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pA-X antagonises MAVs-
dependent accumulation of early 
type I interferon messenger RNAs 
during influenza A virus infection
Rachel e. Rigby  1, Helen M. Wise2,3, Nikki smith2, paul Digard2 & Jan Rehwinkel1

The sensing of viral nucleic acids by the innate immune system activates a potent antiviral response 
in the infected cell, a key component of which is the expression of genes encoding type I interferons 
(IFNs). Many viruses counteract this response by blocking the activation of host nucleic acid sensors. 
The evolutionarily conserved influenza A virus (IAV) protein PA-X has been implicated in suppressing 
the host response to infection, including the expression of type I IFNs. Here, we characterise this 
further using a PA-X-deficient virus of the mouse-adapted PR8 strain to study activation of the innate 
immune response in a mouse model of the early response to viral infection. We show that levels of Ifna4 
and Ifnb1 mRNAs in the lungs of infected mice were elevated in the absence of PA-X and that this was 
completely dependent on MAVS. This therefore suggests a role for PA-X in preventing the accumulation 
of early type I IFN mRNAs in the lung during IAV infection.

Influenza A virus (IAV) is a major cause of human respiratory infections with a disease pathogenesis that varies 
widely depending on the strain of virus. Viral infection activates the host innate immune response which the 
virus must circumvent in order to establish a productive infection. Detection of viral genomes by the cytosolic 
RNA helicase Retinoic acid-Inducible Gene I (RIG-I) is a key trigger for type I interferon (IFN) production 
during IAV infection1,2. Upon binding the viral RNA, RIG-I undergoes a conformational transformation which 
allows it to interact with Mitochondrial Antiviral Signalling protein (MAVS), a signalling adaptor protein located 
at the outer mitochondrial membrane. This triggers oligomerisation of MAVS and subsequent recruitment of 
signalling molecules which activate the transcription factors IFN Regulatory Factor (IRF) 3 and IRF7 which 
stimulate expression of genes encoding type I and type III interferons. Consequently, several IAV proteins act to 
antagonise the RIG-I-MAVS pathway, including NS13 and PB1-F24.

The genome of IAV consists of eight negative sense single-stranded RNA segments. In addition to PA, which 
is an essential component of the viral RNA polymerase complex, segment 3 of IAV also encodes the accessory 
protein PA-X which is generated as a consequence of ribosomal frame-shifting5. During translation, the ribosome 
can stall at a rare codon within the PA open reading frame (ORF), which occasionally results in shifting to a +1 
ORF, termed the ‘X-ORF’. This results in the production of a truncated protein, PA-X, which consists of the 191 
amino acid (aa) N-terminal endoribonuclease domain of PA fused to a novel C-terminal domain. The frameshift 
sequence in segment 3 is highly conserved, suggesting that PA-X can be produced by all IAV strains although the 
novel C-terminal domain can commonly be either 61 aa or 41 aa, depending on viral isolate6.

Experimental infection of mice with IAV lacking PA-X has indicated a role for it in the suppression of the host 
immune response to IAV infection7,8. PA-X-deficient viruses of the 1918 H1N1, 2009 pH1N1 and H5N1 strains 
induced increased pro-inflammatory cytokines and type I IFNs in the lungs compared to infection with wild-type 
viruses that expressed PA-X5,9–12. We therefore investigated whether PA-X has a role in modulating the host 
response to IAV infection by preventing activation of the RIG-I pathway using a PA-X deficient virus of the highly 
mouse-adapted A/Puerto Rico/8/1934 H1N1 (‘PR8’) strain. We show that this PA-X-deficient PR8 virus induced 
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increased expression of Ifnb1 and Ifna4 mRNAs in the lungs of infected mice compared to a PA-X-expressing 
PR8 virus. Surprisingly, however, this did not correlate with increased type I IFN protein or expression of inter-
feron stimulated genes (ISGs). Furthermore, we show that increased Ifnb1 and Ifna4 mRNA levels induced by 
PA-X-deficiency were completely dependent on MAVS. We therefore conclude that the evolutionarily conserved 
viral protein PA-X can act to specifically prevent accumulation of early type I IFN mRNAs via a MAVS-dependent 
pathway during IAV infection.

Results
Generation of a PA-X deficient PR8 virus. To investigate the contribution of PA-X to the innate immune 
response to IAV in an in vivo model, we used reverse genetics to generate wild-type and PA-X-deficient PR8 
viruses13. PR8 is a mouse-adapted strain of IAV which is commonly used to model IAV infection in susceptible 
inbred mouse strains, including C57BL/614. The PR8 PA-X protein shows relatively low-shutoff activity compared 
to PA-X proteins from H5N1 and H7N1 IAV strains when tested in vitro in cells13. The PA-X-deficient virus (‘PR8 
FS’) contains mutations in the ribosomal frameshifting motif (UCC UUU CGU to AGU UUC AGA) (Fig. 1A) 
which reduces the frameshifting efficiency to less than 0.1% without affecting the expression of the full-length 
PA segment5. There was no difference in replication rates between PR8 WT and PR8 FS in A549 cells (Fig. S1). 
We then infected human HEK293T cells with the two different viruses and confirmed the full-length viral PA 
protein was detectable at equivalent levels but PA-X was present only in cells infected with the parental PR8 
virus using a polyclonal antibody raised against the N-terminus of the PA protein (Fig. 1B; full-length blots are 
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Figure 1. Generation of a PA-X-deficient PR8 virus. (A) Schematic illustration of the two viruses used in this 
study: ‘PR8 WT’ and ‘PR8 FS’ which has greatly reduced translation of PA-X due to mutations in the frameshift 
motif. (B) HEK293T cells, pre-treated overnight with 100 U/ml IFN-A/D to increase expression of RIG-I to 
detectable levels, were infected with PR8 WT, PR8 FS or Sendai virus (SeV) at increasing MOIs (0.1, 1, 10). 
Cells were harvested for immunoblotting 24 h.p.i. using the indicated antibodies. Full-length blots are shown in 
Fig. S2.
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shown in Fig. S2). Both viruses were able to induce innate immune signalling in this human cell line, as shown by 
phosphorylation of IRF3 and increased levels of RIG-I which is encoded by the ISG DDX58 (Fig. 1B) compared 
to mock infected cells. In these experiments, Sendai virus (Cantell strain), a strong inducer of type IFNs, served 
as a positive control.

