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Most theoretical studies have explored the evolution of plasticity when the environment, and therefore the optimal trait value,

varies in time or space. When the environment varies in time and space, we show that genetic adaptation to Markovian tem-

poral fluctuations depends on the between-generation autocorrelation in the environment in exactly the same way that genetic

adaptation to spatial fluctuations depends on the probability of philopatry. This is because both measure the correlation in parent-

offspring environments and therefore the effectiveness of a genetic response to selection. If the capacity to genetically respond

to selection is stronger in one dimension (e.g., space), then plasticity mainly evolves in response to fluctuations in the other

dimension (e.g., time). If the relationships between the environments of development and selection are the same in time and

space, the evolved plastic response to temporal fluctuations is useful in a spatial context and genetic differentiation in space is

reduced. However, if the relationships between the environments of development and selection are different, the optimal level of

plasticity is different in the two dimensions. In this case, the plastic response that evolves to cope with temporal fluctuations may

actually be maladaptive in space, resulting in the evolution of hyperplasticity or negative plasticity. These effects can be mitigated

by spatial genetic differentiation that acts in opposition to plasticity resulting in counter-gradient variation. These results highlight

the difficulty of making space-for-time substitutions in empirical work but identify the key parameters that need to be measured

in order to test whether space-for-time substitutions are likely to be valid.

KEY WORDS: Counter-gradient variation, environmental heterogeneity, hyperplasticity, local adaptation, phenotypic plasticity,

space, time.

Impact Summary
Species adapt to environmental heterogeneity through

a combination of genetic differentiation and pheno-

typic plasticity. Many theoretical studies have devel-

oped mathematical models to understand how and under

which conditions these two processes are favored. These

have mostly focused on the evolution of plasticity when

the environment varies either in space or time. These

models have resulted in similar outcomes, suggesting

that environmental variation in space and time is substi-

tutable. Although simulation work has cast doubt on this

idea, we derive an equation that shows that space and

time are substitutable under appropriate scaling. Despite

the symmetry of spatial and temporal parameters in this

equation, we also show that interesting and unexpected

phenomena arise when both space and time are mod-

eled jointly. We therefore emphasize that both should be

considered to understand the evolved levels of plasticity

and genetic differentiation in a species. We show two ex-

amples, focussing on what happens in space when there

is also temporal variation in the environment. First, we

show that when spatial and temporal parameter values

are the same and thus symmetrical, populations locally

adapt less because the plasticity that evolves to deal with

temporal variation in the environment is also useful in

a spatial context. Second, by allowing asymmetry in
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the spatial and temporal parameters, the plasticity that

evolves to cope with temporal variation can be maladap-

tive in space resulting in populations that evolve genetic

compensation to track local optima better.

Phenotypic plasticity is the ability of a single genotype to

produce different phenotypes when exposed to different environ-

mental settings. It is a ubiquitous feature of organisms (Pigliucci

2001; West-Eberhard 2003) that can be broadly divided into adap-

tive and nonadaptive categories (Ghalambor et al. 2007). Adaptive

plasticity arises as an evolved response to environmental fluctua-

tions that allows organisms to produce phenotypes better matched

to their environment. It remains the focus of much empirical work

and studies continue to be published that give new insights and

provide pivotal tests of key ideas (Dey et al. 2016; Huang and

Agrawal 2016; van Buskirk 2017). This empirical work is sup-

ported by a large body of theoretical work that has either con-

sidered scenarios where the environment fluctuates in time in a

single population, or in space across multiple populations con-

nected by migration. In the absence of intrinsic costs to plasticity,

and when the environment of development (the environmental

variable that induces the plastic response) is a perfect predictor

of the environment of selection (the environmental variable that

determines the optimal trait value), perfect plasticity is predicted

to evolve (Via and Lande 1985). In this scenario, plasticity allows

organisms to perfectly adjust to environmental conditions and any

genetic differentiation in time or space is lost.

When the environments of development and selection are not

perfectly correlated (Moran 1992), the evolved plastic response is

shallower than the perfect response and equal to the regression of

the optimum on the environment of development (Gavrilets and

Scheiner 1993; de Jong 1999; Tufto 2000). In what follows we

will refer to this regression as the DO-regression, the magnitude

of which can be interpreted as cue reliability. When there is some

cue unreliability, a discrepancy exists between the optimal trait

value and the trait value induced by the plastic response to the

environment (de Jong 1999; Tufto 2000). The effects of this dis-

crepancy can be mitigated when the optima of parents are similar

to those of their offspring because trait values can partly track

fluctuations in the optimum through genetic adaptation. In what

follows we will refer to the similarity of parent and offspring

optima as the PO-regression. The PO-regression will be high if

the environment of selection changes little between generations

and changes little over the spatial scale at which individuals dis-

perse; the PO-regression will be high when temporal and spatial

autocorrelation is high. Theoretical models have quantified the

expected degree of genetic tracking in temporally (Michel et al.

2014) and spatially (Hadfield 2016) autocorrelated environments

given some predefined level of plasticity. Intuitively, the amount

of genetic tracking is found to increase when there is substantial

genetic variance and weak plasticity, particularly when selection

is strong around a widely fluctuating and highly autocorrelated op-

timum (as in models without plasticity; Slatkin and Lande 1976;

Lande and Shannon 1996). The degree of genetic tracking can

be measured as the covariance between genetic values and the

optimum (Blanquart et al. 2012), a quantity shown to have the

same form in continuous time (Michel et al. 2014) and continu-

ous space (Hadfield 2016) models when autocorrelation is scaled

to generation-time or dispersal distance, respectively (Hadfield

2016). The analytical models of Michel et al. (2014) and Hadfield

(2016) treated plasticity as a fixed rather than evolving parame-

ter. However, Tufto (2015) showed that in a discrete time model,

where plasticity is free to evolve, the same results hold and here

we confirm that this is also true for discrete space. Although these

results clearly show that the evolved level of plasticity determines

the degree to which genetic tracking occurs, it remains less clear

to what extent the capacity to genetically track environmental

change determines the level of plasticity.

