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Abstract 16 

Interactions between the insect immune system and RNA viruses have been extensively studied in 17 

Drosophila, where RNA interference, NF-κB and JAK-STAT pathways underlie antiviral immunity. In 18 

response to RNA interference, insect viruses have convergently evolved suppressors of this pathway 19 

that act by diverse mechanisms to permit viral replication. However, interactions between the insect 20 

immune system and DNA viruses have received less attention, primarily because few Drosophila-21 

infecting DNA virus isolates are available. Here, we use a recently-isolated DNA virus of Drosophila 22 

melanogaster, Kallithea virus (family Nudiviridae), to probe known antiviral immune responses and 23 

virus evasion tactics in the context of DNA virus infection. We find that fly mutants for RNA 24 

interference and Immune deficiency (Imd), but not Toll, pathways are more susceptible to Kallithea 25 

virus infection. We identify the Kallithea virus-encoded protein gp83 as a potent inhibitor of Toll 26 

signalling, suggesting that Toll mediates antiviral defense against Kallithea virus infection, but that it 27 

is suppressed by the virus. We find that Kallithea virus gp83 inhibits Toll signalling through the 28 

regulation of NF-κB transcription factors. Furthermore, we find that gp83 of the closely related 29 

Drosophila innubila nudivirus (DiNV) suppresses D. melanogaster Toll signalling, suggesting an 30 

evolutionary conserved function of Toll in defense against DNA viruses. Together, these results 31 

provide a broad description of known antiviral pathways in the context of DNA virus infection and 32 

identify the first Toll pathway inhibitor in a Drosophila virus, extending the known diversity of insect 33 

virus-encoded immune inhibitors. 34 

 35 

Importance 36 

Co-evolution of multicellular organisms and their natural viruses may lead to an intricate relationship 37 

in which host survival requires effective immunity, and virus survival depends on evasion of such 38 

responses.  Insect antiviral immunity, and reciprocal virus immune suppression tactics, have been 39 

well-studied in Drosophila melanogaster, primarily during RNA, but not DNA, virus infection. 40 
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Therefore, we describe interactions between a recently-isolated Drosophila DNA virus (Kallithea 41 

virus - KV) and immune processes known to control RNA viruses, such as RNAi and Imd pathways. 42 

We find that KV suppresses the Toll pathway, and identify gp83 as a KV-encoded protein that 43 

underlies this suppression. This immunosuppressive ability is conserved in another nudivirus, 44 

suggesting the Toll pathway has conserved antiviral activity against DNA nudiviruses, which have 45 

evolved suppressors in response. Together, these results indicate that DNA viruses induce and 46 

suppress NF-κB responses, and advance the application of KV as a model to study insect immunity. 47 

  48 
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Introduction 49 

Innate antiviral immunity in insects has been best studied in response to RNA virus infections of 50 

Drosophila melanogaster. Antiviral immune mechanisms that target RNA viruses include RNA-51 

mediated defences such as RNA interference (RNAi) and RNA decay pathways, cellular defences such 52 

as apoptosis, phagocytosis, and autophagy, and other effectors of resistance and tolerance that are 53 

transcriptionally induced following infection. The latter are primarily mediated by Janus 54 

kinase/signal transducers and activators of transcription (JAK-STAT) and Nuclear factor κB (NF-κB) 55 

pathways (reviewed in (1–5).  56 

The insect response to DNA viruses is less well studied, but RNAi and apoptosis have demonstrated 57 

antiviral activity (6–8) and the JAK-STAT pathway is active during infection, possibly mediating a 58 

tolerance response (9). Baculovirus, nudivirus, and iridovirus infections of Drosophila all give rise to 59 

virus-derived small interfering RNA (vsiRNAs), which regulate DNA virus gene expression (7, 8, 10, 60 

11) and mutants for RNAi effectors Dicer-2 (Dcr-2) and Argonaute-2 (AGO2) are hypersensitive to 61 

Invertebrate iridescent virus 6 (IIV6; an iridovirus) infection. This suggests that RNAi is also an 62 

important defence against DNA viruses, and IIV6 correspondingly encodes a suppressor of RNAi (7, 63 

12). Virus-encoded suppressors of apoptosis are also widespread in DNA viruses, acting through 64 

binding and inhibition of cellular caspases (e.g. p35), or stabilization of cellular inhibitors of 65 

apoptosis (e.g. IAP gene family; (13–15)). In contrast, the contribution of transcriptional responses, 66 

such as the NF-κB pathways, to DNA viruses has not yet been elucidated. 67 

There are two NF-κB pathways in Drosophila: Toll and Imd, which primarily function in antibacterial 68 

(Toll: gram-positive, Imd: gram-negative) and antifungal (Toll) defense, although both provide 69 

protection against some RNA viruses (reviewed in (1, 4, 5, 16, 17)). Toll and Imd pathways are 70 

activated following recognition of a pathogen-associated molecular patterns (PAMP; e.g. bacterial 71 

peptidoglycan), leading to the phosphorylation and degradation of the inhibitor of kappa B (IκB; 72 

encoded by cactus for Toll signalling, and by the relish C-terminus in Imd signalling) (reviewed in (16, 73 
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17). Under non-signalling conditions, IκB sequesters NF-κB transcription factors in the cytoplasm. 74 

These transcription factors are encoded by dorsal (dl) and Dorsal immune-related factor (Dif) in Toll 75 

signalling, and Relish (Rel) in Imd signalling, and all translocate to the nucleus to induce gene 76 

expression following IκB degradation (reviewed in (16, 17). Although the mechanism by which Toll 77 

and Imd recognise RNA viruses is unclear, both are active and provide immunity against some viral 78 

infections in insects, most likely through induction of antiviral effector responses. For example, Toll 79 

is broadly antiviral against RNA viruses such as Drosophila C virus, Nora virus, and Flock House virus 80 

in Drosophila during orally acquired, but not systemic infections, and in Aedes mosquitoes against 81 

dengue virus (18–21). Additionally, Imd is antiviral against a subset of viruses in Drosophila, such as 82 

Cricket Paralysis virus, Drosophila C virus, and Sindbis virus and in Aedes cell culture against the 83 

alphaviruses Semliki Forest virus and O’nyong’nyong virus (22–26).  84 

Although the effect of NF-κB signalling on DNA virus infection in insects has not been directly tested, 85 

polydnaviruses, ascoviruses, baculoviruses, and entomopoxviruses have acquired suppressors of NF-86 

κB signalling by horizontal gene transfer, providing indirect evidence for anti-DNA virus activity of 87 

NF-κB pathways (27, 28). First, a ‘polydnavirus’ encoded in the genome of the Braconid parasitoid 88 

wasp Microplitis demolitor has acquired homologs of IκB, some of which inhibit Dif and Rel by direct 89 

binding (27). However, this is a domesticated endogenous viral element that forms viral particles 90 

injected into the parasitoid’s host, and as these IκB homologues are not found in related nudiviruses, 91 

baculoviruses, or hytrosaviruses, it seems likely that they were acquired to inhibit anti-parasitoid 92 

immune responses in the host of the parasitoid wasp, rather than the antiviral immune response of 93 

the wasp itself (29, 30). Second, homologs of diedel, which encode a cytokine that inhibits apoptosis 94 

and the Imd pathway in Drosophila, are similarly found in ascoviruses, baculoviruses, and 95 

entomopoxviruses, likely through independent horizontal transfer from arthropod hosts (28). Virus-96 

encoded diedel phenocopies fly-encoded diedel, suggesting that viral diedel has retained an Imd-97 

suppressive function, and that the Imd pathway likely interacts with these DNA viruses (28, 31). 98 