In vivo infection with a PA-X deficient PR8 virus increases expression of Ifnb1 and Ifna4 mRNA 
in the lung. To investigate the effect of PA-X-deficiency on the innate immune response to PR8 in vivo, we 
infected C57BL/6 mice with 50,000 pfu of each virus via the intranasal route and monitored animals for up to 
72 h.p.i. (Fig. S3). We chose this dose and the 48 h.p.i. timepoint for subsequent experiments because this was 
when levels of both Ifnb1 and Ifna4 mRNA were at their highest following infection without causing overt suf-
fering to the animal, allowing us to investigate the initial innate immune response. As expected, IAV-infected 
mice lost a proportion of their body weight during the course of the infection; however, there was no significant 
difference in weight loss between PR8 WT and PR8 FS-infected mice at 48 h.p.i. (8.7% versus 9.4% by 48 h.p.i.) 
(Fig. 2A), indicating that both viruses caused a similar degree of morbidity.

Recognition of viral RNA by the pattern recognition receptors (PRRs) of the innate immune system activates 
signalling pathways which induce the transcription of genes encoding cytokines, most notably type I interfer-
ons (IFNs). To investigate whether the presence or absence of PA-X has an effect on the induction of type I IFN 
mRNA, we performed qRT-PCR on total RNA extracted from the lungs of infected mice 48 h.p.i. As expected, 
IAV infection induced both Ifnb1 and Ifna4 expression in the lungs compared to mock-infected animals; how-
ever, this was significantly elevated in the lungs of mice infected with the PA-X-deficient PR8 virus compared to 
wild-type PR8 (Fig. 2B). This was observed in multiple independent experiments, the data for which are shown 
pooled in Fig. 2B. Increased levels of Ifnb1 mRNA in the lungs of PR8 FS-infected mice could also be detected by 
Northern blot (Fig. S4). To exclude the possibility that this was due to enhanced replication of the PA-X-deficient 
virus, we identified infected cells using flow cytometry. We observed equivalent numbers of lung cells positive 
for the IAV NP protein in samples from animals infected with either virus (Fig. 2C). We also quantified the levels 
of the viral M RNA segment by qRT-PCR in the lungs of infected mice and found no difference between the two 
viruses (Fig. 2D). To compare the amount of actively replicating virus in the lungs of infected mice, we measured 
viral titres and found no difference between PR8 WT and PR8 FS-infected mice (Fig. 2E). Taken together, these 
data show that the PR8 WT and PR8 FS viruses are equally virulent but Ifnb1 and Ifna4 mRNA levels are elevated 
in the lungs of mice infected with the PA-X-deficient virus.

Levels of type I IFN protein and expression levels of IFN-dependent genes are not elevated in 
the absence of pA-X. We expected that cells expressing elevated levels of Ifnb1 and Ifna4 mRNA secrete 
more IFN-β and IFN-α protein. To confirm this, we quantified the amount of IFN-β and IFN-α in the bronche-
oalveolar lavage fluid (BALf) of mice infected with either PR8 WT or PR8 FS and found that, surprisingly, there 
was no significant difference in the concentration of these type I IFNs in the lungs of the two infected groups 
(Fig. 3A).

Ifnb1 and Ifna4 are unusual amongst type I IFN genes as their expression is induced early in response to 
infection in an IFN protein-independent manner, although this may be cell type dependent15–17. In contrast, the 
other members of the Ifna gene family require a positive feedback loop involving synthesis of IFN protein for 
their expression and therefore exhibit delayed kinetics of induction following viral infection. We quantified the 
mRNA levels of two different Ifna family members, Ifna5 and Ifna6, in the lungs of infected mice. Expression of 
both genes was induced in response to infection with IAV; however, expression levels were comparable between 
PR8 WT and PR8 FS-infected mice, or slightly reduced in PR8 FS-infected mice (Fig. 3B), suggesting that PA-X 
deficiency does not increase the expression of all type I IFN genes in the lungs.

A key process in shaping an antiviral response is the binding of secreted type I IFN proteins to the type I 
interferon receptor (IFNAR) which is expressed on the surface of all cell types. This leads to the triggering of 
multiple downstream signalling events and to the transcriptional activation of hundreds of ISGs. These encode a 
variety of proteins which can act to enhance both the innate and adaptive immune responses to viral infection18. 
We measured the mRNA levels of three different ISGs (Ifi44, Ifit1 and Isg20) in the lungs of infected mice using 
qRT-PCR. Transcription of all of these ISGs was induced in response to IAV infection, and PR8 FS-infected 
lungs had equivalent expression to those infected with PR8 WT (Fig. 3C). Similarly, there was no difference in 
the concentration of the IFN-inducible chemokine IP-10 (CXCL10) in BALf (Fig. 3D). Together, these data show 
that the increased levels of Ifnb1 and Ifna4 mRNA in the absence of PA-X do not correlate with an increase in the 
downstream effects of IFN-dependent signalling, possibly due to there being no concurrent increase in the level 
of IFN-β and IFN-α protein.