In many previous models, it has been hard to address this

question because the environments of selection and develop-

ment are often treated as a single environmental variable but

experienced at different life-stages. This causes the PO- and

DO-regressions to depend on the same parameters, making it un-

clear whether it is the capacity to genetically track environmental

change or cue reliability that is driving the evolution of plasticity.

For example, with low migration, parents and offspring experi-

ence more similar environments (the PO-regression is large), but

the environments of selection and development are also more

similar because more individuals are subject to selection where

they develop (the DO-regression is also large) (de Jong 1999).

de Jong (1999) developed a discrete spatial model where these

effects could be separated, and concluded that the plastic slope

did not depend on the capacity to genetically track environmental

change but evolved to the DO-regression; an identical result to

that in Gavrilets and Scheiner (1993) in which the PO-regression

is implicitly zero and therefore no capacity to genetically track

environmental change exists. In contrast, Tufto (2000) developed

a similar spatial model and found (eq. 15) that the slope was

shallower than that in Gavrilets and Scheiner (1993). Although no

interpretation of this result was given, the degree to which the plas-

tic slope became shallower scaled positively with parameters that

increase the rate of genetic tracking, suggesting that the capacity to

adapt may impact on the evolution of plasticity. Subsequent work

suggests that this result arises because in Tufto’s (2000) model

the environment of development varies over individuals within

populations which elevates the phenotypic variance in the trait

when plasticity exists (Tufto 2015). Similarly, within-population
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variance in the slope will also increase the phenotypic variance

even if the environment of development is constant within

a population. Under stabilizing selection, these increases in

phenotypic variance impose a cost on plasticity and so it evolves

to be shallower when genetic tracking is possible (Tufto 2015).

This effect was implicitly ignored in de Jong (1999) due to a

weak selection approximation, and in general we may expect the

effect to be small. However, a direct cost to plasticity may be

stronger (van Tienderen 1991; DeWitt et al. 1998) (although the

evidence is not compelling (DeWitt 1998; Scheiner and Berrigan

1998)) and models that include such costs result in reduced

plastic responses (van Tienderen 1997; Lande 2014). Intuition

suggests that the degree to which the plastic response is reduced

in the presence of costs should depend on the capacity of the

population to genetically track environmental change and here

we confirm that this is the case.

The effects of costs and cue unreliability are now well under-

stood and provide a compelling explanation for why adaptive plas-

tic responses are generally shallower than the perfect response.

However, they fail to explain situations where plastic responses are

steeper or in the opposite direction to the perfect response, called

hyperplasticity or negative plasticity, respectively. Although these

phenomena may be erroneously identified if the plastic response

is determined by multiple cues only one of which has been mea-

sured (Chevin and Lande 2015), reciprocal transplant or experi-

mental evolution studies offer robust tests and many convincing

examples of hyperplasticity exist (Conover et al. 2009; Huang and

Agrawal 2016). Explanations for hyperplasticity usually invoke

nonadaptive plasticity (Levins 1968; Conover and Schultz 1995)

or adaptive plasticity that has become maladaptive by a sudden

change in the environment (Van Asch et al. 2013; Cenzer 2017).

Often, these putatively maladaptive plastic responses are accom-

panied by compensatory genetic changes that have evolved to

bring phenotypes closer to their optima (Levins 1968), resulting

in counter-gradient variation (Conover and Schultz 1995; Grether

2005).

To date, most studies have considered either temporal or

spatial variation in the environment. However, Scheiner (2013)

implemented a simulation model incorporating both. This work

challenged the idea that spatial and temporal heterogeneity are

substitutable and showed that plasticity evolves more easily in

the presence of spatial heterogeneity compared to temporal het-

erogeneity. This work also demonstrated that, rather than being

maladapative, hyperplasticity could evolve under extreme patterns

of temporal variation in the environment (see Scheiner and Holt

2012, also) due to the evolution of bet-hedging. However, as in

many previous models, the relationship between the environments

of development and selection depends on the timing and rate of

dispersal making it hard to distinguish the effects of cue reliability

(DO-regression) from the effects of parents and offspring shar-

ing more similar selective environments (PO-regression). Here,

we separate these two phenomena making it easier to understand

how temporal and spatial fluctuations interact. We show that envi-

ronmental heterogeneity in time is substitutable for that in space

at least when spatial and temporal parameters can be expressed

in terms of spatial and temporal PO/DO-regressions. The equa-

tion for the equilibrium mean plasticity is pleasingly symmetric

with respect to temporal and spatial parameters, and asymme-

tries only appear when temporal and spatial PO/DO-regressions

take different values. If different enough, they can generate adap-

tive hyperplasticity (or negative plasticity) even in the absence of

bet-hedging.

Methods
MODEL DESCRIPTION

We consider a population composed of an infinite number of

islands of infinite size in which gametes disperse between islands

with probability m. Islands differ in two environmental variables,

one of which is a cue responsible for the plastic development of

a trait (environment of development) and the other determines

the selective consequences of expressing a particular trait value

(environment of selection). In addition to spatial variation, both

environmental variables fluctuate stochastically over time within

each island according to an autoregressive process. All individuals

on a particular island at a particular time experience the same

environmental values.

