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Background. Control of gambiense sleeping sickness relies predominantly on passive and active screening of people, followed 
by treatment.

Methods. Mathematical modeling explores the potential of 3 complementary interventions in high- and low-transmission 
settings.

Results. Intervention strategies that included vector control are predicted to halt transmission most quickly. Targeted active 
screening, with better and more focused coverage, and enhanced passive surveillance, with improved access to diagnosis and treat-
ment, are both estimated to avert many new infections but, when used alone, are unlikely to halt transmission before 2030 in high-
risk settings.

Conclusions. There was general model consensus in the ranking of the 3 complementary interventions studied, although with 
discrepancies between the quantitative predictions due to differing epidemiological assumptions within the models. While these 
predictions provide generic insights into improving control, the most effective strategy in any situation depends on the specific epi-
demiology in the region and the associated costs.

Keywords. gambiense human African trypanosomiasis; HAT; mathematical modeling; intervention effectiveness; elimination.

Gambiense human African trypanosomiasis (HAT) is a parasitic 
disease caused by Trypanosoma brucei gambiense and is transmit-
ted by tsetse. Infection occurs in 2 stages, with second-stage disease 
almost always fatal without treatment. Although numbers of HAT 
cases have declined since their historic highs in the 1940s and late 
1990s, HAT remains a significant health burden in multiple foci, 
particularly in the Democratic Republic of the Congo (DRC).

Gambiese HAT is targeted for “elimination as a public health 
problem” by 2020, which is defined as a 90% reduction in areas 
reporting >1 case in 10 000 compared to 2000–2004, and <2000 
annually reported cases globally [1]. In addition to this goal, 
there is a global 2030 elimination goal (zero transmission). In 
2016 there were <2200 reported cases of gambiense HAT com-
pared to >25 000 in 2000 (http://apps.who.int/neglected_dis-
eases/ntddata/hat/hat.html). The related infection, rhodesiense 
HAT, constituted just 3% of human infections in 2014 [1], but 
the zoonotic nature of transmission is considered to make 

interruption challenging and consequently it is not currently 
targeted for elimination, nor examined further in this study.

Current gambiense HAT treatments are specific to disease 
stage and have significant side effects. Therefore, at-risk popu-
lations must be screened and the presence of the parasite con-
firmed before being treated. Adherence to screening programs 
is known to be highly heterogeneous within targeted commu-
nities. Both anecdotal observations [2] and model inference [3, 
4] suggest that particular demographic groups, such as those 
working away from the village during screening days, are both 
at higher risk of infection and less likely to be screened, poten-
tially forming a human reservoir of infection, reducing the 
impact of active screening campaigns [5, 6].

Other forms of reservoir may also exist. While multiple ani-
mal species have been found to harbor trypanosomes, their role 
within the transmission cycle remains unclear [4, 7, 8]. Recent 
studies have also suggested that a nonnegligible proportion of 
infected individuals may tolerate infection without developing 
symptoms or detectable levels of parasites in their blood [9–11]. 
These asymptomatic individuals could be a plausible driver of 
the persistence and reemergence of HAT in low-prevalence foci 
where an animal reservoir is unlikely.

With these multiple complexities affecting the impact of 
interventions, there are open questions about whether the 
2020 and 2030 targets can be reached using existing strategies. 
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Modeling studies have suggested that, in many areas, current 
control measures using standard medical-only strategies lead 
to a sustained reduction in transmission [4, 12]; however, to 
reach the 2030 goal of zero transmission, additional interven-
tions will likely be needed, particularly in areas of persistent 
transmission [5, 12].

This article explores 3 additional interventions that are cur-
rently available but have not typically been integrated into HAT 
strategies: vector control, enhanced passive surveillance, and 
targeted active screening. We first highlight results from previ-
ous modeling studies on the effectiveness of these strategies and 
then use 4 state-of-the-art models to explore the potential of 
these strategies in high- and low-transmission settings.

Insights From Previous Modeling Studies

Two medical interventions are core components deployed in 
many HAT-affected areas:

1) Passive surveillance: Self-presentation by HAT-infected 
people to medical facilities. Infections are generally 
detected during stage 2 disease—when symptoms are 
more severe and specific to HAT.