The failure of mRNA to be translated into protein can occur if the 3′-end of the mRNA has not been correctly 
polyadenylated. To investigate if the Ifnb1 mRNA from the lungs of PR8 FS-infected mice was polyadenylated, we 
analysed the same RNA samples by qRT-PCR using random hexamers or oligo(dT) oligonucleotides to generate 
the cDNA. Increased Ifnb1 levels in RNA samples from FS-infected mice were detected when oligo(dT) oligonu-
cleotides were used to prime the reverse transcription reaction (Fig. S5A), indicating that Ifnb1 mRNA from the 
lungs of FS-infected mice is polyadenylated. As poly(A) tail length is known to affect the ability of mRNA tran-
scripts to be translated we used extension poly(A) test (ePAT)19 to measure the length of the Ifnb1 mRNA poly(A) 
tail. This showed that Ifnb1 mRNA extracted from the lungs of mice infected with PR8 FS had a full poly(A) tail, 
identical in length to that of Ifnb1 mRNA from the lungs of mice infected with the WT virus (Fig. S5B). Therefore, 
Ifnb1 mRNA transcribed in the presence or absence of PA-X was correctly polyadenylated.

Finally, we investigated the effect of PA-X-deficiency on the expression of type II and type III IFN genes. 
Members of the type III IFN (IFN-λ) family are distantly related to type I IFNs and share some overlapping 
antiviral functions20. Expression of the IFN-λ-encoding genes in the lungs is a key part of the antiviral response 
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Figure 2. PA-X reduces expression of Ifnb1 and Ifna4 mRNA in the lungs of infected mice. Wild-type mice 
were infected with 50,000 pfu of PR8 WT, PR8 FS or mock infected via the intranasal route. Mice were 
weighed every 24 h and sacrificed 48 h.p.i. (A) Weight loss in mice infected with PR8 WT and PR8 FS. Data 
are represented as mean weight loss from 13 (mock), 40 (PR8 WT) and 39 (PR8 FS) mice per group ± s.e.m., 
pooled from 11 independent experiments using two independently prepared virus stocks. (B) Levels of Ifnb1 
and Ifna4 mRNA in the lung were measured by qRT-PCR. Data are from 26 (mock) and 40–47 (infected) mice 
per group and are represented as expression relative to the housekeeping gene Gapdh ± s.e.m., pooled from 
15 independent experiments. (C) The proportion of NP+ cells in the lung was quantified by flow cytometry. 
Exemplary FACS plots are shown on the left. Data are represented as percentage of single, live cells ± s.e.m and 
are from 3 (mock), 7 (PR8 WT) and 5 (PR8 FS) mice per group, pooled from two independent experiments 
(right). (D) Levels of the IAV M RNA were measured by qRT-PCR. Data are from 17 (mock), 37 (PR8 WT) and 
35 (PR8 FS) mice per group ± s.e.m. and are pooled from nine independent experiments. (E) Viral loads in the 
right lungs of infected mice were determined using a TCID50 assay. Data are from 16 (mock; none detected) and 
26 (infected) mice per group ± s.e.m. and are pooled from six independent experiments. *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001, ns not significant; unpaired Student’s t-test.
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to IAV21. To investigate if PA-X-deficiency also affects the expression of type III IFNs, we quantified expression 
of Il28a (which encodes IFN-λ2) by qRT-PCR. There was no significant increase in the expression of Il28a in the 
lungs of PR8 FS-infected mice compared to PR8 WT-infected mice (Fig. 3E). Likewise, PA-X-deficiency did not 
result in increased expression of Ifng which encodes the only member of the type II IFN family and is also induced 
in response to infection with IAV (Fig. 3F).

The lungs of PR8 FS-infected mice contain less immunostimulatory RNA. Viral RNA is a potent 
activator of the innate immune response. Total RNA extracted from IAV-infected cells using an organic extrac-
tion reagent, such as TRIzol, which strips viral proteins leaving only naked viral RNA, strongly induces IFN-β 

Figure 3. PA-X does not affect the expression of type I IFN protein or ISGs in the lung. Wild-type mice were 
infected with 50,000 pfu of PR8 WT, PR8 FS or mock infected via the intranasal route and sacrificed 48 h.p.i. 
(A) Quantification of IFN-β and IFN-α protein in the BAL fluid by ELISA. Data are from 3–7 (mock) and 7–12 
(infected) mice per group ± s.e.m. and are pooled from four independent experiments. (B) Levels of Ifna5 and 
Ifna6 mRNA in the lung were measured by qRT-PCR. Data are from 4 (mock) and 14 (infected) mice per group 
and are represented as expression relative to the housekeeping gene Gapdh ± s.e.m., pooled from 4 independent 
experiments. (C) Ifi44, Ifit1 and Isg20 mRNA levels in the lungs were quantified using qRT-PCR. Data are 
from 4–28 (mock) and 11–49 (infected) mice per group ± s.e.m. and are pooled from 11 (Ifi44) or three (Isg20 
and Ifit1) independent experiments. (D) Quantification of IP-10 protein in the BAL fluid by ELISA. Data are 
from 7 (mock) and 11 (infected) mice per group ± s.e.m. and are pooled from four independent experiments. 
Expression of (E) Il28a and (F) Ifng in the lungs were quantified by qRT-PCR. Data are from 14 (mock) and 
30–31 (infected) mice per group ± s.e.m. and are pooled from 8 independent experiments. *P ≤ 0.05, ns not 
significant; unpaired Student’s t-test.
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production via RIG-I when transfected into uninfected cells1,22. To investigate whether the increased expression 
of Ifnb1 and Ifna4 mRNA in the lungs of PR8 FS-infected mice was due to an accumulation of immunostimu-
latory viral RNA which would otherwise be degraded by PA-X, we transfected RNA isolated from the lungs of 
mice infected with PR8 WT or PR8 FS or mock infected into HEK293-p125 reporter cells, which stably express 
firefly luciferase under the control of the human IFNB promoter23 (Fig. 4A). Unexpectedly, at an intermediate, 
non-saturating dose, there was less IFNB-inducing RNA in the lungs of PR8 FS-infected mice than in the lungs of 
PR8 WT-infected mice (Fig. 4B). Therefore, the increased expression of the Ifnb1 and Ifna4 genes is unlikely to be 
due to increased amounts of immunostimulatory RNA in the cells of PR8 FS-infected lungs.