The order of events in the population is (1) fertilization, (2)

development, (3) selection, (4) gametogenesis, and (5) migration.

Phenotypes are assessed after development but before selection.

The phenotype of individual j from island i at time t is a linear

function of the environment of development (Dit ),

z ji t = a jit + ae jit + (b jit + be jit )Dit . (1)

The intercept represents the component of the individual’s pheno-

type that is fixed across environments, with a genetic (a jit ) and a

nongenetic (ae jit ) component. The slope determines how the phe-

notype responds to environmental variation, again with a genetic

(b jit ) and a nongenetic (be jit ) component. The variance in these

components within an island at a specific point in time are as-

sumed to be constant and are designated Gaa , Eaa , Gbb, and Ebb,

respectively. We assume intercepts and slopes are genetically and

environmentally uncorrelated, which is expected to evolve under

stabilizing selection (Lande 2009), and that the environmental

components have zero mean.

The optimal phenotype is assumed to depend linearly on the

environment of selection (Sit ):

θzit = A + BSit , (2)
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where intercept A represents the optimal phenotype in the ref-

erence (average) environment, and slope B the environmental

sensitivity of the optimal phenotype (Chevin et al. 2010).

We assume that the environmental variables can be decom-

posed into separable space-time processes of the form (for the

environment of development)

Dit = D + Di + Dt + Di ·t , (3)

where D denotes the grand mean, Di the deviation of island i

from the grand mean (averaged over time), Dt the deviation at

time t from the grand mean (averaged over islands) and Di ·t the

deviation specific to a time and place. Time is measured in units

of generations.

Spatial components of the environmental variable Di (or Si )

are assumed independent and identically distributed with corre-

sponding variance σ2
DI

(or σ2
SI

), as are the space-time interaction

components with variances σ2
DI ·T and σ2

SI ·T . Temporal components

are assumed to fluctuate according to a first-order autoregressive

process with stationary variances σ2
DT

and σ2
ST

and a common

autocorrelation parameter αT . The environments of selection and

development are not independent and are assumed to be linearly

associated, with the regression of the spatial component of the

environment of selection on the spatial component of the en-

vironment development being κI . The same regressions for the

temporal and spatiotemporal components are κT and κI ·T . The

products BκI and BκT are the DO-regressions in time and space

and can differ if κI �= κT .

The fitness of an individual on island i at time t is described

by two independent Gaussian fitness functions. For the trait, the

optimum of the fitness function is θzit and its width is ωz . For the

slope, the optimum of the fitness function is 0 and its width is

ωb such that the absolute magnitude of plasticity is costly (van

Tienderen 1997; Lande 2014; Kuijper and Hoyle 2015) and can

be thought of as a maintenance cost (DeWitt et al. 1998). Under

this model, the strength of stabilizing selection acting on the

phenotype is γzit = 1
ω2

z +Pzz
it

where Pzz
it is the phenotypic variance

on island i at time t . Likewise the strength of stabilizing selection

acting on the slope is γb = 1
ω2

b+Pbb .

In what follows it will be useful to express migration by its

opposite, the probability of philopatry; αI = 1 − m. We choose

this symbol due to its analogy with the temporal autocorrelation

parameter αT , and note that the correlation between Di (or Si ) of

parents and offspring is αI in the same way that the correlation be-

tween Dt (or St ) of parents and offspring is αT . We refer to αI and

αT collectively as PO-regressions, which can clearly be different

in time and space. The correlation between Di ·t (or Si ·t ) of parents

and offspring is zero (i.e., αI ·T = 0), because the deviations are

unique to a specific generation and place, and so it is not possible

to adapt to this source of variation. In the SI, we discuss the likely

consequences of allowing within-island temporal autocorrelation

for Di ·t and Si ·t such that αI ·T �= 0.

It should also be noted that the environments of develop-

ment and selection have a common autocorrelation parameter αT

because we imposed it; it simplifies the analysis and makes the

temporal model more comparable to the spatial model where αI

has to be common to both environmental variables because it

is only a function of dispersal probability. A continuous space

model, like the continuous time model, would allow αI to be dif-

ferent for the two environmental variables because it would then

depend on both dispersal distance and the spatial autocorrelation

in the environment, which may differ between the environments

of development and selection. In the SI, we discuss the likely

effect of assuming Dt and St have the same autocorrelation. We

note that the assumption simplifies the analysis because the en-

vironmental variables experienced by an individual become in-

dependent of those experienced by more distant ancestors after

conditioning on the environmental variables of the parents. More

generally, it is unclear to what degree our results would change if

environmental change was not assumed to be autoregressive, and

therefore Markovian.

EQUILIBRIUM CONDITIONS

Given the model described above we obtain difference equations

for the mean intercept and slope on each island at each time (āi t

and b̄i t ). To obtain these equations, we derive the selection gra-

dients on the phenotype (z) and plasticity (b) on each island at a

particular time (Lande 1976) and use the Lande (1979) equation

to obtain the mean values of āi t and b̄i t after selection. The mean

values after both selection and migration are then obtained by a

weighted sum of the local mean value after selection (with weight

1 − m) and the global mean value after selection (with weight m).

If the environment, and therefore the selective optimum, did not

vary over time then change in the mean values between successive

generations would be zero at equilibrium. In our model, the envi-

ronment fluctuates over time generating fluctuating selection and

therefore continual changes in the mean values. Under this sce-

nario, a stochastic equilibrium is reached where the changes in the

mean values between successive generations have an expectation

of zero.

