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Uncertainty quantification for low-frequency, time-harmonic Maxwell equations
with stochastic conductivity models

Dimitris Kamilis∗ and Nick Polydorides

Abstract. We consider an Uncertainty Quantification (UQ) problem for the low-frequency, time-harmonic
Maxwell equations with conductivity that is modelled by a fixed layer and a lognormal random
field layer. We formulate and prove the well-posedness of the stochastic and the parametric prob-
lem; the latter obtained using a Karhunen-Loève expansion for the random field with covariance
function belonging to the anisotropic Whittle-Matérn class. For the approximation of the infinite-
dimensional integrals in the forward UQ problem, we employ the Sparse Quadrature (SQ) method
and we prove dimension-independent convergence rates for this model. These rates depend on the
sparsity of the parametric representation for the random field and can exceed the convergence rate
of the Monte-Carlo method, thus enabling a computationally tractable calculation for Quantities
of Interest. To further reduce the computational cost involved in large-scale models, such as those
occurring in the Controlled-Source Electromagnetic Method, this work proposes a combined SQ
and model reduction approach using the Reduced Basis (RB) and Empirical Interpolation (EIM)
methods. We develop goal-oriented, primal-dual based, a posteriori error estimators that enable
an adaptive, greedy construction of the reduced problem using training sets that are selected from
a sparse grid algorithm. The performance of the SQ algorithm is tested numerically and shown to
agree with the estimates. We also give numerical evidence for the combined SQ-EIM-RB method that
suggests a similar convergence rate. Finally, we report numerical results that exhibit the behaviour
of quantities in the algorithm.

Key words. maxwell equations, uncertainty quantification, sparse quadrature, high-dimensional approximation,
reduced basis method, empirical interpolation, computational electromagnetism

AMS subject classifications. 35R60, 35Q61, 62M40, 65N30, 65D30

1. Introduction. Uncertainty Quantification (UQ) has been applied to a number of prob-
lems with the purpose of identifying and quantifying the uncertainty in the input and output
of models [66, 67]. In the framework of probabilistic characterization of the uncertainty, the
objective is the estimation of statistical Quantities of Interest (QoIs). When the model con-
sists of a partial differential equation (PDE), UQ analysis proceeds using stochastic PDEs
with the input and output described as random fields [1, 51]. Methods for the forward so-
lution and statistical analysis of these stochastic PDEs are reviewed in [41] and include the
Monte Carlo method and its variants [34, 38, 39, 40, 61], the stochastic collocation [70, 4, 68]
and stochastic Galerkin [37, 71, 5] methods.

A general methodology is to reformulate the stochastic problem into a deterministic, count-
ably parametric form with distributed uncertainty, leading to a high or infinite-dimensional
integration problem for the statistical characterization of the input and outputs. Attempts
to approximate these integrals are then faced with the challenge of achieving low computa-
tional costs and fast convergence rates that are affected as little as possible by the curse of
high dimensionality. An approach that can be competitive in this regard, is high-dimensional
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2 DIMITRIS KAMILIS AND NICK POLYDORIDES

polynomial approximation of parametric PDEs, which has been analysed in a number of pub-
lications [28, 27, 26, 6, 24, 25, 29]. The theoretical results show that sparsity or summability
in the parametric representation of the input translates into sparse polynomial approxima-
tions for the output that converge with dimension-independent rates which depend on the
level of sparsity in the input. In practice, one way to construct polynomial approximations
is via interpolation, using evaluations at suitable deterministic sparse grid points [14]. This
approach can be considered as equivalent to the stochastic collocation method. Additionally,
as is known, interpolation gives rise to corresponding quadrature schemes, so sparse polyno-
mial approximation via interpolation leads to Sparse Quadrature (SQ) [65, 63, 62], effectively
discretising the integrals while inheriting the favourable convergence properties. The sparse
grids can be constructed using a priori knowledge of the dependence of the output on the
parametric dimensions or using heuristic dimension-adaptive algorithms [36, 62, 17].

An alternative approximation approach for parametric PDEs is the Reduced Basis (RB)
model reduction method [59, 57, 11], which has been applied to electromagnetism in [46]
for the electric field integral equation, in [10] for the time-dependent case and in [23, 49,
43] for the time-harmonic Maxwell equations. By using greedy algorithms with appropriate
error estimators, RB methods enable the progressive approximation of parametric PDEs with
controlled levels of accuracy and computational cost. Therefore, a promising approach is the
combination of RB model reduction and of dimension-adaptive SQ schemes for the estimation
of the pertinent integrals as suggested in [18] in the forward UQ context and in [21] for
the Bayesian inverse problem. In the case of non-affine parametric PDEs, an additional
approximation step is usually performed by the Empirical Interpolation Method (EIM) [9] to
achieve an affine-parametric form [22].

The work in this paper is based on this approach as applied to the low-frequency, time-
harmonic Maxwell equations with uncertain conductivity coefficient. We specifically consider
models consisting of a deterministic and a stochastic conductivity layer; the latter represented
as a lognormal random field with specified covariance function. Our analysis of SQ convergence
for these models reveals the attainability of dimension-independent convergence rates under
suitable assumptions. The proposed methodology is a modification of the aforementioned,
combined, SQ-EIM-RB approach to the lognormal case, taking explicitly into account the
underlying Gaussian measure. We mention also a number of other novelties in this paper,
including the rigorous treatment of point sources and measurements through regularization,
the use of anisotropic covariance functions and the derivation of a posteriori error estimators
for the SQ-EIM-RB method. We note that a combination of Smolyak sparse grid stochastic
collocation and Proper Orthogonal Decomposition model reduction for the time-harmonic
Maxwell equations has been examined in [12], but the uncertainty there is in terms of a finite
set of random variables representing material parameters in geometrical regions.

By studying this problem, we have in mind applications such as the Controlled Source
Electromagnetic Method (CSEM) [30] which is a geophysical exploration method that aims to
image the unknown sub-seabed conductivity from electric field measurements within the sea.
While the objective there is the solution of the inverse problem, the UQ analysis we perform
in this paper aims at understanding the influence of conductivity uncertainties in relevant
models. Additionally, the approach and computational method are transferable to the more
challenging Bayesian inverse problem with possible complications, see e.g. [64]), which we will
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address in future work.

2. Model specification. In this section, we specify the physical and mathematical model
of the problem under study by describing the deterministic, the stochastic and the parametric,
deterministic models.

2.1. Notation. We denote by D ⊂ R3 a bounded, Lipschitz, polyhedral domain with
connected boundary ∂D, by n the outward normal unit vector and by ‖ · ‖2 the Euclidean
norm. The function space of infinitely differentiable functions with compact support in D is
denoted by C∞0 (D). For a measure space (X,Σ, γ), with measure γ, we denote by Lp(X,Y )
the space of Σ-measurable functions u : X → Y with norm

(2.1) ‖u‖Lp(X,Y ) =

(∫
X
‖u(x)‖pY dγ(x)

)1/p

= E
[
‖u‖pY

]1/p
,

when 1 ≤ p <∞ and norm

(2.2) ‖u‖L∞(X,Y ) = ess sup
x∈X

‖u(x)‖Y ,

when p =∞, where ‖ · ‖Y is the norm of a separable Banach space Y .
When X = Θ is a sample space and γ = P is a probability measure, we get the Bochner

space of p-integrable random variables u : Θ→ Y , that take values in Y , denoted by Lp(Θ, Y ).
When X = D, Y = C, Σ is the Borel σ-algebra and γ is the Lebesgue measure, we get the
standard Lp(D) spaces. In particular, for p = 2 we have the Hilbert space of square-integrable
functions L2(D) with inner product (u, v)L2(D) =

∫
D uv dx where v is the complex conjugate

of v. We will also need the Sobolev spaces

Hk(D) = W k,2(D) = {u ∈ L2(D) : ∂αu ∈ L2(D) ∀ |α| < k},(2.3)

W k,∞(D) = {u ∈ L∞(D) : ∂αu ∈ L∞(D) ∀ |α| < k},(2.4)

where ∂αu = ∂|α|u/∂xa11 ∂x
a2
2 ∂x

a3
3 . For vector-valued functions, we analogously use the spaces

C∞0 (D,C3), Lp(D,C3) and Hk(D,C3). The space of square-integrable vectors that also have
a square-integrable curl is defined by

(2.5) H(curl, D) = {u ∈ L2(D,C3) : ∇× u ∈ L2(D,C3)},

with norm

(2.6) ‖u‖H(curl,D) =
(
‖u‖2L2(D,C3) + ‖∇ × u‖2L2(D,C3)

)1/2
.