PA-X reduces activation of a MAVS-dependent pathway. IAV genomic RNA is predominantly 
detected via two RNA sensing pathways of the innate immune system which recognise it as pathogenic. Viral 
RNA released from virions entering the endosomal compartment activates TLR724. Detection of replicating viral 
RNA is via the binding of 5′-triphosphate containing viral genomes to the RNA helicase RIG-I in the cytosol of 
infected cells1,2. Following the binding of viral RNA, RIG-I undergoes conformational changes which allow bind-
ing to the signaling adaptor MAVS, resulting in the production of type I IFNs and pro-inflammatory cytokines25.

To investigate via which RNA sensing pathway the increased type I IFN mRNA is induced in the lungs of 
mice infected with the PA-X-deficient PR8 virus, we first infected mice lacking TLR7 with PR8 WT and PR8 FS. 
Similar to TLR7-sufficient mice, there was no difference in weight loss in Tlr7−/− mice infected with the different 
viruses (Fig. 5A). Levels of Ifnb1 and Ifna4 mRNA were lower overall in PR8-infected Tlr7−/− mice compared to 
wild-type mice, reflecting the contribution of TLR7 to type I IFN production in IAV infection. However, expres-
sion of both type I IFNs was higher in PR8 FS-infected mice compared to PR8 WT-infected mice (Fig. 5B) with 
no difference in the expression of IAV M RNA (Fig. 5C). Therefore, PA-X is affecting type I IFN mRNA expression 
via a TLR7-independent mechanism.

We next investigated whether PA-X was affecting activation of a RIG-I-dependent pathway by infecting mice 
lacking the adaptor protein MAVS, as RIG-I knockout mice are embryonic lethal on the C57BL/6 background26. 
Surprisingly, Mavs−/− mice lost less weight than wild-type control mice upon IAV infection, which should be 
investigated in future studies. However, there was no difference in weight loss between Mavs−/− mice infected 
with PR8 WT or PR8 FS, mirroring the situation in wild-type animals (Fig. 6A). Interestingly, in contrast to 
wild-type mice, there was no increase in the expression of Ifnb1 and Ifna4 in the lungs of Mavs−/− mice infected 
with PR8 FS compared to Mavs−/− mice infected with PR8 WT (Fig. 6B). Similar to wild-type mice, there was no 
difference in the expression of viral RNA (Fig. 6C), viral load (Fig. 6D) or the expression of ISGs (Fig. 6E) in the 
lungs of Mavs−/− mice infected with either PR8 WT or PR8 FS.

Taken together, our data show that PA-X inhibited the expression of Ifnb1 and Ifna4 by a MAVS-dependent 
pathway, most likely via activation of RIG-I.

Figure 4. The lungs of mice infected with PA-X deficient virus contain less immunostimulatory RNA. (A) 
Schematic of the assay using HEK293-p125 reporter cells. (B) RNA extracted from the lungs of infected mice 
was transfected into HEK293-p125 cells. 18 hours later, induction of the IFNB promoter was determined. Data 
are shown as fold induction compared to cells treated with transfection reagent only and are from 20 (mock), 
26 (PR8 WT) and 24 (PR8 FS) mice per group ± s.e.m. and are pooled from five independent experiments. 
*P ≤ 0.05, ns not significant; two-way ANOVA.

https://doi.org/10.1038/s41598-019-43632-6


7Scientific RepoRts |          (2019) 9:7216  | https://doi.org/10.1038/s41598-019-43632-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
IAV, like many other viruses, has evolved mechanisms to counteract and evade the immune response that is acti-
vated when an infected cell is alerted to the presence of a pathogen. The production of type I IFNs is a key aspect 
of the innate immune response to virus infection, driving the induction of a multitude of ISGs which help to 
establish an antiviral state in an infected tissue. The multifunctional IAV protein NS1 is a potent antagonist of the 
innate immune response. It has a number of different viral strain-specific modes of action which include inhib-
iting mRNA processing, translation and inflammasome activation (reviewed by Krug3). In particular, NS1 has 
a number of different mechanisms to specifically target and block IFN induction via the RIG-I-MAVS pathway. 
These include sequestration of immunostimulatory RNAs1,27, binding to Ddx58 pre-mRNA28, directly interacting 
with the RIG-I27,29,30 and TRIM25 proteins31 and the inhibition of the transcription factors IRF332 and NF-κB33. 
The RIG-I-MAVS pathway is also targeted by other IAV proteins, including PB2 and PB1-F2, which bind to 
MAVS4,34,35. Here, we showed that a another IAV protein, PA-X, prevents activation of the RIG-I-MAVS pathway, 
resulting in reduced levels of Ifnb1 and Ifna4 mRNAs.