It is not possible to solve for the equilibrium distributions

of āi t and b̄i t analytically without making some additional as-

sumptions and approximations. Throughout, we assume that γzit

is constant in time and space (and therefore denoted as γz). This

latter approximation will hold if there is weak selection and/or

if variation in the slopes is small. We also assume that variation

in the mean slope over time within an island is small, which will

be true if Gbb is small and/or temporal fluctuations are weak

and not strongly autocorrelated. We relax these assumptions in a

simulation model to assess the robustness of our conclusions.
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As with the environmental variables we can write the mean

reaction norm components as (for the intercept):

āi t = ā + āi + āt + āi ·t . (4)

At equilibrium, we find the time-averaged mean intercept in

island i is

ā + āi = gI [A + BSi − ā − (b̄ + b̄i )Di ] + ā, (5)

where gI = αI Gaaγz

αI Gaaγz+(1−αI ) . gI takes values between 0 and 1, where

0 indicates no capacity to genetically track spatial fluctuations in

the optimum and 1 indicates complete capacity to genetically

track the optimum. It increases when the probability of philopa-

try, the genetic variance in the intercept and/or the strength of

stabilizing selection around the optimum increase. The term in

square brackets represents the deviation of the mean phenotype

from the local optimum in the absence of genetic differentiation

in the intercept. If gI = 0, genetic differentiation is not possible

and this deviation remains, but as gI increases, genetic differen-

tiation in the intercepts reduces the deviation which disappears

when gI = 1.

The time-averaged mean slope in island i is

b̄ + b̄i = αI Gbbγz[Di (A + BSi − (ā + āi )) + B(κT σ2
DT

+ κI ·T σ2
DI ·T ) − Covt |i (āi t , Dit )] + (1 − αI )b̄

αI Gbb[γz(σ2
DT

+ D2
i + σ2

DI ·T ) + γb] + 1 − αI
. (6)

Equation (6) includes a term for the covariance between the

mean intercept and the environment of development over time

within island i (Covt |i (āi t , Dit )). At equilibrium, this covariance

is

Covt |i (āi t , Dit ) = gT σ2
DT

[BκT − b̄ − b̄i ], (7)

where gT = αT Gaaγz

αT Gaaγz+(1−αT ) and has the same form as gI . The

term in square brackets represents the deviation of the plastic re-

sponse from the temporal DO-regression. This deviation causes

the regression of the phenotype on the environment of develop-

ment to also deviate from the DO-regression. However, as gT

increases, temporal changes in the intercept track changes in the

environment of development such that when gT = 1 the regres-

sion of the phenotype on the environment of development equals

the DO-regression, albeit through a mixture of plasticity and ge-

netic differentiation.

To obtain solutions for this system of equations, we also need

expressions for ā and b̄, which are the expectations of equations

(5) and (6) over islands. In both cases, we can take a Taylor

expansion around the mean environmental variables. For the mean

intercept, a first-order expansion is exact. For the mean slope, an

exact expression is not obtainable and so we use a second-order

approximation (Tufto 2000). The solutions to these equations are

given in the results.

SIMULATIONS

To test how accurate our approximations are, we simulated the

process for 15,000 generations using a population of 1000 islands.

The first 5000 generations were discarded to allow the process to

reach equilibrium. A range of parameter values were used and are

detailed in the results section and SI. The simulation was written

in R and the code is available in the SI.

Results
When solving equation (5) with respect to the mean environment

of development, the grand mean intercept is

ā = A. (8)

Substituting equation (8) into (5), and solving for āi yields

āi = gI [BSi − (b̄ + b̄i )Di ], (9)

where the discrepancy between the plasticity-induced phenotype

and the optimum (the term in square brackets) is weighted by

the capacity to genetically track changes in the optimum through

space (gI ).

Expressions for the mean slope and island slope deviations,

and consequently island intercept deviations (eq. 9), are extremely

complex and therefore only explored graphically. Before dis-

cussing them, it will be instructive to explore the solutions when

Gbb → 0. As this limit is approached, there is sufficient genetic

variance in the slope for it to evolve to an equilibrium, but once at

equilibrium spatial and temporal fluctuations are negligible. The

mean slope is then

b̄ = B
κI (1 − gI )σ2

DI
+ κT (1 − gT )σ2

DT
+ κI ·T σ2

DI ·T
γb

γz
+ (1 − gI )σ2

DI
+ (1 − gT )σ2

DT
+ σ2

DI ·T

(10)

and spatial differentiation in the slope disappears, such that

b̄i = 0 ∀ i . Equation (10) shows that the effects of spatial and

temporal variation on the evolution of plasticity are symmetric,

and that steeper slopes are favored when the cost of plasticity

is small, the capacity to genetically track environmental change

is low and cue reliability is high. The role of variation specific

to a time and place also has the same form, but because these
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fluctuations are uncorrelated between generations gI ·T is effec-

tively zero. At the extreme, when κI = κT = κI ·T and there is

no cost to plasticity (γb = 0), the mean slope is equal to Bκ (the

DO-regression; Gavrilets and Scheiner 1993), but becomes shal-

lower as the cost increases and the capacity to genetically track

environmental change becomes stronger. Under the same limit,

Gbb → 0, the temporal covariance between the mean intercept

and the environment of selection is given as

Covt |i (āi t , Sit ) = gT [Bσ2
ST

− b̄κT σ2
DT

]. (11)

Tufto (2015) developed a model for the evolution of plasticity in a

temporally autocorrelated environment, where the environments

of development and selection are the same environmental variable

separated by time τ. If we set spatial heterogeneity to 0 in our

model, and note that ατ
T is equivalent to κT under this scenario,

equation (11) becomes equivalent to that in Tufto (2015, eq. 4c).

