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Abstract  

The chemical composition of soil from the Glasgow (UK) urban area was used to identify the controls 

on the availability of potentially harmful elements (PHE) in soil to humans. Total and bioaccessible 

concentrations of arsenic, chromium and lead in 27 soil samples, collected from different land uses, 

were coupled to information on their solid phase partitioning derived from sequential extraction data. 

The total element concentrations in the soils were in the range <0.1-135 mg kg-1 for As; 65-3680 mg 

kg-1 for Cr and 126-2160 mg kg-1 for Pb, with bioaccessible concentrations averaging 27, 5 and 27% of 

the total values respectively. Land use does not appear to be a predictor of contamination, however the 

history of the contamination is critically important. The CISED (Chemometric Identification of 

Substrates and Element Distribution) sequential chemical extraction and associated self modelling 

mixture resolution (SMMR) analysis identified three sample groupings and 16 geochemically distinct 

phases (substrates). These were related to Fe (n = 3), Al-Si (n = 2), Ca (n = 3), P (n = 1), Mg (n = 3), 

Mn (n = 1) and easily extractable (n = 3) which was predominantly made up of Na and S. Arsenic, Cr 

and Pb were respectively found in 9, 10 and 12 of the identified phases with bioaccessible As 

predominantly associated with easily extractable phases, bioaccessible Cr with the Mg-dominated 

phases and bioaccessible Pb with both the Mg-dominated and Al-Si phases. Using a combination of the 

UBM to measure the bioaccessibility of PHE and CISED to identify the geochemical sources has 

allowed a much better understanding of the complexity of PHE mobility in the Glasgow urban 

environment. This approach can be applied to other urban environments and soil contamination, and 

made part of land use planning.  
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There is growing concern about concentrations of potentially harmful elements (PHE) in soil, which 

may be present as a result of natural geological processes or as a consequence of anthropogenic 

activities. The latter are particularly important in urban environments where a variety of transport, 

energy, construction industry and waste disposal functions has resulted in soil pollution. PHE are of 

interest because of their possible deleterious effects on human health, and include arsenic (As) (Chen et 

al. 2010), chromium (Cr) (ATSDR 2012) and lead (Pb) (Wright et al. 2008). PHE enter the human body 

from soil through one of three principal exposure pathways: ingestion, inhalation and dermal contact 

(Environment Agency 2009b). As such, many countries around the world have regulatory regimes in 

place to limit the quantity of PHE in soil and restrict human exposure e.g. (DEFRA 2014)).  

 

Deciding whether the risk of adverse health effects from chronic exposure to chemicals in soil is 

unacceptable often requires a Human Health Risk Assessment (HHRA). One aspect of a HHRA 

involves comparing representative soil concentrations with regulatory assessment criteria to determine 

whether a particular land use, e.g. residential is suitable for its intended purpose. In the United Kingdom 

(UK) these criteria are usually referred to as Generic/Site specific Assessment Criteria (GAC/SSAC) 

(Environment Agency 2004, 2009b) or Soil Screening Levels (SSL) (DEFRA 2014). According to 

Nathanail (2005) GAC “should represent contaminant concentrations below which there is no 

unacceptable risk to human health”, these criteria provide a cautious approach to any risk assessment. 

Exceedance of these criteria does not necessarily mean that land is unsuitable for its intended use, rather 

that detailed investigation is required to examine the validity of a potential source, pathway, receptor 

linkage for a given chemical and associated land use (DEFRA 2014; Environment Agency 2009a) 

resulting in the production of SSAC.  

 

To determine the concentration of metals in soils for HHRA, elemental analysis of PHE in soil, almost 

regardless of method, is a relatively expedient (<10 days) and low cost (<£50 / per sample) way to 

measure the total amount contained in a sample. However, such analyses do not account for the 

biological or chemical availability of the elements, thereby potentially overestimating the risk and 

leading to unnecessary remediation or blighting of land that would otherwise be developable (CIEH, 

2009). Biological and chemical availability of soil contaminants to humans are proportional to the total 

concentration present in a given sample. Human oral bioaccessibility is the concentration of a chemical 

compound dissolved from the soil into solution within the gastro-intestinal compartment and is 

potentially available for uptake by absorption (Wragg et al. 2011). Human oral bioavailability is the 

fraction of a chemical compound in soil that, once solubilised, is absorbed across gastro-intestinal 

epithelial cells and is available for distribution to internal target tissues and organs (Denys et al. 2012). 

Assessment criteria derived using bioaccessibility data for the ingestion pathway in the UK, are an 

effective basis for reducing conservatism in risk assessment, and over the past decade or so have gained 

broad regulatory acceptance (Environment Agency 2009b; Nathanail et al. 2005). In vivo bioavailability 



As, Cr, Pb apportionment Glasgow soils 

 

data are expensive and raise important ethical issues (Denys et al., 2012; Wragg et al. 2011), so in 

response, in vitro bioaccessibility tests have been developed, which, although costlier than analysis of 

the total PHE, assist in providing a surrogate for in vivo bioavailability data. Although either 

bioavailable or bioaccessible data can be used in risk assessment, these measures do not provide 

information on the solid phase fractionation of elements in soil (often described as chemical 

availability). This information is important as it can lead to improvements in the understanding of how 

and why elements are biologically and chemically accessible, assisting with risk-based land 

management by providing an additional line of supporting evidence to the decision making process 

when development of contaminated land for human use is being considered (Denys et al. 2012; Farmer 

et al. 1999; Wragg and Cave 2012). 