Both NS1 and PA-X have been implicated in host cell shutoff, whereby IAV infection leads to a global deg-
radation of cellular mRNAs in order to allow preferential translation of viral mRNAs by the cellular transla-
tion machinery. This strategy is commonly used by many viruses and additionally serves to reduce induction of 
immune related genes. In vitro studies using PA-X from the PR8 strain showed that PA-X is able to target host 
mRNAs for degradation36,37. However, PR8 PA-X has relatively low shutoff activity compared to PA-X proteins 
from avian IAV strains13. Here, we observed in an in vivo model of IAV infection that the lungs of mice infected 
with a PA-X-deficient PR8 virus contain comparable levels of host mRNAs at 48 h.p.i. with the exception of two 
genes encoding early type I IFNs, Ifnb1 and Ifna4.

There are differences in the kinetics of induction among the genes encoding the multiple type I IFN subtypes. 
Phosphorylation of the constitutively expressed transcription factor IRF3 early in the cellular response to viral 
infection is a key event in the initial transcriptional activation of the mouse Ifna4 and Ifnb1 genes. IFN-α4 and 
IFN-β proteins are secreted by the infected cell and signal in an autocrine and paracrine manner by binding 
to the type I IFN receptor IFNAR on the surface of the same or a neighbouring cell. This triggers the activa-
tion of the intracellular JAK-STAT signalling pathway, in particular the rapid phosphorylation of STAT1 and 
STAT2 which, together with IRF9, form the Interferon-Stimulated Gene Factor 3 (ISGF3) complex. ISGF3 binds 
to interferon-stimulated response elements (ISREs) in the promoters of target genes including Irf7 which, unlike 
Irf3, is not constitutively expressed. Subsequent activation of IRF7 protein by phosphorylation is required for 

Figure 5. PA-X reduces activation of a TLR7-independent pathway. Wild-type and Tlr7−/− mice were infected 
with 50,000 pfu of PR8 WT, PR8 FS or mock infected via the intranasal route. Mice were weighed every 24 h 
and sacrificed 48 h.p.i. (A) Weight loss in mice infected with PR8 WT and PR8 FS. Data are represented as mean 
weight loss ± s.e.m. (B) Levels of Ifnb1 and Ifna4 mRNA in the lung were measured by qRT-PCR. (C) Levels of 
the IAV M RNA were measured by qRT-PCR. Data are represented as expression relative to the housekeeping 
gene Gapdh ± s.e.m. Data in (A–C) are from 4 (mock) and 10–11 (infected) mice per group mice per group, 
pooled from three independent experiments. *P ≤ 0.05, ***P ≤ 0.001, ns not significant; two-way ANOVA.
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the induction of the other Ifna genes, and therefore the amplification of the type I IFN response15,16,38. Our data 
suggest that PA-X acts to target the mRNAs of type I IFN genes induced early in infection by MAVS-dependent 
activation of IRF3, with no effect on the mRNAs of genes which depend on IFN signalling for their induction, 
such as Ifna5/6 and the ISGs Ifi44, Ifit1 and Isg20. Transcriptional control of the Il28a gene, encoding IFN-λ2, has 
been proposed to be similar to that of the Ifna genes as opposed to Ifnb139,40. This implies that PA-X may be able 
to selectively target Ifnb1 and Ifna4 mRNAs for degradation. However, it is unclear why increased mRNA levels 
do not correlate with increased protein levels as the mRNAs are polyadenylated; further investigation is required 
to address this question.

Figure 6. PA-X reduces activation of a MAVS-dependent pathway. Wild-type and Mavs−/− mice were infected 
with 50,000 pfu of PR8 WT, PR8 FS or mock infected via the intranasal route. Mice were weighed every 24 h 
and sacrificed 48 h.p.i. (A) Weight loss in mice infected with PR8 WT and PR8 FS. Data are represented as mean 
weight loss ± s.e.m and are from 3 (mock) and 9–10 (infected) mice per group, pooled from two independent 
experiments. (B) Levels of Ifnb1 and Ifna4 mRNA in the lung were measured by qRT-PCR. Data are represented 
as expression relative to the housekeeping gene Gapdh ± s.e.m. and are from 11–16 (mock) and 18–24 (infected) 
mice per group and are pooled from five independent experiments. (C) Expression of the IAV M RNA was 
measured by qRT-PCR. Data are from 7 (mock) and 13–14 (infected) mice per group ± s.e.m and are pooled 
from three independent experiments. (D) Viral loads in the right lungs of infected mice were determined using 
a TCID50 assay. Data are from 14 (mock; none detected) and 18–19 (infected) mice per group ± s.e.m and 
are pooled from four independent experiments. (E) Expression of Ifi44 mRNA in the lungs was quantified by 
qRT-PCR. Data are from 9–16 (mock) and 23–24 (infected) mice per group ± s.e.m and are pooled from five 
independent experiments. ***P ≤ 0.001, ****P ≤ 0.0001, ns not significant; unpaired Student’s t-test (A) and 
two-way ANOVA (B–E).
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Mice are a widely used animal model for researching IAV infection. The infection of C57BL/6 mice with the 
lab adapted PR8 strain is one of the most commonly used models of IAV infection in vivo14. Although C57BL/6 
mice lack functional Mx1, a major restriction factor for IAV41, the availability of mice lacking key components 
of the innate immune system on this genetic background provides a powerful means of dissecting the sensing 
of the virus by the host and the immune response induced. In this study, we used MAVS- and TLR7-deficient 
C57BL/6 mice to show that the effect of PA-X on Ifnb1 and Ifna4 mRNA accumulation is via a MAVS-dependent 
pathway. A number of earlier studies have used mice as an experimental model to assess the function of PA-X 
during IAV infection in vivo; however, there is no clear consensus regarding whether PA-X increases or decreases 
pathogenicity of influenza viruses in mice. Infection of mice with PA-X-deficient viruses of the 1918 H1N15, 
2009 pH1N19,10,42 and H5N110–12 strains suggested that PA-X has a role in reducing the pathogenicity of these 
viruses (reviewed by Hu et al.7). However, other studies using 2009 pH1N143 and H9N244 viruses found that PA-X 
increased the virulence of these strains in mice, suggesting that the contribution of PA-X to the pathogenicity 
of IAV viruses varies depending on the host and the virus strain. In some cases, increased levels of Ifnb1 mRNA 
were detected in the lungs of mice infected with PA-X-deficient viruses; however, it is unclear whether this has a 
protective effect. Our data show that increased Ifnb1 and Ifna4 mRNA levels in the absence of PA-X are depend-
ent on MAVS. The mechanism by which PA-X reduces MAVS-dependent Ifnb1 and Ifna4 expression, and the 
functional consequence of this, remains to be determined. In addition to degradation of Ifnb1 and Ifna4 mRNAs, 
direct interactions with RIG-I, MAVS or any of the other proteins involved in downstream signalling are possible, 
as described for NS1, PB2 and PB1-F2.

