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A B S T R A C T

In fish used for food production and scientific research, fast growth can be achieved via selective breeding or
induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct
routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health
parameters. We addressed this knowledge gap using skeletal muscle proteomics in coho salmon (Oncorhynchus
kisutch), hypothesising that i) selective breeding and GHT are underpinned by both parallel and unique changes
in growth systems, and ii) rapidly-growing fish strains have lowered scope to allocate resources towards immune
function. Quantitative profiling of GHT and growth-selected strains was done in comparison to wild-type after
injection with PBS (control) or Poly I:C (to mimic infection). We identified remodelling of the muscle proteome
in each growth-enhanced strain that was strikingly non-overlapping. GHT was characterized by focal upregu-
lation of systems driving protein synthesis, while the growth-selected fish presented a larger and more diverse set
of changes, consistent with complex alterations to many metabolic and cellular pathways. Poly I:C had little
detectable effect on the muscle proteome. This study demonstrates that distinct proteome profiles can explain
outwardly similar enhanced growth phenotypes, improving our understanding of growth mechanisms in an-
thropogenic animal strains.
Significance: This work provides the first proteomic insights into mechanisms underpinning different anthro-
pogenic routes to rapid growth in salmon. High-throughput proteomic profiling was used to reveal changes
supporting enhanced growth, comparing skeletal muscle of growth hormone transgenic (GHT) and selectively-
bred salmon strains with their wild-type counterparts. Contrasting past mRNA-level comparisons of the same fish
strains, our data reveals a surprisingly substantial proteomic divergence between the GHT and selectively bred
strains. The findings demonstrate that many unique molecular mechanisms underlie growth-enhanced pheno-
types in different types of fish strain used for food production and scientific research.

1. Introduction

In farmed salmonid fishes, selective breeding has been ongoing for
decades leading to large increases in growth [1,2]. As an alternative to
selective-breeding, highly elevated growth rate can be achieved by
transgenesis within a wild-type genetic background [3] using constructs
overexpressing growth hormone (GH). Stable GH transgenic (GHT)
salmon strains are approved in North America as a food product (e.g.
[4]), so understanding how growth is achieved by GHT in comparison
to selective-breeding approaches has regulatory, risk assessment, and
social implications [5,6]. Comparisons of GHT and growth-selected fish

also provides insights into the potential mechanisms supporting rapid
growth in anthropogenic animal strains.

An important question concerns whether rapid growth is achieved
by parallel or unique molecular pathways comparing GHT and growth-
selected domesticated fish. Most work has focused on GH-dependent
pathways governed by insulin-like growth factors (IGFs). Pituitary se-
creted GH enters circulation and binds GH receptors on target tissues,
activating JAK/STAT pathways [7], with diverse physiological effects.
GH signalling stimulates hepatic production of IGF-I [8], which enters
circulation and binds a specific receptor (IGF1R) on target cells, acti-
vating anabolic signalling [9]. IGF hormones (IGF-I and IGF-II) also
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influence growth in a paracrine/autocrine fashion [10,11]. Salmonids
can be strongly growth stimulated by exogenous GH treatment [12],
though this hormone has a greater effect in wild-type strains compared
to growth-selected domesticated fishes [13], suggesting that high GH
signalling was selected during domestication, indicating substantial
parallels for the basis of rapid growth compared to GHT.

Growth-selected domesticated and GHT fish show parallel changes
in transcriptional regulation of GH and IGF system genes, and simila-
rities in the modulation of genes that differ in expression from wild-type
[14,15]. GHT strains have elevated plasma GH and IGF-I compared to
growth-selected domesticated strains, and both strains show elevated
levels of these hormones compared to wild-type [2,14,16,17]. There is
also more limited evidence for non-parallel molecular changes in GHT
and growth-selected domesticated strains [2,14,15,17]. Growth is a
polygenic trait and selective breeding offers scope to alter genetic
pathways across a genome. Consequently, while GHT should only im-
pact GH-dependent phenotypes, selective breeding can theoretically
modify growth associated functions encoded anywhere in the genome.
Here our primary objective was to explore these ideas systematically
using proteomics, testing the hypothesis that both parallel and non-
parallel molecular changes underpin enhanced growth achieved by
GHT and selective breeding.

Another important question concerns how rapid growth affects
other physiological functions important to fish health/production.
Trade-offs exist between growth and immune function in fish (e.g.
[18–20]) and require mechanisms to reallocate resources away from
growth investment towards immune function during disease challenge;
thought to involve cross-talk between the GH/IGF systems and innate
immune factors [18,21]. In animal strains with enhanced growth rate,
the balance of investment into competing physiological systems is
heavily shifted, with potential costs on immune function reported in
GHT salmon [19,22]. A secondary aim of this study was to test the
hypothesis that rapidly-growing fish show disrupted immune function
and altered cross-talk between growth and immune function at the
proteomic level.

As a focal point, we studied the most important target tissue for
growth and energy storage in fishes: skeletal muscle, where growth is
centrally controlled by GH and IGF signalling pathways [23,24]. In
salmonids, muscle accounts for 50–60% of mass and is used to store
amino acids and lipids that can be reallocated to other systems during
catabolic states. Muscle function is also regulated by cross-talk with the
immune system [25], an interaction that is disrupted by GHT in sal-
monids [19]. Our study hypotheses were tested using high-throughput
label-free proteomics [26,27] to compare the muscle proteome of fast-
growing GHT versus growth-selected domesticated fish strains relative
to the wild-type. We reveal substantial divergence among-strains that
contrasts to a surprising extent from past mRNA-level studies, in-
dicating that distinct anthropogenic routes to fast growth in fish are
supported by several unique mechanisms.