 

The chemical availability of contaminants in soil is often determined using sequential chemical 

extractions (Cave et al. 2004). Such methods are used to characterize the solid phase fractionation of 

elements in soils and sediments and use a series of increasingly aggressive reagents (Bacon and 

Davidson, 2008) or more recently, by some workers (Reis et al. 2014; Wragg and Cave 2012; Wragg et 

al. 2014a), using a sequence of acid extractions of increasing strength. The elements of interest in soil 

are distributed amongst a series of physico-chemical phases of the matrix, that can be classed as: 1) 

exchangeable fraction; 2) specifically adsorbed fraction and those associated with carbonates; 3) Fe and 

Mn-oxides; 4) organic matter and sulphides; and 5) mineral lattice (Cave et al. 2004). Sequential 

extraction methods can generate a large amount of data that needs processing in order to assist with the 

interpretation of the results. This can require a combination of analytical and statistical techniques to 

collectively produce results that can be used to describe the soils under investigation. One such method 

is the Chemometric Identification of Substrates and Element Distributions (CISED) and its associated 

Self-modelling Mixture Resolution Algorithm (SMMR) (Cave et al. 2004). Bacon and Davidson (2008) 

provide a review of the CISED method which has been used to assist with understanding the solid phase 

distribution of elements in soil (Cave et al. 2004; Giacomino et al. 2011) and explain the possible solid 

phase associations of the bioaccessible portions of a number of PHE in soil including As, cadmium 

(Cd), Cr, nickel (Ni), Pb and antimony (Sb) (Gal et al. 2007; Gal et al. 2006; Wragg et al. 2014a; Wragg 

and Cave, 2012; Wragg et al. 2011).  

 

The aim of this study was to determine the solid phase distribution of As, Cr, and Pb to improve 

understanding of the controls on the bioaccessibility of these PHE in Glasgow soils. 
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1 Materials and Methods 

1.1 Sampling Location 

Glasgow is Scotland’s largest city with a population of around 600,000 covering an area of 

approximately 180 km2 (National Records Scotland 2016). The city has a long history of heavy industry 

which has left a legacy of polluted soil (Ajmone-Marsan et al. 2008; Davidson et al. 2006; Farmer et al. 

1999; Farmer and Lyon 1977; Fordyce et al. 2005; Fordyce et al. 2017; Fordyce et al. 2012; Gibson and 

Farmer 1983 ; Madrid et al. 2006) that is also typical of many other industrial cities world-wide (Johnson 

et al. 2011; Sharma et al. 2015). Principal activities that have led to this in Glasgow include mining for 

coal, minerals or aggregates, and heavy industry such as ship building, steel and iron manufacturing, 

railway engineering, car manufacturing, transport (particularly the use of leaded petrol during the 20th 

century), energy generation and, until the 1960s, the world’s largest chromite ore processing plant 

(Farmer et al. 1999; Fordyce et al. 2017; Fordyce et al. 2012). The disposal of chromite ore processing 

residue (COPR) from the chromite plant to landfill has led to localised pollution with Cr concentrations 

of up to 15,600 mg kg-1 reported in soil in Glasgow (Bewley et al. 2001; Farmer et al. 1999).  

 

Fordyce et al. (2017) report ranges in total concentration for As (<0.9 – 850 mg kg-1), Cr (34 – 5334 mg 

kg-1) and Pb (12 – 9937 mg kg-1) in 2333 urban topsoils collected across the Glasgow conurbation as 

part of the British Geological Survey (BGS) Geochemical Baseline Survey of the Environment (G-

BASE) Programme. As a result of urban pollution, median Cr (102 mg kg-1) and Pb (125 mg kg-1) 

concentrations are significantly elevated in urban topsoils relative to rural topsoil medians for Scotland 

(Cr 41 mg kg-1; Pb 23 mg kg-1; Paterson 2011). Arsenic was not determined in Scottish rural soils 

(Paterson 2011). Topsoil Cr concentrations are higher than most other UK cities as a result of the history 

of chromite ore processing in the city (Fordyce et al. 2005; Fordyce et al. 2017). In contrast, Fordyce et 

al. (2005) report that topsoil As concentrations in Glasgow are lower than other UK cities (median range 

10-53mg kg-1). The median Pb concentration in Glasgow falls within those reported (40 – 225mg kg-1) 

for the other UK studies considered by Fordyce et al. (2005). Comparison of As, Cr and Pb 

concentrations in Glasgow soils with HHRA criteria indicated exceedances for Cr. Following possible 

health concerns about Cr in particular (Farmer and Jarvis 2009), methods to assess soil bioaccessibility 

were optimised for Cr to inform HHRA. These included application of the Unified Barge Method 

(UBM) (Denys et al. 2012) and CISED (Chemometric Identification of Substrates and Element 

Distributions) (Cave et al. 2004) methodologies to selected soils from Glasgow. Whilst the primary 

focus of these investigations was Cr, the bioaccessibilities of As and Pb were also determined. The 

results of the UBM bioaccessibility assessments for Cr and Pb have been documented previously 

(Appleton et al. 2013; Appleton. et al. 2012a and b; Broadway et al. 2010; Farmer et al. 2011).  
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1.2 Sample Selection, Collection and Preparation  

1.2.1 Sample Selection 

The 27 soils used in this study comprised 21 samples selected from those collected in 2001/2002 as part 

of the BGS G-BASE survey of the Glasgow area (Fordyce et al. 2017; Fordyce et al. 2012) and six 

collected in 2005 from locations in areas previously identified as at least potentially contaminated with 

Cr from chromite ore processing residue (COPR) disposal (Broadway et al. 2010). The 21 samples in 

the former group were selected on the basis of G-BASE sites where previous X-ray fluorescence (XRF) 

analysis had shown the total concentration of any one of Cr, Pb and As exceeded the UK soil assessment 

criteria adopted at that time for the observed land use (e.g. gardens and recreational land) with a high 

potential for contact with the human population, especially children. These included one sample in 

Muirend from a sportsground known to be impacted by COPR waste (Broadway et al. 2010). The 

locations of and a fuller description of the sampling sites are given in Figure 1 and Table 1, respectively. 

The pH of the soils ranged from 3.8 to 7.7 (mean 5.3±0.8) and the total organic carbon content from 

7.7% to 30.5% (mean 15.8±5.6%) (Broadway et al. 2010). Samples were collected from sites with six 

different land uses (Table 1). 

 

1.2.2 G-BASE Sample Collection 

At each site, a sample comprising a composite of <2 mm topsoil from 5-20 cm depth from the corners 

and centre of a 20 x 20 m square was collected using a hand held Dutch auger and then analysed for its 

total element concentration according to standard G-BASE procedures (Fordyce et al. 2005; Fordyce et 

al. 2017). Excess sample material was stored under ambient conditions in the BGS National Geoscience 

Data Centre. Subsamples of BGS G-BASE archive <2 mm topsoil material were selected for the present 

study and further sieved to <250 μm as this fraction is considered to be the largest fraction that will stick 

to the hands of children (Denys et al. 2012).  