However, it is still unclear whether antiviral Toll signalling is targeted by insect virus-encoded 99 
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immune suppressors, and whether these hijacked host pathway inhibitors represent a subset of a 100 

greater diversity of NF-κB immune inhibitors or reflect evasion of virus-specific immune 101 

mechanisms. 102 

The recent isolation of Kallithea virus (KV; (11, 32), a nudivirus that naturally infects Drosophila 103 

melanogaster at high prevalence in the wild, provides a tractable system to study host-DNA virus 104 

interactions and to identify immune evasion strategies in DNA viruses. Nudiviruses are large dsDNA 105 

viruses (100-200 kilobases, encoding roughly 100-150 genes) that most often infect the arthropod 106 

midgut and fat body and are transmitted faecal-orally (33–39). Because some virus-encoded immune 107 

suppressors have been found to be highly host-specific, the use of native host-virus pairs is vital to 108 

our understanding of viral immune evasion (e.g. (40–45). Here, we use this system to analyze the 109 

interaction between antiviral immune pathways and a DNA virus in Drosophila. Using mutant fly 110 

lines, we find that the RNAi and Imd pathways mediate antiviral protection against KV in vivo, but 111 

that abrogation of Toll signalling has no effect on virus replication. Through re-analysis of previous 112 

RNA-sequencing data, we observe a broad downregulation of NF-κB responsive antimicrobial 113 

peptides following KV infection and perform a small-scale screen for KV-encoded immune inhibitors. 114 

We identify viral protein gp83 as having a complex interaction with NF-κB signalling, leading to 115 

induction of Imd signalling but potent suppression of Toll signalling. This suppression acts directly 116 

through, or downstream of, NF-κB transcription factors. Finally, through analysis of the related 117 

Drosophila innubila nudivirus (DiNV) gp83 ortholog, we show that the immunosuppressive activity of 118 

gp83 against D. melanogaster NF-κB signalling is conserved. 119 

 120 

Materials and Methods 121 

Fly strains, virus growth, and mortality experiments 122 
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All fly lines were maintained and crossed on standard cornmeal medium at 25 °C. Viral titre and 123 

mortality were measured following KV infection in two control lines (w1118 and Oregon R) and in 124 

mutant lines compromised in the following immune signalling pathways: RNAi (Dcr-2L811fsX (46) and 125 

AGO2414 (47)), Toll (spz4 (48), dl1 (49), and pll2/pll21 trans-heterozygotes (51, 52)), and Imd (rele20 (53) 126 

and imd10191 (54)).  127 

For mortality assays, 100 female flies of each genotype were injected with 50 nL of either KV 128 

suspension (105 ID50, as described in (32)) or chloroform-treated KV suspension (which inactivates KV 129 

through the destruction of the membrane, (32)). For chloroform treatment, the KV suspension was 130 

mixed with an equal volume of chloroform, vortexed for 30 seconds, centrifuged for 5 minutes at 131 

6000xg, and the aqueous phase was taken for downstream experiments. Injected flies were 132 

transferred to sucrose agar vials in groups of 10, and the number of surviving flies was recorded 133 

daily. While maintenance of flies on a protein-free diet likely affects some aspects of the immune 134 

response, we have assumed this is similarly tolerated across the fly lines used. Each group of flies 135 

was transferred to fresh food each week. Per-day mortality was analysed as a binomial response 136 

variable with the Bayesian generalised linear mixed modelling R package, MCMCglmm (55), with 137 

days post-inoculation (dpi), dpi2 (to allow for non-linear changes in mortality), and genotype as fixed 138 

effects, and vial as a random effect, as described previously (32). All confidence intervals are 139 

reported as 95% highest posterior density (HPD) intervals. All code used to fit the models described 140 

in this study, and associated data, are available on Figshare (doi: 10.6084/m9.figshare.c.4151009). 141 

Viral titre was measured in each line after intra-abdominal injection of 50 nL of KV suspension. 142 

Infected female flies of each line (n=50) were transferred to 10 sucrose agar vials in groups of 5, and 143 

5 vials of each genotype were homogenised in Trizol (Invitrogen) at 5 and 10 dpi. For RNAi mutants, 144 

flies were also assayed at 3 dpi. DNA was extracted by phenol-chloroform precipitation and viral titre 145 

estimated by quantitative PCR relative to host genomic DNA, using previously described primers 146 

(rpl32; (32)). Log-transformed viral titre was analysed as a Gaussian response variable using 147 
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MCMCglmm (55), with genotype, dpi, and genotype-by-dpi interactions as fixed effects. Titre in RNAi 148 

and NF-κB mutants were assayed in separate experiments, and therefore analysed independently. A 149 

statistical approach was used to account for the impact of differing genetic backgrounds between 150 

mutant lines, using the range of KV titres seen previously across 120 different natural genetic 151 

backgrounds from the Drosophila Genetic Reference Panel (32). Specifically, considering w1118 and 152 

Oregon R as controls and mutants of each pathway as the ‘experimental’ group, a null distribution of 153 

effect sizes expected only from differences in genetic background was created by randomly choosing 154 

two DGRP lines to serve as controls and additional DGRP lines reflecting the mutant lines used in 155 

each pathway. For each null draw, the same model was fitted as described above, the absolute value 156 

of the effect size was recorded, and this was repeated 1000 times to obtain a distribution. If the 157 

average effect size associated with mutants in a pathway was greater than the highest 5% of effect 158 

sizes, we concluded that the observed differences in KV titre were due to mutations in the tested 159 

pathway. 160 

Cell culture and virus propagation 161 

S2 cells (Invitrogen) were cultured at 25 °C in Schneider’s Drosophila Medium with 10% heat-162 

inactivated fetal bovine serum and 50 U/mL penicillin and 50 ug/mL streptomycin (Life 163 

technologies). KV was purified from flies 10 days after initial infection as previously described (32). 164 

Briefly, KV was injected into 2000 Oregon R adult flies, which were incubated at 25 °C for 10 days, 165 

homogenised in 5 mL 10 mM Tris-HCl, filtered through cheese cloth, centrifuged twice for 10 166 

minutes at 6000xg, filtered through a 0.22 µm polyvinylidene fluoride syringe filter, and subject to 167 

gradient centrifugation in an iodixanol (Optiprep) gradient (32). KV-positive fractions of the gradient, 168 

as assessed by qPCR, were kept as the KV isolate. To measure the effects of KV on cell size and 169 

number, 5x104 S2 cells were seeded in 96-well plates, followed by the immediate addition of 5 μL of 170 

either KV suspension (103 ID50) or chloroform-treated KV. Cells were split once 7 dpi, and cell size 171 

and number was measured using FIJI 10 dpi (56). 172 
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Cloning  173 

We selected 9 KV genes identified as highly expressed at three dpi (32) to screen for KV-encoded 174 

immune suppressors. These were gp23, gp43, gp83, ACH96233.1-like, ACH96143.1-like, putative 175 

protein 1, putative protein 12, putative protein 15, putative serine protease (corresponding to 176 

GenBank accession numbers AKH40365.1, AKH40394.1, AKH40369.1, AKH40392.1, AKH40340.1, 177 

AQN78560.1, AKH40392.1, AKH40404.1, and AQN78556.1). Each KV gene was amplified using the 178 

Qiagen Long Range PCR kit as per the manufacturer’s instructions, with primers that introduced 179 

restriction sites and the Drosophila Kozak sequence (restriction enzymes and primers used in (Table 180 

1), and cloned into a pAc5.1 vector (Invitrogen) with a C-terminal V5-His tag. The KV gene gp83 was 181 

also cloned into pAc5.1 vector with GFP instead of V5-His to introduce a C-terminal GFP tag. Deletion 182 

constructs for gp83 were created by separately amplifying 2 segments of gp83 with primers that 183 

span the desired deletion and performing a second PCR reaction with these segments as a template, 184 

and the forward and reverse primers from the 5’ and 3’ segments, respectively (Table 1; gp83Δ1: 185 

CGLIECSELLRDRLCSKL deletion; gp83Δ2: WSDRLNLI deletion). The resulting amplicons with deletions 186 

were cloned as described above. The gp83 gene from DiNV (35, 57) was also cloned as above (Table 187 