In summary, we show that the PA-X protein of the widely used experimental PR8 strain of IAV prevents accu-
mulation of type I IFN mRNAs induced early in infection by a MAVS-dependent pathway. Understanding the 
role of PA-X in the virulence and pathogenicity of IAV should be a key objective of future studies.

Methods
Mice. All mice were on the C57BL/6 background. Mavs−/− and Tlr7−/− mice were a gift from C. Reis e Sousa 
and were originally from J. Tschopp45 and S. Akira46, respectively. This work was performed in accordance with 
the UK Animals (Scientific Procedures) Act 1986 and institutional guidelines for animal care. This work was 
approved by project licenses granted by the UK Home Office (PPL numbers 40/3583 and PC041D0AB) and was 
also approved by the Institutional Animal Ethics Committee Review Board at the University of Oxford.

Cell culture. HEK293T (Open Biosystems), HEK293 (a gift from C. Reis e Sousa), p125-HEK23 and 
MDCK-SIAT1 cells (a gift from A. Townsend) were grown in DMEM (Sigma-Aldrich) supplemented with 10% 
heat-inactivated FCS and 2 mM L-glutamine. Cells were grown at 37 °C and 5% CO2. The absence of myco-
plasma contamination was confirmed monthly for all cell lines. HEK293T were treated overnight with 100 U/
ml of Universal type I IFN (IFN-A/D, Sigma) prior to viral infection. Sendai virus was purchased from ATCC 
(Cantrell strain).

Production of a PA-X-deficient virus. PR8 WT and the PA-X-deficient PR8 virus PR8 FS were produced 
by reverse genetics as described previously5,13. Viruses were passaged in MDCK-SIAT cells. Experiments were 
performed using two independently propagated viral preparations.

Viral growth curve. A549 cells were infected in serum-free medium at an MOI of 0.01 and after a 1 h absorp-
tion period at 37 °C, overlaid with media containing 0.14% BSA and 1 µg/ml L-(tosyl- amido-2-phenyl) ethyl 
chloromethyl ketone (TPCK)-treated trypsin (Worthington Biochemicals). Supernatants were harvested at vary-
ing times post infection and titrated by plaque assay on MDCK cells as previously described47.

In vivo infections. C57BL/6, Mavs−/− and Tlr7−/− female mice were used at 6 to 10 weeks of age. Animals 
were age-matched within individual experiments. Mice were intranasally inoculated with 50 μl PR8 WT or PR8 
FS diluted in DMEM or mock infected with DMEM only under light isofluorane (Isoflo®, Abbott Laboratories) 
anaesthesia. Animals were assessed for weight loss and signs of disease. Mice reaching 15% weight loss and/or 
exhibiting clinical signs of disease were euthanised.

RNA extraction and qRt-pCR. Lungs were snap frozen in liquid nitrogen immediately after dissec-
tion and stored at −80 °C until being processed. Lungs were homogenised with glass beads (425–600 μm, 
Sigma-Aldrich) in TRIzol (Thermo Fisher Scientific) using a FastPrep F120 instrument (Thermo Savant). RNA 
was extracted using chloroform phase-separation following the manufacturer’s instructions and was further puri-
fied using RNeasy columns (Qiagen) including an on-column DNase I step. cDNA synthesis was performed 
with SuperScript II reverse transcriptase (Thermo Fisher Scientific) and random hexamer primers (Qiagen) 
or oligo(dT)12–18 primers (Thermo Fisher Scientific) as indicated. 30 ng of cDNA was amplified using Taqman 
Universal PCR Mix (Thermo Fisher Scientific) and Taqman probes (Applied Biosystems). Alternatively, 20 ng 
of cDNA was amplified using EXPRESS SYBR GreenER qPCR Supermix (Thermo Fisher Scientific) and DNA 
oligonucleotides (Sigma Aldrich). qPCR was performed on a 7800 real-time PCR system (Applied Biosystems). 
mRNA expression data were normalised to Gapdh and analysed by the comparative CT method. The qPCR probes 
and primers used in this study are listed in Table 1.