2) Active screening: Mobile teams screen and diagnose HAT 
patients in at-risk locations. Once detected, patients travel to 
medical centers for treatment. In this study it is assumed that 
30% of the population is screened each year. Models including 
population heterogeneity in exposure to tsetse assume that 
only low-risk people are screened under this intervention.

In addition there are 3 main interventions (Figure 1) that are 
the focus of this comparative analysis and have been modeled 
in previous studies:

3) Enhanced passive surveillance: People self-present; how-
ever, the time to detection can be reduced by improved 

access to HAT diagnostics. The present study assumes that 
this doubles the detection rate, although realistic increases 
have not yet been quantified.

4) Targeted active screening: This improves active screening 
by increasing the population coverage from 30% to 60% 
annually. Mobile teams are also assumed to target both 
high- and low-risk people equally. This should not be con-
fused with reactive screening (not modeled here), which 
refers to active screening in a given location following 
detection of a case by passive screening.

5) Vector control: This is assumed to reduce the tsetse pop-
ulation by 60% after 1 year by using tiny targets to attract 
and kill flies.

First, insights from previous modeling studies on these add-
itional interventions are reviewed, before performing new 
analyses comparing these strategies using different modeling 
frameworks.

Vector Control

Vector control has considerable potential in reducing transmis-
sion but is not currently a main strategy for HAT elimination. 
Although vector control does not reduce the disease burden in 
humans already infected, it reduces biting on all hosts and can 
complement medical interventions. Mathematical modeling 
of various vector-borne diseases shows that vector targeting 
can be highly effective in reducing transmission [13–15] and 
does not need to completely eliminate the vector to interrupt 
transmission.

For HAT, tsetse populations have been reduced by at least 
80% in various scenarios using “tiny targets” [3, 16, 17]. These 
are typically more cost-effective than other tsetse control meth-
ods such as large targets, aerial spraying, and sterile insect 
release [18, 19] and so modeling studies have often focused on 

Figure 1. Schematic of the human African trypanosomiasis transmission cycle, showing baseline medical interventions (A) and complementary interventions using cur-
rently available tools considered in this study (B) (adapted from [30]). A, Baseline interventions: passive detection of infected individuals via medical facilities (purple), and 
active screening (blue). Models with high- and low-risk people assume that high-risk people receive more bites from tsetse (thicker arrow) and only low-risk people are 
actively screened. B, Additional interventions: (1) Tsetse control (red) directly impacts all transmissions; (2) enhanced passive surveillance improves access and detection at 
health facilities (purple); (3) targeted active screening improves uptake of active screening campaigns and high-risk people are assumed to participate equally to low-risk 
people (blue). In some model variants, animals act as a sink to tsetse bites but do not contribute to transmission (dashed arrow).
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this control. In the Boffa focus of Guinea, the introduction of 
tiny targets in 2012 resulted in a reduction of both tsetse density 
(80%) and disease prevalence in targeted vs nontargeted areas 
[16]. Modeling indicated that expanding vector control across 
Boffa would be very effective for locally achieving elimination 
goals even with a reduced frequency of active screening, includ-
ing interruptions that occurred during the Ebola outbreak in 
2014–2015 [8]. In the Mandoul focus of Chad, tiny targets were 
introduced in 2014, leading to a substantial decline in tsetse 
abundance (99%) and reductions in cases detected by both 
active and passive screening. A  model of HAT transmission 
indicated that 70% of the case reduction between 2013 and 2015 
may be attributable to vector control [3].

The country with the highest HAT burden, DRC, has not yet 
incorporated vector control into its national strategy. A  field 
trial in Yasa-Bonga health zone (former Bandundu province) 
has indicated that tiny targets have the potential to reduce fly 
populations by approximately 80% in this region (S. Torr, per-
sonal communication). While medical interventions appear 
to have greatly impacted transmission throughout the region, 
in some areas, such as Kwilu and former Equateur province in 
DRC, modeling predicts that this strategy alone is not sufficient 
to meet the full elimination target by 2030 [4, 12]. In these areas, 
projections from 2 different families of model suggest that even 
moderately effective vector control (60% vector reduction) 
would be highly effective at reducing transmission, and could 
help these regions to achieve elimination by 2030 [5, 12].