2. Materials and methods

2.1. Experimental Design and statistical rationale

Coho salmon were sampled as part of an experiment reported in full
elsewhere [19], performed at Fisheries and Oceans Canada (DFO), West
Vancouver, British Columbia, Canada. The study was carried out under
permit #12–017 from the DFO's Pacific Regional Animal Care Com-
mittee. The animal groups included a wild-type (WT) and a GHT strain
(M77), where the transgene was inserted and subsequently maintained
in the same WT genetic background [19]. While not described in our
previous publication, an additional fish group was included in the same
experiment, namely a domesticated aquaculture strain (hereafter: DF)
selected for enhanced growth over seven generations, originally derived
from the Kitimat River (British Columbia). DF were size-matched to WT
and GHT (n=60 DF fish were used in the experiment: mean ± s.d.:

77.9 ± 0.5 g) and all fish studied were immature, unsexed and fed to
satiation. Size-matching required sampling at different ages due to
differences in growth rate (WT: aged 19months; DF: aged 10months;
GHT: aged 6months), and all fish were sampled on the same date.
Details of how the fish were treated during the experiment, including
acclimation to a common garden set-up, allocation into replicated
tanks, immune/control injections, killing methods and tissue sampling,
was done as described in [19]. Skeletal muscle samples were flash-
frozen on dry ice and stored at -70 °C until analysis.

Thirty skeletal muscle samples from the above experimental design
were used in the proteomic analyses reported in this study (two were
eventually dropped as outliers; see Section 2.4). Samples came from
animals either 30 h post Poly I:C injection (200 μg per 100 g fish
weight) to mimic a viral infection (n=5 biological replicates per WT,
GHT and DF) or 30 h post PBS injection (n=5 biological replicates per
WT, GHT and DF) to provide an unstimulated control. Technical re-
plicates were not performed on these thirty samples because we an-
ticipated large variation among experimental groups that would be
sufficiently captured through the biological replication. The biological
replicates used for proteomics were a random subset of sampled fish, as
described in [19]. It was not possible to use a formal test of statistical
power to inform the appropriate number of biological replicates due to
a lack of pilot data on the study system. As reported within the Results
section, the selected design provided sufficient power to detect differ-
ential abundance of individual proteins among experimental groups
while controlling for type-I error (described in Section 2.4.).

2.2. Sample preparation

Muscle samples (approx. 100mg) were thawed on ice, weighed and
added to 50 μl lysis buffer (0.5M pH 6.8 Tris-HCl, 0.2M EDTA, 8M
Urea, 0.5 M DTT, 10% v/v Glycerol, 10% v/v NP40, pH 3–10 ampho-
lytes). This solution was ground using a micropestle, before a further
50 μl lysis buffer was added and the tissue was sonicated (Sonic
Dismembrator, Fisher Scientific) on ice to make a ratio of 2mg tissue
per μl lysis buffer. The resulting solution was centrifuged at 13,000g for
5min, before an aliquot was separated on a 10% acrylamide 1-D gel
and stained with Coomassie blue to ensure the staining intensity was
matched across samples. The supernatant was then stored at -80 °C until
further analysis. After thawing on ice, 50 μl of supernatant was com-
bined with 50 μl molecular grade water. Proteins were precipitated
using the ReadyPrep 2-D clean up procedure (Bio-Rad Laboratories),
following the manufacturer's instructions. The resulting pellet was
dissolved in 100 μl of 3–10 pH Reswell buffer (Urea, Thiourea, CHAPS,
DTT, MilliQ water, and IPG buffer). 10 μl of the resulting solution was
combined with 5 μl 3× dissociation buffer (0.5 M pH 6.8Tris-HCl, 25%
SDS, 2-mercaptoethanol, Glycerol) and incubated for 5min at 100 °C
for denaturation. 3 μl of the extract was run a short distance into a 10%
acrylamide 1-D gel, which was stained with colloidal Coomassie Blue
G250 (Fischer Scientific) and the proteins excised and used for in-gel
tryptic (Promega, sequencing grade) digestion (Digilab ProGest robot).
We also included quality control samples consisting of a standard so-
lution of BSA in each batch of tryptic digestions to confirm the com-
pleteness of the digestion process. Peptide solutions were dried by
centrifugal evaporation (Savant SpeedVac Plus), dissolved in 20 μl 0.1%
formic acid, and spun at 14,000 g for 5min prior to liquid chromato-
graphy – mass spectrometry (LC-MS).