 

1.2.3 Cr-contaminated Site Sample Collection 

At each site, a single composite soil sample was collected. A composite sample consisted of three 

individual flights collected with a hand-held Dutch auger from the corners of a 2 m equilateral triangle 

(Broadway et al. 2010; Palumbo-Roe et al. 2005). As with the G-BASE sampling procedure, only the 

surface soil (5-20 cm) was collected.  

 

1.2.4 Sample Preparation 

The soil samples were oven-dried at 35±2 °C. Each dried coarse sample (including the 21 <2 mm G-

BASE samples) was gently disaggregated by hand with a porcelain pestle and mortar to ensure the 

breakage of aggregates, but not clasts, and the disaggregated sample then sieved to <250 μm for the 
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determination of human oral bioaccessible concentrations. Sub-samples (~10 g) of the <250 μm fraction 

were milled for mixed acid total digestion.  

 

1.3 Laboratory Analysis 

1.3.1 Total Element Concentrations  

The total elemental composition of the 27 soils was determined by Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP-OES) following acid digestion (HNO3/HF) using a modified version of 

USEPA Method 3052 (USEPA 1995) previously described in full by Broadway et al. (2010). A 

digestion run consisted of six soil samples (in duplicate), one reference soil, (the Czech Metrological 

Institute sample number 7002 (CMI 7002)), and a reagent blank. The total element recoveries of CMI 

7002 were within ± 10% for As, Cr, and Pb and results for blank extractions were all less than the 

respective detection limit. 

 

1.3.2. Soil Mineralogy 

X-Ray Diffraction (XRD), using a Bruker-AXS D8 Advance with Cu Kα X-Ray tube with data 

identification using DIFRACplus EVA software, was used to provide qualitative mineralogical evidence 

to support the identification of solid phase hosts of PHE in the soils.  

 

1.3.3 Human Oral Bioaccessible PHE 

The UBM (Denys et al. 2012), an in vitro method to simulate physico-chemical conditions in the human 

gut, was used to measure the concentration of soil PHE that is accessible to humans after accidental soil 

ingestion. Simulation of the gut is carried out by way of a three-stage sequential extraction that 

approximates physiologically and chemically relevant conditions in the human gastro-intestinal system 

(e.g. temperature, transit times though the gut, gut fluid composition and pH). The UBM procedure used 

to determine PHE bioaccessibility in this study has been previously fully documented (Broadway et al. 

2010; Farmer et al. 2011). Other studies (Okorie et al. 2011; Pelfrene et al. 2011; Reis et al. 2014; 

Roussel et al. 2010; Wragg et al. 2014a; Wragg and Cave 2012; Wragg et al. 2011) have applied the 

methodology across Europe and North America as it has been developed and validated. . 

 

1.3.4 CISED Extractable PHEs 

The number and composition of soil geochemical phases, potentially hosting the PHE of interest (As, 

Cr, Pb), in the 27 soils were identified using the CISED method. The CISED is a non-specific sequential 

extraction method that uses increasing concentrations of Aqua Regia (AnalaR grade: 70% HCl:30% 

HNO3) to extract the geochemical phases of a soil and identify the distribution of PHE of interest (e.g. 
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As, Cr and Pb) therein. The practical application of the CISED has been previously described by Wragg 

and Cave (2012). The ease of extraction of individual geochemical phases is related to their chemical 

composition and the stage in the CISED where it is extracted (e.g. at high or low acid strength), 

providing an indication of the environmental mobility of (for this work) As, Cr and Pb. The advantages 

that this non-specific extraction affords over traditional sequential extractions, its application to soil 

samples and the methodology for naming the geochemical phases have been previously described in 

full (Cave et al. 2004). For this study, a total of 378 extracts were generated (14 extracts per soil (n=27) 

and analysed for >20 elements. The resulting multi-element data are resolved into the individual 

geochemical phases, some of which act as hosts for PHE, using a SMMR (self-modelling mixture 

resolution) algorithm, programmed and executed in the Matlab© programming language (Cave 2008).  

 

1.4 Data Presentation and Statistical Analysis 

To derive a common set of soil components for the Glasgow area, the SMMR algorithm was applied to 

a combined multi-element dataset for the 27 soils, rather than resolving the data for each individual soil 

(Wragg and Cave 2012; Wragg et al. 2014b). The CISED results are summarised by plotting the amount 

of each component in the different test soils with the stage in the sequential extraction process that the 

component was released and, separately, identification and quantification of the amount of PHEs of 

interest in each component. Cluster analysis was undertaken (section 2.4), using Matlab © to rationalise 

and visualise the number of identified components into broader physico-chemical groupings (Clusters) 

in a consistent manner to simplify discussion and visualisation (Wragg et al. 2014b). Statistical analysis 

and subsequent figure generation was carried out using Matlab © (Figure 6) and R (R Core Team 2016) 

(Figures 2,3,4,7,8 and 9). 

 

2 Results and Discussion 

2.1 Soil Mineralogy 

XRD analysis of the soils identified a number of common soil-forming constituents: quartz, anorthite, 

kaolinite, calcite, hematite, chlorite, muscovite, goethite, dickite and greenalite. Each individual sample 

contained a varied combination of these reflecting underlying soil parent materials and land use 

(Broadway 2008). Mullite, a rare mineral used as a refractory material e.g. in furnace linings, was found 

in Sample 3. The source of this mineral is unknown as it was collected from a residential grass area/road 

verge with no previous industrial land use.  