Dynamic transmission models have been integrated into eco-
nomic frameworks to evaluate the cost-effectiveness of vector 
control. They suggest that, in high-transmission settings, elimin-
ation was likely and cost-effective only when vector control was 
integrated to the control strategy. However, in low-transmission 
settings, vector control was not found to be cost-effective [6, 20].

Enhanced Passive Surveillance

Passive surveillance, a core component of HAT strategy, enables 
the diagnosis and treatment of symptomatic patients, reducing 
disease burden and mortality. In DRC, approximately 50% of 
cases are detected passively [21]. Correctly identifying and treat-
ing HAT cases remains complex due to, among other things, the 
nonspecific presentation of symptoms in early infection, lack of 
awareness by healthcare workers and patients [22], and scarcity 
of diagnostics in local health facilities [23]. Recently, in foci in 
Uganda, Chad, Côte d’Ivoire, Guinea, Nigeria, DRC, and Angola, 
efforts have been made to improve access to diagnosis and treat-
ment by equipping health facilities with both rapid diagnosis 
tests (RDTs) and confirmatory diagnostics (https://www.finddx.
org/ntd/hatprojects/implementation-of-hat-diagnostics/), with 
the aim of improving population coverage and time to diagnosis.

Modeling studies have evaluated the potential impact of 
an enhanced passive strategy. One study simulated enhanced 
passive surveillance by increasing the detection rate 2-fold to 

mimic the new RDT strategy that was implemented in Chad in 
2015 [3]. The results suggest that RDTs led to an increase in case 
detection and reporting in 2015, although in subsequent years, 
the associated reduction in transmission leads to the same or 
fewer cases being reported.

Targeted Active Screening

Infectious diseases generally have highly heterogeneous risk, 
and increases in the efficacy of control can be achieved by tar-
geting the higher-risk groups [24]. For HAT, there is evidence of 
persistent underrepresentation of the same groups at screening 
[2], suggesting that current active screening methods are likely 
suboptimal and may often not include those that are most at risk. 
Therefore, the efficacy of active screening campaigns may be 
improved by reducing systematic nonparticipation, potentially 
by mini teams who screen from house-to-house rather than in 
the village center. A door-to-door mobile screening strategy in 
Côte d’Ivoire was found to detect significantly more HAT cases 
than standard active screening [11]. Previous modeling studies 
have shown that targeted screening, resulting in increased cover-
age of high-risk groups, could lead to a greater chance of HAT 
elimination in some high-endemicity settings [5, 6].

One key element often missing from model-based predic-
tions and analysis is sensitivity analysis to model formula-
tion, and the different disease-specific heterogeneities that are 
included. Previous studies have highlighted how a comparison 
of different model predictions can be highly informative, espe-
cially in terms of developing policy-relevant consensus [12, 25]. 
Here we bring together 4 different models and investigate areas 
of agreement and uncertainty.

METHODS

Four state-of-the-art mathematical models, labeled models I, 
S, W, and Y (see details in the Supplementary Materials) are 
used to illustrate the impact of vector control, enhanced pas-
sive surveillance, and targeted active screening on transmission 
in high- and low-risk settings. Baseline strategies, consisting of 
both passive surveillance and active screening by mobile teams 
covering 30% of the population each year, were assumed to 
occur in 2000–2017, followed by the strategies in Table  1 for 
2018–2030. These additional strategies are compared by sim-
ulating the reduction in new infections (2018–2030) as well 
as the probability of local elimination, defined here as <1 new 
infection per million individuals per year.

RESULTS

The models agreed that the baseline strategy would not be suf-
ficient to meet elimination by 2030 in all high-risk and many 
low-risk settings, suggesting that pursuing improved interven-
tion strategies would be beneficial (Supplementary Table  2). 
All 4 models agreed that a sustained 60% tsetse reduction can 
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greatly affect transmission of HAT and would very likely lead to 
the 2030 elimination target in both high- and low-risk settings 
(Figure 2 and Supplementary Figures 5–7).

