as that with the smallest value of χ2
IP,

where χ2
IP is defined as the difference in the vertex-fit χ2 of the PV reconstructed with and

without the particle under consideration, in this case the D+ candidate. The selection of

candidates is based on the distance between the PV and the D+ decay vertex (the flight

distance); the IP of the D+ candidate; the angle between the reconstructed D+ momentum

2Natural units with ~ = c = 1 are used in this paper.
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Figure 1. Invariant-mass spectrum of the K−K+K+ candidates with the fit result overlaid (solid

blue line). The orange and green dashed lines indicate the two Gaussian functions representing the

signal and the red dashed line is the background.

vector and the vector connecting the PV to the decay vertex; the χ2 of the D+ decay vertex

fit; the distance of closest approach between any two final-state tracks; and the momentum,

the transverse momentum and the χ2
IP of the D+ candidate and of its decay products. The

invariant mass of the D+ candidate is required to be within the interval 1820–1920 MeV.

In order to suppress the contamination from D+
s → K−K+π+π0 decays, where the neutral

pion is not reconstructed and the charged pion is misidentified as a kaon, more stringent

PID requirements are applied to the kaon candidates with the same charge.

A boosted decision tree (BDT) multivariate classifier [21, 22] is used to further reduce

the combinatorial background. In order to keep the selection efficiency uniform over the

Dalitz plot, the BDT uses only the quantities related to the D+ candidate described above.

The BDT is trained using simulated D+→ K−K+K+ decays for the signal, and data from

the invariant-mass intervals 1820–1840 MeV and 1900–1920 MeV for the background. After

the application of all selection requirements, approximately 0.5% of the events include more

than one signal candidate. All candidates are retained for further analysis.

The invariant-mass spectrum of the selected D+ → K−K+K+ sample is shown in

figure 1. To fit the invariant-mass distribution, the signal probability density function

(PDF) is modeled by a sum of two Gaussian functions with a common mean and indepen-

dent widths that are free parameters. The signal model is validated with simulation. The

background PDF is parameterised by an exponential function. The fitted PDF is overlaid

with the mass distribution in figure 1. For the Dalitz plot analysis, only candidates within

the range 1861.4–1879.5 MeV are considered. This interval corresponds to four times the

effective mass resolution, and contains 111 thousand candidates, of which (90.45± 0.07)%

correspond to signal.

The Dalitz plot of the candidates in the signal region is shown in the left side of

figure 2. The particle ordering is such that the kaon with charge opposite to that of the

– 4 –
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Figure 2. (left) Dalitz plot of the selected sample, including background. (right) Dalitz plot

projections for candidates from regions I (blue) and II (red), above and below sK−K+ =1.55 GeV2.

The interference between the S- and P-wave amplitudes cause the asymmetry in the number of

candidates in the two regions, as well as the shift in the peak position. Both figures include all

candidates in the selected mass range.

D+ meson is always particle 1, and the same-sign kaons are randomly assigned particles 2

and 3, i.e. D+ → K−(p1)K
+(p2)K

+(p3), where pi are the four-momenta. The Dalitz plot is

represented in terms of the square of the invariant masses of the two K−K+ combinations,

s12 ≡ (p1 + p2)
2 and s13 ≡ (p1 + p3)

2. Throughout this paper, the symbol sK−K+ is used

to represent the invariant mass squared of both K−K+ combinations. These Lorentz-

invariant quantities are computed constraining the invariant mass of the candidate to the

known D+ mass [23]. An accumulation of candidates is visible at sK−K+ ∼1.04 GeV2 which

corresponds to the φ(1020)K+ component. The difference in the number of candidates in

the regions of the Dalitz plot above and below 1.55 GeV2 (regions I and II in the left

side of figure 2, respectively) is caused by interference between the φ(1020)K+ and S-

wave amplitudes. This interference also shifts the position of the peaks of the sK−K+

distributions in the two regions. These two effects are better illustrated in the projections

of the Dalitz plot shown in the right side of figure 2.

4 Efficiency and background model

4.1 Efficiency variation over the Dalitz plot

In the fit to the Dalitz plot distribution, the variation of the total efficiency across the phase

space must be taken into account. The total efficiency is determined from a combination

of simulation and methods based on data, and includes the geometrical acceptance of the

detector and the reconstruction, selection, PID and trigger efficiencies.

The geometrical acceptance, reconstruction and selection efficiencies are obtained from

simulation. The PID efficiency of each D+ candidate is determined by multiplying the

efficiencies for each of the final-state kaons. The PID efficiencies for the kaons are evaluated

from calibration samples of D∗+ → D0(→ K−π+)π+ decays [24] and depend on the particle

– 5 –
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Figure 3. Total efficiency, normalised to unity, for the D+→ K−K+K+ signal over the Dalitz plot,

including the geometrical acceptance and the reconstruction, selection, PID and trigger efficiencies.

momentum, pseudorapidity and event charged-particle multiplicity. The trigger efficiency

is obtained from simulation, with a correction factor determined from data to account for

the small mismatch between the performance of the trigger in data and simulation.

The total efficiency distribution is a two-dimensional histogram with 14 × 14 uniform

bins. A two-dimensional cubic spline is used to smooth this distribution to avoid binning

discontinuities, yielding the high-resolution histogram (300 × 300 uniform bins), shown in

figure 3. This histograms is used to weight the signal PDF in the Dalitz plot fit. The

binning scheme of the efficiency histogram is a source of systematic uncertainty.

4.2 Background model

The background model is built from the inspection of the mass sidebands of the

D+→ K−K+K+ signal. The Dalitz plots of candidates from both sidebands,

1820–1840 MeV and 1900–1920 MeV, are very similar, with a clear peaking structure, cor-

responding to random φ(1020)K+ combinations over a smooth distribution.

The Dalitz plot variables are computed from the four-momenta determined by a D+

mass constrained fit. This constraint implies an unique boundary of the Dalitz plot, regard-

less of the value of the invariant mass of the three-kaon system. It also improves the mass

resolution of signal candidates, but has the effect to distort and shift any structure present

in the Dalitz plot of the background candidates in the sidebands. This effect depends

strongly on the invariant mass of the three-kaon system and prevents the determination of

the background model from a two-dimensional parameterisation of the Dalitz plots from

the sidebands. An alternative method is used instead. Each m(K−K+K+) sideband is

divided into slices of 10 MeV. For each slice, the projections onto the sK+K− axis are fitted

using a relativistic Breit-Wigner for the φ(1020) component (with floated mass and width)

and a phase-space distribution, as illustrated in figure 4. The latter serves as a proxy

for both the smooth component spread across the Dalitz plot and the projection of the φ

candidates appearing in the other sK+K− combination. The fraction of the φ(1020) com-

– 6 –
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Figure 4. Projection onto sK+K− of K−K+K+ candidates with invariant mass in the range

1820–1830 MeV.
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Figure 5. High-resolution histogram representing the background model used in the Dalitz plot fits.

ponent is nearly constant in both sidebands, indicating that the background composition

is independent of m(K−K+K+). A linear interpolation is used to obtain the fraction of

peaking background in the signal region and is found to be (20.67±0.28)%.