2.3. LC-MS

The LC-MS system used was an UltiMate 3000 RSLCnano (Dionex/
Thermo Scientific) coupled to a Q Exactive Plus quadrupole-equipped
Orbitrap MS (Thermo Scientific). 4 μl of tryptic peptide solution was
injected for analysis per sample. Peptides were concentrated on a μ-
precolumn (C18 PepMap; 300 μm i.d.× 5mm) in a water/acetonitrile/
formic acid (98:2:0.1) loading solvent at a flow rate of 10 μl/min. After
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5min, the μ-precolumn was switched to the analytical flow path, where
peptides were separated at a flow rate of 0.3 μl/min on a C18 PepMap
RSLC column (75 μm i.d. x 50 cm) with a particle size of 2 μm, fitted to
an Easy-Spray nano ESI source. Two solvents were formed, solvent A
was made from water/formic acid (1000:1) and solvent B from water/
acetonitrile/formic acid (20:80:0.1). An increasing proportion of sol-
vent B was used to separate peptides along a gradient: 3–10% from 5 to
25min; 10–45% from 25 to 185min; 45–90% from 185 to 190min;
90% from 190 to 205min; 90–3% from 205 to 210min, followed by re-
equilibration of the column (3% Solvent B, 30min). LC lasted 240min;
mass spectra were acquired using a “Top 10” data-dependent method
starting at 5min and lasting 200min. The electrospray voltage was
1.9 kV, capillary temperature 270 °C and S-lens RF level 60. Full MS
scans were conducted between 375 and 1750m/z at resolution 70,000
(m/z 200), automatic gain control 3E+ 6 and maximum injection time
50ms. Following each survey scan the 10 most intense ions of charge
state 2–5 were sequentially selected (isolation window 1.6m/z) and
fragmented in the higher-energy collisional dissociation (HCD) cell at a
normalized collision energy of 26%. MS/MS scans were conducted at
resolution 17,500, automatic gain control 5E+ 4 and maximum in-
jection time 100ms. Additional data-dependent settings were: peptide
match preferred, exclude isotopes turned on, and a dynamic exclusion
of 40 s.

2.4. Data and statistical analysis

Q Exactive raw data were analysed using MaxQuant v1.5.3.30 with
Andromeda as the peptide search engine [28] and the label-free
quantification (LFQ) method [29]. Most standard recommended set-
tings were used [30], but to ensure maximal data discovery, the ‘Fast
LFQ’ option was not applied. The trypsin digestion option was selected,
along with a maximum of two missed cleavages, allowing oxidation of
methionine and acetylation at the N-terminus end of the protein as
variable modifications, and carbamidomethylation of cysteine as a fixed
modification. The mass tolerance for first search precursor ions was set
to 20 ppm followed by 4.5 ppm for the main search. A 1% false-dis-
covery rate (FDR) was employed for peptide and protein identifications.
The ‘Match between runs’ option was used to transfer identifications to
other LC-MS runs and increase identifications across samples. Un-
modified counterpart peptides were not discarded. Peptides and pro-
teins were identified against a database of 57,592 RefSeq proteins
predicted from the coho salmon genome annotation (NCBI accession;
GCA_002021735.1, currently unpublished). Any coho salmon proteins
identified in our study were confirmed against annotated RefSeq pro-
teins from the ‘gold-standard’ Atlantic salmon (Salmo salar) reference
ICSASG_v2 genome [31] (NCBI accession: GCA_000233375.4) using
BLASTp [32]. The MaxQuant-generated ‘proteingroups.txt’ file was
filtered for contaminants, reverse identifications, and proteins only
identified by site.

Statistical tests and graphical functions were performed in R-studio
v.1.0.136 (Rstudio, Boston, MA) interfacing with R v.3.3.2 (“Sincere
Pumpkin Patch”), using the log-transformed imputed LFQ data. Only
protein groups that had LFQ values in at least n=3 samples per each of
the six experimental groups (WT-PBS, WT-Poly I:C, GHT-PBS, GHT-Poly
I:C, DF-PBS, DF-Poly I:C) were retained for analyses reported hereafter.
The remaining LFQ values were log-2 transformed, and imputed to
increase quantitative comparisons and decrease the effect of highly
abundant proteins [33]. Imputation was completed using missForest
[34], a non-parametric, random forest approach. The protein-level
probabilistic imputation used has been shown to outperform peptide-
level imputation [35] and our data showed high reproducibility across
samples both before and after imputation (see Fig. S1; Section 3.1). To
determine statistical differences among fish strains (WT vs. GHT vs. DF:
fixed factors) and treatments (Poly I:C vs. PBS/control: fixed factors),
we utilized a linear model approach in the ‘limma’ package, with sub-
sequent empirical Bayes smoothing of the standard errors [36]. After

determining there was no immune-related statistical differences (see
RESULTS), pairwise comparisons were conducted between each strain
(GHT vs. WT, DF vs. WT, and DF vs. GHT), equivalent to a post-hoc
Tukey's test following ANOVA. A global false discovery rate (FDR)
adjustment was applied to correct for multiple comparisons. The
‘gplots’ and ‘seriation’ packages were used to produce heat maps
[37,38] comparing Z-score normalized LFQ values of significantly dif-
ferent protein abundances identified from the linear model (FDR-ad-
justed P < 0.05). Hierarchical clustering was done using optimal leaf
ordering, which aims to minimize Hamiltonian path length, and reveals
more biological structure than heuristic methods [39]. Further multi-
variate analyses were performed using the ‘vegan’ package [40]. Non-
metric multidimensional scaling (nMDS) was used to visualize multi-
variate differences between strains and immune treatments. Permuta-
tional ANOVA [41] (PERMANOVA, 9999 permutations) was used to
determine proteome-wide changes between individual fish across
strains (DF vs. GHT vs. WT), immune treatment (PBS vs. Poly I:C), and
the interaction of strain by treatment. The multivariate homogeneity of
group dispersion (variance) was assessed to determine potential effects
on multivariate statistical outcomes [42]. This revealed a dispersion
effect on strain, which may influence the PERMANOVA. The dispersion
and location of data was checked in an ordination plot, and it was
determined that the location effect was more prominent than any
multivariate data dispersion. Two samples (one WT and GHT; both PBS
treatments) were outliers from other fish in the same strains based on
their proteomic profiles at the univariate and multivariate levels, and
removed from the study.