The spatial covariance between the intercept and the environment

of selection has the same form,

Covi |t (āi t , Sit ) = gI [Bσ2
SI

− b̄κI σ
2
DI

]. (12)

Equations (11) and (12) can be interpreted as measures of temporal

and spatial (local) adaptation (Blanquart et al. 2012).

In the following graphical exploration of the solutions (where

Gbb does not tend to zero) we focus primarily on spatial patterns

rather than temporal patterns because they have been the focus of

more empirical work. However, given the symmetrical effects of

time and space the results can be directly applied to temporal pat-

terns (Grether 2005). In addition, we assume σ2
DI ·T = σ2

SI ·T = 0

for ease of interpretation. If fluctuations specific to a time and

place did exist, the plastic slope would be pulled toward κI ·T
because it is not possible to genetically track these fluctuations.

Figure 1 illustrates the equilibrium solutions for the intercept,

slope (plasticity), and phenotype as functions of the environment

of selection across islands and the probability of philopatry. The

left column portrays a model where only spatial variation exists.

Panel (a) shows genetic differentiation between populations in-

creases as individuals become more philopatric; in the absence of

migration, populations become perfectly adapted to local condi-

tions. Panel (b) shows that, when there is no philopatry, plasticity

evolves to its maximum, which is slightly less than κI because

of the cost to plasticity. For any given level of philopatry, there

is slight genetic differentiation in the slope, which is shallow-

est in the average environment and steepest toward the extremes.

This result has been shown using simulations (Scheiner 1998)

and analytically (Tufto 2000), and arises because the genetic co-

variance between the slope and phenotype is higher in extreme

environments and so the correlated response in the slope to se-

lection on the phenotype is greater (Lande 2009). The effects

of plasticity and genetic differentiation combine to produce phe-

notypes that track the optimum closely, particularly when there

is complete philopatry (Panel (c)). The right column includes

temporal fluctuations with the same properties as the spatial fluc-

tuations. Here, genetic differentiation between populations is re-

duced, even under complete philopatry (Panel (d)), and plastic-

ity plays a greater role in tracking spatial variation (Panel (e)).

This arises because plasticity that evolves to deal with tempo-

ral fluctuations is capable of also tracking some of the spatial

variation.

Figure 2 illustrates how the mean slope (left column) and

the spatial association between intercept and the environment of

selection (right column) change as a function of various model

parameters. Panels (a) and (b) show that the mean slope is af-

fected in exactly the same way by temporal and spatial param-

eters. Panel (c) illustrates a scenario where temporal parameters

are fixed but the equivalent spatial parameters are allowed to

vary. When there is no migration (αI = 1), genetic tracking of

spatial fluctuations is perfect such that selection on plasticity

is determined solely by temporal parameters and does not de-

pend on the spatial DO-regression. As migration increases, spa-

tial genetic tracking becomes harder and plasticity evolves to also

cope with spatial fluctuations. In the absence of a cost, the mean

slope evolves to be intermediate between the spatial and temporal

DO-regressions, and is pulled toward the spatial DO-regression

as migration increases and spatial genetic tracking becomes

harder.

In Panel (d) of Figure 2, local adaptation increases as the

probability of philopatry increases, as expected. Interestingly, for

a given level of philopatry, local adaptation also slightly increases

as the temporal autocorrelation in the environment of selection in-

creases. This occurs because temporal fluctuations can be tracked

genetically, which reduces mean plasticity and therefore promotes

local adaptation in space. Panel (e) shows that as the spatial DO-

regression approaches 0, local adaptation increases, as a conse-

quence of plasticity failing to track spatial fluctuations (because

the cue is completely unreliable). Additionally, if the temporal

and spatial DO-regressions have the same sign, the plasticity that

evolves to cope with temporal fluctuations is also useful, to some

degree, for tracking spatial fluctuations and so the amount of

local adaptation decreases. When the DO-regressions take their

maximum values, plasticity is maximized, and local adaptation

minimized. In Panel (f), temporal parameters are fixed and spatial

parameters are allowed to vary. When there is complete philopatry,

local adaptation is maximized and plasticity evolves to cope with

temporal fluctuations only. However, the amount of local adapta-

tion still depends to a small degree on the spatial DO-regression.

This occurs because the plasticity that evolves in response to

temporal fluctuations pushes populations away from their local

spatial optima, and this increases as the spatial DO-regression de-

viates from the temporal DO-regression. Local adaptation is then
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Figure 1. Island mean reaction norm components averaged over time and the environment of development, as functions of the spatial

component of the environment of selection Si and the probability of philopatry α I . The intercepts are represented in the first row (a,d),

the plastic slopes in the second row (b,e) and the phenotype in third row (c,f). The left column (a-c) represents a model where only

spatial variation exists, such that any environmental variation in time is absent (σ2
DT

= σ2
ST

= 0), and the right column (d-f) a model where

spatial and temporal variation exist simultaneously (σ2
DT

= σ2
ST

= 1). From the assumption that environmental fluctuations specific to a

time and place are zero, σ2
DI ·T = σ2

SI ·T = 0. The remaining fixed parameters are σ2
DI

= σ2
SI

= 1 A = 0, B = 1, Gaa = Gbb = E aa = E bb = 1,

ωz = 1, ωb = 3, κ I = κT = 0.8, αT = 0.5.

required to compensate for this and so increases as the spatial

DO-regression deviates from the temporal DO-regression.