The fit to the sK+K− projection has the limitation of being less sensitive to the dis-

tribution near the K+K− threshold. The inspection of the Dalitz plot sidebands shows

that the smooth background component has more candidates at low values of sK+K− and

fewer at low values of sK+K+ ≡ (p2 + p3)
2, indicating that this smooth distribution is not

uniform over the phase space. A model for the smooth component of the background is

built assuming a sum of two contributions, random f0(980)K+ candidates and a constant

amplitude, with equal proportions. The relative fractions of these two terms in the smooth

component is treated as a source of systematic uncertainty.

A high-resolution normalised histogram (300× 300 uniform bins) is used in the Dalitz

plot fit to represent the background PDF, and is shown in figure 5. This histogram is

produced from a large simulated sample, using a PDF in which the peaking and smooth

components are added incoherently with the estimated relative fractions and weighted by

the efficiency function.
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5 The Dalitz plot fit procedure

The D+→ K−K+K+ decays are studied through an unbinned maximum-likelihood fit to

the observed Dalitz plot distribution. The total PDF is constructed as a sum of signal and

background components, and the likelihood function is given by

L =

Ncand∏
fS × SPDF(s12, s13) + (1− fS)×BPDF(s12, s13), (5.1)

where Ncand is the total number of candidates and fS is the fraction of signal candidates in

the sample, as obtained from the m(K−K+K+) fit described in section 3. The background

PDF, BPDF(s12, s13), is described in section 4.2.

The normalised signal PDF is written in terms of the total decay amplitude T (s12, s13),

SPDF(s12, s13) =
1

NS
|T (s12, s13)|2ε(s12, s13), (5.2)

where ε(s12, s13) is the detection efficiency, described in section 4.1. The normalisation

factor, NS, is given by

NS =

∫
ds12 ds13 |T (s12, s13)|2 ε(s13, s13). (5.3)

For any given model, the amplitude T (s12, s13) depends on a set of parameters that are

floated in the fit. The optimum values for these parameters are determined by minimizing

the quantity −2 lnL using the MINUIT package [25].

In order to compare the fit results of a given model to the Dalitz plot distribution in

data, a large simulated sample is generated according to the model, including background

and efficiency, normalised to the total number of data candidates. Since there are two

identical kaons, the folded Dalitz plot is used, represented as shigh
K+K− versus slowK+K− , which

are respectively the higher and the lower values among s12 and s13. The Dalitz plot

distribution is divided into 1024 bins with approximately 110 candidates each and the

normalised residuals are computed as

∆i =
(N i

pred −N i
obs)

σi
, (5.4)

where, for each bin i, N i
pred is the predicted number of candidates from the model, N i

obs

is the number of candidates in the data sample, and σi is the statistical uncertainty from

data and simulation added in quadrature. The sum of the square values of ∆i over all bins

is the total χ2 and is used as a metric to compare fit results with different models.

6 Dalitz plot analysis with the isobar model

In the isobar model, the decay amplitude is written as a coherent sum of a constant

nonresonant (NR) component and intermediate resonant amplitudes,

T (s12, s13) = cNR +
∑
k

ckTk(s12, s13). (6.1)

– 8 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
3

Each resonant amplitude, Tk, is given by a product of Blatt-Weisskopf penetration fac-

tors [26], FLD and FLR , accounting for the finite size of the D+ meson and the resonance,

respectively, the spin amplitude, S, accounting for the conservation of angular momentum,

and a function, MR, describing the resonance lineshape, which is either a relativistic Breit-

Wigner (eq. (A.2)) or a Flatté lineshape (eq. (A.4)). The Zemach formalism [27] is used for

the spin amplitude S. Details of each of these factors are given in appendix A. Since there

are two identical kaons in the final state, the resonant amplitudes are Bose-symmetrised,

Tk(s12, s13) = FLD(s12)F
L
R (s12) × S(s12, s13) × MR(s12) + (2↔ 3). (6.2)

The fit parameters are the complex coefficients cNR = aNRe
iδNR and ck = ake

iδk . The

results are expressed in terms of the magnitude and phase of the complex coefficient for

each component, and the corresponding fit fractions. The fit fractions are computed by

integrating the squared modulus of the corresponding amplitude over the phase space, and

dividing by the integral of the total amplitude squared,

FFk =

∫
ds12 ds13 |ck Tk(s12, s13)|2∫

ds12 ds13 |
∑

i ci Ti(s12, s13)|
2 . (6.3)

The sum of fit fractions for all components is, in general, different from 100% due to

the presence of interference; it is less than 100% in the case of net constructive interference

or higher than 100% otherwise.

6.1 Signal models

For the D+ → K−K+K+ decay amplitude, contributions from following resonances are

possible: the isoscalars f0(980), f0(1370) and f0(1500); the isovectors a0(980) and a0(1450);

the vector φ(1020); the tensor f2(1270). Contributions from resonances with spin greater

than one are suppressed due to the small phase space of the D+→ K−K+K+ decay. In

the case of the f2(1270) state, a further suppression is expected due to its small branching

fraction to K−K+, (4.6 ± 0.4)% [23]. The relatively narrow f ′2(1525) state is neglected

since it is well beyond the phase space.

Various combinations of the nonresonant and the possible resonant amplitudes are

considered. All models studied contain the φ(1020)K+, which is chosen as the reference

amplitude, fixing the phase convention and setting the scale for the magnitudes. The

models tested differ by the composition of the S-wave. Near the K+K− threshold, both

the a0(980) and f0(980) resonances can contribute. Similarly, at higher K+K− invariant

mass, contributions from several scalar resonances are possible.

The φ(1020) mass and width are fixed to the known values [23]; for the f0(980) state,

a Flatté lineshape is used, with parameters from the BESII collaboration [28].