1).  188 

Additionally, Toll pathway components pll, tube, cact, Dif, and dl were cloned into the pAc5.1 vector, 189 

as described above (Table 1). Other Toll and Imd pathway constructs have been described before: 190 

pAc5.1-TollLRR (58), pAc5.1-dl-GFP (59), pMT-PGRP-LCx (60), pAc5.1-rel-GFP (61), and the firefly 191 

luciferase (FLuc) reporter plasmids with promoter sequences from Drosomycin (Drs), Diptericin (Dpt), 192 

and Attacin-A (Att-A) (58) or with 10X STAT binding sites (62).  193 

Transfection and RNAi Knockdown in S2 cells 194 

S2 cells were transfected using Effectene transfection reagent, as per the manufacturer’s 195 

instructions. Double-stranded RNA (dsRNA) was synthesized against cactus, gp83, FLuc, renilla 196 

luciferase (RLuc), and GFP for RNAi-mediated knockdown. Primers with flanking T7 sequences were 197 
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used to amplify regions of each gene (Table 1) and dsRNA was synthesized from the resulting PCR 198 

products with T7 RNA polymerase and purified using GenElute Total RNA mini kit (Qiagen) (63). 199 

Immune suppression assays 200 

The 9 cloned KV genes were tested for their ability to suppress RNAi, JAK-STAT, Toll, or Imd activity. 201 

RNAi suppression assays were performed as described previously (63). Briefly, 5x104 S2 cells were 202 

seeded in a 96-well plate and 24 hours later transfected with 33 ng of pMT-FLuc, 33 ng pMT-Rluc, 203 

and 33 ng of either pAc5.1 empty vector or the pAc5.1 expression plasmid encoding a KV gene. Two 204 

days later, 400 ng of either GFP or FLuc dsRNA was added to each well, and CuSO4 was added 8 205 

hours later to a final concentration of 500 µM to induce expression of the luciferase reporters. RLuc 206 

and FLuc luciferase activity were measured using the Dual Luciferase Assay Kit (Promega). 207 

For JAK-STAT immunosuppression assays, 5x104 S2 cells were seeded in a 96-well plate and 208 

transfected 24 hours later with 30 ng of 10XSTAT-FLuc, 20 ng pAc5.1-Rluc, and 50 ng of either pAc5.1 209 

empty vector or the pAc5.1 expression plasmid encoding a KV gene. Luciferase activity was 210 

measured at 48 hours following transfection. 211 

For NF-κB immunosuppression assays, a plasmid encoding the Imd receptor PGRP-LC (isoform x; 212 

pMT-PGRP-LCx) (60, 64) or a constitutively active Toll construct lacking the extracellular leucine-rich 213 

repeat domain, pAc5.1-TollLRR (58) was transfected alongside each KV gene, and a NF-κB-responsive 214 

FLuc reporter containing either the Dpt (Imd) or Drs (Toll) promoter sequence (58). For Toll immune 215 

suppression assays, 5x104 S2 cells were seeded in 96-well plates and 24 hours later transfected with 216 

50 ng of either empty pAc5.1 vector or a pAc5.1 KV gene expression construct, 20 ng of either 217 

pAc5.1 or pAc5.1-TollLRR, 10 ng of Drs-FLuc, and 10 ng pAc5.1-Rluc. Imd immune suppression assays 218 

were performed in the same manner, except that pMT, pMT-PGRP-LCx, and Dpt-FLuc were 219 

substituted for pAc5.1, pAc5.1-TollLRR, and Drs-FLuc, respectively, and CuSO4 was added immediately 220 

following transfection. Analogous experiments were performed using pAc5.1-dl, pAc5.1-Dif, and 221 

pAc5.1-pll instead of pAc5.1-TollLRR, or by transfecting 5 ng of cact dsRNA. In the latter case, 70 ng of 222 
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KV gene expression construct was transfected instead of 50 ng. RLuc and FLuc activity were assayed 223 

48 hours after transfection.  224 

Immunosuppression assays were also performed using KV-infected cells. 5x104 cells were seeded in 225 

96-well plates, followed by the immediate addition of 5 μL of either KV suspension (103 ID50) or 226 

chloroform-treated KV, and transfected the next day. For RNAi suppression assays with KV, 50 ng 227 

pMT-RLuc, 50 ng pMT-FLuc (63), and 5 ng of either GFP or GL3 dsRNA were transfected 2 dpi and 228 

CuSO4 added 8 hours later. To measure JAK-STAT activity following KV infection, 70 ng of 10XSTAT-229 

FLuc and 30 ng pAc5.1-Rluc (65) were transfected. For Toll suppression assays, 70 ng of either pAc5.1 230 

or pAc5.1-TollLRR, 20 ng of Drs-FLuc, and 10 ng pAc-RLuc were transfected. Finally, to measure Imd 231 

activity following KV infection, 70 ng of either pMT or pMT-PGRP-LCx, 20 ng of Dpt-FLuc, and 10 ng 232 

pAc-RLuc were transfected, and CuSO4 was added immediately following transfection. Luciferase 233 

activity was measured at 4 dpi. 234 

The R package MCMglmm was used to determine significance in immune suppression assays, with 235 

the RLuc-normalised FLuc values as a Gaussian response variable. In the original screen for immune 236 

suppressors, any experimental induction of an immune pathway was treated as a fixed effect (e.g. 237 

addition of dsRNA against FLuc in the RNAi suppression assay, PGRP-LC overexpression in the Imd 238 

suppression assay, and TollLRR transgene expression in the Toll suppression assay), each KV gene was 239 

treated as a random effect, and the interaction between KV gene and the induced experimental 240 

change to signalling output was treated as a random effect. In subsequent NF-κB suppression 241 

experiments, where the only tested KV gene was gp83, gp83 and the interaction between gp83 and 242 

overexpression of NF-κB receptors were treated as fixed effects. Likewise, when immune 243 

suppression experiments were carried out with KV-infected cells instead of cells expressing 244 

individual KV transgenes, KV infection status, the induction of an immune pathway, and the 245 

interaction between these were treated as fixed effects.  246 

Immunoprecipitation and western blotting 247 
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To test whether gp83 directly interacted with dl, 2x106 S2 cells were seeded in 6-well plates and 248 

transfected with 150 ng of either pAc5.1 empty vector, pAc5.1 encoding V5-tagged gp83, or V5-249 

tagged cact alongside 150 ng of the expression plasmid (pAc5.1) encoding GFP or GFP-tagged dl. Two 250 

days post-transfection, two wells per treatment were resuspended in lysis buffer (0.1% NP-40, 30 251 

mM Hepes-KOH, 150 mM NaCl, 2mM MgOAc) supplemented with cOmplete protease inhibitor 252 

cocktail (Roche) and 5 mM DTT, and disrupted 30 times through a 25-gauge needle. After 10 minutes 253 

incubation on ice, cell debris was pelleted by centrifuging at 16,000xg for 30 minutes and 254 

supernatant was either stored as an input control or collected and incubated for 5 hours at 4 °C with 255 

magnetic control beads. Binding control beads were removed and the resulting supernatant was 256 

incubated with GFP-trap magnetic beads (Chromotek) overnight at 4 °C. Beads were washed 3 times 257 

in lysis buffer and 3 times in 25 mM Tris-HCl, 150 mM NaCl solution, and protein complexes eluted 258 

by boiling 10 minutes at 95 °C in Laemmli buffer. 259 

Whole cellular protein extracts were prepared by heating S2 cells for 10 min at 95 °C in Laemmli 260 

buffer. Whole cellular extracts or immunoprecipitated proteins were separated on a 12% SDS-PAGE 261 

gel and transferred to a nitrocellulose membrane. Non-specific binding was blocked with blocking 262 

solution (phosphate buffered saline with 0.1% Triton-X (PBT) and 5% dry milk). Proteins of interest 263 

were probed with primary antibody diluted in blocking solution overnight at 4 °C, and visualized with 264 

an hour incubation of secondary antibody in blocking solution. Membranes were washed 3 times in 265 

PBT before and after each step. The following antibodies were used: mouse anti-dl (1:100 dilution, 266 