 

2.2 Total As, Cr and Pb Concentrations in Glasgow Soils 

The results of elemental analysis in the soils have been previously described (Appleton et al. 2012a and 

b; Broadway et al. 2010; Farmer et al. 2011). In summary, the total elemental concentrations in the soils 
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were in the range <0.1-135 mg kg-1 for As; 65-3680 mg kg-1 for Cr and 126-2160 mg kg-1 for Pb (Table 

1). In statistical analysis it is generally accepted that a minimum of five samples are required to establish 

a data distribution (Stockburger 2001). In the current dataset, several land use classes contained less 

than five soil samples and the small sample set precluded the calculation of robust estimates of 

statistically significant relationships between soil element concentration and land use. However, from 

visual inspection of the reported element concentrations in Table 1 and Figure 2, it is clear that the 

highest total As and Pb concentrations are recorded in some of the residential grass areas, sports ground 

and domestic garden soils. This may reflect the presence of artificial ground used for landscaping 

residential grass areas and sports grounds and, in the case of Pb, the proximity to road verges in several 

of the residential grass areas. The higher values in some garden soils are possibly the result of the 

application of domestic coal ash as a soil conditioner (Fordyce et al. 2017; Fordyce et al. 2012).  

 

Highest total-Cr concentrations are recorded in samples 20 and 24 collected from sports grounds in 

Rutherglen and Muirend and sample 19 from an industrial site in Rutherglen, all within areas known to 

be impacted by COPR waste (Table 1 and Figure 2). (Broadway et al. 2010) reported Cr(VI) 

concentrations of 1485, 171 and 23 mg kg-1 Cr(VI), respectively in these soils, indicating the strong 

influence of COPR, particularly in Samples 20 and 24, with Cr(VI) amounting to 40% and 26%, 

respectively, of the total Cr.  

 

2.3 Human oral bioaccessible As, Cr and Pb by the UBM  

The bioaccessibility of Cr, Pb and As respectively in the Glasgow soils used in this study has been 

previously described in detail (Appleton et al. 2013; Appleton et al. 2012a; Broadway et al. 2010; 

Farmer et al. 2011). In general, higher bioaccessible As, Cr and Pb concentrations are reported in 

samples with a greater total concentration of these elements. Bioaccessible As, Cr and Pb are referred 

to as B-As, B-Cr and B-Pb in the following discussion. 

 

Where the data were above the instrumental limit of detection (Cr: 3 and 5 mg kg-1 in the stomach and 

intestine compartments respectively, As: 6 and 5mg kg-1 in both compartments respectively and Pb: 5 

mg kg-1 for both compartments), the bioaccessible fraction (BAF) of each PHE in the soils was 

calculated as a percentage of the total concentration using the highest value obtained from the G or GI 

phase (Table 2). The mean % BAF of As (GI) was 35.6±11.1% ranging from 16-48%, 7.6±7.6% (3-

31%) for Cr (G) and 52±13.4% (23-77%) for Pb (G). Analysis of variance on the three BAF populations 

shows a significant difference between all three elements.  

 

These results are broadly comparable with those reported in a separate study (Sialelli et al. 2010) for 20 

Glasgow soils (Cr intestine phase 5 - 29%; Pb stomach phase 21 – 44%) despite differences in sampling 
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approaches (including sample locations) and extraction methodologies compared to this study. The % 

BAF is relative to the total and bioaccessible concentrations. Sialelli et al. (2010) used a HCl:HNO3 3:1 

acid digestion to determine the total elemental PHE concentration, which is less aggressive than the 

HF/HNO3 digestion used here (resulting in possible lower total concentrations) and a bioaccessibility 

method with different pH, chemical composition, extraction time and agitation methods compared to 

the UBM.  

 

Bioaccessible soil PHE concentration is shown in Figure 3 stratified by land use type. Detectable B-As 

is present in only nine of the samples, mainly those from residential grass area and sports ground land 

use types. A river walkway in an industrial site (Sample 21), samples collected close to road verges 

from a domestic garden (Sample 9) and a school playground (Sample 13) (Table 2) also contain 

quantifiable B-As. Bioaccessible As was not detected in many parkland soils and the soil collected from 

industrial land in Rutherglen (Sample 20; Table 2). Bioaccessible Pb was measurable in all the soil 

samples, with highest values reported in residential grass area soils over artificial ground and in a 

domestic garden (Sample 7; Table 2). The higher B-As and B-Pb in residential garden and grass areas 

reflect the higher total content of these elements in these samples. Detectable B-Cr was reported in 15 

of the soils only, from a variety of land use types (Table 2). The highest B-Cr was recorded in the two 

soils impacted by COPR waste from Rutherglen and Muirend (Samples 20 and 24; Table 2 and Figure 

3). It was demonstrated that this was related to the greater Cr(VI) content in these samples (Broadway 

et al. 2010). Comparison of the % BAF results between the samples (Table 2 and Figure 4) indicates 

that a greater proportion of Cr is bioaccessible in these two COPR-influenced soils, than in soils from 

other land use types. With the exception of these two samples, the % BAF Cr (5±2%) is similar in the 

other soils regardless of land use type. Similarly, there are no consistent relationships between % BAF 

As and land use or between land use and the presence or absence of detectable soil B-As or B-Cr (Table 

2 and Figures 3 and 4). The % BAF for Pb shows a similar range over all land use types (Table 2 and 

Figure 4).  

 

The results suggest that with the exception of the COPR-impacted samples, land use per se is not a 

controlling factor on element bioaccessibility. To better understand likely influences on element 

bioaccessibility in the soils, the CISED approach was adopted to determine the likely solid phases 

hosting As, Cr and Pb in the soils and their relative mobility.  

 

2.4 Chemometric Identification of Substrates and Element Distributions  

The summed concentrations of As, Cr and Pb associated with the 14 extracts of the CISED (per soil) 

were compared to the total concentrations to calculate element recovery information and used as a proxy 

for element mobility: As, Cr and Pb recoveries were 12 – 100 %, 5 – 85 % and 66 – 100 %, respectively. 
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The mobility range indicates that all three PHE are mobile across the samples under investigation, with 

Pb mobility being >50% for all of the soils.  