The complete MaxQuant output and log-transformed imputed LFQ
data used in the statistical analysis are provided within Table S1 and S2,
respectively. The mass spectrometry proteomics data for the 28 samples
reported in the study have been deposited to the ProteomeXchange
Consortium via the PRIDE [43] partner repository with the dataset
identifier PXD009537.

2.5. Mapping changes in ribosome protein abundance to the 80S ribosome
structure

Changes in the abundance of ribosomal proteins among GHT and DF
compared to WT were visualized on a 3D structural model of a verte-
brate 80S ribosome. The 5 Å resolution cryo-electron microscopy-de-
rived 80S ribosome structure of human (Homo sapiens) (accession:
4V6X) [44] was downloaded from the RCSB Protein Data Bank and
rendered/edited according to our findings in UCSF Chimera v.1.10.2
[45]. Coho salmon ribosomal proteins (present within the final dataset)
orthologous to those within the human 80S structure were determined
by BLASTp.

3. Results

3.1. Overview of proteomic data

Among a larger set of protein identifications (Table S1), 320 pro-
teins were retained for analysis following quality-control steps and
stringent filtering of the data to include only proteins identified in at
least n=3 individuals per experimental group. On average, the pro-
teins retained for analysis were identified in 27.1 (SD: 1.66 samples)
out of the 28 samples used in the statistical analysis reported below, so
represent highly-reproducible proteins in the coho salmon skeletal
muscle proteome. As shown in Fig. S1, we also observed a high level of
repeatability among protein abundances across the 28 samples, both
considering log2-transformed LFQ values (Pearson's R=0.82–0.99
across samples) and imputed values for the same data (Pearson's
R=0.84–0.99 across samples).
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Fig. 1. (A). Proteome-wide nonmetric multidimensional scaling analysis of wild-type (WT), growth-hormone transgenic (GHT), and domesticated fish (DF) pos-
sessing distinct growth rates. Each label represents an individual fish and ellipses represent 95% confidence intervals around strain groupings. Also shown is a
hierarchical clustering and heatmap analysis demonstrating global differences in proteins showing significantly different abundances comparing (B) GHT and WT to
(C) DF and WT. In each heatmap, all fish individuals from the three different strains are included for comparison. Rows represent normalized Z-scores of label-free
quantification (LFQ) values from MaxQuant. Separate heatmaps for the three pairwise strain comparisons (i.e. A and B above, as well as GHT vs. DF) including
protein identifications are provided in Figs. S3–5. (D) Venn diagram showing the number of significantly different protein abundances common to each pairwise
strain comparison (orange: upregulated; blue: downregulated). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.2. Multivariate analyses

Using the 320-protein dataset in an nMDS analysis revealed a pro-
teome-wide separation by fish strain (DF vs. GHT vs. WT) (Fig. 1A) but
not by immune treatment (PBS vs. Poly I:C) (Fig. S2). Consistently,
PERMANOVA indicated a highly significant strain effect (pseudo-
F2,27= 6.63, P=0.0001), but non-significant effects for treatment
(pseudo-F1,27= 2.10, P=0.054) and a strain:treatment interaction
(pseudo-F2,27= 1.62, P=0.083).

3.3. Univariate analyses

Consistent with the multivariate analyses, a linear model con-
sidering all proteins separately revealed that the abundance of 191
proteins (59.7% of total) was significantly affected (FDR-adjusted
P < 0.05) by fish strain (Table S3). Conversely, just 5 proteins (< 1%)
were significantly altered by Poly I:C across strains (Table S4). Among
the proteins with a significant overall strain effect, 80 had differential
abundance between GHT and WT (FDR-adjusted P < 0.05; Table S3).
In a hierarchical clustering analysis of these proteins across strains,
GHT samples grouped within a larger cluster including all but one DF
individual (Fig. 1B). Among 62 proteins upregulated in GHT compared
to WT, more than half are ribosomal proteins, while others are involved
in translation (e.g. elongation factor [EF] 1-gamma, eukaryotic trans-
lation initiation [eIF] factor 5A), energy metabolism (e.g. fructose-1,6-
bisphosphatase 2; phosphoglycerate mutase 2), sarcomere organization
(e.g. troponin-I/-C, myozenin-1-like) or represent molecular chaper-
ones (HSP60, 70, 90, and HSPA8) (Fig. S3, Table S3). The sarcomeric
proteins nebulin and myosin heavy chain feature among the 18
downregulated proteins in GHT compared to WT, along with proteins
involved in connective tissue (collagen alpha-3 and prolargin-like),
calcium channel function (voltage-dependent L-type calcium channel
subunit b) and lipid metabolism (trifunctional enzyme subunit alpha,
mitochondrial) (Fig. S3, Table S3).