In the absence of additional vector control, doubling the 
passive case detection rate may lead to elimination in low-risk 
areas, but not in high-risk settings (Figure 2 and Supplementary 
Figures 5–7). However, there was considerable variability 
between model predictions (Figure  2 and Supplementary 
Figures 5–7), caused by differences in model structure (eg, 
whether the population is partitioned into high- and low-
risk groups), model assumptions (eg, whether stage 2 disease 
is infectious) and baseline parameterization (Supplementary 
Table  1). The 2-fold increase was chosen in this study as an 
example; however, it is currently unclear what relative increase 
may be possible. In some regions, the number of health facilities 

with HAT diagnostics has recently increased substantially (37-
fold in Uganda and 18-fold in South Sudan [26, 27]), although 
the resulting increase in detection rate remains unknown.

Improvements in the number (and the targeting in models S 
and W only) of participants screened worked well in low-risk 
settings, leading to elimination by 2030 (Figure 2). Elimination 
was not predicted in high-risk settings, except by model S, des-
pite the strategy averting a large number of new transmissions 
in many instances. Models S and W were particularly optimistic 
about a targeted active screening strategy due to their estimated 
importance of transmission from high-risk groups.

Model Comparison

For all models, vector control always averted more infections 
than the other strategies considered. This result echoes other 

Figure 2. Results of model simulations in high-risk (A) and low-risk (B) settings for 3 strategies including either vector control (60% reduction in tsetse population), 
enhanced passive surveillance (double the detection rate), and targeted active screening (double the coverage, including screening high-risk groups). Percentages below 
boxes denote the probability of a strategy leading to elimination (<1 transmission per 1 000 000 population) by 2030 for each model. This figure, which displays percentages 
rather than absolute numbers of infections averted, takes into account the variability between models in the baseline number of new infections expected.

Table 1. Strategies Under Consideration (2018–2030)

Interventions

Strategy Name

Baseline (2000–2017) Vector Control Enhanced Passive Surveillance Targeted Active Screening

Basic passive detection rate Y Y Y

Passive detection rate doubled Y

30% active screening Y Y Y

60% active screening (with equal coverage of low- 
and high-risk people)

Y

Tiny targets with 60% tsetse reduction after 1 year Y
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vector-borne disease modeling [28], where targeting vectors 
has a nonlinear impact. The 4 models predicted that local elim-
ination would very likely be reached by 2030 if vector control 
was continuously implemented from 2018, even with moderate 
efficacy (Figure 2 and Supplementary Figure 5).

There was discrepancy between models over the next best 
strategy, reflecting different model assumptions and differences 
in underlying parameters: Models S and W concluded that tar-
geted active screening always averts more transmissions than 
enhanced passive surveillance, whereas model I  found the 
converse; for model Y the prediction intervals overlap. None 
of the models found it possible to achieve local elimination by 
2030 using enhanced passive surveillance in high-risk settings 
and only model S found it possible using targeted screening, 
although these interventions might be sufficient in some low-
risk settings. It is noted that the success in local elimination 
depends on how this concept is defined; given that the models 
are all deterministic, local elimination was defined as <1 trans-
mission event per million individuals per year. For a weaker 
definition (<1 transmission event per 100 000 individuals), all 
models had some low-risk simulations that resulted in elimin-
ation for the baseline strategy alone (Supplementary Table 2). 
True elimination can only be assessed through stochastic sim-
ulations that recognize the individual nature of the populations 
and the risk of external imports of infection.

Both improved medical strategies considered for this study 
are likely to depend on the behavior of the population (eg, 
whether high-risk people are actively screened and the utiliza-
tion of RDTs in health facilities). Population-level heterogenei-
ties are incorporated in different ways in the different models, 
which partly explains the varying outcomes for the 2 medical 
interventions.

DISCUSSION

Future Strategies and Tools

As HAT prevalence decreases, active screening will likely shift 
toward a reinforced passive surveillance system due to limited 
resources and greater cost-effectiveness. In such situations, a 
reactive screening strategy would be an obvious complement 
and has already been used in parts of Uganda and DRC. This 
strategy could provide an economical way to monitor and treat 
HAT in areas with little ongoing transmission. The optimal tim-
ing of a switch from active to reactive screening is unclear, as it is 
influenced by the strength of the underlying passive surveillance 
system, the risk of imported infection, the presence of other 
control measures (such as vector control), and the relative costs 
of treatment and screening. Therefore it is paramount to moni-
tor availability and uptake of the passive system and to develop 
measures to identify where improvements could be made. As we 
move toward the endgame of HAT elimination, passive surveil-
lance will be a key component of how progress is measured.