 

To identify the physico-chemical component hosts of As, Cr and Pb in the 27 samples the SMMR 

(developed by (Cave 2008) was applied to the whole data set (rather than on an individual sample basis) 

in a similar manner to previous studies (Wragg and Cave 2012; Wragg et al. 2014b). The data matrix 

comprised of 378 rows of extraction data (14 extracts, 27 soils) for 21 elements. Initial data assessment 

of the SMMR outputs for the 27 test soils indicated three distinct groupings of samples, based on the 

composition of the geochemical phases and the acid concentration required for their removal from the 

soils. Table 3 provides a summary of the samples in each cluster grouping and the mean total 

concentration (mg kg-1) of As, Cr and Pb in each grouping.   

 

Group 1 contains 8 samples whereas Group 2 contains 18 samples. Group 3 comprises the COPR-

impacted sample 20 collected from a known COPR waste site in Rutherglen only (Table 3). The 

geochemistry of this sample is clearly distinct from the rest of the samples in the SMMR. Groups 1 and 

2 both contain soils that were collected across the city. There is no clustering of soils from particular 

sections of the city. Both groups contain soil samples that were collected over Devonian sandstone, 

Carboniferous sandstone, Carboniferous Limestone and Coal Measures geology. However, Group 2 

contains four samples collected over the Clyde Plateau Volcanic Formation. Both groups contain soils 

from a range of land use types and there are no obvious differences in soil texture as reported during 

collection or mineralogical composition as measured by XRD analysis between the two groups. 

 

In terms of the element concentrations in each group, As, K, Na and TOC show similar ranges between 

the two groups of soil samples. Group 2 soils have higher Al, Ba, Ca, Cr, Cu, Fe, Mn, Ni, S, V, Zn and 

pH but lower P and Si than Group 1. This may reflect the inclusion of COPR samples from Rutherglen 

(sample 19) and Muirend (sample 24) in particular (which is known to be COPR impacted) in this group, 

as the COPR is highly alkaline with higher Ca and metal contents. The higher Al, Fe, Mn and V and 

lower Si in this group may also reflect the geochemistry of soils collected over the Clyde Plateau 

Volcanic Formation. However, with the exception of the COPR-impacted sample 20 in Group 3, clear 

spatial, geological, land use or mineralogical reasons for the SMMR groups are difficult to discern. 

 

Comparison of mean total As, Cr and Pb concentration in Groups 1 and 2 shows that higher values are 

related to the Group 2 soils. The single soil in Group 3 (Sample 20; Table 3) is distinguished from the 

Group 2 soils because of the higher total concentration of As and Cr compared to the average for the 

two samples in Group 2, whereas the opposite is true for the total concentration of Pb. 
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The SMMR was individually applied to CISED data matrices after separation into the three groupings 

identified by the cluster algorithm (Table 3). The output information obtained from the separate 

applications resulted in 7, 17 and 5 geochemical phases for Groups 1-3 respectively, each with its own 

extraction profile (amount of the component at extraction points 1-14). The geochemical phases for each 

Group were named according to the previously described procedure (Cave et al. 2015; Wragg et al. 

2014b), which uses the elemental composition (where an element makes up >10% of the physico-

chemical composition). Because the number of identified geochemical phases in each Group, their 

composition and the amount of each in each soil (extracts 1-14) is different, it is difficult to directly 

compare the information. To aid comparison of information hierarchical cluster analysis, using a 

previously described method (Cox et al. 2013; Wragg and Cave 2012; Wragg et al. 2014b), was applied 

to the CISED SMMR data to derive a consistent number of geochemical phases (for further discussion 

named Clusters) across the set of 27 sample soils. Figure 5 is an overview of the data processing, which 

is described in detail below. The composition (Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si, As, Cr, Ni, Pb) and 

extraction profile information for each geochemical phase in each soil was collated, producing a data 

matrix of 366 rows (one for each geochemical phase in the soils (Group 1-3)) and 28 columns (elemental 

composition information and the amount of each geochemical phase (extracts 1-14)). The new collated 

data matrix was subjected to hierarchical clustering, where the data were mean-centred and scaled with 

Euclidean distance, and linkage was determined using Ward’s method. The output, in the form of a 

colourmap (Figure 6), was used as a visual aid to identify clusters of similar geochemical phases with 

respect to their elemental compositions (%) and extraction position where the geochemical phases that 

make up the clusters were extracted during the CISED method (1-14).  

 

2.4.1 Cluster Identification 

Sixteen geochemically distinct clusters were identified in the data set, using the elemental composition 

information from Figure 6 (supported by XRD information) and ordered in relation to their ease of 

extractability (right hand side of Figure 6). Clusters were named according to the position in the CISED 

where they were observed and their elemental composition, e.g. C1 residual pore salts, observed at 

extraction points 1 and 2 containing Na and S; C5, dominated by Ca and extracted on the first addition 

of Aqua Regia (0.01 M). The identified clusters were residual pore water (C1), organic (C2), Mg-

dominated (C4, 14 and 15), and Ca-dominated (C12, 13 and 16). A detailed description of the 16 clusters 

is available in the supplementary information (Table S). Table 4 summarises the median PHE 

distribution (mg kg-1 and % of the total CISED extractable) within the 16 clusters, re-ordered according 

to their extraction position in the CISED (columns 1-14 of Figure 6).  

 

The clusters were grouped, for example, into Fe- or Al-dominated and their abundance calculated. This 

information was used to aid the identification process. Figures 7 and 8 summarise respectively the 
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abundance (mg kg-1) of each cluster type across the whole data set as box and whisker plots and the 

abundance of each cluster, where present, in the three sample groupings identified in section 2.4. In 

general, the most abundant clusters are those associated with Fe, Al, Ca, Mg and P, whereas soil pore 

water, exchangeable, organic and Mn-dominated clusters are less abundant. 

 

As: 

The cluster classed as organic (C2) was the primary host of As (5.03 mg kg-1, 34.6% of the total 

extractable As). On the breakdown of organic components (by the addition of H2O2), any chelated 

inorganic constituents can be released into solution, especially in the presence of metal ions such as 

amorphous Al or Fe oxyhydroxides (Pfeifera et al. 2004). The relatively high As concentration in the 

combined easily extractable clusters (residual pore water + organic + exchangeable) indicates the greater 

mobility of As compared to Cr and Pb (Table 4). 

