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Abstract

Novel non-parametric dimensionality reduction techniques such as
t-distributed stochastic neighbor embedding (t-SNE) lead to a powerful
and flexible visualization of high-dimensional data. One drawback of
non-parametric techniques is their lack of an explicit out-of-sample
extension. In this contribution, we propose an efficient extension of
t-SNE to a parametric framework, kernel t-SNE, which preserves the
flexibility of basic t-SNE, but enables explicit out-of-sample extensions.
We test the ability of kernel t-SNE in comparison to standard t-SNE
for benchmark data sets, in particular addressing the generalization
ability of the mapping for novel data. In the context of large data sets,
this procedure enables us to train a mapping for a fixed size subset only,
mapping all data afterwards in linear time. We demonstrate that this
technique yields satisfactory results also for large data sets provided
missing information due to the small size of the subset is accounted for
by auxiliary information such as class labels, which can be integrated
into kernel t-SNE based on the Fisher information.

1 Introduction

Handling big data constitutes one of the main challenges of information
technology in the new century, incorporating, among other issues, the task
to create ‘effective human-computer interaction tools for facilitating rapidly
customizable visual reasoning for diverse missions’ [13]. In this context, the
visual inspection of high-dimensional data sets offers an intuitive interface
for humans to rapidly detect structural elements of the data such as clus-
ters, homogeneous regions, or outliers, relying on the astonishing cognitive
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capabilities of humans for instantaneous visual perception of structures and
grouping of items [34].

Dimensionality reduction (DR) refers to the problem to map high-dimensional
data points to low dimensions such that as much structure as possible is pre-
served. Starting with classical methods such as principal component anal-
ysis (PCA), multidimensional scaling (MDS), or the self-organizing map
(SOM), it offers a visual data analysis tool which has been successfully
used in diverse areas such as social sciences or bioinformatics since decades
[15, 28]. In the last years, a huge variety of diverse alternative DR tech-
niques has emerged, including popular algorithms such as locally linear
embedding (LLE), Isomap, Isotop, maximum variance unfolding (MVU),
Laplacian eigenmaps, neighborhood retrieval visualizer, maximum entropy
unfolding, t-distributed stochastic neighbor embedding (t-SNE), and many
others [23, 26, 35, 3, 31, 33], see e.g. [32, 33, 17, 6] for overviews. These
methods belong to nonlinear DR techniques, enabling the correct visualiza-
tion of data which lie on curved manifolds or which incorporate clusters of
complex shape, as is often the case for real-life examples, thus opening the
way towards a visual inspection of nonlinear phenomena in the given data.

Unlike the classical techniques PCA and SOM, most recent DR methods
belong to the class of non-parametric techniques: they provide a mapping of
the given data points only, without an explicit mapping prescription how to
project further points which are not contained in the data set to low dimen-
sions. This choice has the benefit that it equips the techniques with a high
degree of flexibility: no constraints have to be met due to a predefined form
of the mapping, rather, depending on the situation at hand, arbitrary re-
structuring, tearing, or nonlinear transformation of data is possible. Hence,
these techniques carry the promise to arrive at a very flexible visualization
of data such that also subtle nonlinear structures can be spotted. Naturally,
this flexibility comes at a price to pay: (i) the result of the visualization
step entirely depends on the way in which the mapping procedure is formal-
ized, such that, depending on the chosen technique, very different results
can be obtained. Commonly, all techniques necessarily have to take infor-
mation loss into account when projecting high-dimensional data onto lower
dimensions. The way in which a concrete method should be interpreted and
which aspects are faithfully visualized, which aspects, on the contrary, are
artefacts of the projection is not always easily accessible to applicants due
to the diversity of existing techniques. (ii) There does not exist a direct way
to map additional data points after having obtained the projection of the
given set. This fact makes the technique unsuitable for the visualization of
streaming data or online scenarios. Further, it prohibits a visualization of
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parts of a given data set only, extending to larger sets on demand. The latter
strategy, however, would be vital if large data sets are dealt with: all mod-
ern nonlinear non-parametric DR techniques display an at least quadratic
complexity, which makes them unsuitable for large data sets already in the
range of about 10,000 data points with current desktop computers. Efficient
approximation techniques with better efficiency are just popping up recently
[30, 36]. Thus, it would be desirable, to map a part first, to obtain a rough
overview, zooming in the details on demand.

These two drawbacks have the consequence that classical techniques such
as PCA or SOM are still often preferred in practical applications: Both,
PCA and SOM rely on very intuitive principles as regards both, learning
algorithms and their final result. They capture directions in the data of
maximum variance, globally for PCA and locally for SOM. Online learning
algorithms such as online SOM training or the Oja learning rule mimic
fundamental principles as found in the human brain, being based on the
Hebbian principle accompanied by topology preservation in case of SOM
[15]. In addition to this intuitive training procedure and outcome, both
techniques have severe practical benefits: training can be done efficiently
in linear time only, which is a crucial prerequisite if large data sets are
dealt with. In addition, both techniques do not only project the given
data set, but they offer an explicit mapping of the full data space to two
dimensions by means of an explicit linear mapping in case of PCA and a
winner takes all mapping based on prototypes in case of SOM. Further, for
both techniques, online training approaches which are suitable for streaming
data or online data processing, exist. Therefore, despite the larger flexibility
of many modern non-parametric DR techniques, PCA and SOM still by far
outnumber these alternatives regarding applications.