SIMULATIONS

In the SI, we give a comprehensive assessment of how robust our

approximations are, but here we simply choose to show how ro-

bust our Gbb → 0 approximation for the mean plasticity is across

a range of migration rates and strengths of selection on the phe-

notype, retaining the assumption that σ2
DI ·T = σ2

SI ·T = 0. The pa-

rameter values that were chosen are the most extreme in terms of

breaking our assumptions. In our simulations, we assume Gbb to

be equal to Gaa , rather than approaching 0.

The accuracy of our approximation is unlikely to be a mono-

tonic function of the width of the fitness function on the phenotype

(ωz). When ωz is small, the strength of selection on the pheno-

type is strong and so γzit is not constant, as we assume, because

ω2
z does not dominate Pzz

it . However, this also induces a cost to

plasticity in extreme environments because Pzz
it contains the term

(Gbb + Ebb)D2
i t . This results in the slope being more constant

in time and space and therefore closer to our assumptions. As

a consequence, we ran simulations with values of 1, 5, 10, and

20 for ωz . In general, the approximation seems to be accurate,

especially when the strength of stabilizing selection is weak (ωz

is large) (Fig. 3). Standardizing ωz = 20 by the phenotypic vari-

ance gives a value of 5.5 that is close to the median value reported

in the empirical studies summarized in Kingsolver et al. (2001)

(Johnson and Barton 2005).

HYPERPLASTICITY AND NEGATIVE PLASTICITY

Hyperplasticity in space implies that the regression of the

plasticity-induced phenotype b̄Di on the environment of selection

Si is steeper than B. If Di and Si were the same environmental
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Figure 2. Mean plasticity (left column) and local adaptation (right column) as functions of model parameters. (A) and (B) show that

the spatial and temporal parameters have a symmetric effect on mean plasticity and (C) demonstrates what happens when the spatial

parameters are allowed to vary but the temporal parameters are fixed (κT = 0.5, αT = 0.5, and σ2
DT

= 1). How genetic tracking in

space (the between island covariance between the intercept and the environment of selection) depends on the PO-regressions and

DO-regressions are shown in (D) and (E), respectively. (F) shows how genetic tracking in space depends on spatial parameters when

temporal parameters are fixed. The remaining fixed parameter values are A = 0, B = 1, Gaa = E aa = 1, Gbb = E bb = 0, ωz = 1, ωb = 3,

σ2
DT

= σ2
DI

= σ2
ST

= σ2
SI

= 1, and Si = 0. From the assumption that environmental fluctuations specific to a time and place are zero,

σ2
DI ·T = σ2

SI ·T = 0. Whenever constant, κ I = 0.5, κT = 0.8, α I = 0.5, and αT = 0.5.

variable this definition reduces to b̄ > B as in Scheiner and Holt

(2012). Retaining the assumption that fluctuations specific to a

time and place are zero, and assuming B to be positive, the con-

dition for hyperplasticity to occur is

−(1 − gI )σ2
DI

(
1 − r2

I

)
>

γb

γz
+ (1 − gT )σ2

DT

(
1 − κT

κI
r2

I

)
, (13)

where rI = κI
σDI
σSI

is the spatial correlation between the environ-

ments of development and selection and must lie between −1 and

1. This equation tells us that spatial hyperplasticity is more likely

to occur when genetic tracking is harder in time than in space

(gT < gI ), and the regression of the environment of selection on

development is steeper in time than in space (κT > κI ). How-

ever, there must be some association between the environments

of development and selection in space (r2
I > 0) otherwise the

plastic response would be flat with respect to spatial variation in

the environment of selection. If the environments of development

and selection are the same variable but experienced at different

times or places then Inequality 13 can never be satisfied if the

autocorrelation is positive.

Negative plasticity implies that the regression of the plastic

component of the phenotype on the environment of selection is

negative (when B is positive). This occurs when

1 − gI

1 − gT
< −κT

κI

σ2
DT

σ2
DI

, (14)

which implies κT and κI must have different signs, and the

temporal association between the environments of selection and
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Figure 3. Mean plasticity (b̄) in stochastic simulations with 1000

islands over 10,000 generations. A single simulation, represented

by a single dot, was conducted for each of 100 migration rates

(1 − α I ), for four different strengths of stabilizing selection on

the phenotype (ωz; small values indicate stronger stabilizing se-

lection), given by the different colors. The number in parenthe-

ses is the average value of ωz scaled by the within-population

phenotypic variance. For comparison with the simulations, ex-

pected mean plasticities obtained using the approximation Gbb →
0, where γz is set to E [γzi t ], are shown for each strength of stabiliz-

ing selection. E [γzi t ] is calculated assuming no variance in slopes

(dashed line) or a third-order Taylor expansion in Di t (solid line).

Parameter values were set to αT = 0.5, σ2
DT

= σ2
ST

= σ2
DI

= σ2
SI

= 1,

A = 0, B = 1, Gaa = E aa = Gbb = E bb = 1, κT = −0.8, κ I = 0.8, and

ωb = 3. From the assumption that environmental fluctuations spe-

cific to a time and place are zero, σ2
DI ·T = σ2

SI ·T = 0.

development is strong relative to the capacity to adapt in time.

Switching the subscripts I and T gives the equivalent expressions

for hyperplasticity and negative plasticity in time (Grether 2005).

In Figure 4, two hypothetical scenarios are illustrated where the

conditions for hyperplasticity and negative plasticity are met. In

the SI, we relax that assumption that fluctuations specific to a time

and place do not exist and show the conditions for the evolution

of hyper or negative plasticity would be even less stringent since

the capacity to adapt to these fluctuations is zero.