6.2 Results

The simplest model that describes the data, referred to as model A, consists of three

intermediate components: φ(1020)K+, f0(980)K+, and f0(1370)K+. As the f0(1370)

state has large uncertainties on its mass and width [23], these parameters are allowed to

– 9 –
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Model A Model B Model C

φ(1020)K+ Magnitude 1 [fixed] 1 [fixed] 1 [fixed]

Phase 0 [fixed] 0 [fixed] 0 [fixed]

Fraction 6.17± 0.47 6.40± 0.47 6.40± 0.48

f0(980)K+ Magnitude 3.12± 0.10 2.64± 0.08 2.84± 0.13

Phase −58.9± 4.9 −36.5± 7.6 −25.9± 8.4

Fraction 23.7± 3.0 17.7± 2.1 20.4± 1.5

f0(1370)K+ Magnitude 3.46± 0.46 2.33± 0.35 –

Phase 13.1± 7.7 42± 10 –

Fraction 25.4± 5.0 18.7± 1.5 –

f0(1370) mass [ GeV ] 1.422± 0.015 1.401± 0.009 –

f0(1370) width [ GeV ] 0.324± 0.038 0.178± 0.031 –

NR Magnitude – 8.8± 1.3 11.7± 1.8

Phase – −5.5± 6.5 −39.0± 4.4

Fraction – 18.4± 5.9 32.7± 8.2

a0(980)K+ Magnitude – – 5.9± 0.4

Phase – – 48.5± 3.0

Fraction – – 53.5± 7.4

S-wave fraction 92± 11 91± 13 93± 12

Fractions sum 55.4± 5.9 61.2± 6.4 113± 11

Table 1. Results from the D+→ K−K+K+ Dalitz plot fit with the isobar models A, B and C.

Magnitudes, |ck|, phases, arg(ck) (in degrees), and fit fractions (in %) are given with statistical

uncertainties only.

float in the fit. Its contribution can also be interpreted, within the isobar formalism, as

an effective representation for the overlap of two or more broad structures at high K−K+

invariant mass.

Further addition of scalar states does not improve the fit quality significantly, creates

more complex interference effects, and provides a very similar description of the lineshape

and phase behaviour of the total S-wave. For example, in model B, a constant nonresonant

contribution is added to the resonant amplitudes of model A. The resulting fit quality is

essentially unchanged, with the total χ2/ndof being 1.15 and 1.14 for models A and B,

respectively. A similar situation occurs in model C, which has the same amplitudes as in

model B plus the a0(980)K+ component. In this model, the contribution of the f0(1370)

is found to be negligible and the value of χ2/ndof is 1.16. Table 1 summarizes the fit

results for these three models. The total S-wave fit fraction includes the interference terms

between the various S-wave components. In all cases, the total S-wave in the K+K− system

is dominant, a notable feature also observed in other three-body D decays with a pair of

identical particles in the final state, such as the D+ → K−π+π+ and D+
(s) → π−π+π+

decays [23]. The contribution from the f2(1270)K+ component is also tested and found to

be consistent with zero in all models.
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Component Magnitude Phase [deg.] Fraction (%)

φ(1020)K+ 1.0 [fixed] 0.0 [fixed] 6.17± 0.47± 0.19± 0.41

f0(980)K+ 3.12± 0.10± 0.13± 0.33 −58.9± 4.9± 2.3± 2.0 23.7± 3.0 ± 2.1 ± 3.3

f0(1370)K+ 3.46± 0.46± 0.32± 0.73 13.1± 7.7± 1.6± 3.2 25.4± 5.0 ± 3.4 ± 3.8

sum 55.4± 5.9 ± 0.4 ± 0.6

Table 2. Fit results with model A, given in terms of the magnitudes |ck|, phases, arg(ck) (in

degrees), and fit fractions (in %). For each measurement, the first uncertainty is statistical, the

second systematic and the third is a systematic uncertainty due to model.
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Figure 6. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)

shighK+K− and (bottom right) slowK+K− axes, with the fit result with model A overlaid (red histogram).

The histogram in magenta represents the contribution from the background, whereas the dashed

green line is the phase-space distribution weighted by the efficiency.

Since model A is the simplest model describing all the general features of the observed

Dalitz plot distribution, it is chosen as the baseline result for the fit with the isobar model.

The projections of the Dalitz plot, with the model A fit result overlaid, are shown in

figure 6. The green dashed line represents the phase-space distribution, weighted by the

efficiency, evidencing the presence of at least one broad, scalar contribution not consistent

with a uniform distribution.

The distribution of the normalised residuals ∆i over the Dalitz plot is shown in the

left plot of figure 7, and their distribution is consistent with a normal Gaussian, as shown

in the right plot of figure 7. In table 2 the results including the systematic and model

uncertainties, as discussed in section 8, are presented.
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Figure 7. (left) Normalised residuals ∆i across the Dalitz plot, from the result of isobar fit. (right)

Distribution of the normalised residuals with the fit result overlaid. The distribution is fitted with

a Gaussian function and the fit result is consistent with the standard normal distribution.
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Figure 8. (left) Magnitude and (right) phase of the total S-wave from the result of the Dalitz plot

fit with the isobar model. The black line corresponds to model A and the green band represents

the statistical and systematic uncertainties added in quadrature. For comparison, the results of

models B and C are shown as the blue solid and dashed thick red lines. Uncertainties on the S-wave

magnitude and phase for models B and C are similar to those from model A and are not shown.

The squared modulus and phase of the S-wave amplitude from model A are shown in

figure 8 as a function of the K+K− mass, with total uncertainties represented as bands. For

comparison, the corresponding central results for models B and C are overlaid. Although

the S-wave composition is different for these models, the total S-wave description is essen-

tially the same, evidencing that the isobar model fails to disentangle the individual contri-

butions. The f0(1370) parameters are found to be m0 = 1.422± 0.015± 0.009± 0.028 GeV

and Γ0 = 0.324± 0.038± 0.018± 0.038 GeV, where the first uncertainties are statistical

and the second systematic.
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Figure 9. Diagrams representing the two quark-level topologies for the D+→ K−K+K+ decay.

In the Triple-M [3], diagram (a) is assumed to be the dominant mechanism of the decay, whereas

diagram (b) is suppressed since the production of a K+K− pair from a dd̄ pair requires rescattering.

7 Dalitz plot analysis with the Triple-M amplitude

The basic hypothesis of the Triple-M is the dominance of the annihilation diagram shown

in figure 9(a). The D+→ K−K+K+ decay can also proceed via the diagram in figure 9(b),

but in this case a K+K− pair could only be produced from the dd̄ pair through rescattering,

since charged kaons have no d-valence quark. The same holds for the production of the

φ(1020) meson which is essentially an ss̄ state [23].