In this contribution, to address this gap,we discuss recent developments
connected to the question of how to turn non-parametric dimensionality re-
duction techniques into parametric approaches without losing the underlying
flexibility. In particular, we introduce kernel t-SNE as a flexible approach
with a particularly simple training procedure. We demonstrate, that ker-
nel t-SNE maintains the flexibility of t-SNE, and that it displays excellent
generalization ability within out-of-sample extensions.

This approach opens the way towards endowing t-SNE with linear com-
plexity: we can train t-SNE on a small subset of fixed size only, mapping
all data in linear time afterwards. We will show that the flexibility of the
mapping can result in problems in this case: while subsampling, only a small
part of the information of the full data set is used. In consequence, the data
projection can be sub-optimum due to the missing information to shape the
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ill-posed problem of dimensionality reduction. Here, an alternative can be
taken: we can enhance the information content of the data set without en-
larging the computational complexity by taking auxiliary information into
account. This way, the visualization can concentrate on the aspects relevant
for the given auxiliary information rather than potential noise. In addition,
this possibility opens the way towards a better interpretability of the re-
sults, since the user can specify the relevant aspects for the visualization in
an explicit way. One specific type of auxiliary information which is often
available in applications is offered by class labeling.

There exist quite a few approaches to extend DR techniques to incor-
porate auxiliary class labels: classical linear ones include Fisher’s linear
discriminant analysis, partial least squares regression, or informed projec-
tions, for example [7, 17]. These techniques can be extended to nonlinear
methods by means of kernelization [19, 2]. Another principled way to ex-
tend dimensionality reducing data visualization to auxiliary information is
offered by an adaptation of the underlying metric. The principle of learning
metrics has been introduced in [14, 21]: the standard Riemannian metric is
substituted by a form which measures the information of the data for the
given classification task. The Fisher information matrix induces the local
structure of this metric and it can be expanded globally in terms of path
integrals. This metric is integrated into SOM, MDS, and a recent informa-
tion theoretic model for data visualization [14, 21, 33]. A drawback of the
proposed method is its high computational complexity. Here, we circumvent
this problem by integrating the Fisher metric for a small training set only,
enabling the projection of the full data set by means of an explicit nonlinear
mapping. This way, very promising results can be obtained also for large
data sets.

Now, we will first shortly review popular dimensionality reduction tech-
niques, in particular t-SNE in more detail. Afterwards, we address the ques-
tion how to enhance non-parametric techniques towards an explicit mapping
prescription, emphasizing kernel t-SNE as one particularly flexible approach
in this context. Finally, we consider discriminative dimensionality reduction
based on the Fisher information, testing this principle in the context of
kernel t-SNE.

2 Dimensionality reduction

Assume a high-dimensional input space X is given, e.g. X ⊂ RN con-
stitutes a data manifold for which a sample of points is available. Data
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xi, i = 1, . . . ,m in X should be projected to points yi, i = 1, . . . ,m in the
projection space Y = R2 such that as much structure as possible is preserved.
The notion of ‘structure preservation’ is ill-posed and many different math-
ematical specifications of this term have been used in the literature. One of
the most classical algorithms is PCA which maps data linearly to the direc-
tions with largest variance, corresponding to the eigenvectors with largest
eigenvalues of the data covariance matrix.

PCA constitutes one of the most fundamental approaches and one exam-
ple of two different underlying principles [27]: (i) PCA constitutes the linear
transformation which allows the best reconstruction of the data from its low
dimensional projection in a least squares sense. That means, assuming cen-
tered data, it optimizes the objective

∑
i(xi −W (W txi))

2 with respect to
the parameters of the low-dimensional linear mapping x → y = W tx. (ii)
PCA tries to find the linear projections of the points such that the variance
in these directions is maximized. Alternatively speaking, since the variance
of the projections is always limited by the variance in the original space,
it tries to preserve as much variance of the original data set as compared
to its projection as possible. The first motivation treats PCA as a gener-
ative model, the latter as a cost minimizer. Due to the simplicity of the
underlying mapping, the results coincide.

This is, however, not the case for general nonlinear approaches. Roughly
speaking, there exist two opposite ways to introduce dimensionality reduc-
tion, which together cover most existing DR approaches: (i) the genera-
tive, often parametric approach, which takes the point of view that high-
dimensional data points are generated by or reconstructed from a low-
dimensional structure which can be visualized directly, (ii) and the cost-
function based, often non-parametric approach, which, on the opposite, tries
to find low-dimensional projection points such that the characteristics of the
original high-dimensional data are preserved as much as possible. Popular
models such as PCA, SOM, its probabilistic counterparts the probabilistic
PCA or the generative topographic mapping (GTM), and encoder frame-
works such as deep autoencoder networks fall under the first, generative
framework [17, 32, 4]. The second framework can cover diverse modern
non-parametric approaches such as Isomap, MVU, LLE, SNE, or t-SNE, as
recently demonstrated in the overview [6].

A note on parametric approaches

Parametric approaches are often less flexible as compared to non-parametric
ones since they rely on a fixed priorly specified form of the DR mapping.
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Depending on the form of the parametric mapping, constraints have to be
met. This is particularly pronounced for linear mappings, but also non-
linear generalizations such as SOM or GTM heavily depend on inherent
constraints induced by the prototype-based modeling of the data. Note that
a few alternative manifold learners have been proposed, partially on top
of non-parametric approaches, which try to find an explicit model of the
data manifold and usually provide a projection mapping of the data into
low dimensions: examples include tangent space intrinsic manifold regular-
ization [25], manifold charting [5] or corresponding extensions of powerful
prototype based techniques such as matrix learning neural gas [1]. Manifold
coordination also takes place in parametric extensions of non-parametric
approaches such as proposed in locally linear coordination [22]. However,
these techniques rely on an intrinsically low-dimensional manifold and they
are less suited to extend modern nonlinear projection techniques which can
also cope with information loss.