Developmental Studies Hybridoma Bank), mouse anti-V5 (1:1000 dilution, Invitrogen), rat anti-tub-α 267 

(1:1000 dilution, SanBio), and rabbit anti-GFP (1:1500 dilution, abcam ab6556) as primary 268 

antibodies, and goat anti-mouse IR-Dye 680 (1:15,000 dilution, LI-COR), goat anti-rat IR-Dye 800 269 

(1:15,000 dilution, LI-COR), goat anti-rabbit IR-Dye 800 (1:15,000, LI-COR). An Odyssey Infrared 270 

Imager (LI-COR) was used to image blots. 271 

Mass spectrometry 272 
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106 S2 cells were co-transfected with pCoBLAST and pAc5.1-gp83GFP plasmid at a 1:19 ratio (125 ng 273 

and 2.38 μg, respectively). Medium was replaced 3 hours post-transfection, and again at 48 hours 274 

post-transfection with medium supplemented with blasticidin (20 μg/mL). Another 48 hours later, 275 

cells were refreshed with medium containing 4 μg/mL blasticidin, which was thereafter replaced 276 

every 3-4 days with medium containing 4 μg/mL blasticidin, resulting in a polyclonal cell line.  277 

For mass spectrometry, wild-type S2 cells or S2 cells stably expressing GP83GFP were lysed in 50mM 278 

Tris-HCl (pH 7.8), 150mM NaCl, 1% NP-40, 0.5mM DTT, 10% glycerol, and protease inhibitor cocktail 279 

(Roche). Approximately 4 mg of protein lysate was subjected to GFP-affinity purification using 7.5 μL 280 

GFP-trap beads (Chromotek) for approximately 1.5 hours at 4 °C. Beads were washed twice in lysis 281 

buffer, twice in PBS containing 1% NP-40, and three times in PBS, followed by on-bead trypsin 282 

digestion as described previously (66). Afterwards, tryptic peptides were acidified and desalted using 283 

Stagetips, eluted, and brought onto an EASY-nLC 1000 Liquid Chromatograph (Thermo Scientific). 284 

Mass spectra were recorded on a QExactive mass spectrometer (Thermo Scientific) and MS and MS2 285 

data were recorded using TOP10 data-dependent acquisition. Maxquant (v1.5.1.0) was used to 286 

analyse raw data, using recommended settings (67). LFQ, IBAQ, and match between runs were 287 

enabled. The peptides were mapped to D. melanogaster proteins (UniProt June 2017) and 288 

contaminants and reverse hits were filtered with Perseus (v1.3.0.4) (68). Missing values were 289 

imputed, assuming a normal distribution, and significance determined by a t-test on log-transformed 290 

LFQ-values between wild-type and gp83-expressing S2 cells.  291 

Immunofluorescence microscopy  292 

5x105 S2 cells were seeded in 12-well plates with glass coverslips in each well. Cells were transfected 293 

with 100 ng of pAc5.1 or pAc5.1-gp83-V5 and 100 ng of pAc5.1-dl-GFP. Two days after transfection, 294 

cells were fixed with 4% paraformaldehyde, washed twice in PBS, once with PBT, and blocked with 295 

PBT with 10% goat serum. Cells were stained by incubation with mouse anti-V5 (1:400, Invitrogen) 296 

for one hour, followed by fluorophore-containing goat anti-mouse secondary antibody (1:400, 297 
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AlexaFluor) with 10 ug/mL Hoechst for one hour. Finally, cells were washed twice in PBT and twice in 298 

PBS, mounted on slides with Fluoromount-G (eBiosciences), and imaged with an Olympus FluoView 299 

FV1000. Fluorescence was measured in whole cells, or separately in the cytoplasm and nuclei by 300 

outlining the region of interest in Fiji (56) to calculate the mean fluorescence.  301 

Data availability 302 

All data presented in this manuscript, and associated code to fit statistical models, is provided via 303 

Figshare (doi: 10.6084/m9.figshare.c.4151009). 304 

 305 

Results and Discussion 306 

RNAi and Imd pathways are antiviral against KV in vivo 307 

The RNAi pathway provides antiviral activity against the DNA virus IIV6, and KV-derived vsiRNAs are 308 

produced upon infection of adult naturally-infected Drosophila (7, 11, 12). However, the 309 

contribution of Imd and Toll pathways to anti-DNA virus immunity have not been described. We 310 

used fly lines mutant for RNAi, Imd, and Toll pathway components to assess whether these 311 

pathways fulfil an antiviral function during KV infection. First, we infected mutants for RNAi genes 312 

Dcr-2 and AGO2 with KV, and measured viral titre and mortality following infection. Following KV 313 

infection, both Dcr-2 and AGO2 mutants exhibited significantly greater KV titres at 3 dpi, with KV 314 

titre 78-fold greater in Dcr-2 mutants (95% HPD intervals: 18-281 fold; MCMCp < 0.001) and 55-fold 315 

greater in AGO2 mutants (13-237 fold, MCMCp < 0.001; Figure 1A). However, the increased KV 316 

replication in RNAi mutants was not sustained at later infection timepoints. At 5 dpi, Dcr-2 mutants 317 

did not have significantly different KV titre from the controls (MCMCp = 0.22), but titres were still 318 

increased in AGO2 mutants, albeit to a lesser extent that at 3 dpi (12-fold increase; 2.5-43 fold, 319 

MCMCp < 0.001; Figure 1A). By 10 dpi, there was no significant difference between viral titre in 320 

control flies and either Dcr-2 mutants (MCMCp = 0.43) or AGO2 mutants (MCMCp = 0.7). Therefore, 321 
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either the antiviral effect of RNAi is short-lived (for example, a viral suppressor of RNAi may 322 

eventually be expressed in vivo), other immune pathways take over as the dominant antiviral force, 323 

or KV negatively regulates its own replication or depletes a resource. Nevertheless, despite the 324 

similar titres during late infection, there was still a significant increase in KV-induced mortality in 325 

Dcr-2 and AGO2 mutants, where 70% of control flies were alive at 19 dpi, compared to 25% in Dcr-2 326 

mutants (MCMCp = 0.014) and 38% in AGO2 mutants (MCMCp = 0.004, Figure 1B). Increased late life 327 

mortality in RNAi mutants could be due to early host damage or to increased expression of virulence 328 

factors throughout infection, expression of which could be regulated by RNAi, independent of KV 329 

titre (e.g. (10). These results extend the antiviral role of the RNAi pathway to KV infection. 330 

We next infected Imd and Toll pathway mutants with KV and assessed KV DNA levels by qPCR at 5 331 

and 10 dpi. We found that Imd pathway mutants had significantly greater viral titre as compared to 332 

two control lines, with imd mutants having 6-fold greater KV titre at 5 and 10 dpi (2.7-13.7 fold, 333 

MCMCp < 0.001), and Rel mutants having 8-fold greater viral titre at 5 and 10 dpi (3.1-15.9 fold, 334 

MCMCp < 0.001; Figure 1C). Because the Imd effect spans 5 and 10 dpi, and we have previously 335 

measured KV titre in 125 inbred lines of the Drosophila Genetic Reference Panel at 8 dpi (32, 69), we 336 

attempted to account for genetic background by comparing the average effect of Imd mutants to 337 

the distribution of effects consistent with natural variation in the genetic background. This analysis 338 

indicated that the increased titre observed in Imd mutants is unlikely to be due to genetic 339 

background (p = 0.01). We also infected flies mutant for the Toll pathway components spz, pll, and 340 

dl. Viral titre was unchanged in Toll pathway mutants compared to controls, and the pathway-level 341 

effect of Toll mutants was within the expected distribution of effects caused by differences in 342 

genetic background (p = 0.28). We conclude that the Imd pathway is antiviral against KV, but that 343 

abrogation of Toll function has no effect on KV growth. This could indicate that Toll is not antiviral 344 

against this DNA virus, or that the pathway is efficiently suppressed by virus infection. The latter is 345 

consistent with our observation that genes encoding antimicrobial peptides are generally 346 

downregulated in KV-infected flies compared to uninfected controls (Figure 1E), and we therefore 347 
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explored the capability of KV to suppress innate immune pathways using a cell culture model of 348 

immunosuppression. 349 

KV replicates efficiently in some Drosophila cell lines  350 

To establish a cell culture model for KV infection, we analyzed viral replication in five commonly-351 

used D. melanogaster cell lines. We found variation in the ability of KV to infect these cells, with 352 

efficient replication in several Drosophila S2 cell clones, including S2 (not shown), S2R+, and DL2 353 

cells, but no or inefficient replication in Kc167 and Dm-BG3-c2 cells (Figure 2A). In S2 cells, which we 354 

used for further analyses, KV was released into the medium at substantial levels starting from 3 dpi 355 