Assuming the annihilation diagram is the dominant mechanism for the D+→K−K+K+

decay, the Triple-M amplitude is a product of two axial-vector currents,

〈K−K+K+|T |D+〉 = −
[
GF√

2
sin2 θC

]
〈K−K+K+|Aµ|0〉〈0|Aµ|D+〉 , (7.1)

where GF is the Fermi decay constant, θC is the Cabibbo angle and Aµ are the axial

currents. The weak vertex is 〈 0 |Aµ|D+(P )〉 = −i
√

2 fD Pµ, where P = p1 +p2 +p3 is the

D+ four-momentum and fD is the D+ decay constant.

In the Triple-M, the three-kaon system can be produced in two ways, as illustrated in

the diagrams in figure 10. Diagram (a) represents the production of the three kaons directly

from the weak vertex, whereas in diagram (b) two of the three kaons result from the decay

of a bare intermediate resonance. Final state interactions are introduced in diagrams (c)

and (d). The full black circles indicate the unitarised scattering amplitudes, AJIK+K− ,

representing the scattering ab → K+K− with the coupled channels ab = K+K−, ππ, ηπ

and ηη in a well-defined spin (J ) and isospin (I ) state. The nonresonant component

corresponds to diagram (a). Due to the existence of two identical kaons, diagrams (b), (c)

and (d) are symmetrised. As in the isobar analysis, contributions of D-wave are expected

to be very small and are not included.

The Triple-M decay amplitude therefore has five components,

T = TNR +
∑
J,I

T JI , J, I = 0, 1. (7.2)

The free parameters in the Triple-M amplitude are the couplings and masses of the chiral

Lagrangian. There are four couplings, cd, cm, c̃d, c̃m in the scalar part, contributing to T 00

and T 01 terms; two masses, mSo, mS1, for the scalar-isoscalar, T 00 contribution and one,
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Figure 10. Diagrams contributing to the amplitude T for the decay D+ → K−K+K+: (a) the

final state kaons are produced directly from the weak vertex; (b) a bare resonance is produced

directly from the weak vertex; (c) particles produced at the weak vertex undergo final state

interactions; (d) final state interactions endow finite widths to the resonances. The full circle

represents the unitary ab → K+K− scattering amplitude with angular momentum J and isospin

I, and ab = KK, ππ, ηπ and ηη.

ma0 , in the scalar-isovector T 01 components; one coupling, GV , for the vector components,

T 10 and T 11, and one mass, mφ, in the vector-isoscalar component. In the fit to the data,

the combination Gφ ≡ GV sin θω−φ/F is used as free parameter, where θω−φ is the ω − φ
mixing angle. The parameter F is the SU(3) pseudoscalar decay constant, common to

all components. For convenience, the formulae of the various components of the Triple-M

amplitude are reproduced from ref. [3] in appendix B.

Equation (7.2) resembles that of the isobar model, but there are several significant

differences. The free parameters in the Triple-M amplitude are real quantities from the

chiral Lagrangian. Some of these parameters appear in different spin-isospin components

of the model. In the isobar model the free parameters are the complex coefficients ck,

from which the individual contributions of the resonances are determined. In the Triple-M

amplitude, the relative contributions of the various components are fixed by theory. The

nonresonant component is usually represented by an empirical constant in fits with the

isobar model. In the Triple-M amplitude, it is a function of the Dalitz plot coordinates

and is fully determined by chiral symmetry.

7.1 Fit results

The optimum values of the Triple-M parameters are determined by an unbinned maximum-

likelihood fit, as described in section 5. The fitted values of the Triple-M parameters are

listed in table 3, with statistical and systematic uncertainties.

The quality of the fit with the Triple-M amplitude is tested with the metric defined in

eq. (5.4). The value of χ2/ndof is 1.12. The projections of the Dalitz plot onto the sK+K−

and the sK+K+ axes, as well as the projections onto the highest and lowest invariant masses

squared of the two K+K− combinations, shigh
K+K− and slowK+K− , are shown in figure 11, with
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parameter value

F 94.3+2.8
−1.7± 1.5 MeV

ma0 947.7+5.5
−5.0± 6.6 MeV

mSo 992.0+8.5
−7.5± 8.6 MeV

mS1 1330.2+5.9
−6.5± 5.1 MeV

mφ 1019.54+0.10
−0.10± 0.51 MeV

Gφ 0.464+0.013
−0.009± 0.007

cd −78.9+4.2
−2.7± 1.9 MeV

cm 106.0+7.7
−4.6± 3.3 MeV

c̃d −6.15+0.55
−0.54± 0.19 MeV

c̃m −10.8+2.0
−1.5± 0.4 MeV

Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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Figure 11. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)

shighK+K− and (bottom right) slowK+K− axes, with the fit result with the Triple-M amplitude superim-

posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The

magenta histogram represents the contribution from the background.

the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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Figure 12. (left) Two-dimensional distribution of the normalised residuals for the Triple-M fit.

(right) Distribution of normalised residuals of each bin.

7.2 Interpretation

The resonance masses in the Triple-M are introduced in the denominators, D, of

eqs. (B.21)–(B.24), where the functions M are imaginary and proportional to interaction

kernels which contain the bare masses of the effective chiral Lagrangian, ma0 , mSo , mS1

and mφ. The Triple-M amplitude is derived assuming that only the imaginary part of the

two-body propagators in eqs. (B.25)–(B.28) is relevant. In this approximation, the bare

masses coincide with the masses of the physical states and the association mSo = mf0(980)

and mS1 = mf0(1370) can be made. As in the case of the isobar model, the masses in the

Triple-M correspond to the values of sK+K− for which the real part of the denominator

D of eqs. (B.21)–(B.24) vanishes. At these values of sK+K− , only the imaginary parts

of the denominators remain, corresponding to the model prediction for the widths. The

denominators D would be very similar to those from the isobar model if no coupled chan-

nel was considered. The inclusion of coupled channels is, therefore, the main difference

between the Triple-M and Breit-Wigner denominators, resulting in widths with different

dynamical content.