Note that not only an explicit mapping, but usually also an approximate
inverse is given for such methods: for PCA, it is offered by the transposed
of the matrix; for SOM and GTM, it is given by the explicit prototypes or
centres of the Gaussians which are points in the data space; for auto-encoder
networks, an explicit inverse mapping is trained simultaneously to the em-
bedding; generalizations of PCA towards local techniques allow at least a
local inverse of the mapping [1]. Due to this fact, a very clear objective
of the techniques can be formulated in the form of the data reconstruction
error. Based on this observation, a training technique which minimizes this
reconstruction error or a related quantity can be derived. This fact often
makes the methods and their training intuitively interpretable. Besides this
fact, an explicit mapping prescription allows direct out-of-sample extensions,
online, and life-long training of the mapping prescription.

In particular for streaming data, very large data sets, or online scenarios,
this fact allows the user to adapt the mapping on only a part of the data
set and to display a part of the data on demand, thereby controlling the
efficiency and stationarity of the resulting mapping by means of the amount
of data taken into account.

Albeit classical parametric methods have been developed for vectorial
data only, a variety of extensions has been proposed in the last years, which
rely on pairwise distances of data rather than an explicit vectorial repre-
sentation. Examples include, in particular, kernel and relational variants of
SOM and GTM [37, 11, 12]. Due to their dependence on a full distance
matrix, these techniques have inherent quadratic complexity if applied for
the full data set. Here, an explicit mapping and a corresponding strategy to
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iteratively train the mapping on parts of the data only has beneficial effects,
since it reduces the complexity to linear one. Thereby, different strategies
have been proposed in the literature, in particular patch processing has been
proposed which iteratively takes into account all data in terms of compressed
prototypes [11, 12].

Nonparametric approaches

Nonparametric methods often take a simple cost function based approach:
the data points xi contained in a high-dimensional vector space constitute
the starting point; for every point coefficients yi are determined in Y such
that the characteristics of these points mimic the characteristics of their
high-dimensional counterpart. Thereby, the characteristics differ from one
method to the other, referring e.g. to pairwise distances of data, the data
variation, locally linear relations of data points, or local probabilities induced
by the pairwise distances, to name a few examples.

We consider t-SNE [31] in more detail, since it demonstrates the strengths
and weaknesses of this principle in an exemplary way. Probabilities in the
original space are defined as pij = (p(i|j) + p(j|i))/(2m) where

pj|i =
exp(−0.5‖xi − xj‖2/σ2i )∑

k,k 6=i exp(−0.5‖xi − xk‖2/σ2i )

depends on the pairwise distances of points; σi is automatically determined
by the method such that the effective number of neighbors coincides with a
priorly specified parameter, the perplexity. In the projection space, proba-
bilities are induced by the Student t-distribution

qij =
(1 + ‖yi − yj‖2)−1∑

k

∑
l,l 6=k(1 + ‖yk − yl‖2)−1

to avoid the crowding problem by using a long tail distribution. The goal is
to find projections yi such that the difference between pij and qij becomes
small as measured by the Kullback-Leibler divergence. t-SNE relies on a
gradient based technique.

Many alternative non-parametric techniques proposed in the literature
have a very similar structure, as pointed out in [6]: They extract a char-
acteristic of the data points xi and try to find projections yi such that the
corresponding characteristics are as close as possible as measured by some
cost function. [6] summarizes some of today’s most popular dimensionality
reduction methods this way. In the following, we will exemplarily consider
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the alternatives maximum variance unfolding (MVU), locally linear embed-
ding (LLE), and Isomap. The ratio behind these methods is the following:
MVU aims at a maximization of the variance of the projected points such
that the distances are preserved for local neighborhoods of every point. This
problem can be formalized by means of a quadratic optimization problem
[35]. LLE represents points in terms of linear combinations of its local
neighborhood and tries to find projections such that these relations remain
valid. Thereby, problems are formalized as a quadratic optimization task
such that an explicit algebraic solution in terms of eigenvalues is possible
[23]. Isomap constitutes an extension of classical multidimensional scaling
which approximates the manifold distances in the data space by means of
geodesic distances. After having done so, the standard eigenvalue decompo-
sition of the corresponding similarities allows an approximate projection to
two dimensions [26].

These techniques do not rely on a parametric form such that they dis-
play a rich flexibility to emphasize local nonlinear structures. This makes
them much more flexible as compared to linear approaches such as PCA,
and it can also give fundamentally different results as compared to GTM
or SOM, which are constrained to inherently smooth mappings. This flex-
ibility is payed for by two drawbacks, which make the techniques unsuited
for large data sets: (i) The techniques do not provide direct out-of-sample
extensions, (ii) the techniques display at least quadratic complexity. Thus,
these methods are not suited for large data sets in their direct form.