Current treatment requires that a lumbar puncture be per-
formed on all patients and that those in stage 2 disease be 
admitted to hospital, which creates barriers for treatment and 
compliance [2]. Orally administered drugs, currently in the 
pipeline (https://www.dndi.org/diseases-projects/portfolio/), 
could drastically change treatment protocols and alter current 
strategies or even the paradigm for HAT strategy within the 
next few years.

Modeling Assumptions

Models were calibrated to be representative of regions of high 
or low transmission, highlighting indicative benefits of inten-
sified strategies rather than matching any particular setting. 
Future model fitting to foci-specific data could help elucidate 
the potential benefits of these and other interventions in a par-
ticular setting. Furthermore, modeling improvements could help 
to understand the effects of land use changes (eg, human behav-
ior, human migration, or tsetse habitat destruction) on disease 
dynamics.

For low-transmission settings in particular, time to local 
elimination and the probability of elimination may be influ-
enced by chance events. Stochastic models will help to refine 
these estimates by explicitly accounting for the likelihood of 
disease elimination through natural failure of transmission 
events. These models could also explore chance and timescales 
of possible recrudescence of disease triggered by lack or loss of 
interventions in conflict areas, importations of new infection to 
locally eliminated foci (eg, by displaced populations), or prema-
ture cessation of an elimination program.

The present study focuses on the impact of interventions 
on transmission and not on reported cases. Although imple-
menting vector control immediately results in fewer new 
transmissions, it may take several years to observe a reduc-
tion in reported cases due to the long timescale of HAT 
infection; for strategies that improve the detection of cases, 
there may be a brief rise in reported cases before this number 
decreases.

In this study a conservative tsetse reduction was used, lower 
than observed reductions in Guinea (80% reduction) [16], 
Uganda (>90%) [17], Chad (99%) [3], and DRC (~80%; S. Torr, 
personal communication). Geographic specificities will impact 
the ease and frequency of target deployment and tsetse popula-
tion response to the intervention.

Likewise, the impact of enhanced passive surveillance and 
targeted active screening has not yet been fitted to data. It is 
nontrivial to assess the relationship between the number/loca-
tion of health facilities with diagnostics/treatment and the 
improvement in time to detection. Hence, predictions can be 
improved by analyzing the observed impact on case report-
ing in regions where these interventions have previously been 
conducted.
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Operational and Financial Feasibility

The model simulations considered constant levels of interven-
tion effectiveness for the different strategies. In reality, this will 
vary geographically and temporally, and will depend on factors 
outside the control of the health system, such as infrastructure 
and political stability.

The results shown here describe the impact of different inter-
ventions in averting infections but do not consider the costs or 
feasibility associated with achieving the assumed coverage level 
of those interventions. For example, the cost of implementing 
tiny targets has been estimated at US$85.4 per km2 per year [18], 
while in Uganda additional health facilities are estimated to cost 
about US$425 per year [29]. A tailored, focus-specific modeling 
approach is likely needed to best capture the local geography, 
operational feasibility, and associated costs of such strategies.

CONCLUSIONS

All models agreed that vector control would consistently avert 
most infections and likely lead to elimination by 2030 in all 
considered scenarios, whereas there was some discrepancy 
over the next best strategy mainly driven by uncertainty in key 
epidemiological processes, such as numbers and infectivity of 
different infected individuals. Targeted active screening and 
enhanced passive surveillance are both predicted to be very 
effective, particularly in low-risk settings, but unlikely to lead 
to elimination in high-risk settings despite averting many add-
itional transmission events.

Models need more detailed, up-to-date data to parameterize 
strategies in different settings to provide the best guidance, as 
the uncertainties in the predictions demonstrate. As new inter-
ventions become available and are deployed, it will be essen-
tial for modelers, field researchers, and the HAT community to 
work together to better understand the effectiveness of inter-
ventions in reducing transmission and achieving elimination.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
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