Among the proteins showing a strain effect, 112 (58.6% of total)
had significantly different abundances between DF and WT (Table S3).
Hierarchical clustering analysis of these proteins revealed a major DF
cluster within a larger grouping containing three WT individuals, se-
parate from a cluster containing GHT and WT individuals (Fig. 1C). In
contrast to the GHT vs. WT comparison, a similar number of proteins
were upregulated (55 proteins) and downregulated (57 proteins)
(Fig. 1C; Table S3). WT fish that grouped with DF had similar abun-
dance profiles for many downregulated proteins, and a smaller set of
upregulated proteins, but showed the WT pattern for other proteins
(Fig. 1C). Proteins with diverse functions were altered in the DF strain
compared to WT, including ribosomal and sarcomeric proteins, proteins
involved in muscle contraction (e.g. parvalbumin), kinases (e.g. nu-
cleoside diphosphate kinase A, adenylate kinase, glycogen phosphor-
ylase), molecular chaperones (e.g. HSP70 and 90-alpha), translation
(e.g. EF1-gamma & EF1-alpha, eIF4A-I & eIF4H), calcium regulation
(e.g. parvalbumin, voltage-dependent L-type calcium channel subunit
beta-1), signalling molecules (e.g. RACK1, 14–3-3 protein beta/alpha-2
and epsilon-like) and a range of metabolic enzymes (e.g. betaine-
homocysteine methyltransferase, glucose-6-phosphate isomerase, al-
dolase, glyceraldehyde-3-phosphate dehydrogenase) (Fig. S4; Table
S3).

Among the proteins showing a strain effect, 115 (60.2%) had sig-
nificantly different abundances between DF and GHT (Table S3). In the
hierarchical clustering analysis of these proteins, DF fish formed a
cluster within a grouping that contained the same three WT individuals
mentioned above (Fig. S5). The remaining GHT and WT fish formed a
separate cluster where individuals did not cluster by strain (Fig. S5).
Among the proteins differing between DF and GHT, the majority (71)
were downregulated in DF, including ribosomal proteins, metabolic
enzymes, translation factors, molecular chaperones and kinases (Fig.
S5; Table S3). The 44 upregulated proteins included sarcomeric

proteins, translation factors and metabolic enzymes (Fig. S5; Table S3).
The 5 proteins significantly affected by Poly I:C included three

downregulated (gamma-enolase, creatine kinase, myosin heavy chain)
and two upregulated (troponin-I and ribosomal protein S13) proteins
(Table S4).

3.4. Limited proteome changes common to GHT and DF

An obvious difference in the number of proteins with altered
abundance comparing GHT vs. WT and DF vs. WT led us to question the
extent of shared and non-overlapping differences across strains. 21
proteins showing altered abundance (18 upregulated, 3 downregulated)
were shared by DF and GHT when separately compared to WT, versus
58 (19 upregulated, 39 downregulated) for both GHT and WT com-
pared to DF (Fig. 1D). The 18 commonly upregulated proteins in DF and
GHT compared to WT included 10 ribosomal proteins. 19 commonly
upregulated proteins in GHT and WT compared to DF included EFs,
kinases, and sarcomeric proteins, while the 39 commonly down-
regulated proteins included metabolic enzymes and a distinct set of
kinases and sarcomere proteins. A marked subset of differential protein
abundances was restricted to each of the pairwise strain comparisons
(Fig. 1D).

To supplement the above broad-scale comparisons, below we de-
scribe, in greater depth, changes in classes of proteins particularly im-
portant to growth and muscle function.

3.5. Protein synthesis and breakdown

Proteins driving the increased protein synthesis necessary to support
rapid growth are represented within our data and associated with the
ribosomal machinery. Remarkably, 85% (33/39) of all detected cyto-
plasmic ribosomal proteins were significantly upregulated in GHT
compared to WT, equally representing the small/40S (16 proteins) and
large/60S (16 proteins) subunits (Fig. 2A), as visualized on a 3D
structural model of the 80S ribosome (Fig. 2B). A smaller set of 13 ri-
bosomal proteins, 11 overlapping with GHT, were upregulated in DF
compared to WT, more biased to the 40S (8 proteins) than 60S (4
proteins) subunit (Fig. 2A, C). A substantial fraction of ribosomal pro-
teins upregulated in GHT compared to WT were significantly down-
regulated in DF relative to GHT (Fig. 2A), highlighting substantial
differences in ribosome biogenesis in the two fast growing strains.
Several eIFs and EFs showed alterations in GHT and DF compared to
WT, which were largely non-overlapping (Fig. 2C). EF1-gamma showed
increased abundance in both GHT and DF, while EF1-alpha was upre-
gulated specifically in DF vs. both GHT and WT, and EF1-delta and EF1-
beta specifically in GHT vs. WT (Fig. 2C). While eIF-4A1 was upregu-
lated in DF compared to both GHT and WT, eIF-4H was downregulated
in the same comparison, while eIF-5A1 increased in GHT compared to
both DF and WT (Fig. 2C). RACK1, a component of the 80S ribosome
(Fig. 2B), showed higher abundance in both GHT and DF compared to
WT, but was particularly upregulated (approx. 4.4-fold) in DF vs. WT,
and also higher in DF than GHT (Fig. 2A, Table S3).