3 Kernel t-SNE

How to extend a non-parametric dimensionality reduction technique such as
t-SNE to an explicit mapping? We fix a parametric form x → fw(x) = y
and optimize the parameters of fw instead of the projection coordinates.
Such an extension of non-parametric approaches to a parametric version has
been proposed in [29, 6, 9] in different forms. In [29], fw takes the form of
deep-autoencoder networks, which are trained in two steps: first, the deep
auto-encoder is trained in a standard way to encode the given examples;
afterwards, parameters are fine tuned such that the t-SNE cost function is
optimized when plugging the images of given data points into the mapping.
Due to the high flexibility of deep networks, this method achieves good
results provided enough data are present and training is done in an accurate
way. Due to the large number of parameters of deep auto-encoders, the
resulting mapping is usually of very complex form, and its training requires
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a large number of data and large training time. In [6] the principle of
plugging a parametric form fw in any cost function based non-parametric
DR techniques is elucidated, and it is tested in the context of t-SNE with
linear or piecewise linear functions. Due to the simplicity of these functions,
a very good generalization is obtained already on small data sets, and the
training time is low. However, the flexibility of the resulting mapping is
restricted as compared to full t-SNE since local nonlinear phenomena cannot
be captured by locally linear mappings. In [9], already first steps into the
direction of kernel t-SNE have been proposed: the mapping fw is given by a
linear combination of Gaussians, where the coefficients are trained based on
the t-SNE cost function, or in a direct way by means of the pseudo-inverse
of a given training set, mapped using t-SNE. Surprisingly, albeit being much
simpler, the latter technique yields comparable results, as investigated in [9].
We will see that this latter training technique also opens the way towards
an efficient integration of auxiliary information by means of Fisher kernel
t-SNE. Due to this fact, we follow the approach in [9] and use a normalized
form of such a kernel mapping together with a particularly efficient direct
training technique.

The mapping fw = y underlying kernel t-SNE has the following form:

x 7→ y(x) =
∑
j

αj ·
k(x,xj)∑
l k(x,xl)

where αj ∈ Y are parameters corresponding to points in the projection
space and the data xj are taken as a fixed sample, usually j runs over a
small subset X ′ sampled from the data {x1, . . . ,xm}. k is the Gaussian
kernel parameterized by the bandwidth σj :

k(x,xj) = exp(−0.5‖x− xj‖2/σ2j )

In the limit of small bandwidth, original t-SNE is resembled for inputs taken
from the points X ′ of the sum. For these points, in the limit, the parameter
αj corresponds to the projected yj of xj . For other points x, an interpolation
takes place according to the relative distance of x from samples xi in X ′.

Note that this mapping constitutes a generalized linear mapping such
that training can be done in a particularly simple way provided a set of
samples xi and y(xi) is available. Then the parameters αj can be analyt-
ically determined as the least squares solution of the mapping: Assume A
contains the parameter vectors αj in its rows, K is the normalized Gram
matrix with entries

[K]i,j = k(xi,xj)/
∑
l

k(xi,xl)
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and Y denotes the matrix of projections yi (also as its rows). Then, a
minimum of the least squares error∑

i

‖yi − y(xi)‖2

with respect to the parameters αj has the form

A = K−1 ·Y

where K−1 refers to the pseudo-inverse of K.
For kernel t-SNE, we use standard t-SNE for the subset X ′ to obtain a

training set. Afterwards, we use this explicit analytical solution to obtain
the parameters of the mapping. Having obtained the mapping, the full set
X can be projected in linear time by applying the mapping y. Obviously,
it is possible to extend alternative dimensionality reduction techniques such
as Isomap, LLE, or MVU directly in the same way. We refer to the re-
sulting mapping in terms of kernel Isomap, kernel LLE, and kernel MVU,
respectively.

The bandwidth σi of the mapping constitutes a critical parameter of the
mapping since it determines the smoothness and flexibility of the resulting
kernel mapping. We use a principled approach to determine this parameter
as follows: σi is chosen as a multiple of the distance of xi from its closest
neighbor in X ′, where the scaling factor is typically taken as a small positive
value. We determine this factor automatically as the smallest value in such
a way that all entries of K are within the range of representable numbers
(resp. a predefined interval).

Algorithm 1 summarizes the kernel t-SNE method. The matrix X con-
tains all the data vectors in its rows. The method selectTrainingSet
randomly selects a subset of the data of size nTrain for the training of the
mapping. In section 6 we investigate which size is a proper choice. The
method calcPairwiseDis calculates pairwise distances between all points
in the given data matrices. tsne performs the t-SNE algorithm on the train-
ing set with the perplexity parameter perpl. Finally, the method determi-
neSigma selects the σi parameters for the kernels as described previously.

4 Discriminative dimensionality reduction

Kernel t-SNE enables to map large data sets in linear time by training a
mapping on a small subsample only, yielding acceptable results. However, it
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Algorithm 1 kernel t-SNE

1: function ktsne(X, nTrain, perpl)
2: (Xtr,Xtest) = selectTrainingSet(X, nTrain)
3: Dtr = calcPairwiseDis(Xtr,Xtr)
4: Dtest = calcPairwiseDis(Xtr,Xtest)
5: Ytr = tsne(Dtr, perpl)
6: σ = determineSigma(Dtr)
7: for all entries (i, j) from Dtr do
8: [K]i,j = k(xi,xj)/

∑
l k(xi,xl)

9: end for
10: A = K−1 ·Ytr

11: for all entries (i, j) from Dtest do
12: [K]i,j = k(xi,xj)/

∑
l k(xi,xl)

13: end for
14: Ytest = K ·A
15: return (Ytr,Ytest)
16: end function

is often the case that the underlying data structure such as cluster formation
is not yet as pronounced based on a small subset only as it would be for
the full data set. Thus, albeit kernel t-SNE shows excellent generalization
ability, the results are different as compared to t-SNE when applied for the
full data set due to missing information in the data used for training of the
map. How can this information gap be closed?