(Figure 2B). Therefore, in all subsequent experiments, we assayed cells at 4 dpi, assuming that a high 356 

proportion of cells would be infected at this timepoint. We did not observe any overt cytopathic 357 

effects of KV-infected cells within 14 days of infection. However, when KV-infected cells were 358 

passaged at 7 dpi, we observed larger (MCMCp < 0.001) and fewer (MCMCp < 0.001) cells, likely due 359 

to a decrease in cell proliferation (Figure 2C,D).  360 

KV leads to downregulation of JAK-STAT and Toll, and induction of Imd signalling in cell culture 361 

We used previously established luciferase reporter-based assays to describe the effect of KV 362 

infection on RNAi, JAK-STAT, Toll, and Imd pathways in cell culture. To determine if KV suppresses 363 

RNAi, we measured the RNAi silencing efficiency of cells inoculated with KV or chloroform-364 

inactivated KV (hereafter referred to as mock-treated) by co-transfecting an expression plasmid 365 

encoding FLuc with either GFP dsRNA or FLuc dsRNA. In both mock and KV-treated cells, FLuc dsRNA 366 

caused a 95% reduction in FLuc activity compared with GFP dsRNA treated cells, indicating that KV 367 

infection does not inhibit RNAi in cell culture (MCMCp = 0.9; Figure 3A). Many viruses studied in 368 

Drosophila encode a suppressor of RNAi (e.g. (12, 44, 65, 70–73), and therefore the absence of KV-369 

induced RNAi suppression is somewhat surprising. It is possible that KV-RNAi interactions are 370 

different in the cell types that are naturally infected by KV, and that our inability to observe RNAi 371 

suppressive activity is a limitation of the cell culture model. Alternatively, if KV transmission does not 372 
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occur until later stages of infection, there may be limited selective pressure to evade RNAi, as RNAi 373 

mutants and control flies have similar titres during late infection. 374 

The JAK-STAT pathway has an antiviral role during Drosophila C virus infection (74) and mediates 375 

tolerance to the DNA virus IIV6, evidenced by upregulation of vir-1 and Turandot (Tot) genes (9). 376 

However, previous in vivo transcriptional profiling did not identify strong differential expression of 377 

STAT-responsive genes following infection with KV (Figure 1E) (32). We assessed JAK-STAT activity in 378 

mock and KV-treated cells with a FLuc reporter driven by a promoter containing ten STAT binding 379 

sites (62). This reporter is endogenously active in S2 cells (62), but KV infection led to a 58% 380 

reduction in STAT-mediated FLuc activity (37-74%, MCMCp < 0.001; Figure 3C), indicating that JAK-381 

STAT is down-regulated or inhibited following KV infection. However, in addition to mediating a 382 

transcriptional immune response, the JAK-STAT pathway is involved in cell proliferation (75), which 383 

also decreases following KV infection in cell culture (Figure 2), making cause and effect difficult to 384 

distinguish. 385 

We next assayed the effect of KV on Toll and Imd signalling. However, these pathways are not 386 

constitutively active in S2 cells. To measure KV suppression of these pathways, we therefore co-387 

transfected TollLRR (a Toll receptor lacking the leucine-rich repeat extracellular domain) or PGRP-LC 388 

(an Imd pathway receptor) with Drs or Dpt luciferase reporters to artificially induce signalling of Toll 389 

and Imd pathways, respectively. Transfection of TollLRR increased Drs-Fluc by 243-fold (MCMCp < 390 

0.001), consistent with previous reports (58). However, KV infection reduced the maximum level of 391 

TollLRR-mediated Drs activity by 81% (38-93%, MCMCp < 0.001; Figure 3E), indicating KV can inhibit 392 

Toll signalling. Over-expression of PGRP-LC led to a 4-fold increase in Dpt-FLuc (3-5 fold, MCMCp < 393 

0.001). In contrast to the effect on Toll signalling, KV infection led to a 3.6-fold increase (2.6-4.8 fold, 394 

MCMCp < 0.001) in Dpt-FLuc, which additively increased when PGRP-LC overexpressing cells were 395 

infected with KV (17-fold increase compared to Imd-inactive, mock-treated cells; 12-23 fold, Figure 396 
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3G). These results suggest that KV infection in S2 cell culture leads to downregulation or suppression 397 

of Toll signalling but induction of Imd signalling. 398 

KV-encoded gp83 modifies NF-κB signalling during infection 399 

The immunosuppressive function of nudivirus genes has not previously been explored. Because we 400 

observe KV-mediated downregulation of NF-κB-regulated AMPs in vivo and downregulation of JAK-401 

STAT and Toll reporters in vitro, we wished to identify potential KV-encoded suppressors of 402 

canonical immune pathways. Therefore, we cloned 9 uncharacterized KV genes that are highly 403 

expressed at 3 dpi in adult flies (32) and performed immune suppression assays for RNAi, JAK-STAT, 404 

Toll, and Imd pathways. We were unable to identify KV-encoded suppressors of RNAi or JAK-STAT 405 

among these 9 genes, although we confirmed that Cricket Paralysis Virus protein 1A potently 406 

suppressed RNAi in these assays, as expected ((72); MCMCp = 0.006; Figure 3B,D). However, we 407 

found that gp83—a KV gene encoding no recognisable protein domains, named for its homology to 408 

the Gryllus bimaculatus nudivirus (GbNV) gp83 locus (76)—significantly reduced TollLRR-dependent 409 

Drs-FLuc expression (Figure 3F). In this experiment, TollLRR expression induced Drs-FLuc by 24-fold (8-410 

66 fold), but by only 1.9-fold (0.3-8 fold; MCMCp = 0.02) when gp83 was co-expressed. We further 411 

found that expression of gp83 caused a 5-fold (1.5-18 fold) increase in Imd-mediated Dpt-FLuc 412 

expression, with or without PGRP-LC overexpression (MCMCp = 0.008; Figure 3H).  413 

We next aimed to confirm that the interactions between the transfected KV gene gp83 and NF-κB 414 

pathways are representative of the function of gp83 during KV infection. Therefore, we silenced 415 

gp83 during KV infection using dsRNA, and measured associated changes in Toll, Imd, and JAK-STAT 416 

signalling. Co-transfection of gp83 with independent dsRNAs targeting gp83 completely reversed 417 

inhibition of Drs-FLuc compared with transfection of GFP dsRNA, indicating that these dsRNAs 418 

effectively silence gp83 (MCMCp < 0.001 for both dsRNAs; Figure 4D). As reported above (Figure 3E), 419 

KV infection had no effect on Drs-FLuc in the absence of TollLRR (MCMCp = 0.26), but inhibited TollLRR-420 

induced signalling (MCMCp < 0.001). Knockdown of gp83 during KV infection of TollLRR-expressing 421 
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cells led to increased Drs-FLuc (MCMCp < 0.001; orange bars in Figure 4A). Surprisingly, Drs-FLuc was 422 

also slightly increased in Toll-inactive cells upon KV infection and gp83 knockdown (MCMCp = 0.004; 423 

grey bars in Figure 4A). Likewise, knockdown of gp83 in KV-infected cells expressing PGRP-LC caused 424 

a decrease in Dpt-FLuc expression (MCMCp = 0.006; orange bars in Figure 4B), and this effect was 425 

also noticeable in controls that do not express PGRP-LC (MCMCp = 0.03; grey bars in Figure 4B). 426 