tCID50 assays. Lungs were snap frozen in liquid nitrogen immediately after dissection and stored at −80 °C 
until being processed. Lungs were thawed on ice and homogenised with glass beads (425–600 μm, Sigma-Aldrich) 
in 1 ml viral growth medium (VGM; DMEM supplemented with 0.1% BSA, 10 mM HEPES, 2 mM L-glutamine, 
100 U/ml penicillin and 0.1 mg/ml streptomycin) using a FastPrep F120 instrument (Thermo Savant). 
Homogenates were centrifuged at 16,000 × g for 3 min at 4 °C to pellet beads and debris. The virus-containing 
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supernatant was diluted 1:250 in VGM and filtered using a 0.22 μm filter (Millipore). The filtrate was further 
diluted 1:30 in VGM to give the top dilution and a 1:3 dilution series of ten dilutions made. Determination of 
50% tissue culture infective dose (TCID50) was performed using MDCK-SIAT1 cells, seeded 24 h earlier at a 
concentration of 3 × 104 cells per well of a flat-bottomed 96 well plate. Cells were washed once in PBS before 
100 μl of virus-containing supernatant was added, with each column containing 8 replicates of the same dilution. 
Two columns were used for positive (PR8 WT virus) and negative controls (VGM only). Following incubation 
at 37 °C for 1 h, 150 μl of TPCK-treated trypsin (Sigma Aldrich) was added to each well to give a final trypsin 
concentration of 1 μg/ml and the plates incubated for 72 h at 37 °C. The presence or absence of virus in each well 
was scored by incubating 50 μl of supernatant with 50 μl 1% (vol/vol) human red blood cells in a V-bottomed 96 
well plate at room temperature for 1 h and tipping the plates to assess the presence or absence of virus-mediated 
haemagglutination. Wells were scored as positive or negative and TCID50 values calculated using the Reed and 
Muench method48.

Western blot. Cells were lysed in 10 mM Tris HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% Igepal 
CA-630 (Sigma), 1 mM PMSF and protease inhibitor cocktail (Cell Signaling Technology) for 30 min on ice, 
pipetting every 10 min to mix. Protein lysates were cleared by centrifugation at 16,000 × g 4 °C for 10 min, 
boiled in Laemmli sample loading buffer (60 mM Tris HCl pH 6.8, 2% SDS, 10% glycerol, bromophenol blue, 
5% beta-mercaptoethanol) for 5 min and run on Bis-Tris SDS-PAGE gels (NuPAGE, Thermo Fisher Scientific). 
Antibodies used for Western blot are listed in Table 1. Anti-rabbit and anti-mouse secondary antibodies coupled 
to HRP were from GE Healthcare.

qRT-PCR

Taqman probes (Thermo 
Fisher Scientific)

Assay Probe ID

Oligos (Sigma 
Aldrich)

Sequence ReferenceGene Gene

Gapdh Cat. No. 4352932E

M

F: 5′-CTTCTAACCGAGGTCGAAACGTA Shin et 
al. 2013, 
Virology 
Journal 
10:303

Ifnb1 Mm00439546_s1 R: 5′-GGTGACAGGATTGGTCTTGTCTTTA

Ifna4 Mm00833969_s1
Gapdh

F: 5′-CATGGCCTTCCGTGTTCCTA Tsujita et al. 
2006, PNAS 
103:11946–
11951

Ifna5 Mm00833976_s1 R: 5′-CCTGCTTCACCACCTTCTTGAT

Ifna6 Mm01703458_s1

Ifi44 Mm00505670_m1

Ifit1 Mm00515153_m1

Isg20 Mm00469585_m1

Il28a Mm04204158_gh

Ifng Mm01168134_m1

Oligos to generate probes for Northern blots

Gene Sequence Template for PCR Reference

Ifnb1
F: 5′-ATGAACAACAGGTGGATCC

pGEM-IFN-β
Schulz et al.49, Cell Host Microbe 7:354–361

R: 5′-GGCATCAACTGACAGGTCTT

Actb
F: 5′-GACTTTGTACATTGTTTTG cDNA from PR8 

WT-infected 
mouse lung

This study
R: 5′-TGCACTTTTATTGGTCTCA

Oligos for ePAT

Name Sequence Reference

PAT-anchor primer 5′-GCGAGCTCCGCGGCCGCGTTTTTTTTTTTT
Janicke et al.19, 
RNA 18:1289-
1295

TVN-PAT primer 5′-GCGAGCTCCGCGGCCGCGTTTTTTTTTTTTVN
Janicke et al.19, 
RNA 18:1289-
1295

mIfnb1 ePAT primer 5′-ACCTGTCAGTTGATGCCTCA This study

Antibodies used for Western blot

Antigen Supplier Host Cat. number Dilution

PA GeneTex Rabbit pAb GTX125932 1:1000

MAVS ENZO Life Sciences Rabbit pAb ALX-210-929-C100 1:500

RIG-I AdipoGen Mouse mAb AG-20B-0009 1:1000

p-IRF3 Cell Signaling Technology Rabbit mAb 4947S 1:1000

β-actin Sigma Mouse mAb 
(HRP-coupled) A3854 1:100,000

Table 1. qPCR probes, oligonucleotides and antibodies used in this study.
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eLIsA. Levels of type I IFNs in the BALf were quantified using a LumiKine Xpress mIFN-β ELISA (Invivogen) 
and a Lumikine mIFN-α ELISA (Invivogen) which detects multiple IFN-α subtypes. IP-10 was quantified using 
a IP-10/CXCL10 Matched Antibody Pair ELISA (eBioscience).