It has been proposed in [14, 21, 33] to enrich nonlinear dimensionality re-
duction techniques such as the self-organizing map by auxiliary information
in order to enforce the method to display the information which is believed
as relevant by an applicant. A particularly intuitive situation is present if
data are enriched by accompanying class labels, and the information most
relevant for the given classification at hand should be displayed. We follow
this approach and devise a particularly simple method to incorporate this
information into the mapping based on kernel t-SNE.

Formally, we assume that every data point xi is equipped with a class
label ci. Projection points yi should be found such that the aspects of xi
which are relevant for ci are displayed.

From a mathematical point of view, this auxiliary information can be
easily integrated into a projection technique by referring to the Fisher in-
formation, as detailed e.g. in [21]. We consider the Riemannian manifold
spanned by the data points xi. Each point x is equipped with a local Rie-
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mannian tensor J(x) which is used to define a scalar product gx between
two tangent vectors u and v on the manifold at position x:

gx(u,v) = uTJ(x)v.

The local Fisher information matrix J(x) is computed via

J(x) = Ep(c|x)

{(
∂

∂x
log p(c|x)

)(
∂

∂x
log p(c|x)

)T}
.

Thereby, E denotes the expectation, and p(c|x) refers to the probability
of class c given the data point x. Essentially, this tensor locally scales
dimensions in the tangent space in such a way that exactly those dimensions
are amplified which are relevant for the given class information.

A Riemannian metric is induced by this local quadratic form in the
classical way, we refer to this metric as the Fisher metric in the following:
For given points x and x′ on the manifold, the distance is

d(x,x′) = inf
γ

∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt

where γ : [0, 1]→ X ranges over all smooth paths with γ(0) = x to γ(1) = x′

in X. We refer to this metric as the Fisher metric in the following. This met-
ric measures distances between data points x and x′ along the Riemannian
manifold, thereby locally transforming the space according to its relevance
for the given label information. It can be shown that this learning met-
rics principle refers to the information content of the data with respect to
the given auxiliary information as measured locally be the Kullback-Leibler
divergence [14].

There are two problems to this approach: first, how to compute this
learning metrics efficiently for a given labeled data set? In practice, the
probability p(c|x) is not known. Further, optimum path integrals cannot be
efficiently computed analytically. Second, how can we efficiently integrate
this learning metrics principle into kernel t-SNE?

Efficient computation of the Fisher metric

In practice, the Fisher distance has to be estimated based on the given data
only. The conditional probabilities p(c|x) can be estimated from the data
using the Parzen nonparametric estimator

p̂(c|x) =

∑
i δc=ci exp(−0.5‖x− xi‖2/σ2)∑

j exp(−0.5‖x− xj‖2/σ2)
.
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The Fisher information matrix becomes

J(x) =
1

σ4
Ep̂(c|x)

{
b(x, c)b(x, c)T

}
where

b(x, c) = Eξ(i|x,c){xi} − Eξ(i|x){xi}

ξ(i|x, c) =
δc,ci exp(−0.5‖x− xi‖2/σ2)∑
j δc,cj exp(−0.5‖x− xj‖2/σ2)

ξ(i|x) =
exp(−0.5‖x− xi‖2/σ2)∑
j exp(−0.5‖x− xj‖2/σ2)

E denotes the empirical expectation, i.e. weighted sums with weights de-
picted in the subscripts. If large data sets or out-of-sample extensions are
dealt with, a subset of the data only is usually sufficient for the estimation
of J(x).

There exist different ways to approximate the path integrals based on
the Fisher matrix as discussed in [21]. An efficient way which preserves
locally relevant information is offered by T -approximations: T equidistant
points on the line from xi to xj are sampled, and the Riemannian distance
on the manifold is approximated by

dT (xi,xj) =
T∑
t=1

d1

(
xi +

t− 1

T
(xj − xi),xi +

t

T
(xj − xi)

)
where d1(xi,xj) = gxi(xi − xj ,xi − xj) = (xi − xj)

TJ(xi)(xi − xj) is the
standard distance as evaluated in the tangent space of xi. Locally, this ap-
proximation gives good results such that a faithful dimensionality reduction
of data can be based thereon.

Efficient integration of the Fisher metric into kernel t-SNE

In [8], it has been proposed to integrate this Fisher information into kernel
t-SNE by means of a corresponding kernel. Here, we take an even simpler
perspective: we consider a set of data points xi equipped with the pairwise
Fisher metric which is estimated based on their class labels taking simple
linear approximations for the path integrals. Using t-SNE, a training set X ′

is obtained which takes the auxiliary label information into account, since
pairwise distances of data are computed based on the Fisher metric in this
set. We infer a kernel t-SNE mapping as before, which is adapted to the
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Algorithm 2 Fisher kernel t-SNE

1: function fktsne(X, nTrain, perpl)
2: (Xtr,Xtest) = selectTrainingSet(X, nTrain)
3: DtrDisc = calcPairwiseFisherDis(Xtr,Xtr)
4: Dtr = calcPairwiseDis(Xtr,Xtr)
5: Dtest = calcPairwiseDis(Xtr,Xtest)
6: Ytr = tsne(DtrDisc, perpl)
7: σ = determineSigma(Dtr)
8: for all entries (i, j) from Dtr do
9: [K]i,j = k(xi,xj)/

∑
l k(xi,xl)

10: end for
11: A = K−1 ·Ytr

12: for all entries (i, j) from Dtest do
13: [K]i,j = k(xi,xj)/

∑
l k(xi,xl)

14: end for
15: Ytest = K ·A
16: return (Ytr,Ytest)
17: end function

label information due to the information inherent in the training set. The
resulting map is adapted to the relevant information since this information
is encoded in the training set. We refer to this technique as Fisher kernel
t-SNE in the following.