Consistent with a specific interaction with NF-κB signalling, gp83 knockdown had no effect on the 427 

ability of KV to downregulate JAK-STAT signalling in S2 cells (MCMCp = 0.63; Figure 4C). Together, 428 

these observations indicate that gp83 is responsible for Toll suppression and Imd activation during 429 

KV infection.  430 

The immunosuppressive function of gp83 on Toll signalling in vitro is consistent with the observed 431 

downregulation of AMPs following KV infection in vivo and substantiates the hypothesis that Toll is 432 

antiviral and suppressed during infection. However, the induction of antiviral Imd signalling by a 433 

single viral protein is unexpected, and it is unclear why KV has not evolved to avoid or suppress Imd 434 

activation as seen for other insect-infecting DNA viruses (28). Assuming that Imd activation is 435 

detrimental to virus transmission, this could indicate a trade-off between suppression of Toll and 436 

activation of Imd, or that gp83 is directly recognised by the fly immune system. Additionally, gp83-437 

mediated Imd activation in vitro is at odds with the observed broad downregulation of AMPs in vivo, 438 

which are controlled, in part, by Imd signalling. This could be explained by differences in the 439 

intracellular versus systemic effects of KV on Imd signalling, or tissue-specific responses to KV, either 440 

of which could mask an excitatory effect of gp83 on Imd in vivo. Because of these inconsistencies, we 441 

chose to focus specifically on the Toll immunosuppressive effect of gp83, because the in vitro data is 442 

consistent with observed AMP expression patterns in vivo. We conclude that KV-encoded gp83 is 443 

involved in mediating complex interactions with NF-κB signalling in vitro, including suppression of 444 

Toll signalling and induction of Imd signalling. 445 

Immune suppression by gp83 occurs downstream of Toll transcription factors 446 
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Previously described polydnavirus-encoded Toll pathway inhibitors imitate IκB, blocking the nuclear 447 

entry of NF-κB transcription factors (27). Although the precise mechanism of interaction between 448 

gp83 and Toll signalling is unknown, suppression of TollLRR-induced signalling indicates that gp83 449 

functions downstream of Toll, and interferes with intracellular Toll signalling. We therefore 450 

performed genetic interaction experiments between gp83 and downstream Toll components to 451 

narrow down the point in the Toll signalling pathway at which gp83 acts. As observed before with 452 

reporter assays, gp83 inhibited TollLRR-mediated signalling, now assessed by qRT-PCR of endogenous 453 

Drs expression (MCMCp < 0.001; Figure 5A).  Additionally, Drs-FLuc was greatly increased by 454 

overexpressing pll (240-fold [131-414] induction of Drs-FLuc), silencing cact (75-fold [33-161] 455 

induction of Drs-FLuc), overexpressing Dif (563-fold [317-1002] induction of Drs-FLuc; ), and 456 

overexpressing dl (459-fold [257-778] induction of Drs-FLuc; ). Co-expression of gp83 potently 457 

reduced Drs-FLuc in each of these scenarios (MCMCp < 0.001 for each) – pll/gp83 co-overexpression 458 

led to a 0.55-fold change in Drs-FLuc (0.31-0.99 fold), cactdsRNA/gp83 led to a 1.73-fold change in Drs-459 

FLuc (0.75-3.5 fold), Dif/gp83 led to a 0.86-fold change in Drs-FLuc (0.5-1.5 fold), and dl/gp83 led to a 460 

1.5-fold change in Drs-FLuc (0.9-2.5 fold) relative to baseline Drs-FLuc expression (Figure 5B-E). 461 

Additionally, V5 staining of V5 epitope-tagged gp83 revealed that gp83 is a nuclear protein (Figure 462 

5F). Together, these results indicate that gp83 either inhibits NF-κB transcription factors, or acts 463 

downstream of them to suppress Toll signalling in vitro. 464 

Virus-encoded inhibitors of NF-κB in mammals have been reported to operate by promoting 465 

degradation of NF-κB transcription factors, blocking NF-κB access to the nucleus, or interfering with 466 

transcriptional co-activators to evade the interferon response (reviewed in 77). In order to better 467 

define the mechanism of the immunosuppressive action of gp83, we searched for direct host 468 

interactions that may mediate Toll suppression. Because our genetic interaction experiments 469 

indicate that gp83 acts on or downstream of dl, we first tested for a physical interaction between dl 470 

and gp83 using co-immunoprecipitation and subsequent western blotting. Following 471 

immunoprecipitation of GFP-tagged dl, we were able to detect cact as an interacting positive 472 
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control, but we did not detect gp83 in GFP-dl immunoprecipitation (Figure 6C). Thus, to identify host 473 

interacting proteins of gp83 in an unbiased manner, we created an S2 cell line stably expressing GFP-474 

tagged gp83, immunoprecipitated gp83GFP, and performed quantitative mass spectrometry on 475 

interacting partners. We identified 19 D. melanogaster proteins, including 4 nuclear proteins 476 

(Nipped-B, Brf, Mlf, Ulp1), that were enriched in the gp83 immunoprecipitate (log2 fold enrichment > 477 

2.5; FDR < 0.1; Figure 6A). While we did not identify known downstream NF-κB pathway factors, the 478 

extracellular Toll ligand spz was enriched, despite the nuclear localization of gp83. However, peptide 479 

coverage of spz was poor and dsRNA knockdown of spz did not rescue the immunosuppressive 480 

effect of gp83, indicating that this interaction may not occur in live cells, or that it is not required for 481 

gp83 to inhibit Toll signalling (Figure 6B). Further, dsRNA-mediated knockdown of a subset of the 482 

enriched genes, including 3 of the 4 identified nuclear proteins, was unable to rescue the gp83 483 

immunosuppressive effect (Figure 6B), suggesting that gp83 may not form stable complexes with 484 

host proteins to interfere with NF-κB signalling.  485 

Although we did not detect a direct association between dl and gp83, we observed a reduction in dl 486 

protein levels upon gp83 overexpression that is not dependent on Toll signalling (Figure 7A). We 487 

quantified this effect by transfecting either GFP or GFP-tagged dl, in the absence or presence of 488 

gp83, and measuring fluorescence by confocal microscopy. We found that while gp83 caused a 53% 489 

reduction in GFP levels (42-62%, MCMCp < 0.001), possibly due to a dl binding site in the actin 5C 490 

promoter of this construct (78), gp83 caused a significantly greater reduction in dlGFP (73% reduction; 491 

66-78%, MCMCp < 0.001; Figure 7B,C). However, KV infection did not decrease dl protein levels, 492 

indicating that this may not be the primary mechanism by which KV inhibits Toll signalling (Figure 493 

7A). Instead, we hypothesize that gp83 interferes with the access of dl to either the nucleus or to NF-494 

κB binding sites, which indirectly affects dl localization and results in increased turnover. We prefer 495 

the latter explanation, that gp83 directly interferes with the Toll pathway transcriptional response, 496 

because overexpression of gp83 simultaneously induced the Dpt reporter (Figure 2H) and reduced 497 

dl-responsive promoters (Drs-FLuc and Act5C-GFP; Figure 3F, Figure 7B,C). These observations 498 
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implicate gp83 in regulating transcription at diverse loci responsive to both dl and Rel, and suggest 499 

an interaction between gp83 and NF-κB-responsive genes, possibly by directly interacting with DNA.   500 

Immunosuppressive function of gp83 depends on conserved residues and is conserved in other 501 

nudiviruses 502 

Conflict between the host immune system and virus-encoded immune inhibitors may result in an 503 

evolutionary arms race, leading to recurrent positive selection and eventual host specialization (e.g. 504 