The subspace H0(curl, D) of functions u ∈ H(curl, D), with vanishing tangential trace on the
boundary ∂D, is defined as the completion of C∞0 (D,C3) in the H(curl, D) norm.

We also make use of multi-index notation. Define by F the countable index set of all
sequences ν = (νj)j≥1 of non-negative integers which are finitely supported (i.e. with a finite
number of non-zero elements). For ν,µ ∈ F we use

(2.7) |ν| =
∑
j≥1

νj <∞, ν! =
∏
j≥1

νj !,

(
ν

µ

)
=
∏
j≥1

(
νj
µj

)
,
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with
(
n
m

)
= 0 if m > n. By µ ≤ ν we denote the ordering µj ≤ νj for all j. The cardinality

of an index set Λ ⊂ F is denoted by #(Λ) and the support of a sequence ν is denoted by
supp(ν) = {j : νj 6= 0}.

2.2. Deterministic model. We are interested in low-frequency electromagnetic models,
such as the ones occurring in CSEM, which can be modelled by the time-harmonic, quasi-
magnetostatic Maxwell equations

(2.8) ∇×
(
µ−1(x)∇×E(x)

)
− ıωσ(x)E(x) = ıωjs(x), x ∈ D,

subject to electric boundary conditions

(2.9) E(x)× n(x) = 0, x ∈ ∂D,

where E is the electric field, µ is the magnetic permeability, ω the angular frequency, σ the
scalar conductivity field, ı the imaginary unit and js the external current source in the domain
D. All physical quantities here and in the rest of this paper are expressed in SI units unless
otherwise noted. Note that in this model, displacement currents are neglected, an assumption
that is valid in conductors when the conditions (ωτE)(ωτM ) � 1 and ωτE � 1 are satisfied,
where τE = ε/σ and τM = µσL2 are the electric and magnetic time constants respectively,
with ε the electric permittivity and L the typical length scale in D.

We will consider a current source that is modelled as a point dipole at source position xs,
defined by

(2.10) js(v) = (ps, δxs(v)) = (ps,v(xs)), ∀v ∈ C∞0 (D,C3),

where ps = ‖ps‖2es is the dipole moment along the es unit direction, and δxs is the Dirac delta
distribution centred at the source position. This source model can be considered to validly
represent line antennas with length l, for distances ‖x‖2 � l. In a symmetrical manner, we
model measurements of the electric field by a point dipole sensor, at position xr 6= xs, with
pr = er, as

(2.11) Er(xr) = jr(E) = (δxr(E), er), E ∈ C∞0 (D,C3).

2.2.1. Weak formulation. We now examine the weak formulation of the problem (see
the monographs [54, 50] for a thorough analysis). We assume that σ ∈ L∞(D,R) and µ−1 ∈
W 1,∞(D,R) with

(2.12) 0 < σmin = ess inf
x∈D

σ(x) ≤ ess sup
x∈D

σ(x) = σmax <∞,

and

(2.13) 0 < µmin = ess inf
x∈D

µ(x) ≤ ess sup
x∈D

µ(x) = µmax <∞.

For the space V = H0(curl, D), we introduce the sesquilinear form a : V × V → C

(2.14) a(u,v;σ) = s(u,v)− ıωm(u,v;σ),
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where

(2.15) s(u,v) = (µ−1∇× u,∇× v)L2(D,C3), m(u,v;σ) = (σu,v)L2(D,C3).

Then the weak formulation becomes: find E ∈ V such that

(2.16) a(E(x),v(x);σ(x)) = f(v(x)), ∀v ∈ V,

where f = ıωjs : V → C is an antilinear functional, i.e. an element of V ∗, the antidual of
V . Since the sesquilinear form is continuous and coercive (see Appendix A), the requirements
of the Lax-Milgram lemma (see e.g. [60]) are satisfied and therefore the weak problem has a
unique solution that obeys the bound

(2.17) ‖E‖V ≤
1

α
‖f‖V ∗ ,

where α is the coercivity constant and

(2.18) ‖f‖V ∗ = sup
v∈V \{0}

|f(v)|
‖v‖V

,

is the dual norm. Having acquired a solution to (2.16), we can also define an output functional
s = s(E) ∈ V ′, with V ′ the dual space of linear bounded functionals on V .

2.2.2. Point source term regularization. For our choice of point dipole source, we have
that js /∈ V ∗ in three dimensions. To overcome this issue, we employ a regularization of
the Dirac delta distribution using the methodology that was suggested in [47]. Since we
have the Gelfand triple C∞0 (D,C3) ⊂ V ⊂ C∞0 (D,C3)∗ and V ∗ ⊂ C∞0 (D,C3)∗, we construct
regularizations j̃H ∈ V ∗ of js, with j̃H → js as the parameter H → 0 in the weak-∗ topology
(i.e. in distribution) and we take f = iωj̃H . In particular, we define the regularization as

(2.19) j̃H(v) = (jH ,v)L2(D,C3), ∀v ∈ V,

where jH = (j1
H , j

2
H , j

3
H) ∈ V is a compactly supported function within a ball of radius H

with centre at xs. Then, since j̃H ∈ C∞0 (D,C3)∗, convergence in the weak-∗ topology means

(2.20) j̃H(v)→ js(v) = (es,v(xs))C3 , ∀v ∈ C∞0 (D,C3) as H → 0,

where we assumed ‖ps‖2 = 1. Using the m-th order Taylor expansion for v(x) around the
point xs to substitute in (2.19) and comparing with (2.20), we arrive at the compact m-
moment conditions

(2.21) (jiH , χD)L2(D) = eis and (jiH , (x− xs)
α)L2(D) = 0, i = 1, 2, 3, 1 ≤ |α| ≤ m,

where χD is the indicator function inD. The convergence |js(v)−j̃H(v)| can then be estimated
to be of order O(Hm+1). In practice, we use an expansion of jH in terms of an appropriate
basis and then solve the linear system that is derived from the moment conditions. In the
numerical examples, we make use of a spherically symmetric approximation based on shifted
Legendre polynomials.

Remark 2.1. The study of convergence in weighted Sobolev norms is beyond the scope
of this paper; we expect that results similar to the case in [47] hold, i.e. the same moment
conditions as (2.21) need to be satisfied and the convergence rate suggests that the support
H is chosen to be comparable to the (local) mesh size h around the source position.
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2.2.3. Pointwise measurement regularization. Pointwise values of solutions to (2.16)
are rigorously justified only when the solution is sufficiently regular (see [2] for conditions),
so our measurement model is problematic in general when applied to the weak formulation.
In other words, our requirement that the output functional s is bounded is not true for point
measurements as in (2.11). Therefore, we employ the same regularization technique as for
the source term to obtain a regularized linear functional s̃H ∈ V ′ with s̃H → jr as H → 0,
defined in this case by

(2.22) s̃H(v) = (v, sH)L2(D,C3), ∀v ∈ V,

where sH ∈ V is a compactly supported function within a ball of radius H around xr. This
leads to compact moment conditions, similar to (2.21). We then set s = s̃H when we want to
consider pointwise measurements.

2.3. Stochastic model. We assume that there are two subdomains D+ and D− of D,
such that D+ ∩D− = ∅, D+ ∪D− = D with polyhedral interface Γ = D+ ∩D−. In D+ which
represents e.g. a sea layer in CSEM, we assume we have knowledge of a constant conductivity
value σ+ > 0, while in D− (e.g. the subsurface) the lack of knowledge leads us to model the
conductivity as a spatial random field σ−(x, θ) in a probability space (Θ,Σ,P). Furthermore,
to enforce positivity we assume σ−(x, θ) is lognormal, so that we write

(2.23) σ(x, θ) =

{
σ+ x ∈ D+,

σ−(x, θ) x ∈ D−, θ ∈ Θ,

with

(2.24) σ−(x, θ) = σ∗(x) + σ0(x) exp(q(x, θ)),

where σ∗(x) and σ0(x) are continuous functions in D− that are non-negative and strictly
positive respectively. The random field q(x, θ) ∈ L2(Θ, L2(D−)) is a Gaussian, mean-zero
field with stationary covariance function Cq(x,y) that belongs to the Whittle-Matérn class

Cq(x,y) =
Var[q]

2ν−1Γ(ν)
(‖x− y‖M )ν Kν (‖x− y‖M ) , x,y ∈ D−(2.25)

where ν > 0 is a smoothness parameter, Kν is the modified Bessel function of the second
kind of order ν and ‖x‖2M = xTM−1x is the weighted Euclidean norm with M ∈ R3×3 a
constant, symmetric, positive definite matrix. Note that this covariance function is in general
anisotropic; the usual isotropic case with length scale l occurs when M = l2I3 or by use of
scaling as M = (l/2ν)2I3. For the isotropic case, it is well known that the random field q(x, θ)
is n < ν mean-square differentiable and we also have that (see [51, 15]) a.e. in Θ

E[|q(x)− q(y)|2] ≤ L‖x− y‖s2, ∀x,y ∈ D−,(2.26)

for some L > 0 and all s such that s ≤ 2ν and s ∈ (0, 2). Now, given realizations σ(·, θ), we
seek random field realizations E(·, θ) ∈ V such that

(2.27) a(E(x, θ),v(x);σ(x, θ)) = f(v(x)), ∀v ∈ V,

for almost all θ ∈ Θ.
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Proposition 2.2. The random field E(x, θ) defined as a measurable mapping E : D×Θ→
V such that for almost all θ ∈ Θ, it is the solution of (2.27), has finite moments i.e.
‖E‖Lp(Θ,V ) <∞ for all 0 ≤ p ≤ ∞.