Algorithm 2 details the resulting procedure. Again, calcPairwiseDis
calculates the pairwise Euclidean distance between all points in the given
matrices. calcPairwiseFisherDis calculates the Fisher distance given by
dT (xi,xj) for each pair. The major difference to kernel t-SNE is that the
t-SNE projection is based upon the Fisher distances, while the kernel values
in K are still computed based on the Euclidean metric. As a consequence,
Fisher distances do not need to be computed for projections of new points
yielding fast out of sample extensions.

5 Evaluation measures

Dimensionality reduction being ill-posed, it eventually depends on the task
at hand which results are considered as optimum. Nevertheless, formal quan-
titative measures are vital to enable a comparison of different techniques and
an optimization of model meta-parameters based on this general objective.



Preprint of the publication [10], as provided by the authors. 15

In the last years, there has been great effort in developing such a baseline,
culminating in the formal co-ranking framework as proposed by Lee and
Verleysen, which summarizes a variety of different earlier approaches under
one common hat [16]. Albeit there are intuitive possibilities to extend this
proposal [20], we will stick to this measure in this contribution.

Here, we do not introduce the full co-ranking matrix as given in [16],
rather we restrict to the resulting quantitative value referred to as quality
in [16]. Essentially, it is generally accepted that a dimensionality reduction
technique should preserve neighborhoods of data points in the sense that
close points stay close and far away points stay apart. Thereby, the precise
distances are less important as compared to the relative ranks. In addition,
the exact size of the neighborhood one is interested in depends very much
on the situation at hand, usually some small to medium sized range is in the
focus of interest. Because of these considerations, it is proposed in [16] to
determine the k nearest neighbors for every point xi in the original space and
the k nearest neighbors of the corresponding projections yi in the projection
space. Now it is counted, how many indices coincide in these two sets, i.e.
how many neighbors stay the same. This is normalized by the baseline km,
m being the number of points, and averaged over all data points. A quality
value Qm(k) results.

This procedure yields a curve for every visualization which judges in how
far neighborhoods are preserved for a neighborhood size k one is interested
in. A value close to 1 refers to a good preservation, the baseline for a
random mapping being k/(m − 1). However, this evaluation measure has
a severe drawback: it is not suited for large data sets, it’s computation
being O(m2 logm), m being the number of points. For this reason, it is
worthwhile to use approximation techniques also for the evaluation of such
mappings. A simple procedure can be based on sampling. Instead of the full
data set, a small subset of size M is taken and the quality is estimated based
on this subset. Then the relation Qm(k) ≈ QM (mk/M) holds. Naturally,
this procedure has a large variance such that taking the mean over several
repetitions is advisable.

Based on the co-ranking matrix, this quality measure produces a curve
with qualities for each value of the neighborhood parameter k, providing a
detailed assessment of quality. However, a single scalar value is often more
useful when a comparison of many projections is necessary. For this purpose,
the evaluation measure Qlocal has been proposed in [18] which is based on
Qm(k): Qlocal averages the quality values for small values of k. The interval
for this is determined automatically. See [18] for further details.

If auxiliary information such as class labels is available, it is possible to



Preprint of the publication [10], as provided by the authors. 16

additionally evaluate whether the classes are respected in low dimensions by
taking the simple k-nearest neighbor classification error in the projections.

6 Experiments

In this section we conduct several experimental investigations in order to
better understand the effects of applying the proposed kernel mapping.

• We apply the kernel mapping to four different dimensionality reduction
techniques and evaluate the quality. The results indicate that t-SNE
achieves superior performance and, therefore, we focus our following
experiments to kernel t-SNE.

• We empirically analyze the trade off between size of the training set,
required time to compute the projection and the resulting generaliza-
tion performance of the mapping.

• We analyze the distribution of the projected points: How well does
the distribution of the projected training set match the distribution of
the out-of-sample set?

• We experimentally evaluate the generalization ability of kernel t-SNE
towards novel data and compare it to a current state of the art ap-
proach for this purpose: parametric t-SNE [29]. This method has been
briefly described in section 3.

• We examine the effect of including Fisher information into the frame-
work, i.e. of Fisher kernel t-SNE.

For the experiments, we utilize the following four data sets.

- The letter recognition data set describes distorted images of letters in
20 different fonts. It employs 16 features which are basically statistical
measures and edge counts. The data set contains 26 classes, i.e one
for each capital letter of the English alphabet. 20,000 data points are
available.

- The mnist data set contains 60,000 images of handwritten digits, where
each image consists of 28 × 28 pixels.

- The norb data set contains 48,600 images of toys of five different
classes. These images were taken from different perspectives and under
six different lighting conditions. The number of pixels of the images
is 96 × 96.
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- The usps data set describes handwritten digits from 0 to 9. Each of
these 10 classes consists of 1,100 instances resulting in an overall set
of 11,000 points. The digits are encoded in 16 × 16 gray scale images.