On the catabolic side of protein turnover, we identified a group of
proteins involved in muscle protein breakdown, including subunits of
the 26S proteasome, along with a limited representation of the calpain
system (i.e. calpastatin) (Fig. S6A). Contrasting the substantial upre-
gulation of proteins driving protein synthesis, our data indicates that
muscle protein breakdown pathways are largely unaltered in both rapid
growing coho salmon strains, with only one 26S proteasome subunit
showing significant upregulation in DF vs. WT and no proteins altered
significantly between GHT and WT (Fig. S6A).

3.6. Molecular chaperones

The molecular chaperone group of heat-shock proteins (HSP)
showed a partly overlapping increase in abundance in DF and GHT
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Fig. 2. Differences in the abundance of proteins from systems driving protein synthesis in GHT and DF compared to WT. (A) Hierarchical clustering of all identified
ribosomal proteins. Proteins with titles in black showed significant differential abundance across the salmon strains. Log2 fold-changes are given for proteins with
significant differential abundance between the shown pairwise strain comparisons. Accession numbers and protein names are from the O. kisutch and S. salar NCBI
RefSeq databases, respectively. (B) The functional relevance of changes in ribosomal protein abundance was explored by mapping the data onto a 3D structure of the
human 80S ribosome [44], where any ribosomal proteins lacking orthologous salmon proteins in our dataset were removed, along with ribosomal RNA. The top panel
shows all proteins orthologous to proteins in the human 80S structure, with 40S (small subunit) and 60S (large subunit) proteins shaded blue and white respectively.
RACK1 is shown in green. In the lower panels, proteins showing upregulation in GHT or DF compared to WT are shaded gold. (C) Hierarchical clustering of
eukaryotic translation elongation and initiation factors with details as for part B. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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compared to WT (Fig. S6B). HSP 90-alpha and HSP70 were elevated in
both DF and GHT vs. WT (Fig. S6B). HSP60 and HSPA8 (Hsc71) were
upregulated specifically in GHT compared to WT, with HSPA8 being
significantly higher in GHT than DF (Fig. S6B). The only other identi-
fied molecular chaperone (78 kDa glucose-regulated protein) showed
no significant changes across strains.

3.7. Energy metabolism

Among 79 proteins with identified functions in metabolism and
energy regulation that had significantly different abundances across
fish strains, 37 (47%) differed significantly between DF and WT, and 16
(20%) between GHT and WT (Fig. 3). A modest proportion (7/16) of

Fig. 3. Differences in the abundance of proteins from metabolism and energy regulating systems in two growth-enhanced salmon strains, GHT and DF, compared to
WT. Other details are as given in the Fig. 2 legend.
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the proteins showing differential abundances between GHT and WT
were altered in the same direction comparing DF and WT, but this re-
presents a small number of all proteins showing differential abundance
between DF and WT. A larger group of 16 proteins showed common
changes in abundance comparing DF to both GHT and WT, and there
were also a substantial number of unique differences comparing DF and
GHT (Fig. 3). Among the significantly upregulated proteins in DF
compared to GHT and WT was glycogen phosphorylase, glucose-6-
phosphate isomerase, glycogen synthase, and glycogen debranching
enzyme (Fig. 3). A serine/threonine-protein phosphatase (PPP) beta
catalytic subunit was downregulated in DF compared to both GHT and
WT (Fig. 3). Adenylate kinase and two nucleoside diphosphate kinase A
variants (one annotated as ‘non-metastatic cells 1 protein’) showed
lower abundance in DF compared to both GHT and WF (Fig. 3). Betaine-
homocysteine methyltransferase and fructose-1,6-bisphosphatase 2,
along with two additional metabolic proteins, were increased in both
DF and GHT compared to WT (Fig. 3).

3.8. Sarcomeric organization and muscle contraction

The abundance of muscle sarcomere proteins and proteins with
functions in muscle contraction showed marked changes in DF com-
pared to WT and GHT (Fig. S7). A set of proteins fundamental to sar-
comere organization, including titins, myosin heavy chains, and myo-
mesins showed upregulation in DF compared to both GHT and WT,
several of which were downregulated in GHT compared to WT (Fig. S7).
It is striking to note that all proteins upregulated in DF vs. both GHT
and WT represent structural proteins. This contrasts with a distinct
cluster of strongly downregulated proteins in DF compared to both GHT
and WT, dominated by proteins involved in muscle contraction reg-
ulation, many of which are calcium-regulated, including troponin-I and
-C, myosin light/regulatory light chains and parvalbumin (Fig. S7).

4. Discussion

This study demonstrates the value of label-free high throughput
proteomics for dissecting the mechanistic basis of complex traits, using
fish strains with different genetic characteristics as a model. A key
finding was that while the skeletal muscle proteomes of two growth-
enhanced coho salmon strains were remodelled from wild-type (WT),
there were differences depending on the underlying basis for enhanced
growth (summarized in Fig. 4). While a GH transgenic (GHT) strain
showed a particularly focal upregulation of systems driving protein
synthesis with relatively limited impacts on other systems, a domes-
ticated strain (DF) subjected to generations of selective-breeding for
enhanced growth showed a more diverse and predominantly non-
overlapping set of proteomic changes, more consistent with a polygenic
basis for enhanced growth. Interestingly, the WT genetic background
remained highly visible in the GHT strain, as many proteomic changes
distinguished DF from WT and GHT in the same way. In such respects,
our primary study hypothesis was supported, yet the extent of non-
parallel molecular changes comparing GHT and DF (to WT) has not
been observed in past mRNA-level studies [2,14,15,17]. Several factors
may explain this difference. First, mRNA does not always correlate with
protein abundance [46]. Second, many genes targeted or detected at
the mRNA-level in past studies of the same fish strains, including genes
from the GH and IGF systems [14–16], were not detected in our ana-
lysis. This can be explained by a relatively small fraction of proteins,
particularly structural and metabolic proteins, being preferentially de-
tected in the MS and MS/MS scans due to their high abundance, lim-
iting power to detect low-abundance proteins such as hormones.
However, given that protein levels are a more direct reflection of
phenotype than mRNA, the strain-specific proteomic differences re-
ported here are relevant for our understanding of growth mechanisms,
and perhaps warrant caution when using comparisons at the mRNA
level to explain phenotypic differences among strains.