7.2.1 Resonant structure

The nonresonant contribution in the Triple-M is a three-body amplitude predicted by chiral

symmetry. It can be projected into the S- and P-waves rewriting eq. (B.3) as

TNR =
C

4

[
(m2

D −m2
K + s12) + (s13 − s23) + (m2

D −m2
K + s13) + (s12 − s23)

]
= TSNR + TPNR , (7.3)

where C is a constant common to all components of the Triple-M amplitude, and defined

in eq. (B.2). The decay amplitude can then be written as the sum of scalar and vector

components

T =
[
TS + TP + (2↔ 3)

]
, (7.4)
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FFNR FF00 FF01 FF10 FF11 FFS−wave

14 ± 1 29 ± 1 131 ± 2 7.1 ± 0.9 0.26 ± 0.01 94 ± 1

Table 4. Relative fractions (%) of the various components of the Triple-M amplitude. The uncer-

tainties correspond to the combined statistical and systematic uncertainties.

with

TS = TSNR + T 00 + T 01 (7.5)

and

TP = TPNR + T 11 + T 10 . (7.6)

The relative contribution of each individual component of the Triple-M amplitude is

determined by integrating the modulus squared of each term in the right-hand side of

eq. (7.2) over the phase space of the D+→ K−K+K+ decay,

FFNR =

∫
ds12 ds13 |TNR(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

, FFJI =

∫
ds12 ds13 |T JI(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

. (7.7)

Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of the K+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25 GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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Figure 13. Phase of the J = 0 component of the decay amplitude (blue) TS = T 00 + T 01 + TS
NR,

compared to the phases of the scattering amplitudes, (red) A00
K+K− and (magenta) A01

K+K− as a

function of the K+K− invariant mass.

The interpretation of the phase shifts for K+K− scattering is not as straightforward

as in the case of elastic scattering, since for both isospin states, the ππ → K+K− and

πη → K+K− channels are already open at the K+K− threshold. An interesting feature

of the results displayed is that the phase variation of δ00K+K− is monotonic and spans over

more than 180◦, with a fast variation starting at m(K+K−) ∼ 1.4 GeV, close to the value

of mS1 and typical of a resonance at high K+K− mass. A fast variation of the phases is

observed near threshold for both δ00K+K− and δ01K+K− , indicating the contribution from the

resonances below threshold.

The ηη channel contributes to T 00 but not to T 01 and its effect is visible in the bottom

left plot of figure 14 as a kink at m(K+K−) ∼ 1.1 GeV. As elastic scattering corresponds

to ηJI = 1, one sees that the isoscalar component becomes significantly more inelastic after

the mass of the second scalar resonance.

8 Systematic uncertainties

Sources of systematic uncertainties associated to the background model, to the efficiency

correction and to possible biases in the fitting procedure are common to the fits with the

isobar model and the Triple-M. They are summarized in tables 5 and 6, respectively. There

is an additional source of systematic uncertainties on the results of the fit with the isobar

model due to the uncertainties on the parameters defining the f0(980) lineshape, which

are fixed in the fit. This additional uncertainty, quoted separately from the experimental

uncertainties, is estimated by repeating the fit varying the parameters gπ, gK and m0 of

eq. (A.4) by one standard deviation, one at a time, and taking the largest deviation as the

systematic uncertainty. The radii of the Blatt-Weisskopf form factors are also fixed in the

fit. However, they impacts only the φ(1020)K+ amplitude. Fits with alternative values of

these parameters are performed. The tested values of the radii are 4 and 6 GeV−1, for FLD,

and 1 and 3 GeV−1, for FLR . Since no significant deviation from the baseline fit is observed,

no systematic uncertainty is assigned.
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Figure 14. (top) Phase-shifts δ0IK+K− and (bottom) inelasticities η0I as a function of the K+K−

invariant mass, for both isospin states.

Two types of systematic uncertainties due to the background are investigated. First,

the background level is varied according to the uncertainty from the fit to the K−K+K+

invariant mass. The data is fitted changing the fraction of the background by ±1σ. No

significant change in the fit parameters is found and no systematic uncertainty is assigned.

Uncertainties due to the background modelling are also investigated. The background

model is built from inspection of the sidebands of the D+ → K−K+K+ signal. It is a

combination of a peaking structure and a smooth component. The smooth component

corresponds to 80% of the background and is modelled by a sum of a constant term and

an f0(980)K+ contribution, in equal proportions. A systematic uncertainty due to the

modelling of the background is assigned by varying the relative fractions of these two

components, fitting the data with these alternative background models and taking the

largest variation as systematic uncertainty.

Systematic uncertainties are assigned to small biases in the fit using ensembles of 500

simulated samples. Two sets of samples are generated using the Triple-M amplitude and

the isobar model, both with the fitted values of the parameters. In the simulations the

signal PDFs are weighted by the efficiency function and the background component is

included. Each simulated sample is fitted independently, resulting in distributions of fitted

values of the parameters and their respective uncertainties. For each parameter, the mean

of the distribution of fitted values is compared to the input. The difference is assigned as

the systematic uncertainty due to the fit bias. A small bias is observed in the fit with the

Triple-M amplitude, whilst no bias is observed in the fit with the isobar model.

The systematic uncertainty associated to the efficiency variation across the Dalitz plot

includes the effect of the uncertainties on the PID efficiency and the hardware trigger cor-
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parameter binning sim. stat. bkg. total model stat.

|cf0(980)| 1.0 1.4 3.8 4.2 11 3.0

δf0(980) 3.1 1.9 1.4 3.9 3.4 8.2

|cf0(1370)| 3.5 3.5 7.8 9.2 21 13

δf0(1370) 9.3 5.2 4.4 12 24 59

Mf0(1370) 0.1 0.3 0.6 0.7 2.0 1.0

Γf0(1370) 3.7 3.0 3.1 5.7 12 12

Table 5. Systematic uncertainties (%) on the results of the isobar model fit. For comparison, the

statistical uncertainties are listed in the last column.

parameter binning sim. stat. PID bkg. fit bias total stat.

F 0.53 0.07 0.09 1.5 0.11 1.6 1.8

ma0 0.54 0.14 – 0.40 0.16 0.70 0.54

mSo 0.60 0.21 – 0.56 0.21 0.87 0.82

mS1 0.16 0.15 – 0.13 0.04 0.26 0.41

mφ 0.002 0.001 – – 0.002 0.003 0.005

Gφ 0.86 0.25 0.02 1.2 0.15 1.5 1.9

cd 0.18 0.08 0.09 2.4 0.13 2.4 3.3

cm 0.16 0.11 – 2.7 0.10 2.7 4.7

c̃d 0.13 0.15 – 2.6 1.1 3.1 8.8

c̃m 0.19 0.11 0.08 2.8 1.9 3.4 13

Table 6. Systematic uncertainties (%) on the results of the Triple-M fit. For comparison, the

statistcal uncertainties are listed in the last column.

rection factors, the effect of the finite size of the simulated sample, and the effect of the

binning scheme of the efficiency histogram prior to the two-dimensional spline smoothing.