Discussion
In this manuscript, we show that plasticity evolves in response to

spatial variation in the environment in exactly the same way as it

does to temporal variation. However, care must be taken to scale

any autocorrelation in the environments by dispersal distance and

generation-time, respectively. This scaling gives both spatial and

temporal autocorrelation the same meaning: the degree to which

an individual’s environment is predicted by that of its parents

(PO-regression). When this autocorrelation is nonzero, genetic

responses to environmental fluctuations are possible and favored

over plasticity when plasticity is costly. When the cost is high and

genetic tracking of the environment is easy, the plastic slope tends

to zero; but when the cost is low and genetic tracking hard, the

slope tends to the regression of the optimum on the environment

of development (DO-regression) (Gavrilets and Scheiner 1993).

The plastic slope that evolves is symmetric with respect to tem-

poral and spatial parameters, providing a theoretical basis for the

assumptions underlying space-for-time substitutions in empirical

work (Wogan and Wang 2017). However, temporal and spatial

fluctuations can have asymmetric influences if there are differ-

ences in the values of their homologous parameters, suggesting

care must be taken. For example, if the PO-regression is higher

and the DO-regression shallower in space than in time, genetic

tracking is easier and plasticity less effective in response to spatial

than temporal fluctuations. This gives rise to a scenario where the

plastic response mainly evolves to cope with temporal fluctua-

tions and tends to the temporal DO-regression in the absence of

a cost to plasticity. This can result in spatial hyperplasticity when

the evolved plastic slope exceeds the spatial DO-regression, or

even in negative plasticity in those rare instances where spatial

and temporal DO-regressions have different signs. In these cases,

genetic tracking in space acts in the opposite direction to plastic-

ity, resulting in genetic compensation and counter-gradient vari-

ation (Grether 2005; Levins 1968; Conover and Schultz 1995).

Whereas previous authors have suggested these patterns are due

to maladaptive plasticity, here we show they may be adaptive

responses to spatiotemporal variation jointly.

Our conclusions are at odds with previous work looking at the

evolution of plasticity when the environment varies in both space

and time (Scheiner 2013). Using simulations, Scheiner (2013)

concluded that space and time are not equivalent and plasticity

can evolve more easily in response to spatial heterogeneity. The

discrepancy between our results and those of Scheiner (2013)

arise because in Scheiner (2013) the relationship between the en-

vironments of development and selection are inextricably tied to

patterns of migration. When the environments of development

and selection are treated this way, it is very hard to distinguish

the effects of migration, generation-time, and cue reliability, and

important insights can be missed (de Jong 1999). Our results

do recapitulate some of Scheiner’s (2013) findings, such as the

evolution of hyperplasticity when both spatial and temporal fluc-

tuations exist. However, here we attribute it to an evolved plastic

response to fluctuations in one dimension being maladaptive in

the other. This is tolerated when the capacity to genetically track

environmental change is stronger in the maladapted dimension,

because a genetic trend in the opposite direction to plasticity

can evolve allowing the phenotype to more closely track the op-

timum. In contrast, Scheiner (2013) attributed the evolution of

hyperplasticity to bet-hedging (Scheiner and Holt 2012) although
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Figure 4. Graphical representations of negative plasticity (A) and hyperplasticity (B) across the average environment of selection of

each island. Full lines correspond to island expectations of the intercept (green), effect of plasticity (b̄Di t) (blue) and phenotype (black),

averaged over time, and the dashed line corresponds to the phenotypic optimum. (A) shows that when the DO-regression coefficient is

negative in time (κT = −0.8) and positive in space (κ I = 0.8), plasticity causes a spatial change in phenotype that is opposite in sign to the

change in the optimum. Environmental variances are σ2
DT

= σ2
ST

= σ2
DI

= σ2
SI

= 1. (B) shows that when both the DO-regression coefficient

and the environmental variances are greater in time (κT = 2 and σ2
DT

= σ2
ST

= 2) than in space (κ I = 0.8 and σ2
DI

= σ2
SI

= 0.05), plasticity

can evolve to values that overshoot the optimum. In both cases, if the rate of philopatry is high enough (α I = 0.99), subpopulations

can genetically track spatial fluctuations to counteract the effects of plasticity. The remaining fixed parameter values are A = 0, B = 1,

Gaa = Gbb = E aa = E bb = 1, ωz = 1, ωb = 3, α I = 0.99, and αT = 0.5. From the assumption that environmental fluctuations specific to a

time and place are zero, σ2
DI ·T = σ2

SI ·T = 0.

it is unclear whether both spatial and temporal fluctuations would

be necessary if the environments of development and selection

were allowed to be different. As Tufto (2015) notes, the evolution

of bet-hedging in these simulations probably arises because there

are big fluctuations in the optimum phenotype. This selects for

increased phenotypic variance (Bull 1987) because the popula-

tion is often in a region where the fitness function is convex and

hence disruptive selection predominates (Tufto 2015). Without a

separate mechanism for increasing the phenotypic variance, as in

Tufto (2015), a hyperplastic response to an environmental vari-

able can generate this form of bet-hedging (Tufto 2015; Scheiner

2013; Scheiner and Holt 2012). Our approximations ignore this

source of selection, although as Tufto (2015) states, the conditions

that promote it are probably quite rare in nature.