6.1 Applying the proposed kernel mapping to various non-
parametric dimensionality reduction techniques

The proposed kernel mapping is a general concept for out-of-sample ex-
tension and hence applicable to many nonlinear dimensionality reduction
techniques. We enhance Isomap, LLE, MVU and t-SNE with this kernel
mapping and we evaluate the generalization performance exemplary on the
usps data set. We use 1,000 data points to train each dimensionality re-
duction technique and employ our kernel mapping in order to project the
remaining 10,000 data points. In Figure 1 the evaluation based on the qual-
ity value Qm(k) is depicted where each projection - the direct projection of
the training data as well as the out-of-sample extensions (referred to as ’test’
here) - is evaluated and plotted into one figure. In order to be independent
of the individual sample sizes and to save computational time, the previ-
ously in section 5 described sub-sampling strategy for quality evaluation is
used here with 100 points in each repetition.

The first important observation is that the train and the corresponding
test curve lie close together. This already gives a first indication of the out-
of-sample quality of the proposed method. Globally, t-SNE, Isomap and
MVU show a similar quality, while locally t-SNE outperforms the remaining
approaches if considering small neighborhood sizes.

6.2 Properties of the kernel mapping exemplarily evaluated
on kernel t-SNE

In order to systematically investigate the influence of the size of the training
set on the projection quality, we evaluate different ratios of the training and
test set. For this purpose, we apply kernel t-SNE to the usps data set (since
it is the smallest it is possible to project the whole data set). The ratios
1%, 10%, 20%, 30%, ..., 90% are used for the training set and the evaluation
of each projection is based on the training set (referred to Qtrain) and its
corresponding out-of-sample extension (Qtest). We employ the scalar eval-
uation measure Qlocal since it allows us to compare the qualities of many
projections in a single plot. Further, we calculate 10 projections for each
training set and average the resulting quality values. The quality is visual-
ized on the left axis of Figure 2. In addition, we depict the required running
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Figure 1: Evaluation of various nonlinear dimensionality reduction ap-
proaches together with our proposed kernel mapping on the usps data set.

time on the right coordinate axis.
The quality of the projected training set decreases with increasing train-

ing set. This is plausible since the evaluation measure quantifies how well
the ranks are preserved and it is obviously easier to preserve ranks if only
few data points are available. In this case of very few points, however, the
generalization performance degenerates. The quality of the out-of-sample
projections stays approximately constant after 10% to 20% while the re-
quired computational time grows to the power of two. Consequently, using
only 10% of the data for the training set (1100 data points) is enough to
obtain a good generalization for the usps data set, as measured by Qlocal.

An interesting question concerning the kernel mapping is the following:
How well does the distribution of the projected training set fit the distri-
bution of the out-of-sample extension projected by the kernel mapping? In
order to answer this question, we visualize the distribution of the probabil-
ity values qij calculated by the t-SNE mapping for the training and test set.
For this illustration, we have again used the usps data set. After scaling of
both axes (this is necessary due to the different numbers of data points in
both data sets), plotting the distribution of the training set above zero and
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Figure 2: Local qualities Qlocal and required computational time of the
projections based on a varying size of the training set.

the distribution of the test set below (after flipping horizontally) gives the
illustration shown in Figure 3. The left image is the original distribution
and the right one is zoomed in on the y-axis.

In the left figure we can see that the most probability values are zero.
From the right we can deduce statements concerning the similarity of both
distributions: the number of probability values in each region is very similar
for all regions except the last one. The highest probability value qij occurs in
the test set much more often than in the training set. qij can be interpreted
as the probability that two projected data points yi and yj are close together.
This implies that there are points in the out-of-sample projection which are
very close together or lie on top of each other. And indeed, we have observed
that some points are projected to the origin. We believe that this is caused
by some high-dimensional points lying far apart from all the points of the
training set. Managing this issue will be subject to future research.

6.3 Comparisons of kernel t-SNE and Fisher kernel t-SNE
to parametric t-SNE

Furthermore, we compare the performance of kernel t-SNE to that of para-
metric t-SNE: we apply both methods on a part of the complete data sets.
For usps we utilize 1,000 and for the remaining three data sets 2,000 data
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Figure 3: Distribution of the probability values qij as observed in the training
set of t-SNE (above zero) and in the out-of-sample extension (below zero
after flipping horizontally). The right figure is zoomed in on the y-axis.

points. Before applying kernel t-SNE, we preprocess the data by projecting
them down to 30 dimensions with PCA (for all data sets except letter which
is already 16 dimensional). Proceeding similarly as in [29], we do not apply
this preprocessing step for parametric t-SNE since the deep architecture of
the network used for this method realizes already a preprocessing step by
itself. For the application of kernel t-SNE we first train t-SNE on the train-
ing set to obtain for each xi a two-dimensional point yi and then use these
pairs to optimize the parameters of our mapping fw as described in section
3.

Figures 4 and 5 show the resulting projections by kernel t-SNE and
parametric t-SNE, respectively. In both cases, the left columns show the
projections of the training sets and the right columns those of the complete
sets.