The uncertainties on the PID efficiency are due to the finite size of the calibration samples

and imply small systematic uncertainties compared to the other sources of systematics,

in the fit with the Triple-M amplitude, and negligible uncertainties in the fit with the

isobar model. The uncertainty due to the hardware trigger correction factors is found to

be negligible. The effect of the finite size of the simulated sample is assessed by gener-

ating a set of alternative histograms from the selection efficiency histogram, prior to the

hardware trigger correction and the PID efficiency weighting. The content of each bin of

the selection efficiency histogram is varied according to a Poisson distribution. For each

of these alternative histograms, an efficiency map is produced and used to fit the data.

For each parameter, the root mean square of the distribution of fitted values is assigned

as a systematic uncertainty. The systematic uncertainty due to the binning scheme of the

efficiency map is accessed by varying the number of bins of the final efficiency histogram.

The histograms with alternative binnings are fitted by the two-dimensional cubic spline.

The data is fitted with these alternative efficiency maps and the largest variation of each

parameter is assigned as systematic uncertainty.
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9 Summary and conclusions

In this paper, the first Dalitz plot analysis of the doubly Cabibbo-suppressed decay

D+→ K−K+K+ is performed. The two goals of the analysis are the determinations of

the resonant structure of the decay and the K+K− scattering amplitudes. The resonant

structure is studied with two different approaches. In the fit with the isobar model, several

variations of the decay amplitude are tested. The Dalitz plot analysis is also performed with

the Triple-M [3], which is a model derived from a chiral effective Lagrangian. The Triple-M

amplitude has a nonresonant component plus the minimal SU(3) content corresponding to

four states, the φ(1020), the a0(980) and two isoscalar states, identified with the f0(980)

and f0(1370) resonances. A good description of the data is achieved with both approaches.

The resonant structure of the D+→ K−K+K+ is largely dominated by the S-wave,

with a approximately 7% contribution from the φ(1020)K+ component. The dominance

of the S-wave contribution is also observed in other three-body D+
(s) decays with a pair of

identical particles in the final state, such as the D+ → K−π+π+ and D+
(s) → π−π+π+ de-

cays [23]. The possibility of determining the individual components of the S-wave, however,

is limited by the lack of structures in the Dalitz plot, other than that from the φ(1020)

resonance, and by the fact that the f0(980) and a0(980) mesons poles lie below the K+K−

threshold. In all the models tested, large interference between the various S-wave compo-

nents is observed. In the fit with isobar model, different combinations of scalar resonances

and nonresonant amplitudes yield fits of same quality and a very similar S-wave amplitude.

In the fit with the Triple-M, a large a0(980) contribution is observed, with a large destruc-

tive interference with the f0(980) component that yields an S-wave fraction of about 94%.

The separation between the f0(980) and a0(980) contributions could better achieved with a

simultaneous analyses of the D+→ K−K+K+, D+ → π−π+π+ and D+ → ηπ+π0 decays.

Predicitions for the K+K− → K+K− scattering amplitudes are obtained from the

Dalitz plot fit using the Triple-M amplitude. This is possible because the model incorpo-

rates explicitely coupled channels and isospin degrees of freedom. In this respect, the chiral

Lagrangian approach represents an advance towards the description of the hadronic part

of weak decays of D mesons in a more fundamental basis.
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L FL F ′L

0 1 1

1
√

2z
1+z

√
1+z0
1+z

2
√

13z2

1+z

√
(z0−3)2+9z0
(z−3)2+9z

Table 7. Blatt-Weisskopf form factors for angular momentum L = 0, 1, 2 with two distinct

formulations.
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A Decay amplitudes in the isobar model

Intermediate decay amplitudes within the Isobar model are given by eq. (6.2). Each factor

appearing in that equation is presented here.

The form factors FLD and FLR , for the D+ and the resonance decay, respectively, are

parameterized by the Blatt-Weisskopf penetration factors [26], and depend on L, the orbital

angular momentum involved in the transition. Since both the initial state (the D+ meson)

and the final state (three kaons) have spin 0, L is equal to the spin of the resonance.

In the rest frame of a resonance formed by particles 1 and 2, R12, q is the modulus of

the momentum of particle 1 or 2 (the decay momentum), q0 is the decay momentum when

s12 = m2
R (mR being the nominal resonance mass), and d is a measure of the effective radius

of the decaying meson, fixed in this work to 5.0 GeV−1 for the D meson and 1.5 GeV−1

for the resonance. Defining z = (qd)2 and z0 = (q0d)2, the Blatt-Weisskopf barrier factors

are usually written with two different formulations, FL and F ′L [23], given in table 7. The

F ′L formulation is used in this analysis, consistent with the energy dependent width given

below in eq. (A.3), with the momenta in FLD and FLR computed in the rest frame of the

respective decaying particle.

The function S(θR12
13 ) describes the angular distribution of the decay particles, with

θR12
13 = θR12

13 (s12, s13) being the angle between particles 1 and 3 momenta measured in the

rest frame R12. The Zemach formalism [27] is used for the angular distribution

S = (−2|p1||p3|)LPL(cos θR12
13 ), (A.1)

where PL is the Legendre polynomial of order L. For vector and tensor resonances, this term

introduces nodes in the Dalitz plot in regions where the helicity angle is either 90◦ or 270◦.

– 22 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
3

The relativistic Breit-Wigner function [29] is used as the dynamical function,

MR(s12) =
1

s12 −m2
R + imRΓ(s12)

, (A.2)

where mR is the mass of the resonance and Γ(s12) is the mass-dependent width,

Γ(s12) = ΓR

(
q

q0

)2L+1 mR√
s12

(
FLR (z)

)2
(A.3)

with ΓR being the nominal resonance width. Given the narrowness of the φ(1020) meson,

in this analysis the effect of the K0
LK

0
S and π+π−π0 decay channels is not considered.

In the case of the f0(980) resonance, the relativistic Breit-Wigner is replaced by the

Flatté formula [30]

MR(s12) =
1

s12 −m2
R + imR(ρππ g2π + ρKK g2K)

, (A.4)

where gπ and gK are dimensionless coupling constants to the KK and ππ channels, respec-

tively, and ρππ and ρKK are the corresponding phase-space factors,

ρππ =

√(s12
4
−m2

π

)
+

√(s12
4
−m2

π0

)
,

ρKK =

√(s12
4
−m2

K

)
+

√(s12
4
−m2

K0

)
.

(A.5)

All the above formulation holds equally for the resonances in the system composed

by particles 1 and 3, with s12 → s13 and θR12
13 → θR31

12 (angular functions convention with

cyclic permutation (12)3→ (31)2).