Genetic trends in space that act in opposition to plastic trends

have been called counter-gradient variation (Conover and Schultz

1995) and have been demonstrated for several traits in several

organisms using reciprocal transplant and common garden ex-

periments (Conover et al. 2009). These experiments are a robust

way of assessing whether genetic compensation exists, because

phenotypic differences in a common garden should exceed, or

be in the opposite direction to, those observed in situ. Such ex-

periments do not require the environments of selection and de-

velopment to be known. Other methods exist that estimate both

plastic responses and the environmental sensitivity of selection,

although these require identifying the driving environmental vari-

ables. These methods have been most widely applied to long-term

individual-based data at a single site and are therefore mainly fo-

cused on temporal variation. Lay-date in great tits (Parus major)

is perhaps the best-studied trait in this context and the plasticity-

induced phenotype is found to closely track the optimum with

no evidence of (temporal) hyperplasticity (Vedder et al. 2013;

Gienapp et al. 2013). The optimum in these studies was indi-

rectly estimated using peak caterpillar abundance, but a direct

estimate of the environmental sensitivity of selection gave similar

results, suggesting that the conclusions are robust (Chevin et al.

2015; see also Gamelon et al. 2018). An alternative method, using

population-level spatiotemporal data, is also able (with caveats) to

estimate plasticity and the environmental sensitivity of selection

(Phillimore et al. 2010; Hadfield 2016). Applying this method

to great tit lay-dates, spatial patterns were found to be similar to

temporal patterns with little evidence for spatial hyperplasticity

(Phillimore et al. 2016). Similar conclusions were drawn using

this method for lay-dates of three other passerine birds (Phillimore

et al. 2016), but evidence of spatial hyperplasticity for other traits

in other taxa is widespread (flowering/leafing time in 4/22 species

of plant (Tansey et al. 2017) and most flight dates in 31 species of

butterfly (Roy et al. 2015)). However, a drawback of these correla-

tional approaches arises when the driving environmental variables

have been misidentified (Michel et al. 2014), or when there are

multiple environmental variables but only one has been measured

(Chevin and Lande 2015). It is then possible to obtain spurious

estimates that result in the appearance of hyperplasticity or neg-

ative plasticity (Chevin and Lande 2015). Testing whether the
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hyperplasticity identified in Tansey et al. (2017) and Roy et al.

(2015) is real or driven by un/miss-measured variables would re-

quire a common garden or reciprocal transplant approach. How-

ever, such experiments do not shed light on whether hyperplas-

ticity or negative plasticity is unconditionally maladaptive, as is

often believed, or whether it is driven by an adaptive response to

temporal fluctuations, as in our model.

Testing whether spatial hyperplasticity is due to the evolution

of plasticity to cope with temporal fluctuations probably requires

the environments of selection and development to be identified

for a trait exhibiting spatial hyperplasticity. If it can be shown

that the regression of the environment of selection on develop-

ment is steeper in time than in space, and spatial autocorrelation

in the environment of selection over one dispersal distance is

greater than temporal autocorrelation over one generation, then

this would be consistent with spatial hyperplasticity being a conse-

quence of adaptive plasticity in response to temporal fluctuations.

Alternatively, if individual-based long-term data were available

from multiple populations, it would be possible to measure the

optimum trait value using fitness and trait data alone. Under this

scenario, only the environment of development would need to

be identified, and the regression and autocorrelation properties

defined above could be framed in terms of optimum trait value

(θzit = A + BSit ) instead of the environment of selection (Sit ).

The statistical methodology outlined in Chevin et al. (2015) could

be extended to such a situation, but the challenges of obtaining

such data would be formidable.

Is it surprising that hyperplasticity is not more commonly

observed, given that most aspects of the environment vary both

spatially and temporally? The simplest explanation is that the gen-

eral properties of environmental variation make it unlikely. If the

environments of development and selection are the same variable

but experienced at different times or places, our analytical results

suggest that negative autocorrelation is required (see Scheiner

2013, also), which is probably rare. When the environments of

development and selection are different variables we have shown

that the conditions for hyperplastcity to evolve are less restrictive,

unless the relationship between them is similar in space and time.

In this instance, spatial and temporal DO-regressions would be

similar, resulting in intermediate plastic slopes in both dimen-

sions. Another possibility is that hyperplasticity is rare because

of the properties of organisms, which may be evolved features. In

our model, there is only one environment of development and so

it is unclear whether evolution would favor the use of other cues

if they had different relationships to the environment of selec-

tion. It is possible that organisms evolve to respond to spatial and

temporal fluctuations in the environment of selection by using

several cues that pick up on different aspects of the total variation

(Chevin and Lande 2015). For example, imagine a migratory bird

that arrives in the northern hemisphere in mid-April and needs to

time its breeding so that some number of degree days have oc-

curred before its chicks hatch in June. Photoperiod in mid-April

varies spatially but not interannually, making it a reliable cue for

latitudinal differences in spring temperature. However, interan-

nual differences in spring temperatures may be better predicted

by temperature on arrival, such that birds use both photoperiod

and arrival temperature as a means of extracting independent in-

formation about spatial and temporal patterns.

Extending the model to multiple cues would be required

to get a more comprehensive answer to this question. However,

the current model does provide insights into how a single cue that

fluctuates in time and space influences the evolution of phenotypic

plasticity. Given that most environmental variables that fluctuate

in space also fluctuate in time, we hope the model is a more

realistic description of how and why plasticity evolves.
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Figure A-1: Evolutionary time-series of mean plasticity (left) and mean intercept (right) in the islands with the most extreme environments of development
(left) and selection (right) over 15,000 generations
Figure A-2: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
Figure A-3: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
Figure A-4: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
Figure A-5: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
Data S1.
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