Our data provided little evidence that Poly I:C markedly alters the
skeletal muscle proteome, opposing our second study hypothesis. This
was surprising, as our recent study with the same WT and GHT muscle
samples demonstrated that Poly I:C induced antiviral and growth gene
expression responses that differed among strains [19]. This apparent
contradiction may be explained by our inability to detect changes in
low-abundance proteins regulating immune function, e.g. cytokines.
However, PERMANOVA revealed a near significant proteome-wide ef-
fect of immune treatment as well as treatment by strain interaction. It is
therefore possible that the stringency of statistical analyses applied
contributed to a reduced power to detect immune-responsive proteins.
Future high throughput LC/MS proteomics studies of muscle may
benefit from targeted MS (i.e. data independent analysis), longer run
times, cellular fractionation, or other approaches to increase power to
detect less abundant proteins. Additional work will be required to fully
dissect the proteomic basis for cross-talk between growth and immune
function in fishes.

An important study finding was the striking upregulation of systems
driving protein synthesis in growth-enhanced salmon strains, which
was particularly exaggerated in GHT. This constituted an increased
abundance of many ribosomal proteins from both the small (40S) and
large (60S) subunits that are essential for protein synthesis [47,48]. As
circulating IGF-I is increased in both GHT and DF compared to WT
[14,16,17], some of the observed parallel increases in ribosome protein
abundance may potentially be driven by the PI3K-Akt-mTOR pathway
[49], which is activated by IGF-I and regulates the transcription and
translation of many ribosomal proteins [50]. However, our findings also
suggest that GH per se, rather than its impact on increased endocrine
IGF-I secretion, is responsible for upregulation of the much larger set of
ribosomal proteins specific to GHT. Similarly, while the rapid growth
phenotype of both GHT and DF is characterized by upregulation of eIFs
and EFs essential for protein synthesis [47], the same proteins showed
largely non-overlapping changes among the two growth-enhanced
strains. For example, EF1-alpha was upregulated in DF specifically,
which may be explained by DF-specific changes in growth factors

Fig. 4. The distinct proteomic basis for enhanced growth in skeletal muscle of
GHT and DF coho salmon strains. Circles are scaled in diameter to the number
of proteins that showed significantly different abundances comparing GHT vs.
WT and DF vs. WT. Circles are shaded to highlight the number of proteins
(values indicated) showing increased abundance (yellow) and reduced abun-
dance (dark blue). Using the same scheme, we highlight the number of proteins
showing common significant differences in abundance comparing GHT and DF
to WT. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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beyond GH or IGFeI, such as epidermal growth factor [51]. Additional
EFs were upregulated in GHT but not DF (e.g. EF1-delta and EF1-beta),
suggesting their regulation depends on GH signalling specifically, ra-
ther than the impact of GH on IGFeI. It also seems important that
RACK1 was particularly strongly upregulated in DF. This scaffolding
protein represents a key ribosomal component that is vital for the ef-
ficient translation of short mRNAs with housekeeping functions, in-
cluding ribosomal proteins [52]. Beyond its central role in translation,
RACK1 interacts with a diverse set of proteins to modulate a broad
range of molecular pathways and functions spanning various cell
compartments (reviewed in [53]). Hence, the strong RACK1 upregula-
tion in DF muscle is very likely to mediate phenotypic changes that
extend beyond enhanced protein synthesis. Given the lack of observed
regulation in protease systems in both GHT and DF compared to WT,
our data suggests that enhanced growth is not being accomplished by a
reduction in the rate of muscle protein breakdown in either strain.