Proof. We follow [16, Proposition 2.1]. For the stationary covariance Cq(x,y) = c(‖x −
y‖M ) in (2.25), we have

E[|q(x)− q(y)|2] = 2(c(0)− c(‖x− y‖M ))

= 2(c(0)− c(‖x′ − y′‖2))

≤ K‖x′ − y′‖s2 = K‖x− y‖sM
≤ K‖x− y‖s2, s ≤ 2ν, s ∈ (0, 2), ∀x,y ∈ D−(2.28)

where we used property (2.26) of the isotropic covariance and the equivalence of the norms.
Therefore, the Kolmogorov continuity theorem (see [56, Theorem 3.5]) applies and there is
a version of q with realizations which are almost surely Hölder continuous with an exponent
β ≤ min(ν, 1) (i.e. in C0,β(D−)). Under the continuity assumptions on σ0 and σ∗, σ−(x, θ) is
also Hölder-continuous with exponent β and we also have that a.e. in Θ

(2.29) 0 < σmin(θ) = ess inf
x∈D

σ(x, θ) ≤ σ(x, θ) ≤ ess sup
x∈D

σ(x, θ) = σmax(θ) <∞, a.e. in D.

Fixing any θ and applying the Lax-Milgram lemma as in the deterministic case, we have the
P-a.s. uniqueness of the solution E(·, θ) with the bound

(2.30) ‖E(·, θ)‖V ≤
1

α(θ)
‖f‖V ∗ ,

where we take α(θ) = (µ2
max + (ωσmin(θ))−2)−1/2. From Fernique’s theorem (see e.g. [67]), it

can be derived as in [16, Proposition 2.3] that the random variables σλmin(θ) and σλmax(θ) are
in Lp(Θ) for any p ≥ 0 and λ ∈ R. Therefore we have that

(2.31) E
[
‖E‖pV

]
≤ E

[
α(θ)−p

]
‖f‖pV ∗ ,

and since α(θ)−1 ∈ Lp(Θ) we get the finiteness of all moments

(2.32) ‖E‖Lp(Θ,V ) ≤ ‖α(θ)−1‖Lp(Θ)‖f‖V ∗ , 0 ≤ p <∞.

Remark 2.3. The preceding as well as the following methodology and analysis are also
valid if one considers a random field that occupies the whole domain D. The case of random
fields defined in different layers with known discontinuity interfaces is also interesting and
could be treated using the approach presented in this paper with the necessary assumptions
and modifications.

2.4. Deterministic, parametric representation. To achieve a parametric representation,
we use the Karhunen-Loève expansion to write

(2.33) q(x, θ) =
∞∑
j=1

√
λjφj(x)ξj(θ), x ∈ D−, θ ∈ Θ,
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where the sum converges in L2(Θ;L2(D−)), λj ∈ l1(N) are the eigenvalues with λ1 ≥ λ2 ≥
· · · ≥ 0 and φj are the L2(D−)-orthonormal eigenfunctions of the covariance operator Cq with
kernel Cq. The random variables yj = ξj(θ) are i.i.d and distributed as N(0, 1). By defining
ψj =

√
λjφj , we get the parametric expression

(2.34) σ−(x,y) = σ∗(x) + σ0(x) exp

 ∞∑
j=1

yjψj(x)

 , x ∈ D−,

with the random vector y defined on the measure space (U,B(U), γG), where U = RN, B(U) is
the σ-algebra generated by the Borel cylinders and γG = ⊗∞j=1N(0, 1) is the countable tensor
product Gaussian measure. We can write

(2.35) σ(x,y) = σ+χD+(x) + σ−(x,y)χD−(x), x ∈ D, y ∈ U.

Truncated expressions can be understood by setting y = yJ = (y1, . . . , yJ , 0, . . .). The varia-
tional problem now becomes: given y ∈ U , find E(·,y) ∈ V such that

(2.36) a(E(x,y),v(x);σ(x,y)) = f(v(x)), ∀v ∈ V.

The measurability of the maps y → σ(·,y) and y → E(·,y) and the finiteness of ‖E‖Lp(U,V )

requires that
(2.37)

q(x,y) =
∞∑
j=1

yjψj(x) ∈ L∞(D−), and E(exp(p‖q(x,y)‖L∞(D−))) <∞, 0 ≤ p <∞,

which can be derived from Hölder continuity as in the stochastic case (see e.g. [40]). Then
uniqueness of weak solutions to problem (2.36) is guaranteed from the Lax-Milgram lemma
and

(2.38) ‖E‖Lp(U,V ) ≤ ‖α(y)−1‖Lp(U)‖f‖V ∗ , ∀y ∈ U, 0 ≤ p <∞,

where we take α(y) = (µ2
max + (ωσmin(y))−2)−1/2 with

(2.39) σmin(y) = min(σ+, ess inf
x∈D−

σ−(x,y)),

and

(2.40) ess inf
x∈D−

σ−(x,y) ≥ ess inf
x∈D−

σ∗(x) + ess inf
x∈D−

σ0(x) exp
(
−‖q(x,y)‖L∞(D−)

)
.

Note also that the continuity factor is γ(y) = max(µ−1
min, ωσmax) with

(2.41) σmax = max(σ+, ess sup
x∈D−

σ−(x,y)),

and

(2.42) ess sup
x∈D−

σ−(x,y) ≤ ess sup
x∈D−

σ∗(x) + ess sup
x∈D−

σ0(x) exp
(
‖q(x,y)‖L∞(D−)

)
.

An alternative sufficient condition is given in [6]:
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Assumption 2.4. Assume there is a positive sequence (ρj)j≥1 such that

(2.43)
∞∑
j=1

ρj |ψj(x)| ∈ L∞(D−) and
∞∑
j=1

exp(−ρ2
j ) <∞.

Then uniqueness is guaranteed and (2.38) is again true. For our specific choice of Cq, the
norms ‖ψj‖L∞(D−) are bound as (see Appendix B)

(2.44) ‖ψj(x)‖L∞(D−) ≤ Kj−ν/3+ε, ε > 0, K > 0.

This indicates that Assumption 2.4 is satisfied for ν > 3. In the following, we will assume
this level of smoothness which does not allow for rough random fields with e.g. exponential
covariance function. Note that the same properties are also shared by the truncated solution
EJ when using a truncated representation σJ = σ(·,yJ).

2.4.1. Quantities of Interest. Having described the deterministic, parametric problem
with distributed uncertainty, the quantification of the propagated uncertainty in the output
functional s is obtained from the calculation of some Quantity of Interest (QoI), which is an
infinite-dimensional integration problem with respect to the prior measure. We will focus on
the second order characterization of s, which requires the calculation of the following QoIs

E[s] =

∫
U
s(E(y)) dγG(y),(2.45)

Cov[s, s] = E[(s− E[s])(s− E[s])],(2.46)

Cov[s, s] = E[(s− E[s])(s− E[s])],(2.47)

i.e. the mean, covariance and pseudo-covariance of s respectively. For any integral of this
type we denote the integrand as z(E(y)) (e.g. z = s for the mean of s). In practice, (2.45)
becomes a high-dimensional integration problem which needs a correspondingly high number
of computationally expensive deterministic solutions of (2.36). Next, we describe the method
that we will use to numerically approximate the integrals.