Luciferase reporter assay. HEK cells stably expressing firefly luciferase under the control of the human 
IFNB promoter (p125-HEK cells) have been described previously23. Cells were seeded at 20,000 cells per well in a 
96-well plate. The following day, cells were transfected with the indicated doses of RNA extracted from the lungs 
of mice complexed with 0.5 μl Lipofectamine 2000 (Thermo Fisher Scientific) per well. Activation of the IFNB 
promoter was assessed after 24 h using OneGlo luciferase assay reagent (Promega).

Flow cytometry. Lungs were dissected and mechanically disrupted using scissors before incubation in RPMI 
containing 1 μg/ml type II collagenase (Worthington Biochemical Corporation) and 40 U/ml DNase I (Sigma 
Aldrich) at 37 °C for 60 min, resuspending after 30 min to facilitate tissue dissociation. Cells were filtered through 
a 70 μm cell strainer (BD Falcon), rinsing with RPMI before being pelleted at 400 × g for 5 min. The cell pellet 
was resuspended in 5 ml RBC lysis buffer (Qiagen), incubated at room temperature for 5 min then washed twice 
with 45 ml RPMI. Cells were resuspended in 1 ml PBS containing 10% (v/v) FCS and 2 mM EDTA (FACS buffer), 
passed over a 70 μm cell strainer and viable cells counted using a haemocytometer. 3 × 106 cells of each sample 
were washed with PBS before incubating with LIVE/DEAD Fixable Aqua Dead Cell Stain (Invitrogen) diluted 
1:200 in PBS for 30 min at room temperature. Cells were washed twice with FACS buffer and fixed with 4% PFA 
(v/v) in PBS for 15 min at room temperature before being permeabilised with 0.2% (w/v) saponin (Sigma Aldrich) 
in PBS containing 2% (w/v) BSA for 20 min at room temperature. Intracellular IAV NP protein was stained using 
an anti-NP-FITC monoclonal antibody (D67J, Thermo Fisher Scientific) diluted 1:40 in permeabilisation buffer 
for 30 min at room temperature followed by two washes in FACS buffer. Data were acquired on a BD LSR Fortessa 
X-20 (BD Biosciences) and analysed using FlowJo (v10.4.1).

Northern blot. Northern blots were performed as previously described with some modifications1,49. Briefly, 
total RNA extracted from lungs was heat-denatured for 15 min at 75 °C before being electrophoresed on a 1.2% 
agarose gel containing 7% formaldehyde, alongside an RNA ladder (Life Technologies). Gels were run overnight 
at 4 °C in MOPS buffer (20 mM MOPS, 8 mM sodium acetate, 1 mM EDTA, pH 7.0). RNA was transferred by 
capillary transfer to a nylon membrane (Hybond N+, Amersham Biosciences) overnight after which the mem-
brane was crosslinked with UV light (120 mJ/cm2) and hybridised with [α32P]-dCTP and [α32P]-dATP labelled 
probes diluted in hybridisation buffer (Ambion Ultrahyb) overnight at 42 °C. Primer sequences used to generate 
the probes are listed in Table 1.

extension poly(A) test (epAt). ePAT was performed according to Janicke et al.19 with some modifications. 
Briefly, 1 μl of 100 μM DNA oligonucleotide (‘PAT-anchor primer’) was annealed to 1 μg RNA extracted from 
IAV-infected lungs by incubating at 80 °C for 5 min then cooling to room temperature. A master mix containing 
1 X SuperScript III buffer, 5 mM DTT, 0.5 mM dNTPs, 40 U RNaseOUT and 5 U of Klenow polymerase was 
added to give a final reaction volume of 20 μl, mixed and incubated at for 1 h at 37 °C, followed by 5 min at 80 °C 
to inactivate the polymerase and cooling to 55 °C for 1 min. The tubes were maintained at 55 °C while 200 U of 
SuperScript III Reverse Transcriptase (Invitrogen) was added. The samples were mixed and incubated for 1 h at 
55 °C followed by 5 min at 80 °C to inactivate the reverse transcriptase. The resulting ePAT cDNA was diluted 1:6 
with UltraPure distilled water (Invitrogen). A TVN-PAT cDNA control was generated by the same method using 
the TVN-PAT primer, which contains two 3′ variable bases, V and N, which lock the primer to the polyadenyla-
tion site during the reverse transcription step, which was performed at 42 °C instead of 37 °C. PCR amplification 
of the ePAT and TVN-PAT cDNA was performed in a 20 μl reaction containing 5 μl of cDNA, 1X AmpliTaq Gold 
360 master mix (Applied Biosystems), 1 μM forward primer (‘mIfnb1 ePAT primer’) and 1 μM reverse primer 
(‘PAT-anchor primer’). Reactions were incubated at 94 °C for 10 min then 22–28 cycles of 94 °C for 20 sec, 60 °C 
for 20 sec, 72 °C for 20 sec and finally 1 min at 72 °C. PCR amplicons were visualised by loading 10 μl of each reac-
tion on to a 2% high-resolution agarose gel (MetaPhor Agarose, Lonza) containing SYBR Safe (Invitrogen). Band 
intensity was calculated using Image Lab software (Bio-Rad Laboratories).

statistics. Statistical analysis was performed in GraphPad Prism v7.00 as detailed in the figure legends.

Data Availability
All data generated or analysed during this study are included in this manuscript (and its Supplementary Infor-
mation files).
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