(79–81). Consistent with this, some immune inhibitors are only effective against their native host 505 

species, thereby defining the viral host range (e.g. 40–45). We tested whether the 506 

immunosuppressive function of gp83 is conserved, and whether gp83 acts in a species-specific 507 

manner. The gp83 locus is absent from nudiviruses distantly related to KV, such as Heliothis zea 508 

nudivirus 1 (HzNV1), Tipula oleracea nudivirus (ToNV) and Peneaus monodon nudivirus (PmNV), but 509 

gp83 homologs are found in the more closely related GbNV, Nilaparvata lugens endogenous 510 

nudivirus (NlENV), Oryctes rhinoceros nudivirus (OrNV), Drosophila innubila nudivirus (DiNV), 511 

Tomelloso virus (TV), Mauternbach virus (MV), and Esparto virus (EV; Figure 8A). Although gp83 512 

lacks recognisable protein domains, several regions are strongly conserved among these nudiviruses, 513 

suggesting functional conservation (Figure 8B). To test whether gp83 function depends on these 514 

conserved domains, we made two gp83 deletion constructs (gp83Δ1 and gp83Δ2) that remove 515 

conserved regions of respectively 18 and 8 amino acids without substantially altering protein 516 

stability, and transfected these alongside TollLRR with the Drs-FLuc reporter. Although detectable by 517 

western blotting (Figure 8B), gp83Δ1 (MCMCp = 0.67) and gp83Δ2 (MCMCp = 0.79) were unable to 518 

inhibit Toll signalling, indicating that these conserved residues are important for the 519 

immunosuppressive function of gp83 (Figure 8C).  520 

To test whether gp83 function is conserved among viruses, we cloned gp83 from DiNV, which has 521 

not been found to be associated with D. melanogaster (11), and performed Toll immunosuppression 522 

assays. The gp83 homolog from DiNV was able to completely inhibit D. melanogaster Toll signalling 523 
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in S2 cells (MCMCp < 0.001), despite only 57% amino acid identity with KV gp83, demonstrating that 524 

the immunosuppressive function of gp83 is conserved in other nudiviruses and that it is not highly 525 

host-specific (Figure 8D). This observation suggests that the Toll-gp83 interaction may not be a 526 

hotspot of antagonistic ‘arms race’ coevolution and has not led to specialization of DiNV gp83 to the 527 

D. innubila immune system at the expense of its ability to function in D. melanogaster. This could be 528 

because gp83 has relatively few direct interactions with host proteins (Figure 6A), and may instead 529 

interact directly with transcription factor binding sites which are under high constraint, and 530 

therefore unable to evolve resistance to the immunosuppressive effect of gp83 (82). 531 

 532 

Conclusions 533 

In this study we investigated the role of known anti-RNA viral immune pathways in the context of 534 

DNA virus infection, including RNAi, JAK-STAT, Imd, and Toll pathways. Our data support an antiviral 535 

role for RNAi and Imd against KV, consistent with previously-described antiviral RNAi against IIV6 536 

and DNA virus-encoded suppressors of Imd (7, 8, 28). Furthermore, we identified gp83 as a KV-537 

encoded Toll suppressor that acts downstream of NF-κB transcription factor release of IκB in cell 538 

culture, suggesting that Toll signalling can be antiviral during DNA virus infection in insects. The 539 

immunosuppressive effect of gp83 is conserved in other nudiviruses, and has not evolved host-540 

specificity in DiNV, indicating that the Toll-gp83 interaction is unlikely to be a hotspot of reciprocal 541 

host-virus adaptation and that other KV genes may be more important in determining host range. 542 

  543 
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Figure legends 785 

 786 

Figure 1: RNAi and Imd pathways provide antiviral defense against Kallithea virus  787 

Mutants for RNAi (A,B) and NF-κB (C,D) pathways were assayed for viral titre (A,C,D) and mortality 788 

(B) following KV infection. OreR and w1118 flies were used as wild-type controls. Viral titre was 789 

measured by qPCR, relative to Rpl32 DNA, where each data point represents a vial of 5 flies, and 790 

coloured horizontal lines correspond to the mean titre and associated standard error (A,C,D). 791 

Horizontal dotted lines (A,C,D) represent the amount of virus injected. (B) RNAi mutants (AGO2 and 792 

Dcr2) and w1118 controls were injected with chloroform-treated KV (mock) or KV, and survival was 793 
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monitored each day. Each point is the mean number of surviving flies across 10 vials of 10 flies, with 794 

associated standard errors. (E) Log-transformed fold changes of presumed NF-κB-responsive genes 795 

(coloured red - Cecropins, Diptericins, Attacins, Metchnikowin, Drosomycins and Drosomycin-like 796 

genes, Bomamins (i.e. IM1, CG18107, IM2, IM3, CG15065, CG15068, CG43202, CG16836, CG5778, 797 

IM23, CG15067, CG5791), and other IM genes) and JAK-STAT-responsive genes (coloured blue - 798 

Socs36E, vir-1, and Turandot (Tot) family) following KV infection of OreR flies at 3 dpi, relative to 799 

uninfected controls (ERP023609; n = 5 libraries per treatment, with n=10 flies per library (32)). Error 800 

bars show standard errors of the mean. *p < 0.05; **p < 0.01; ***p < 0.001 (Statistical tests 801 

performed in MCMCglmm). 802 

 803 
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Figure 2: KV replicates in cell culture  804 

KV growth was assessed in various D. melanogaster cell lines by qPCR against the KV genome, 805 

relative to the fly gene Rpl32 (n=3 for each time point). (B) KV release from S2 cells into the culture 806 

medium was assessed by DNA extraction of 50 μL of culture medium and qPCR against the KV 807 

genome, plotted relative to the amount of KV in the medium directly following infection (i.e. zero 808 

time point is equal to 1). (C) Cell density (number of cells per approximately 100 μm2 in KV versus 809 

mock-treated cells) at 10 dpi (n=3). (D) Cell size of mock or KV-infected cells at 10 dpi. Each dot 810 

represents a single cell and the data distribution is presented as a violin plot. Error bars show 811 

standard error of the mean. *p < 0.05; **p < 0.01; ***p < 0.001 (Statistical tests performed in 812 

MCMCglmm) 813 

 814 
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Figure 3: Kallithea virus gp83 suppresses Toll and induces Imd signalling 815 

The ability of KV (4 dpi) and 9 highly expressed KV genes to inhibit RNAi (A,B), JAK-STAT (C,D), Toll 816 

(E,F), and Imd (G,H) pathways was assessed. For RNAi suppression assays (A,B), RNAi efficiency was 817 

assessed by transfecting S2 cells with expression plasmids expression FLuc and, as a normalization 818 

control RLuc, along with dsRNA targeting either FLuc or GDP. Data are expressed as fold silencing in 819 

cells treated with GFP dsRNA relative to those treated with FLuc dsRNA, normalised to 1 in mock-820 

infected cells. The CrPV suppressor of RNAi, protein 1A, was used as a positive control (data 821 

combined from 2 experiments).  For JAK-STAT suppression assays (C,D), S2 cells were transfected 822 

with a plasmid encoding FLuc under control of 10 STAT binding sites (10XSTAT-FLuc). In contrast to 823 

the JAK-STAT pathway, the Toll and Imd pathways are not endogenously active in S2 cells (grey bars 824 

in E, F, G, H), but can be activated by expression of TollLRR (orange bars in E, F) or PGRP-LC (orange 825 

bars in G, H). For Toll suppression assays (E,F), S2 cells were transfected with the Drs-FLuc reporter, 826 

encoding FLuc under control of a Drosomycin promoter, with either pAc5.1-TollLRR or an empty 827 

control plasmid (grey bars) For Imd suppression assays (G,H), S2 cells were transfected with the Dpt-828 

FLuc reporter, encoding FLuc under control of a Diptericin promoter, with either pMT (Empty) or 829 

pMT-PGRP-LC. All FLuc luciferase values were normalized to Renilla luciferase (RLuc) values, driven 830 

by a constitutively active Actin promoter from a co-transfected plasmid. PP=Putative Protein; 831 