B The Triple-M decay amplitude

All formulae presented in this appendix are reproduced from ref. [3] for convenience. The

Triple-M decay amplitude for the D+ → K−K+K+ decay is given by

T = TNR +
[
T (1,1) + T (1,0) + T (0,1) + T (0,0) + (2↔ 3)

]
, (B.1)

where TNR and the T (J,I) are the nonresonant and resonant contributions, respectively. All

components are proportional to the kaon mass squared, m2
K , included in the common factor

C =

{[
GF√

2
sin2 θC

]
2FD
F

m2
K

(m2
D −m2

K)

}
, (B.2)

where FD is the D+ decay constant, F is the SU(3) pseudoscalar decay constant, GF is the

Fermi decay constant and θC is the Cabibbo angle. The nonresonant contribution is a three-

body amplitude, and therefore is not Bose-symmetrised. It is written as a real polynomial,

TNR = C
[
(s12 −m2

K) + (s13 −m2
K)
]
. (B.3)
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The amplitudes T (J,I) are

T (1,1) = − 1

4

[
Γ̄
(1,1)
KK − Γ

(1,1)
c|KK

]
(s13−s23) , (B.4)

Γ̄
(1,1)
KK =

1

Dρ(s12)

[
M

(1,1)
21 Γ

(1,1)
(0)ππ +

(
1−M (1,1)

11

)
Γ
(1,1)
(0)KK

]
, (B.5)

T (1,0) = − 1

4

[
Γ̄
(1,0)
KK − Γ

(1,0)
c|KK

]
(s13−s23) , (B.6)

Γ̄
(1,0)
KK =

1

Dφ(s12)
Γ
(1,0)
(0)KK , (B.7)

T (0,1) = − 1

2

[
Γ̄
(0,1)
KK − Γ

(0,1)
c|KK

]
, (B.8)

Γ̄
(0,1)
KK =

1

Da0(s12)

[
M

(0,1)
21 Γ

(0,1)
(0)π8 +

(
1−M (0,1)

11

)
Γ
(0,1)
(0)KK

]
, (B.9)

T (0,0) = − 1

2

[
Γ̄
(0,0)
KK − Γ

(0,0)
c|KK

]
, (B.10)

Γ̄
(0,0)
KK =

1

DS(s12)

{[
M

(0,0)
21

(
1−M (0,0)

33

)
+M

(0,0)
23 M

(0,0)
31

]
Γ
(0,0)
(0)ππ

+
[(

1−M (0,0)
11

)(
1−M (0,0)

33

)
−M (0,0)

13 M
(0,0)
31

]
Γ
(0,0)
(0)KK

+
[
M

(0,0)
23

(
1−M (0,0)

11

)
+M

(0,0)
13 M

(0,0)
21

]
Γ
(0,0)
(0) 88

}
. (B.11)

The various functions Γ
(J,I)
(0)ab correspond to diagrams (a) and (b) of figure 10, and

represent the tree-level production of particles abK+ from the weak vertex. The functions

Γ̄
(J,I)
KK represent the full decay vertex, from which the decay amplitude is obtained after

subtracting the contribution of the contact terms Γ
(J,I)
c|KK to avoid double counting. Their

explicit form of the Γ
(J,I)
(0)ab functions are

Γ
(1,1)
(0)ππ = C

{[√
2G2

V

F 2

]
s212

s212 −m2
ρ

+

[
− 1√

2

]
c

}
, (B.12)

Γ
(1,1)
(0)KK = C

{[
G2
V

F 2

]
s212

s212 −m2
ρ

+

[
− 1

2

]
c

}
. (B.13)

Γ
(1,0)
(0)KK = C

{[
3G2

V

F 2
sin2θ

]
s212

Dπρ
φ (s212)

+

[
− 3

2

]
c

}
, (B.14)

Γ
(0,1)
(0)π8 = C

{[
2
√

2√
3F 2

] [
−cd P ·p3 + cmm

2
D

]
s212 −m2

a0

[
cd
(
s212 −m2

π −m2
8

)
+ 2 cmm

2
π

]
+

[
−
√

3√
2

[
m2
D/3− P ·p3

]]
c

}
, (B.15)

Γ
(0,1)
(0)KK = C

{[
2

F 2

] [−cd P ·p3 + cmm
2
D

]
s212 −m2

a0

[
cd
(
s212 − 2m2

K

)
+ 2 cmm

2
K

]
+

[
− 1

2

[
m2
D − P ·p3

]]
c

}
, (B.16)
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Γ
(0,0)
(0)ππ = C

{[
8
√

3

F 2

] [
−c̃d P ·p3 + c̃mm

2
D

]
s212 −m2

S1

[
c̃d
(
s212 − 2m2

π

)
+ 2 c̃mm

2
π

]
−
[

2√
3F 2

] [−cd P ·p3 + cmm
2
D

]
s212 −m2

So

[
cd
(
s212 − 2m2

π

)
+ 2 cmm

2
π

]
+

[
−
√

3

2

[
m2
D − P ·p3

]]
c

}
, (B.17)

Γ
(0,0)
(0)KK = C

{[
16

F 2

] [−c̃d P ·p3 + c̃mm
2
D

]
s212 −m2

S1

[
c̃d
(
s212 − 2m2

K

)
+ 2 c̃mm

2
K

]
+

[
2

3F 2

] [−cd P ·p3 + cmm
2
D

]
s212 −m2

So

[
cd
(
s212 − 2m2

K

)
+ 2 cmm

2
K

]
+

[
− 3

2

[
m2
D − P ·p3

]]
c

}
, (B.18)

Γ
(0,0)
(0) 88 = C

{[
8

F 2

] [−c̃d P ·p3 + c̃mm
2
D

]
s212 −m2

S1

[
c̃d
(
s212 − 2m2

8

)
+ 2 c̃mm

2
8

]
+

[
2

3F 2

] [−cd P ·p3 + cmm
2
D

]
s212 −m2

So

[
cd
(
s212 − 2m2

8

)
+ cm

(
−10m2

π + 16m2
K

)
/3
]

+

[
− 1

2

[
5m2

D/3− 3P ·p3
]]
c

}
, (B.19)

with

P ·p3 =
1

2

[
m2
D +m2

K − s212
]
. (B.20)

In the above equations, mπ and mD are the π+ and the D+ masses, respectively, and

θ is the ω− φ mixing angle. The subscripts 8 refer to the member of the SU(3) octet with

the quantum numbers of the η. The denominators in eqs. (B.5), (B.7), (B.9) and (B.11)

are the model prediction for the resonance line shapes:

Dρ = D(1,1) =
[(

1−M (1,1)
11

) (
1−M (1,1)

22

)
−M (1,1)

12 M
(1,1)
21

]
, (B.21)

Dφ = D(1,0) =
{

1−M (1,0)
}
, (B.22)

Da0 = D(0,1) =
[(

1−M (0,1)
11

) (
1−M (0,1)