3. Approximation methodology. In this section we describe the approximation methods
for the estimation of the QoIs, namely the Sparse Quadrature (SQ) and model reduction
methods.

3.1. Sparse Quadrature. Sparse Quadrature, in its generalized form, is defined in terms
of a sum of operators on downward closed index sets Λ ⊂ F which obey the condition

(3.1) if ν ∈ Λ and µ ≤ ν, then µ ∈ Λ.

Following [17], we begin by defining for a level l ≥ 0, a sequence of ml univariate quadrature
points (ylk)

ml−1
k=0 ∈ R and weights (wlk)

ml−1
k=0 ∈ R with m0 = 1, y0

0 = 0, w0
0 = 1 and ml <

ml+1. Then we approximate E[f ] for a Banach space valued function f ∈ L2(R, S, g(y)dy) =
L2(R, g(y)dy) ⊗ S, with g(y) = (2π)−1/2 exp(−y2/2) being the standard univariate Gaussian
density, by the quadrature operator at level l

(3.2) Ql[f ] =

ml−1∑
k=0

wlkf(ylk),
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with the convention that Q−1[f ] = 0.

Remark 3.1. The points and weights are obtained by a quadrature rule that is suitable
for integrals with Gaussian measure such the Gauss-Hermite, Genz-Keister, weighted Leja
and transformed Gauss-Kronrod-Patterson quadrature rules. The specific choice affects the
quality of the approximation (stability, convergence) and the computational cost (nested or
non-nested, growth of ml).

We also make the following assumption regarding the quadrature approximation.

Assumption 3.2. (cf. [17, Assumption 1])

(3.3) E[f ] = Ql(f), ∀f ∈ Pl ⊗ S,

where Pl = span{yi, 0 ≤ i ≤ l} and

(3.4) |Ql(Hn)| ≤ 1, ∀l ≥ 0 and ∀n ≥ l,

where Hn are the Hermite polynomials, orthonormal in L2(R, g(y)dy), defined as

(3.5) Hn(y) =
(−1)ng(n)(y)√

n!g(y)
.

The condition in (3.3) is satisfied by Gauss-Hermite and Genz-Keister rules for ml = l+1 but
is not satisfied in general by the weighted Leja rule. As is known, Gauss-Hermite quadrature
with m points is exact for polynomials of degree up to 2m − 1. The bound in (3.4) (see
also [35] for a more general condition) has been verified numerically for Gauss-Hermite and
Genz-Keister quadrature for all possible l and n up to machine precision (see [17]). We have
also verified it for the weighted Leja rule up to l = 70 and n = 200 with precision equal to
256 digits. Alternatively a relaxed version of (3.4), given by |Ql(Hn)| ≤ 2, has been proven
in [17] for the Gauss-Hermite rule. In the multivariate case, for ν ∈ F we define a Cartesian
product grid

(3.6) Gν =
∏
j≥1

(y
νj
kj

)
mνj−1

kj=0 ⊂ U,

and the sparse grid as

(3.7) GΛ =
⋃
ν∈Λ

Gν .

The associated SQ approximation to E[f ] for some function f ∈ L2(U, S, γG) is given by

(3.8) QΛ[f ] =
∑
ν∈Λ

∆ν [f ],

where ∆ν are the tensorised, multivariate quadrature difference operators defined as

(3.9) ∆ν [f ] =
⊗
j≥1

∆νj [f ] =
⊗
j≥1

(Qνj −Qνj−1)[f ] =

ν−µ=1∑
ν−µ=0

(−1)|ν−µ|Qµ[f ],
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and where the tensorised, multivariate quadrature operators are

(3.10) Qν [f ] =
⊗
j≥1

Qνj [f ] =

mνj1
−1∑

kj1=0

· · ·
mνjn−1∑
kjn=0

w
νj1
kj1

. . . w
νjn
kjn
f(y

νj1
kj1
, . . . , y

νjn
kjn

),

where in the last term we used the convention that supp(ν) = (j1, . . . , jn) and that we set
yj = 0 for j /∈ supp(ν).

3.1.1. Convergence of SQ. Since f ∈ L2(U, S, γG), we can use Hermite polynomials Hν ,
that constitute a basis for L2(U, γG), to write

(3.11) f(y) =
∑
ν∈F

fνHν(y), fν =

∫
U
f(y)Hν(y) dγG(y), Hν(y) =

∏
j≥1

Hνj (yj).

The best N -term approximation is obtained by replacing F with an index set ΛN with
#(Λn) = N , which corresponds to the N largest norms ‖fν‖S . The work in [6] (see also
[29]) proves that under certain assumptions, best N -term Hermite approximations converge
in L2(U, S, γG) with dimension independent rates. In our case, we are interested in the closely
related convergence of the SQ approximation. This is analysed in [17], where a dimension in-
dependent rate is proved (a similar analysis for generalized sparse grid interpolation appears
in [35]). In particular, the theorem relies on Assumption 3.2 and on the additional assumption

Assumption 3.3. (cf. [17, Assumption 2]) Let 0 < p < 1, q = q(p) = 2p/(2− p) and r the
smallest integer such that r > 10/q. Assume that there exists a positive sequence (ρj)j≥1 such
that (ρ−1

j )j≥1 ∈ lq(N) and additionally

(3.12)
∑

‖µ‖l∞≤r

ρ2µ

µ!

∫
U
‖∂µf(y)‖2S dγG(y) <∞.

Note that here r > 10/q instead of r > 14/q in [17] due to allowing the sharper (numerically
verified) bound in (3.4).

Theorem 3.4. ([17, Theorem 3.6]) Under Assumption 3.2 and Assumption 3.3, for any
N ∈ N, there exists a downward closed index set ΛN ∈ F , corresponding to the set of indices
with the N smallest values of bµ defined as

(3.13) bµ =
∑
‖µ̃‖≤r

(
µ

µ̃

)
ρ2µ̃,

such that

(3.14) ‖E[f ]−QΛN [f ]‖S ≤ K(N + 1)−s, s =
1

p
− 1,

where K is independent of N .

To prove Theorem 3.4 applies for the model we are examining in this paper with f = E
and S = V or f = s(E), s ∈ V ′ and S = C, we will employ a slightly modified version of an
assumption given in [6]:
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Assumption 3.5. (cf. [6, Theorem 1.2]) Let 0 < p < 1, q = q(p) = 2p/(2 − p). Assume
that there exists a positive sequence (ρj)j≥1 such that (ρ−1

j )j≥1 ∈ lq(N) and additionally

(3.15) sup
x∈D−

∞∑
j=1

ρj |ψj(x)| <∞.

If the above Assumption 3.5 holds, then as discussed in [6] for 0 < p < 2, the validity of
Assumption 2.4 follows and therefore the well-posedness of the parametric problem and the
finiteness of all moments of the solution are guaranteed.

Theorem 3.6. If Assumption 3.5 is satisfied for the parametric representation of the con-
ductivity given by (2.34), then Assumption 3.3 is also satisfied with f = E and S = V .
Therefore, assuming also the validity of Assumption 3.2, Theorem 3.4 applies for the estima-
tion of the prior mean of the solution E of (2.36) as in (2.45).

Proof. See Appendix C.

For our choice of parametric representation through the Karhunen-Loève expansion, we
can see that if ν > 3/r for some 0 < r < 2/3, then (‖ψj‖L∞)j≥1 ∈ lr(N), and we can choose
ρj = ‖ψj‖r−1

L∞ so that Assumption 3.5 is satisfied and (ρ−1
j )j≥1 ∈ lq, with q = r/(1− r). Then

we obtain the convergence rate s = 1
r−

3
2 . Therefore, the SQ approximation for the parametric

model is guaranteed to have a dimension independent convergence rate that is better than
the convergence rate O(N−1/2) of the Monte Carlo method when 0 < r < 1/2 or ν > 6. In
practice the convergence may be faster since some of the bounds in the analysis may not be
sharp.

The construction of the index sets Λ can proceed in an a priori or a posteriori method.
An adaptive a priori construction is proposed in [17] and is based on the previous analysis
and the selection of the coefficients bµ in (3.13) with the smallest value among a possible
candidate set. In this paper we focus instead on an a posteriori construction that is based on
the dimension-adaptive algorithm originally found in [36] (see also [24, 62]). This heuristic
algorithm identifies important dimensions in U using a suitable a posteriori error indicator
and proceeds to enrich the index set accordingly.