 

Cr: 

A study  by Davidson et al. (2006) used the 4-step Community Bureau Reference sequential extraction 

method on Glasgow soils. The methodology identifies water/acid soluble and exchangeable, reducible, 

oxidisable and residual soil phases. Davidson et al. (2006) reported that in general, the Cr was 

partitioned across all extractable phases, with the highest proportion of Cr associated with the residual 

fraction. Table 4 indicates that a Mg-dominated phase (C15) was a significant host of Cr (88%) in this 

study using the CISED method, which unlike the study by Davidson et al. (2006), was focussed on soils 

impacted by COPR waste. This phase was extracted later in the CISED extraction using high 

concentrations of Aqua Regia (1.0M – 5.0M), which, is comparable to the 4th step BCR residual phase 

and is therefore in agreement with previous findings. 

 

Pb: 

In a similar study to Davidson et al. (2006) Gibson and Farmer (1986) adopted a 6-step scheme based 

on modifications of several published methods (with phases defined as exchangeable; carbonate bound; 

easily reducible (Mn -oxides and hydroxides); moderately reducible (Fe-oxides); organic; and residual. 

These authors found that Pb was preferentially partitioned into the moderately reducible fraction (51%)> 

with the remainder in the organic (19%), residual (17%), combined exchangeable and carbonate bound 

(13%), and easily reducible (0 4%) fractions of Glasgow soils. Similarly to Gibson and Farmer (1986), 

Davidson et al. (2006) found that a large proportion of Pb was in the reducible phase. This study 

associated Pb with the alumino-silicate phases (48%) and the Mg-dominated phase (41%) (Table 4). 

Since the BCR steps are methodologically defined and the CISED components are defined by the 

chemical composition of the extracts it is not always possible to make a direct comparison between the 

two methods. In this instance, however, the BCR suggests that Pb is associated with the reducible phase, 
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usually linked to Fe/Mn oxides, whereas the CISED method suggests that Fe/Mn oxides are not the 

main host for Pb in the Glasgow soils.  

 

2.5 Relationship between distribution of PHE and bioaccessibility 

Identification of the sources of bioaccessible PHE in the soils from Glasgow used the same approach as 

in other similar studies (Cox et al. 2013; Palumbo-Roe et al. 2005; Wragg and Cave 2012), i.e. by 

relating the cumulative PHE fractionation (row A-C for As, Cr and Pb) in the identified clusters (1-

16)to the bioaccessibility data from the UBM seperated by the sample groupings (Figure 9). The position 

that the cumulative extracted PHE is intersected by the bioaccessibility of each PHE gives an indication 

of the physico-chemical clusters that have been dissolved/digested in the UBM and are likely to be the 

main source of the bioaccessible PHE. 

 

Comparison of As, Cr and Pb bioaccessibility (rows A – C respectively) within the three individual 

sample groups (Figure 9) shows that: 

 Bioaccessible As in all samples in the three groups (Figure 9, row A left to right) is associated 

with the more easily extractable clusters (Groups 1 and 3: Cluster 1 – Cluster 5 identified in 

section 2.4 and supplementary table S1 as Residual Pore Salts, Organic, Exchangeable, Mg-

dominated, Ca-Mg carbonate); Group 2: Cluster 1 (Residual Pore Salts). 

 Cr bioaccessibility is a result of dissolution of Cr (Figure 9 row B left to right) present in all of 

the identified Cr-bearing clusters:  

o Cr bioaccessibility in the samples from Group 1 is a result of the digestion/dissolution 

of the same easily extractable clusters as for As (Clusters 1-5), along with Clusters 6-

10 (see Table 4 for identification). Because the bioaccessibility intersects the 

cumulative extracted Cr between Clusters 15 (Mg-dominated) and 16, one of the Fe-

dominated clusters, it is likely that partial dissolution of Cluster 16 may also be a source 

of bioaccessible Cr (Clusters 11-15 do not act as hosts for Cr). 

o Figure 9 indicates that bioaccessible Cr in Group 2 (row B, column 2) is a result of the 

dissolution of clusters 1 - 11. These comprise the easily extractable (Clusters 1 – 3), 

Mg-dominated (Cluster 4), Ca-dominated (Clusters 5 - 7), Alumino silicates (Clusters 

8 and 9), Mn- and P-dominated (Clusters 10 and 11), and partial dissolution of Cluster 

12 (Fe-dominated). 

o Bioaccessible Cr in Group 3, a sample from Rutherglen contaminated by COPR with 

high ca. 3600 mg kg-1 total Cr (Table 1) is a result of dissolution of Cr associated with 

all Clusters but mainly from Cluster 15 (see Table 4).  
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 For Groups 1 and 2 (row C in Figure 9) the bioaccessible Pb results from the dissolution of 

Clusters 1 - 8 (easily extractable, carbonates, and alumina silicates) and partial dissolution of 

Cluster 9 (alumina silicate, Table 4) with Group 3 associated with the dissolution of Pb from 

Clusters 1-14 and partial dissolution of 15 (the Mg-dominated cluster at higher acid 

concentrations than Cluster 14).  

 

3 Conclusions 

A wide range of total PHE concentrations were observed in 27 topsoil samples collected from a variety 

of land uses across Glasgow that included 7 samples from areas impacted by COPR waste. The average 

total concentrations of As, Cr and Pb were 21.9 (2 – 135), 270 (65 – 3680) and 660 (147 – 1340) mg 

kg-1 respectively.  

 

The measured oral bioaccessibility of As, Cr and Pb in the soils was in general much lower than the 

total concentration. The average percentage of the total concentration was 37.5, 7.6 and 52% for As, Cr 

and Pb respectively; however, the % Cr bioaccessibility was significantly higher in the COPR impacted 

soils. With the exception of the COPR impacted soils, no consistent relationships between the 

bioaccessible As, Cr and Pb and land use per se are evident from this study, however this is likely to be 

a reflection of the limited number of samples in the study. 

 

Using the CISED extraction methodology three distinct groupings of samples were identified. 

Comparison of the average total PHE concentrations in the 3 groups of samples shows the same trend 

for As and Cr Gp1<Gp2<Gp3, whereas the total concentration of Pb was greatest for Gp2 (>Gp3>Gp1).  