Our data also suggests greater remodelling in energy metabolism
pathways in skeletal muscle of DF than in GHT, characterized by unique
changes in abundance of carbohydrate-processing proteins, including
upregulation of several enzymes involved in glycolysis, glycogenolysis,
gluconeogenesis, and the pentose phosphate pathway (e.g. glucose-6-
phosphate isomerase, glycogen phosphorylases, glycogen debranching
enzyme and protein phosphatase 1) [54–56]). However, the situation is
clearly complex, as DF showed downregulation of several proteins in-
volved in glucose breakdown and rapid energy generation, including L-
lactate dehydrogenase B chain, creatine kinase-2, and creatine kinase
M-type, among others. While it's well established that carbohydrates
play a less significant dietary role in carnivorous fishes such as coho
salmon than amino acids and lipids, they do have a role in supporting
muscle energy demands, and play crucial roles in intermediary meta-
bolism (reviewed in [57,58]). It is also known that salmonids show
strain variation in the efficiency of carbohydrate metabolism [58],
implying the presence of genetic variation that could be selected during
the domestication process. Therefore, we speculate that DF-specific
remodelling of muscle energy metabolism resulted from selection for
increased efficiency of energy generation or intermediate metabolism
during the domestication process to support growth via pathways that
use glucose to generate ATP and other key metabolites (e.g. NADPH
and ribose 5-phosphate) necessary to support the costs of protein
turnover, along with anabolic processes linked to energy storage (e.g.
lipogenesis). During the domestication process, salmon have had the
chance to adapt to commercial diets with a radically distinct compo-
sition from natural diets, including in terms of carbohydrate, amino
acid and lipid content/profile, with scope to impact carbohydrate me-
tabolism directly, but also through diverse mechanisms that allow
cross-talk with systems regulating lipid and amino acid metabolism
[57,58]. Such adaptation would not be expected in GHT fish, which
have been back-crossed with WT fish to avoid selection effects from
domestication [3]. Nonetheless, past work showed that GHT salmon
have enhanced carbohydrate metabolism at the enzyme, nutritional,
and physiological levels [59,60], whereas at the mRNA level, changes
indicative of enhanced carbohydrate metabolism were observed among
GHT and DF in liver [14,61] and to some extent skeletal muscle [62].
Therefore, the comparative lack of remodelling observed in GHT
muscle indicative of altered carbohydrate metabolism could reflect a
tissue-specific effect in DF that is independent of GH and its down-
stream impacts on growth. These findings warrant further proteomic
studies incorporating additional tissues, notably liver as a centre for
carbohydrate storage and metabolism.

Another notable difference between DF and GHT compared to WT
was the downregulation of adenylate kinase (AK) in DF. This enzyme
acts to increase ADP and AMP in the absence of ATP [63], which ac-
tivates the key energy sensor AMP-activated protein kinase (AMPK)
[64]. AK deficiency significantly reduces AMPK phosphorylation, ac-
tivity, and efficacy in skeletal muscle [65,66]. The reduction of AK in
DF muscle predicts downstream repression of AMPK activation, which

is consistent with the high-energy state required to achieve rapid
growth. However, given that many proteins involved in glycolysis and
carbohydrate metabolism are altered in DF, changes in AK could also
relate to this proteins AMP-mediated impacts on glycolytic enzymes
that are AMPK-independent [65]. The lack of AK downregulation in
GHT implies that alternative pathways may exist to regulate AMPK
signalling.

An interesting metabolic change shared between DF and GHT is
upregulation of betaine-homocysteine methyltransferase, indicating a
dietary influx of betaine, which leads to downstream formation of
phospholipids important for cellular membrane generation [67]. In-
creased dietary betaine is associated with improved growth after
smoltification in salmonids, owing to a reduction in osmoregulatory
stress [68], which is notable as fast-growing salmon strains show ac-
celerated smoltification and osmoregulatory ability [3,69].

Unique alterations in skeletal muscle function provide another level
distinguishing GHT and DF from each other and WT. The DF strain
experienced an increase in many proteins essential to sarcomere orga-
nization and structure, while several proteins involved with muscle
contraction were downregulated. Conversely, fewer proteins in the
same functional classes were altered in GHT, and almost none showed
parallel changes to those observed between DF and WT. The role played
by such strain differences remains unclear, but is likely to underlie
differences in muscle composition and contractile properties. Finally,
our results suggest remodelling of molecular chaperone protein abun-
dance supports the rapid growth of DF and GHT, involving some par-
allel, but largely non-parallel changes in abundance of heat-shock
protein (HSP) family members. In a general sense, upregulation of HSPs
occurs under stressful cellular conditions, including in cancer cells in a
growth context (reviewed in [70]), acting to ensure proper protein
folding. HSP70 and HSP90-alpha were commonly upregulated in DF
and GHT. Both proteins are essential to rapid cell growth in their
chaperone function [70], while HSP90-alpha promotes cellular growth
through regulation of transcription machinery acting downstream of
hormonal pathways [71,72]. Additionally, HSPA8/Hsc70 and HSP60,
which have diverse functions in ensuring proper assembly and folding
of proteins in multiple cellular compartments [73–75], were increased
specifically in GHT, suggesting increased intrinsic cellular stress com-
pared to DF, perhaps related to higher rates of protein synthesis driven
by increased translation.

5. Conclusions

GHT and selective breeding for increased growth rate are under-
pinned by a surprisingly non-overlapping remodelling of the skeletal
muscle proteome. These findings have implications for commercial fish
production, especially in terms of the design of feeds matched to the
metabolic requirements of distinct growth-enhanced fish strains. It will
be interesting to determine whether independent episodes of fish do-
mestication and selection for enhanced growth, including in other an-
imal species, are accompanied by similar changes to our observations.
Given the importance of the GH and IGF systems as drivers of increased
growth rate, future proteomics studies might focus on phosphorylation-
driven changes in downstream signal transduction pathways, which
represent key intermediates to our findings that remain largely un-
explored in fishes. Finally, our data have implications for environ-
mental risk assessments of anthropogenic fish strains that may enter
natural environments [76]. While GHT and domesticated fish strains
may outwardly appear to possess similar phenotypic characteristics
(e.g. growth rate, enhanced feeding motivation, among others), our
data demonstrate that the underlying basis for such differences can be
markedly different, and thus caution against making regulatory deci-
sions generic to all ‘fast-growing’ strains.
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