In the case of a Gauss-Hermite, non-nested quadrature rule with ml+1 = ml + 1, we
mention the results in [35], which give the bound |GΛN | ≤ N(N + 1)/2 for the number of
sparse grid points. This allows to express the convergence rate (3.14) in terms of the number
points (or equivalently the number of function evaluations) as

(3.16) ‖E[f ]−QΛN [f ]‖S ≤ K|GΛN |
−s̃, s̃ =

1

2p
− 1

2
.

Note that we do not employ an a priori, fixed truncation level for the parametric repre-
sentation but we start from J dimensions and we extend the truncation to J = J + 1 when
some dimension j ≤ J becomes active (i.e. when νj = 1). We make use of the concepts of the
(restricted to J dimensions) margin, reduced margin and neighbours of an index set (see e.g.
[55]). The margin of an index set Λ is defined as

(3.17) MΛ = {ν /∈ Λ : ∃µ ∈ Λ : |ν − µ| = 1 and µj = 0, νj = 0,∀j > J}.
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The reduced margin is the subset of the margin of Λ defined as

(3.18) RΛ = {ν /∈ Λ : ν − ej ∈ Λ, ∀j ∈ supp(ν) and νj = 0, ∀j > J},

i.e. it contains all the (restricted) indices ν such that Λ ∪ {ν} remains downward closed.
Finally, the neighbours N(µ,Λ) of µ with respect to Λ are defined as

(3.19) N(µ,Λ) = {ν /∈ Λ : |ν − µ| = 1 and µj = 0, νj = 0, ∀j > J}.

Since in general, we have

(3.20) ‖E[f ]−QΛ[f ]‖S ≤
∑
ν /∈Λ

‖∆ν [f ]‖S ,

we use ‖∆ν [f ]‖S as the error indicator for an index ν ∈ RΛ. The algorithm first assigns the
error contribution to every index in RΛ, then moves the index with the highest contribution
from RΛ to Λ, updates RΛ and finally proceeds to the next step. Note that we could also assign
a work contribution (e.g. number of additional points added to sparse grid) to each index in
RΛ and then choose the index with the highest profit (error contribution/work contribution).
We postpone the presentation of the complete algorithm for subsection 3.3, since we first
describe additional approximations in the next section with the aim of further reducing the
computational cost for the approximation of the QoIs, following ideas proposed in [18] for UQ
and also in [21, 22] for the Bayesian inverse problem.

3.2. Model reduction. We obtain the so-called High Fidelity (Hi-Fi) solutions to (2.36) by
the Finite Element Method (FEM) on a tetrahedral mesh Th for the domain D. In particular
we use a finite element space Vh with dim(Vh) = Nh, that is spanned by the lowest-order
Nédélec curl-conforming edge elements Ni (see [54]). The FEM approximation Eh(y) =∑Nh

j=1 e
j
h(y)Nj is obtained by solving the discrete variational problem: given any y ∈ U , find

Eh(y) ∈ Vh such that

a(Eh(y),vh;σ(y)) = s(Eh(y),vh)− ıωm(Eh(y),vh;σ(y))

= s(Eh(y),vh)− ıωm(Eh(y),vh;σ+χD+)− ıωm(Eh(y),vh;σ−(y)χD−)

= f(vh), ∀vh ∈ Vh,(3.21)

which translates into the following symmetric, non-hermitian, indefinite and sparse linear
system

(3.22) Ah(y)eh(y) = (S− ıωM+ − ıωM(y))eh(y) = b,

with

(S)ij = s(Nj ,Ni), i, j = 1, . . . , Nh,(3.23)

(M+)ij = m(Nj ,Ni;σ+χD+), i, j = 1, . . . , Nh,(3.24)

(M(y))ij = m(Nj ,Ni;σ−(y)χD−), i, j = 1, . . . , Nh,(3.25)

(b)i = f(Ni), i = 1, . . . , Nh.(3.26)
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The well-posedness of (3.21) is inherited from the abstract weak formulation for sufficiently
fine mesh size h and the solution obeys optimal error estimates as proved in [72].

Although as we have seen in the previous section, sparse grid quadrature can achieve
dimension independent rates, the computational cost is still high when a large number of
linear solves to (3.22) is required. For this reason, we employ a (projection-based) model
reduction to obtain a Low-Fidelity (Low-Fi) representation of (3.22) on a subspace VNP ⊂ Vh
with dim(VNP ) = NP � Nh. Thus, we replace the Hi-Fi model in the calculation of the
QoI with a Low-Fi model, with controlled levels of accuracy and computational cost. As we
describe in the next sections, the resulting reduced model is affine and allows the calculation
of all y-independent, Nh-dimensional quantities during an offline phase and the fast online
evaluation of the solution for any y using only NP -dimensional expressions.

As a preliminary step, we define the parametrized set X = {σ−(·,y) : y ∈ U} ⊂ C(D−) ⊂
L∞(D−) and the solution manifold M = {E(·,y) : y ∈ U} ⊂ H(curl;D). We will use model
reduction schemes with the goal of finding approximations to these sets. Since the underlying
parameter space U is not compact, we will seek approximations as measured in a weighted
norm. The rationale behind this approach is based on i) the fast decay of the Kolmogorov
n-width, or more appropriate in our case, the p-average n-widths1 of the particular sets and
the regularity and anisotropy of the maps with respect to y (see e.g. [57, 33]) and on ii) (weak)
greedy algorithms that have been shown in [13, 32] to achieve approximation rates compa-
rable to the benchmark rates given by the Kolmogorov n-widths. In the following sections,
which describe the model reduction method, we view the domain U as finite-dimensional, i.e.
restricted to the J dimensions that correspond to the current level of truncation. With this

in mind, we will use the weight function π(y) = ⊗Jj=1

√
exp(−y2

j /2) in our formulation of

the model reduction methods, i.e. we employ weighted variants of model reduction methods,
taking into account explicitly the underlying Gaussian measure.

3.2.1. Affine representation by the Empirical Interpolation Method. The parametric
representation (2.34) has the disadvantage that is non-linear and therefore non-separable in
the spatial and parametric domain. This poses a problem for the efficient application of
model reduction methods and in particular for the offline-online decomposition. To overcome
this issue, we will employ the (weighted) Empirical Interpolation Method (EIM) (see [9, 57,
45], also [20] for the weighted variant) to achieve an affine approximation for σ−(·,y) ∈

1The Kolmogorov n-width gives a measure of how well a subset K of a normed linear space X can be
approximated by n-dimensional subspaces of X. It is defined as

(3.27) dn(K)X = inf
Xn⊂X

dimXn=n

sup
v∈K

inf
w∈Xn

‖v − w‖X .

The p-average n-width is defined for K = v(U) as

(3.28) δ(p)n (K,µ)X = inf
Xn⊂X

dimXn=n

(∫
U

inf
w∈Xn

‖v − w‖pX dµ
)1/p

.

In our case, for the squared average n-width ofM, we can directly use the best n-term Hermite approximation
theory from [6] to get the upper bound δ

(2)
n (M, γG)V ≤ Kn−s, with s = 1/p− 1/2.
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C(D−),∀y ∈ U, of the form

(3.29) σ−(x,y) ≈ IxNI [σ−(x,y)] =

NI∑
j=1

ξj(y)gj(x), x ∈ D−, y ∈ U,

where IxNI is the interpolation operator, with the superscript x denoting that the interpolation

is performed in the spatial domain, (gj)
NI
j=1 is the nested set of chosen basis functions and ξj(y)

are coefficient functions that are determined by the condition

(3.30) IxNI [σ−(ti,y)] = σ−(ti,y), i = 1, . . . , NI ,

for some nested set of chosen points (ti)NIi=1 ∈ D−. This results in the following linear system

(3.31)

NI∑
j=1

gj(t
i)ξj(y) = σ−(ti,y), i = 1, . . . , NI ,

which can be shown to be uniquely solvable for NI ≤ Nmax
I ≤ dim (span{G}) if one picks the

basis functions and points according to the following greedy procedure: choose the first point
in U as y1 = arg supy∈U

[
π(y)‖σ−(·,y)‖L∞(D−)

]
and the first interpolation point as t1 =

arg supx∈D− |σ−(x,y1)|. Then define the first basis function as g1(x) = σ−(x,y1)/σ−(t1,y1).