22

)
−M (0,1)

12 M
(0,1)
21

]
, (B.23)

DS = D(0,0) = [1−M (0,0)
11 ][1−M (0,0)

22 ][1−M (0,0)
33 ]− [1−M (0,0)

11 ]M
(0,0)
23 M

(0,0)
32

− [1−M (0,0)
22 ]M

(0,0)
13 M

(0,0)
31 − [1−M (0,0)

33 ]M
(0,0)
12 M

(0,0)
21

−M (0,0)
12 M

(0,0)
23 M

(0,0)
31 −M (0,0)

21 M
(0,0)
32 M

(0,0)
13 . (B.24)

The functions M
(J,I)
ij read

M
(1,1)
11 = −K(1,1)

ππ|ππ [Ω̄P
ππ/2] , M

(1,1)
12 = −K(1,1)

ππ|KK [Ω̄P
KK/2] ,

M
(1,1)
21 = −K(1,1)

ππ|KK [Ω̄P
ππ/2] , M

(1,1)
22 = −K(1,1)

KK|KK [Ω̄P
KK/2] , (B.25)

M (1,0) = −K(1,0)
KK|KK [Ω̄P

KK/2] , (B.26)
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M
(0,1)
11 = −K(0,1)

π8|π8 [Ω̄S
π8] , M

(0,1)
12 = −K(0,1)

π8|KK [Ω̄S
KK/2] ,

M
(0,1)
21 = −K(0,1)

π8|KK [Ω̄S
π8] , M

(0,1)
22 = −K(0,1)

KK|KK [Ω̄S
KK/2] . (B.27)

M
(0,0)
11 = −K(0,0)

ππ|ππ [Ω̄S
ππ/2] , M

(0,0)
12 = −K(0,0)

ππ|KK [Ω̄S
KK/2] ,

M
(0,0)
13 = −K(0,0)

ππ|88 [Ω̄S
88/2] , M

(0,0)
21 = −K(0,0)

ππ|KK [Ω̄S
ππ/2] ,

M
(0,0)
22 = −K(0,0)

KK|KK [Ω̄S
KK/2] , M

(0,0)
23 = −K(0,0)

KK|88 [Ω̄S
88/2] ,

M
(0,0)
31 = −K(0,0)

ππ|88 [Ω̄S
ππ/2] , M

(0,0)
32 = −K(0,0)

KK|88 [Ω̄S
KK/2] ,

M
(0,0)
33 = −K(0,0)

88|88 [Ω̄S
88/2] . (B.28)

The imaginary propagators Ω̄ are given by

Ω̄S
ab = − i

8π

Qab√
s
θ(s−(Ma+Mb)

2) , (B.29)

Ω̄P
aa = − i

6π

Q3
aa√
s
θ(s−4M2

a ) , (B.30)

Qab =
1

2

√
s− 2 (M2

a +M2
b ) + (M2

a −M2
b )2/s . (B.31)

The functions K(J,I)
ab|cd are the scattering kernels,

K(1,1)
(ππ|ππ) =−2

[
G2
V

F 4

]
s

s−m2
ρ

+

[
1

F 2

]
c

, (B.32)

K(1,1)
(ππ|KK) =−

√
2

[
G2
V

F 4

]
s

s−m2
ρ

+

[ √
2

2F 2

]
c

, (B.33)

K(1,1)
(KK|KK) =−

[
G2
V

F 4

]
s

s−m2
ρ

+

[
1

2F 2

]
c

, (B.34)

K(1,0)
(KK|KK) =−3

[
G2
V sin2θ

F 4

]
s

Dπρ
φ

+

[
3

2F 2

]
c

, (B.35)

K(0,1)
(π8|π8) =− 1

s−m2
a0

[
4

3F 4

] [
cd (s−m2

π−m2
8)+cm 2m2

π

]2
+

[
2m2

π

3F 2

]
c

, (B.36)

K(0,1)
(π8|KK) =− 1

s−m2
a0

[
2
√

2√
3F 4

][
cd (s−m2

π−m2
8)+cm 2m2

π

] [
cd s−(cd−cm)2m2

K

]
+

[
(3s−4m2

K)√
6F 2

]
c

, (B.37)

K(0,1)
(KK|KK) =− 1

s−m2
a0

[
2

F 4

] [
cd s−(cd−cm)2m2

K

]2
+
[ s

2F 2

]
c
, (B.38)

K(0,0)
(ππ|ππ) =− 1

s−m2
S1

[
12

F 4

] [
c̃d s−(c̃d−c̃m)2m2

π

]2
− 1

s−m2
So

[
2

F 4

] [
cd s−(cd−cm)2m2

π

]2
+

[
2s−m2

π

F 2

]
c

, (B.39)
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] [
c̃d s−(c̃d−c̃m)2m2

8

]
+

1

s−m2
So

[
2√
3F 4

] [
cd s−(cd−cm)2m2

π

][
cd (s−2m2

8)+cm (16m2
K−10m2

π)/3
]

+

[√
3m2

π

3F 2

]
c
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(B.44)

C Scattering amplitudes

The K+K− scattering amplitudes are written in terms of the denominators D(J,I) as

A
(1,1)
KK|KK =

1

Dρ(s12)

[
M

(1,1)
21 K(1,1)

ππ|KK +
(

1−M (1,1)
11

)
K(1,1)
KK|KK

]
, (C.1)

A
(1,0)
KK|KK =

1

Dφ(m2
12)
K(1,0)
KK|KK , (C.2)

A
(0,1)
KK|KK =

1

Da0(s12)

[
M

(0,1)
21 K(0,1)

π8|KK +
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1−M (0,1)
11

)
K(0,1)
KK|KK

]
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33
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31

]
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33
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(0,0)
31

]
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B. Leverington14, P.-R. Li68,ab, Y. Li5, Z. Li65, X. Liang65, T. Likhomanenko75, R. Lindner46,

F. Lionetto48, V. Lisovskyi9, G. Liu69, X. Liu4, D. Loh54, A. Loi25, I. Longstaff57, J.H. Lopes2,

G.H. Lovell53, D. Lucchesi26,o, M. Lucio Martinez45, A. Lupato26, E. Luppi19,g, O. Lupton46,

A. Lusiani27, X. Lyu68, F. Machefert9, F. Maciuc35, V. Macko47, P. Mackowiak12,

S. Maddrell-Mander52, O. Maev36,46, P. C. Magalhães15, K. Maguire60, D. Maisuzenko36,
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a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b Laboratoire Leprince-Ringuet, Palaiseau, France
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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q Università degli Studi di Milano, Milano, Italy
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