 

Subsequent sample clustering and the associated data processing techniques identified a total of 16 

geochemically distinct clusters acting as hosts of As, Cr and Pb in soils collected from Glasgow. Each 

of the clusters had varying degrees of environmental mobility. Nine of the clusters act as host for As, 

with 12 and 10 clusters acting as hosts of Cr and Pb respectively. In general, each PHE had some 

association with the Fe-, Mg-, P-, Al-Si- and P-dominated and carbonate clusters.  

 

The bioaccessibility of As in Glasgow soils is controlled by the dissolution of the more mobile clusters 

(1-5; easily extractable and Ca-dominated). When the data set is taken as a whole Cr bioaccessibility is, 

dependent on the individual sample groupings, related to all of the clusters identified for the Glasgow 

soils. Bioaccessible Cr, in the one sample used as the basis for Group 3 (sample 20), the most impacted 

by COPR and with the highest total Cr content, is controlled by the solubilisation of Cr principally 

associated with all cluster 15 Mg-dominated). Bioaccessible Pb is associated with a range of clusters 
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from easily extractable to moderately extractable mobile (easily extractable, carbonates, clay and Mg-

dominated). 

 

This study highlights the variation of total and bioaccessible PHE concentration across Glasgow. In 

particular, the differences between land use types, sampling location and contamination sources, 

highlight the potentially hazardous nature of some soils in relation to their current and potential future 

land uses. However, land use does not appear to be a predictor of contamination, but is closely linked 

to understanding the historical disposal of COPR in Glasgow. 

 

Using a combination of the UBM to measure the bioaccessibility of PHE and CISED to identify the 

geochemical sources has allowed a much better understanding of the complexity of PHE mobility in the 

Glasgow urban environment. This approach can be applied to other urban environments and soil 

contamination scenarios.  
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Figure Captions 

Figure 1. Map of soil sampling locations in the Glasgow area. Samples 19I, 20S and 24S (highlighted 

in bold) are known to contain COPR. 

Map generated in ArcGIS (ESRI®) geographic information system software 

 

Figure 2. Plot of total As, Cr and Pb concentrations in Glasgow soils stratified by land use type 

G = Domestic Garden (n = 4) I = Industry (n = 2) P = Park (n = 8)  R = Residential 

Grass Area S = Sports Ground (n = 5) SC = School (n = 1)   

 

Figure 3. Plot of detectable bioaccessible As, Cr and Pb concentrations in the Glasgow soil samples 

stratified by land use.  

G = Domestic Garden I = Industry P = Park R = Residential Grass Area S = Sports 

Ground  SC = School 

 

Figure 4. Plot of percentage bioavailable fraction of As, Cr and Pb in the Glasgow soil samples stratified 

by land use. 

G = Domestic Garden I = Industry P = Park R = Residential Grass Area S = Sports 

Ground  SC = School 

See Table 1 for locations of Samples 20 and 24 

 

Figure 5 Overview of data manipulation process to rationalise the geochemical information from the 

CISED extraction 

 

Figure 6 Colourmap and associated dendogram for the combined CISED data matrix data. The 

dendrogram along the left-hand side shows how individual geochemical phases of the three groups link 

together. The horizontal lines divide the colourmap into clusters (indicated by C1-C16) and the vertical 

line separates the element composition data on the left-hand side from the extraction number data on 

the right. A high proportion of each component and an indication of its composition are shown by a 

yellow/orange/red colouration while a low proportion is indicated by a dark red or black colouration. 
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Figure 7 The abundance (mg kg-1) of the cluster types. The number of samples in each cluster are given 

on the boxes. 

 

Figure 8 The abundance (mg kg-1) of the cluster types in the three soil sample groupings (if present). 

The number of samples in each cluster are given on the boxes. 

 

Figure 9 As, Cr and Pb median cumulative extractability using the CISED and the UBM. The CISED 

data are shown by a solid black line and the median bioaccessibility is shown by a dashed black line. 

Rows A - C show the individual As, Cr and Pb extractability in the three soil sample groupings and 

columns 1 - 3 compare the extractability of As, Cr and Pb within each group. 
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Table S1 Detailed description geochemical clusters and groupings 

Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Residual pore 

salts 
C1 

Na (37%), 

S (37%), 

Ca (4%), 

Fe (3%), 

Si (2%), 

K (1%) 

DI 1 & 2 

Extracted by de- ionised water only, this highly 

mobile cluster is likely to be derived from 

residual pore salts 

Organic C2 

S (70%), 

Si (7%), 

Fe (2%) 

DI – 5.0M 2 

The shape of the extraction profile is indicative 

of the presence of humic acid as the cluster is 

initially dissolved in de-ionised water becoming 

insoluble on the addition of acid. As the acid 

concentration increases and H2O2 added, humic 

acid is oxidised and breaks down, to be observed 

in the latter parts of the extraction profile. On 

the breakdown of this component the inorganic 

content of the cluster is released into solution, in 

this case Fe, As and Ni 

Exchangeable C3 

K (30%), 

Mg (11%) 

Ca (8%), 

S (5%), 

Na (4%), 

Mn (2%) 

DI – 0.01M 
1, 2 & 

3 

The cluster only makes a small contribution to 

the total amount of solids extracted by the 

CISED method. Its composition and ease of 

extraction of this component is suggestive that 

the individual components associated with this 

cluster are exchangeable (Rowell 1994). 