The construction of the approximation proceeds at the NI -th step (until some a priori NI =
Nmax
I number of steps or until some tolerance tolEIM is achieved), by choosing the (NI +1)-th

point in U as

(3.32) yNI+1 = arg sup
y∈U

[
π(y)ε

σ−
NI

(y)
]
,

(3.33) ε
σ−
NI

(y) = ‖σ−(·,y)− IxNIσ−(·,y)‖L∞(D−),

and the (NI + 1)-th interpolation point as

(3.34) tNI+1 = arg sup
x∈D−

|rNI+1(x)|,

where rNI+1(x) is the residual given by

(3.35) rNI+1(x) = σ−(x,yNI+1)− IxNIσ−(x,yNI+1).

Then the (NI + 1)-th basis function is obtained by

(3.36) gNI+1(x) =
rNI+1(x)

rNI+1(tNI+1)
.

We can also define an a posteriori error indicator as

(3.37) ∆
σ−
NI

(y) = |σ−(tNI+1,y)− IxNIσ−(tNI+1,y)|,
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and we can easily see that ε
σ−
NI

(y) ≥ ∆
σ−
NI

(y). In practice, the optimization problems (3.32)
and (3.34) are replaced by discrete versions over a finite training set Utrain ⊂ U and using
a discrete approximation Dh ⊂ D−, thus relaxing the greedy algorithm to its weak form.
We will a priori choose Dh as the nodes of a mesh (the same mesh that we use to solve the
Karhunen-Loève eigenvalue problem). However, due to the high-dimensionality of U , we will
not a priori choose a training set; instead we will use a collection of training sets that are
determined by the SQ algorithm as we detail in subsection 3.3.

Having obtained an affine approximation, the EIM, Hi-Fi, parametric problem becomes:
given y ∈ U , find Eh,NI (y) ∈ Vh such that

aNI (Eh,NI (y),vh;σ(y)) = s(Eh,NI (y),vh)− ıωm(Eh,NI (y),vh;σ+χD+)(3.38)

− ıω
NI∑
k=1

ξk(y)m(Eh,NI (y),vh; gkχD−)

= f(vh), ∀vh ∈ Vh,(3.39)

or in algebraic form

(3.40) Ah,NI (y)eh,NI (y) =

(
S− ıωM+ − ıω

NI∑
k=1

ξk(y)Mk

)
eh,NI (y) = b,

with

(3.41) (Mk)ij = m(Nj ,Ni; gkχD−), i, j = 1, . . . , Nh, k = 1, . . . , NI .

As we can see, the EIM approximation introduces the sesquilinear form aNI and we can derive
the estimate

‖a(·, ·;σ(y))− aNI (·, ·;σ(y))‖L(Vh,V
∗
h )(3.42)

= ω sup
uh∈Vh\{0}

sup
vh∈Vh\{0}

∣∣∣m(uh,vh; (σ−(y)− IxNI [σ−(y)])χD−

)∣∣∣
‖uh‖V ‖vh‖V

(3.43)

≤ ωεσ−NI (y)γm(3.44)

with

(3.45) γm = sup
uh∈Vh\{0}

sup
vh∈Vh\{0}

|m (uh,vh)|
‖uh‖V ‖vh‖V

= 1.

However, this estimate is in most cases pessimistic. In our numerical examples, we will instead
use a non-rigorous approach that can be both computationally efficient and efficient as an error
estimator. This is obtained as

|a(uh,vh;σ(y))− aNI (uh,vh;σ(y))|
(3.46)

= |a(uh,vh;σ(y))− aNI+NE (uh,vh;σ(y)) + aNI+NE (uh,vh;σ(y))− aNI (uh,vh;σ(y))|
(3.47)

/ |aNI+NE (uh,vh;σ(y))− aNI (uh,vh;σ(y))| := δαNI ,NE (uh,vh;y),
(3.48)
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where NE denotes a sufficiently high number of terms in an auxiliary EIM approximation such
that |a− aNI+NE | � |aNI+NE − aNI |.

3.2.2. Model reduction by the Empirical Interpolation Method-Reduced Basis ap-
proximation. We now describe the derivation of a Low-Fi representation of (3.40) using the
projection-based (weighted) Reduced Basis method (RB) (see [19] for weighted version). Sup-
pose we have at hand a low-dimensional space VNP ⊂ Vh, that is spanned by some basis

functions (wj)
NP
j=1. Then we use the Galerkin RB2 to obtain the Low-Fi, EIM-RB parametric

problem: given y ∈ U , find ENI ,NP (y) ∈ VNP such that

(3.49) aNI (ENI ,NP (y),vNP ;σ(y)) = f(vNP ), ∀vNP ∈ VNP .

By expressing the reduced basis in terms of the Hi-Fi space basis we get wj =
∑Nh

k=1w
k
jNk

for j = 1, . . . , NP . We arrange the coefficients into the columns of a basis transforma-
tion matrix (W)ij = wij , with i = 1, . . . , Nh and j = 1, . . . , NP and we use ENI ,NP (y) =∑NP

k=1 e
k
NI ,NP

(y)wk to obtain the following Low-Fi, dense linear system

(3.50) ANI ,NP (y)eNI ,NP (y) = WH

(
S− ıωM+ − ıω

NI∑
k=1

ξk(y)Mk

)
WeNI ,NP (y) = WHb,

where WH denotes the Hermitian conjugate of W. Again, we can store the y-independent
reduced matrices WHSW, WHM+W, WHMkW and the vector WHb and access them when
assembling (3.50).

In order to construct a basis for VNP we use solutions (snapshots) of the Hi-Fi problem at

points (yn)NPn=1 that are chosen iteratively by a greedy algorithm as the most representative
samples in some sense for the approximation of z(y). Therefore, we have that

(3.51) VNP = span{Eh(yn), 1 ≤ n ≤ NP } = span{wn, 1 ≤ n ≤ NP },

where wn are obtained from Eh(yn) by Gram-Schmidt orthogonalization with respect to the
V inner product. The goal-oriented greedy algorithm starts from an initial parameter value
y1 = arg supy∈U [π(y)|z(Eh(y))|] and we set V1 = span{Eh(y1)}, while also initializing the
EIM approximation at y1. Then the construction of the RB space and the enrichment of the
EIM approximation proceeds at the NI,P -th step (until some a priori NI,P = Nmax

I,P number
of steps or until some tolerance tolEIM-RB is achieved), by choosing the (NI,P + 1)-th point in
U as

yNI,P+1 = arg sup
y∈U

[
π(y)εzNI ,NP (y)

]
,(3.52)

εzNI ,NP (y) = |z(Eh(y))− ẑNI ,NP (y))|,(3.53)

where ẑNI ,NP is an EIM-RB representation for z. Once ym+1 is determined we refine the EIM-
RB approximation by enriching the reduced space, setting VNP+1 = VNP ⊕ span{Eh(ym+1)}
and/or by enriching the EIM approximation at level NI + 1 as in (3.34), (3.36).

2A more general approach would be the Petrov-Galerkin RB method, for which the test space is different
than the trial space (see e.g. [31]).
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In practice, we replace the optimization problem over U with discrete versions over a
collection of training sets Utrain supplied by the adaptive SQ algorithm. Additionally, since
the evaluation of εzNI ,NP (y) is expensive (it requires the solution of Hi-Fi problems), we replace
it with an a posteriori error indicator ∆z

NI ,NP
(y) such that εzNI ,NP (y) ≤ ∆z

NI ,NP
(y), which we

detail in the next section.

3.2.3. Goal-oriented a posteriori error estimator based on primal-dual EIM-RB. We use
a definition of ∆z

NI ,NP
that is based on a goal-oriented primal-dual reduced basis formulation

similar to the approach in [42] (see also [59, 45, 31, 22]). For the approximation of the mean
of s, we have z = s and we define an associated dual problem as: given y ∈ U , find Edu(y)
such that

(3.54) a∗(Edu(y),v;σ(y)) = −s(v), ∀v ∈ V,

where a∗(u,v) = a(v,u) is the adjoint sesquilinear form. The Hi-Fi dual problem is given by:
find Edu

h (y) ∈ Vh such that

(3.55) a(vh,E
du
h (y);σ(y)) = −s(vh), ∀vh ∈ Vh,

or in algebraic form by

(3.56) AH
h (y)edu

h (y) = −cH ,

where c is a row vector with components

(3.57) (c)j = s(Nj), j = 1, . . . , Nh.

The corresponding EIM Hi-Fi dual problem with solution denoted as Edu
h,NI

is defined analo-
gously.

Remark 3.7. We choose to define the dual Hi-Fi problem on the same FEM space as the
primal Hi-Fi problem. Thus, we obtain the same matrix Ah(y), a fact that can be exploited
when solving the dual Hi-Fi linear systems by e.g. using a factorization of Ah(y) obtained
from the primal problem. An alternative is to use different discretisations, adapted to the two
problems (see [23] for an analysis in this case).