We have measured the running time of the two methods on these data
sets. This time includes the preprocessing as well as the training and predic-
tion time. Table 1 shows the length of the measured intervals. Kernel t-SNE
is usually much faster than parametric t-SNE. This fact can be addressed
to the higher training complexity of parametric t-SNE as opposed to kernel
t-SNE: while kernel t-SNE relies on an explicit algebraic expression, para-
metric t-SNE requires the optimization of a cost function induced by t-SNE
on the deep autoencoder. For the latter, well-known problems of a classical
gradient technique for deep networks prohibit a direct gradient method and
pre-training e.g. based on Boltzmann machines is necessary [24].
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Table 1: Processing time of kernel t-SNE and parametric t-SNE for all four
data sets (in seconds).

data sets kernel t-SNE parametric t-SNE

letter 124 275
mnist 145 340
norb 141 161
usps 38 126

Further, we apply Fisher kernel t-SNE to obtain visualizations which
take the labeling of the data into account. Here we also preprocess the data
by projecting them to 30 dimensions. The results are depicted in Figure 6.

In order to evaluate the mappings we use the rank based evaluation
measure Qm(k) for different neighborhood sizes k as described in section 5.
We use the approximation described in this section, as well: the sample size
is fixed to 100 and the evaluation is performed and averaged over ten times.
Usually, small to medium values for k are relevant, since they characterize
the quality of the local structure preservation.

Figure 7 shows the quality curves for the letter (left) and mnist (right)
data sets. For the letter data set, kernel t-SNE shows clearly better results
locally than parametric t-SNE, i.e for values of k up to 10 for out-of-sample
extension and up to 15 for the training set. For larger values of k, parametric
t-SNE shows higher accuracy values but as already mentioned before, smaller
values of k are usually more important since they characterize the quality
of the local structure preservation. Concerning the generalization of kernel
t-SNE, the quality curve of the out-of-sample extension lies slightly lower
than the one of the training set but approaches the latter with increasing
neighborhood range. The training and test curves of Fisher kernel t-SNE
proceed similarly as those of kernel t-SNE but lie a bit lower.

The quality curves for the mnist data set are all very close to each other.
However, a similar tendency as before is present: For small neighborhood
sizes (until k = 10) the curve of kernel t-SNE is higher while for larger ones
the quality of parametric t-SNE gets better.

The generalization quality of kernel t-SNE on the norb data set (Figure
8, left) is excellent since the quality curves of the training and test set lie very
close together. The quality curve of parametric t-SNE for this data set lies
much lower. This can be attributed to the fact that parametric t-SNE relies
on deep autoencoder networks, for which training constitutes a very critical
issue: for an often required large network complexity, a sufficient number of
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Table 2: Accuracies of the nearest neighbor classifier for the training and
test set of each method on four different data sets.

data sets kernel t-SNE parametric t-SNE fisher kernel t-SNE

letter
train 84.1% 21.3% 85.5%
test 80.1% 27.8% 80.4%

mnist
train 90.7% 85.4% 91.1%
test 85.8% 62.5% 86.3%

norb
train 88.2% 43.0% 85.4%
test 85.4% 38.5% 85.6%

usps
train 90.5% 86.5% 96.6%
test 84.8% 58.6% 87.4%

data is necessary for training and valid generalization, unlike kernel t-SNE
which, due to it’s locality, comes with an inherent strong regularization.

The visualization quality of the usps data set is shown in Figure 8 (right).
The quality curves of all methods lie close together, while a similar tendency
as previously persists: For small neighborhood sizes the quality of kernel t-
SNE is better while for larger values the quality curve of parametric t-SNE
is higher.

In many of these evaluations, Fisher kernel t-SNE obtained worse values
than kernel t-SNE. This has the following reason: The Fisher metric distorts
the original metric (according to the label information) and, therefore, also
the neighborhood ranks. However, this is intended since the methods tries
to focus on those changes in the data which affect the labeling of the data.
Therefore, a better evaluation for this method would be a supervised eval-
uation like the k-nearest neighbor classifier described in 5. Here, we choose
k = 1. Table 2 shows the classification accuracy of the visualizations of
all data sets and all methods. Here, ’train’ refers to the training set of the
dimensionality reduction mapping and ’test’ to its out-of-sample extension.

This evaluation shows that Fisher kernel t-SNE emphasizes the class
structure of the data: The classification accuracies on the out-of-sample
extensions are at least as good as those from the other methods. For usps,
the accuracy is much better and, therefore, improves the generalization of
kernel t-SNE.
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7 Discussion

We have introduced kernel t-SNE as an efficient way to accompany t-SNE
with a parametric mapping. We demonstrated the capacity of kernel t-SNE
when faced with large data sets, yielding convincing visualizations in linear
time if sufficient information is available in the data set or provided to the
method in the form of auxiliary information. For the latter, Fisher kernel
t-SNE yields a particularly simple possibility of its integration since the
training set can easily be shaped according to the given information.

This proposal opens the way towards life-long or online visualization
techniques since the mapping provides a memory of already seen informa-
tion. It is the subject of future work to test suitability of this approach in
stationary as well as non stationary online visualization tasks. Furthermore,
it might be beneficial to dynamically adapt the sampled subset X ′ in order
to further improve the generalization towards new data.
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Figure 4: Left column: t-SNE applied on the four data sets letter, mnist,
norb and usps (from top to bottom). Right column: out-of-sample extension
by kernel t-SNE.
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Figure 5: Left column: parametric t-SNE mapping learned from the four
data sets letter, mnist, norb and usps (from top to bottom). Right column:
out-of-sample extension by parametric t-SNE.
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Figure 6: Left column: Fisher t-SNE trained on the four data sets letter,
mnist, norb and usps (from top to bottom). Right column: out-of-sample
extension by Fisher kernel t-SNE.
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Figure 7: Quality curves for the data sets letter (left) and mnist (right).

Figure 8: Quality curves for the data sets norb (left) and usps (right).