 

 

  



Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Mg-

dominated 

C4 

Mg (62%), 

Ca (20%), 

Fe (6%), 

S (4%), 

K (2%) 

DI – 0.05M 3 

The primary hosts of Cr (1398 mg kg-1) in the 27 

soils. This is probably as a result of the presence 

of Mg bearing minerals (e.g. brucite, MgOH2) 

and chromite (Fe, Mg)Cr2O4 which are 

constituents of COPR 

C14 

Mg (53%), 

Al (21%), 

Fe (9%), 

Mn (7%), 

Ca (2%), 

P (1%) 

0.1 – 5.0M 2 

C15 

Mg (45%), 

Al (17%), 

Fe (15%), 

Ca (12%) 

0.01 – 1.0M 3 

 

  



Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Ca-

dominated 

C5 

Ca 90%), 

Mg (6%), 

Si (1%) 

0.01 – 1.0M 

1 & 2 

The composition and ease of extraction identifies 

these as three separate clusters. Although only a 

small proportion of the samples were collected 

from sites containing the highly alkaline (Ca and 

Mg dominated) COPR waste, it has had an 

impact on the mineralogy of these soils. The 

increased acid strength along with the 

composition of C7 has given rise to the name 

‘High Ca-Mg carbonate’. Previous application of 

the CISED extraction to other soils (e.g. (Cave et 

al. 2015)) has revealed that some physico-

chemical components can be bound or 

encapsulated by another component. For 

example, a carbonate component encased by Fe-

oxide would not be extracted until the 

application of higher acid strengths required for 

the dissolution of the Fe-oxide. That being the 

case, C7 is likely to be associated with a more 

acid-stable cluster, in this case possibly C15 or 

C16. The C7 cluster is only found in the Group 3 

soil (Figure 8), the single soil in this group from 

Rutherglen with COPR (with high 

concentrations of Ca and Mg) contamination. 

C6 
Ca (69%), 

Al (7%) 
0.01 – 1.0M 

The PHE were distributed within the combined 

carbonate clusters (C5+ C6 + C7) equating to 

5.86, 4.98 and 1.53 % of the total extractable 

element content. Potential host geochemical 

phases for As in this study are calcium carbonate 

minerals, but the amount of As accounted for 

compared to Fe-oxides is small. It is known, 

however, that As commonly substitutes for P in 

Ca-phosphate mineral phases e.g. apatite 

(Drahota and Filippi 2009; Smedley and 

Kinniburgh 2002). Several carbonate related 

clusters contain Cr (Table 4), a probable result of 

the use of lime in chromite ore processing 

(Hillier et al. 2003). Lead in the Ca-dominated 

phases may be associated with the presence of 

phosphates (Pb-PO4 minerals) and/or carbonates 

e.g. cerussite (PbCO3). A previous study of 

sequential extraction of heavy metals from 

Glasgow soils (Gibson and Farmer, 1986) 

identified that although a large proportion of Pb 

was associated with residual geochemical 

phases, 13% of the Pb was associated with the 

exchangeable and carbonate phases combined. 

C7 
Ca (89%), 

Mg (10%) 
0.01 – 1.0M 3   

 



Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Al-Si-

dominated 

C8 

Al (36%), 

Si (34%), 

Ca (10%), 

Fe (10%), 

Mg, Mn, P 

(1 – 5%) 

DI – 1.0M 2 

Two clusters were identified as alumino-silicate 

materials and make up the third largest cluster 

type e.g. the cluster with the widest range 

(Figure 7). Extraction of both C8 and C9 was 

less well defined compared to the other clusters. 

When combined, the Al-Si dominated clusters 

(C8 + C9) are the primary hosts of Pb and a 

significant host of As (Table 4). Both As and Pb 

can be sorbed onto alumina-silicate minerals in 

soils (Alloway 2013; Goldberg 2002) with Pb 

showing the strong affinity to clays (Bradl 2004). 

C9 

Al (53%), 

Fe (11%), 

P (2%), 

Ca (2%), 

Si (3%), 

Mg and Mn 

(<1%) 

0.05 – 5.0M 1 & 2 

 

  



Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Mn oxide C10 

Mn (40%), 

Al (21%), 

Ca (20%), 

P (4%), 

Si (4%) 

0.1 – 1.0M 1 & 2 

Figure 6 shows that C10 has a high concentration 

of Mn and is first observed on the addition of 

H2O2 (step 7) to the system, a reagent known to 

readily dissolve Mn oxides, providing supporting 

evidence suggesting that C10 is derived from Mn 

oxides. The Mn oxide cluster was host to a small 

proportion 0.01% and 1.88% of the total 

extractable Cr and Pb respectively, but not As. 

This association is a likely result of the metal 

absorbing capability of Mn oxides, in particular 

Pb (Alloway 2013; McKenzie 1980). 

P-dominated C11 

P (65%), 

S (11%), 

Fe (5%), 

Al and Si 

(2 – 3%) 

0.01 – 5.0M 2 

Arsenic and Pb can both substitute into 

phosphate minerals especially apatite, with Pb 

forming phosphate minerals like pyromorphite 

(Alloway 2013). 

 

  



Cluster 

name 

Cluster 

number 

Median 

composition 

(%) 

Aqua Regia 

concentration 

range 

Sample 

groups 
Comments 

Fe-

dominated 

C12 

Fe (43%), 

Al (20%), 

Ca (14%), 

S (6%), 

P (4%), 

Si (2%), 

Mg (2%), 

Mn (1%) 

0.01 – 5.0M 
1, 2 & 

3 

All of the clusters are dominated by the presence 

of Fe with smaller contributions from other 

elements e.g. Al (C16 and C12). C13 is extracted 

over a wider window than C16 and C12, which 

have narrow windows of extraction and observed 

later in the CISED scheme. The differences in 

the extractograms are likely to be a result of both 

physical and chemical differences in the cluster 

components, e.g. the other associated elements 

and the amount of each. The dominance of Fe 

with the mid-high acid strength required for their 

removal indicates that C16, C13 and C12 are 

likely to be Fe-oxides. Two of the clusters 

identified as Fe-oxides (C13 and C16) act as 

hosts for As, Cr and Pb in the soils (Table 4); Cr 

was the only PHE distributed within cluster C12. 

This association of As, Cr and Pb with Fe-oxides 

is shown widely in the literature e.g. Fe-oxides 

form a particularly strong relationship with As 

(Alloway 2013; Goldberg 2002) and Fe-oxides 

exhibit a strong affinity with Cr and exert a 

predominant role on Pb adsorption in soils 

(Bradl 2004). 

C13 

Fe (34%), 

Mn (2%) 

Al (1%), 

P (1%) 

C16 

Fe (77%), 

Al (10%), 

Mg, (3%) 

P (3%), 

S (2%), 

Si (2%) 
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