We now construct a reduced dual space similar to the reduced primal space. Suppose we have
at hand the ND-dimensional dual space V du

ND
⊂ Vh, that is spanned by the basis functions

(wdu
j )NDj=1. If we denote the basis transformation matrix as Wdu, we obtain the Low-Fi, EIM-

RB dual problem: given y, find ENI ,ND(y) ∈ V du
ND

such that

(3.58) aNI (vND ,E
du
NI ,ND

(y);σ(y)) = −s(vND), ∀vND ∈ V
du
ND
,

or in algebraic form
(3.59)(

Adu
NI ,ND

(y)
)H
edu
NI ,ND

(y) = WH
du

(
S− ıωM+ − ıω

NI∑
k=1

ξk(y)Mk

)H
Wdue

du
NI ,ND

(y) = −WH
duc

H ,
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where we used the expansion Edu
NI ,ND

(y) =
∑ND

k=1 e
k
NI ,ND

(y)wdu
k . The construction of V du

ND
proceeds as in the primal problem by using solutions of (3.56) for the selected y. To specify
the a posteriori error indicator, we first need to define the primal residual as

(3.60) rpr
NI ,NP

(v;y) = f(v)− aNI (ENI ,NP (y),v;σ(y)), ∀v ∈ V,

and the dual residual as

(3.61) rdu
NI ,ND

(v;y) = −s(v)− aNI (v,E
du
NI ,ND

(y);σ(y)), ∀v ∈ V.

We also denote the primal and dual EIM-RB errors as εNI ,NP = Eh −ENI ,NP ∈ Vh and
εdu
NI ,ND

= Edu
h − Edu

NI ,ND
∈ Vh respectively. The EIM-RB, dual-corrected representation of

z = s is defined as

(3.62) ẑsNI ,NP ,ND(y) := ŝNI ,NP ,ND(y) = s(ENI ,NP (y))− rpr
NI ,NP

(Edu
NI ,ND

;y),

i.e. we add a correction term that exploits the additional information that the dual problem
is providing, leading to sharper error bounds. Using standard arguments, we have the (non-
rigorous) error estimate

‖εNI ,NP (y)‖V ≤ ∆E
NI ,NP

(y) := ∆E
EIM(y) + ∆E

RB(y),(3.63)

with

(3.64) ∆E
EIM :=

‖δaNI ,NE (ENI ,NP , ·;y)‖V ∗h
αh(y)

, ∆E
RB :=

‖rpr
NI ,NP

(·;y)‖V ∗h
αh(y)

,

where αh(y) is the (best) discrete coercivity factor given by

(3.65) αh(y) = inf
vh∈Vh

|a(vh,vh;σ(y))|
‖vh‖2V

.

Using an analogous expression for the dual error, we can derive (see Appendix D, also [42])
the following error estimate and corresponding a posteriori estimator ∆s

NI ,NP ,ND

|s(Eh(y))− ẑsNI ,NP ,ND(y)| ≤ ∆s
NI ,NP ,ND

(y) := αh(y)∆E
NI ,NP

(y)∆Edu

NI ,ND
(y)(3.66)

+ δaNI ,NE (ENI ,NP ,E
du
NI ,ND

;y).(3.67)

For the estimation of the covariance and pseudo-covariance of s, we require the approxi-
mation of the non-linear quantities z = s2 and z = |s|2 respectively. We therefore introduce
an additional dual problem (related to the Fréchet derivative of z) as in [42]: given y ∈ U ,
find Edu2(y) such that

(3.68) a∗(Edu2(y),v;σ(y)) = −2ŝNI ,NP ,ND(y)s(v), ∀v ∈ V.

Using analogous definitions for the corresponding Hi-Fi, EIM and EIM-RB problems (em-
ploying a reduced space V du2

ND2
of dimension ND2) and the residual and error, we define the

EIM-RB, dual-corrected approximation ẑs
2

of s2 to be

(3.69) ẑs
2

NI ,NP ,ND,ND2
(y) = s(ENI ,NP (y))2 −

(
rpr
NI ,NP

(Edu
NI ,ND

;y)
)2
− rpr

NI ,NP
(Edu2

NI ,ND2
;y).
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The following error estimate for the EIM-RB approximation ẑs
2

of s2 and the a posteriori
indicator ∆s2

NI ,NP ,ND,ND2
can be derived similarly to the derivation in Appendix D

∣∣∣s(Eh(y))2 − ẑs2NI ,NP ,ND,ND2
(y)
∣∣∣ ≤ ∆s2

NI ,NP ,ND,ND2
(y)(3.70)

:=
(
∆s
NI ,NP ,ND

(y)
)2

+ αh(y)∆E
NI ,NP

(y)∆Edu2

NI ,ND2
(y)(3.71)

+ δaNI ,NE (ENI ,NP ,E
du2
NI ,ND2

;y).(3.72)

For the estimation of the covariance of s, we have z = |s|2, so we use instead the following
dual problem: given y ∈ U , find Edu3(y) such that

(3.73) a∗(Edu3(y),v;σ(y)) = −2ŝNI ,NP ,ND(y)s(v), ∀v ∈ V.

Then we define the EIM-RB, dual-corrected approximation ẑ|s|
2

of |s|2 to be
(3.74)

ẑ
|s|2
NI ,NP ,ND,ND3

(y) = |s(ENI ,NP (y))|2 −
∣∣∣rpr
NI ,NP

(Edu
NI ,ND

;y)
∣∣∣2 −<(rpr

NI ,NP
(Edu3

NI ,ND3
;y)
)
.

The error estimate for the EIM-RB approximation ẑ|s|
2

of |s|2 and the a posteriori indicator

∆
|s|2
NI ,NP ,ND,ND3

are expressed as follows

∣∣∣|s(Eh(y))|2 − ẑ|s|
2

NI ,NP ,ND,ND3
(y)
∣∣∣ ≤ ∆

|s|2
NI ,NP ,ND,ND3

(y)(3.75)

:=
(
∆s
NI ,NP ,ND

(y)
)2

+ αh(y)∆E
NI ,NP

(y)∆Edu3

NI ,ND3
(y)(3.76)

+ δaNI ,NE (ENI ,NP ,E
du3
NI ,ND3

;y).(3.77)

Note that instead of constructing two different reduced dual spaces for problems (3.68)
and (3.73), we can instead approximately use only the RB space constructed from (3.68),
so that the EIM-RB solutions are related as Edu3

NI ,ND3
= Edu2

NI ,ND2
ŝNI ,NP ,ND/ŝNI ,NP ,ND and

∆
|s|2
NI ,NP ,ND,ND3

= ∆s2

NI ,NP ,ND,ND2
.

In general, we can compute αh(y) as the square root of the minimum eigenvalue λmin(y)
of the generalized eigenvalue problem AH

h (y)X−1
h Ah(y)v = λ(y)Xhv, where Xh is the discrete

representation of the V inner product in the FEM basis. However, this computation involves
Hi-Fi operations and therefore we cannot use it for the efficient online evaluation of the a
posteriori error indicator. We rely instead on an approximation of αh(y) which we describe
in the next section 3.2.4.

With regard to the computation of the dual norms of the primal and dual residuals and of
other required linear or anti-linear forms such as δaNI ,NE (ENI ,NP , ·;y), this can be efficiently
achieved through an offline-online decomposition using the corresponding Riesz representatives
(see e.g. [57, 59]). For the primal residual, we use the Riesz representative r̂pr

NI ,NP
(y) ∈ Vh,

so that ‖rpr
NI ,NP

(·;y)‖2V ∗h = ‖r̂pr
NI ,NP

(y)‖2V . Then using the notation A0 = (S − ıωM+) and
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Ak = −ıωMk and setting ξ0 = 1, we get

‖r̂pr
NI ,NP

(y)‖2V = bHX−1
h b(3.78)

− 2<

(
NI∑
i=0

ξi(y)eHNI ,NP (y)WHAH
i X−1

h b

)
(3.79)

+

NI∑
i,j=0

ξi(y)ξj(y)eHNI ,NP (y)WHAH
i X−1

h AjWeNI ,NP (y),(3.80)

where y-independent quantities can be stored in the offline phase. An expression for the dual
norms of other quantities can be derived analogously.