SP=Serine Protease. Error bars show standard errors of the mean, calculated from 5 biological 832 

replicates for (A,C,E,G) and at least 3 biological replicates for (B,D,F,H). *p < 0.05; **p < 0.01; ***p < 833 

0.001 (Statistical tests performed in MCMCglmm). 834 
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 835 

Figure 4: KV induction and suppression of NF-ΚB pathways is mediated by gp83 836 

The ability of KV to inhibit Toll (A), induce Imd (B), and inhibit JAK-STAT (C) was assessed during gp83 837 

knockdown, using two independent dsRNAs against gp83 (labelled ds-gp83200 and ds-gp83583). 838 

Drosomycin, diptericin, and 10X-STAT activity was measured as Drs-FLuc, Dpt-FLuc, and 10XSTAT-839 

FLuc expression, relative to RLuc expression as described in the legend to Figure 3. For each, data are 840 

presented as fold change in signalling following KV infection relative to mock infection (chloroform 841 
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treated KV) (4 dpi), where 1 (horizontal dotted line) represents no induction or suppression of the 842 

pathway by KV infection. (A) Fold change in Drs-FLuc expression following KV infection of S2 cells 843 

with (orange bars) or without (grey bars) activation of the pathway by TollLRR expression. (B) Fold 844 

change in Dpt-FLuc expression following KV infection of S2 cells with (orange bars) or without (grey 845 

bars) pathway activation by PGRP-LC expression. (C) Fold change in 10X-STAT FLuc expression 846 

following KV infection of S2 cells. (D) Efficiency of gp83 knockdown was assessed by co-transfection 847 

of an expression plasmid encoding gp83 with two independent dsRNAs against gp83 and Drs-FLuc 848 

reporter plasmids. Error bars show standard error of the mean (A-C: n = 5 biological replicates, D: n = 849 

3 biological replicates). *p < 0.05; **p < 0.01; ***p < 0.001 (Statistical tests performed in 850 

MCMCglmm). 851 
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 852 

Figure 5: gp83 inhibits Toll signalling downstream of Dif and dorsal 853 

(A) The ability to of gp83 to inhibit endogenous Drosomycin expression was assessed by transfection 854 

of S2 cells with pAc-gp83 or empty control plasmid, and the Toll pathway was activated by 855 

cotransfection of pAc-TollLRR or control plasmid. Drosomycin expression levels were measured 856 

relative to Rpl32 expression by qRT-PCR. (B-E) The Toll pathway was activated downstream of the 857 

Toll receptor by transfection of a plasmid encoding pll (B), knockdown of cactus with two 858 
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independent, non-overlapping dsRNAs (labelled ds-cact1 and ds-cact2) (C), and transfection of 859 

plasmids encoding the transcription factors dl and Dif (D,E). Activation of the pathway was assessed 860 

using  the Drs-FLuc reporter, relative to RLuc expression (orange bars in B-E; grey bars represent 861 

controls in which empty plasmids (B, D, E) or dsRNA targeting GFP (C) were transfected). Suppression 862 

of the Toll pathway at different stages by gp83 was assessed by co-transfection of pAc-gp83 or an 863 

empty control plasmid (B-E). (F) Representative confocal image of S2 cells expressing V5 epitope-864 

tagged gp83 stained with a V5 antibody (upper panel) and a merged image in which nuclei are 865 

stained with Hoechst (lower panel). Error bars show standard error of the mean (n = 5 biological 866 

replicates). *p < 0.05; **p < 0.01; ***p < 0.001 (Statistical tests performed in MCMCglmm). 867 
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 868 

Figure 6: Identification of host interactors of gp83  869 
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(A) Identification of gp83 interacting proteins in S2 cell lysates by label-free quantitative (LFQ) mass 870 

spectrometry. Permutation-based FDR-corrected t-tests were used to determine proteins that are 871 

statistically enriched in gp83-GFP immunoprecipitated (IP). The log2 LFQ intensity of gp83-GFP IP 872 

over control IP (cells that do not express gp83-GFP) is plotted against the -log10 FDR. The gp83-GFP 873 

bait (labelled in green) and interactors with an enrichment of fold change > 2.5; -log10 FDR > 1 are 874 

indicated. (B) Drs-FLuc expression was measured following co-transfection of pAc-gp83, pAc-TollLRR, 875 

or empty control plasmids, along with dsRNA targeting brf, msr-110, Nipped-B, RhoGEF2, spatzle, 876 

and Ulp1 (labelled red in panel A), with dsRNA targeting GFP as a control. Genes are superscripted 877 

with ‘1’ or ‘2’ when two independent dsRNAs were used to knock down the gene. Although msr-110 878 

kncockdown appears to partially rescue gp83 immunosuppression, subsequent experiments did not 879 

reproduce this effect. Error bars represent standard error of the mean (n=3). Statistical tests were 880 

performed in MCMCglmm. (C) V5-tagged gp83 or V5-tagged cact (an IκB protein known to interact 881 

with dl) were expressed alongside GFP-tagged dl or GFP and GFP-associated complexes were 882 

immunoprecipitated (IP) with GFP-trap magnetic beads and analyzed by western blot using V5 883 

antibodies. Note, cact appears to be stabilized when co-expressed with dl compared to when it is 884 

expressed alone. 885 
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 886 

Figure 7: Overexpression of gp83 may reduce dorsal levels  887 

(A) Western blots show endogenous dl protein levels in S2 cells transfected with a plasmid encoding 888 

gp83 or empty control plasmid (left panel) and in S2 cells infected with KV (4 dpi) (right panel). The 889 

Toll pathway was activated by expression of pAc-TollLRR, as indicated. Western blot analysis using 890 

anti-Tubulin antibody was used to very equal loading.  . (B-C) The effect of gp83 was analyzed by 891 

confocal microscopy of S2 cells transfected with plasmid encoding gp83 or control plasmid, and 892 

plasmids encoding either GFP or dl-GFP. ImageJ-based quantification of mean GFP fluorescence for 893 

individually outlined cells (n ≥ 20 cells for each condition, error bars show standard error of the 894 

mean). (C) A representative image from (B), showing GFP (top panels) and dl-GFP expression (lower 895 

panels) with or without gp83. Nuclei were visualized using Hoechst ***p < 0.001. 896 



44 
 

 897 

Figure 8: The immunosuppressive function of gp83 is evolutionarily conserved 898 

(A) Maximum likelihood phylogeny inferred from a protein alignment of nudivirus-encoded DNA 899 

polymerase B using PhyML (83), with an LG substitution model and gamma-distributed rate 900 

parameter. Support for each node was assessed by bootstrapping, and the scale bar represents 901 

substitutions per site. Nudivirus species that encode gp83 homologs are coloured in red. (B) 902 

Conservation of the gp83 amino acid sequence across 7 species of nudivirus (all red labelled viruses 903 

in panel A, except the endogenized virus NlENV). Each bar represents an amino acid, and bars are 904 

coloured yellow if the residue is conserved in ≥ 50% of the species, green if conserved in 100% of the 905 

species., and black if conserved in <50% of the species. Two V5-tagged gp83 constructs were created 906 

with deletionsthat span regions with an excess of conserved residues: gp83Δ1 and gp83Δ2. Western 907 

blot and subsequent V5 antibody staining show that both deletion constructs accumulate to similar 908 

levels as full-length gp83 following transfection of S2 cells. (C) Full-length gp83, gp83Δ1, or gp83Δ2 909 

were co-expressed with TollLRR, and Drs-FLuc expression was measured relative to pAct-FLuc 910 

expression. (D) V5-tagged gp83 from KV and DiNV were co-expressed with TollLRR to assess 911 

suppression of Drs-FLuc expression (relative to pAct-FLuc expression) in D. melanogaster S2 cells. 912 
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Western blot analyses using  V5 antibody was usedto confirm gp83 expression. Error bars show 913 

standard error of the mean (n = 5 biological replicates). *p < 0.05; **p < 0.01; ***p < 0.001 914 

(Statistical tests performed in MCMCglmm). 915 

 916 