Remark 3.8. We choose to enrich the dual spaces simultaneously with the primal space
(i.e. NP = ND = ND2 = ND3) for the ym+1 that are selected at the m-th step by the
greedy algorithm, using the weighted a posteriori error indicator π(y)∆z, where ∆z denotes
the appropriate error indicator for the specific z. Therefore, in this approach, the dimensions
of all reduced spaces grow at the same rate. Essentially, this reflects the estimate that the
Kolmogorov n-widths of the primal and dual problems decay at approximately the same
rate. In cases where the decay rate of one problem is significantly faster, the growth of the
corresponding reduced space is more important for fast convergence of |z − ẑ| (for a more
thorough discussion see [31]).

3.2.4. Coercivity constant approximation by Radial Basis Function interpolation. Gen-
erally in RB, the Successive Constraint Method (SCM) [48] can be used to obtain lower bounds
on αh(y) and enable the fast evaluation of the posteriori error indicator (see also [44] for a
comparison of different approaches). However, due to the computational effort required for
SCM in high dimensions and our use of adaptive training sets, we rely instead on a heuristic
approximation αI(y) of αh(y), achieved through a Radial Basis Function (RBF) interpolation
as proposed in [52]. For a training set (yk)Ntk=1 = Utrain ⊂ U and truncation level J , we build
the RBF interpolant αI(y) > 0 by computing the coercivity constant αh(y) for each y ∈ Utrain

and defining

(3.81) logαI(y) = β0 +

J∑
j=1

βjyj +

Nt∑
k=1

γkϕ(|y − yk|),

where ϕ(r) = e−r
2

is the RBF and γk are weights that satisfy the relations

logαI(y) = logαh(y), ∀y ∈ Utrain,(3.82)

Nt∑
k=1

γk = 0,

Nt∑
k=1

γk(y
k)j , j = 1, . . . , J.(3.83)

The resulting system is solved in the offline phase for the weights βj , j = 0, . . . , J and γk,
k = 1, . . . , Nt. Then, in the online phase, we compute the RBF approximation from (3.81).
Similar to the EIM and RB methods, we don’t choose a priori a training set but we start from
one point y1 and then we progressively add the point ym to the training set whenever a Hi-Fi
solution at ym is computed.
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3.3. Dimension-adaptive SQ-EIM-RB algorithm. In this section we describe the dimension-
adaptive Sparse Quadrature, Empirical Interpolation Method and Reduced Basis algorithm,
adapted and extended from ideas in the algorithms presented in [22, 18, 21] and [55]. Algo-
rithm 1 is used for the estimation of the mean of s. Similar algorithms are also used for the
estimation of the covariance and pseudo-covariance of s by replacing the error estimators with
the appropriate choices.

As it can be seen, the heuristic idea in Algorithm 1 is the replacement of the Hi-Fi model
by the EIM-RB reduced model in all SQ operations and the “training” of EIM-RB over a
collection of adaptive training sets Utrain, which are determined by the dimension-adaptive
SQ algorithm. For non-nested quadrature rules, these sets are constructed in each iteration as
the union of tensor product grids Gµ associated to selected indices µ. For nested rules we can
instead consider only the new points added to the grid by each selected index µ. By performing
this adaptive procedure, we aim to capture with specified accuracy the behaviour of the Hi-Fi
model across the parametric dimensions that are most important for the estimation of the QoI.
At each step, we estimate the EIM-RB approximation error EEIM-RB(y) = π(y)∆z

NI ,NP ,ND
(y)

and refine the EIM or/and the RB approximations when needed, based on corresponding error
contributions which are estimated to be given by

(3.84) EEIM(y) = π(y)αI(y)∆E
EIM(y)∆Edu

EIM(y),

and

(3.85) ERB(y) = π(y)αI(y)∆E
RB(y)∆Edu

RB (y),

respectively. If we assume all error contributions to be balanced and the error estimators to be
effective, then we can estimate that to achieve a tolerance tolEIM-RB for EEIM-RB, we can set
tolEIM ' tolRB ' tolEIM-RB/c for ERB and EEIM, for some constant c > 1. The choice of the
tolerance tolEIM-RB is crucial for the performance of the algorithm and it should be selected
low enough such that SQ error converges to the desired accuracy but not too low as this would
make the model reduction inefficient. Of course, the efficiency of the error estimator, defined
as the ratio of the estimator to the actual error plays an important role and we would like
this to be as close to unity as possible.

Remark 3.9. Note that the algorithm requires the exploration of the reduced margin RΛ

of Λ. Since in general we wouldn’t want to discard function evaluations, the output can be
considered to be the index set Λ̃ = Λ ∪ RΛ and the associated quadrature. The theoretical
estimate however does indeed refer to the index set Λ since this captures (heuristically) the
largest contributions.

3.3.1. Computational complexity. We give here a short description of the computational
complexity involved in the elements in Algorithm 1 for the case z = s. First, if we assume
that we require NSQ Hi-Fi solutions (each involving the solution of a system with Nh degrees
of freedom) to achieve a specified accuracy ε using a SQ-only version of the algorithm, then
the computational complexity in this case scales dominantly as O(NSQN

p
h) (complex) oper-

ations, where p ≤ 3 depends on the solver used and the sparsity of the matrices involved.
In the case of the SQ-EIM-RB algorithm, the situation is more complex as we have to take



UNCERTAINTY QUANTIFICATION FOR MAXWELL EQUATIONS 23

into account the computational work involved in both training and evaluating the Low-Fi
approximation. This is usually split into an “offline” and “online” phase; in our case the two
phases interchange due to the adaptive nature of the algorithm. For our purposes, “offline”
phase consists of enriching the Low-Fi approximations and updating the required reduced
quantities. On the other hand, the “online” phase consists of evaluating the a posteriori error
estimators and calculating the Low-Fi approximations. For reasonable values of NP and NI

the “online” phase is computationally less costly than the “offline” phase so we focus on the
second. If we assume that to achieve an accuracy ε, the algorithm requires NI terms for the
EIM approximation and a size of NP = ND for the RB spaces, then the computational cost
in total for the “offline” phases is dominated by: i) the solution of the primal Hi-Fi systems
which scales as O(NPN

p
h) (note that we assume a factorization is obtained from the primal

problems and used to solve the dual problems, thus making the associated computational work

negligible), ii) the solution of the generalized eigenvalue problems which scales as O(NPN
p′

h )
for some p′ possibly different than p and iii) the computation required for the a posteriori
error estimation which has cost that depends on the current values of NI , NE , NP , Nh at each
update of the offline quantities. For this last contribution we can give a rough estimate of cost
as O

(
4(2NI +NE)NPN

2
h + 4(N2

I + (NI +NE)2)N2
PNh

)
for the current values of NI , NE , NP

at each update, where we assumed that in the Hi-Fi dimension Nh, the cost of solving a
factorized system and the cost of a matrix-vector product, is 2N2

h operations. Depending on
Nh and the required NP , NI , NE , a plain SQ or a SQ-EIM-RB approach is computationally
less costly, for example as Nh gets large the cost of solving the Hi-Fi systems dominates and
the model reduction approach performs favourably.

4. Numerical experiment. In this section we present numerical evidence to showcase the
performance of our method. Let us mention that we use our own MATLAB R© [53] implemen-
tations of FEM (with efficient assembly of forms as in [58]) and of the EIM-RB method. For
SQ we make use of the sparse grids MATLAB kit [8] with suitable modifications.

The model and the parameters in Maxwell equations are chosen to represent a typical
low-frequency (f = 1) CSEM survey. We set µ = µ0, ω = 2π and ‖ps‖2 = 50000. The
domain is D = (−5000, 5000) × (−5000, 5000) × (−4000, 4000), which is separated into D+

(the sea layer) and D− (the subsurface) by the horizontal plane z = 0. Figure 4.1(b) shows a
horizontal slice of the tetrahedral mesh used in our examples, which is a priori refined at the
regions around the source xs = (−500,−350, 300) and sensor xr = (300, 450, 200) positions,
while it is coarser near the boundary. The total number of tetrahedra amounts to nc = 62786
which results in Nh = 70284 internal degrees of freedom for the Hi-Fi FEM problems, that
are solved using the sparse direct solver MUMPS [3]. As mentioned in section 2.2.2, we use
a regularization for point sources that has spherically symmetric components. We use an
x-oriented source and receiver and we set jH = ‖ps‖2(j1

H , 0, 0) with

(4.1) j1
H =

{
1
H3 ηm,p(r/H) r ≤ H,
0 r > H,

where r = ‖x − xs‖2 and ηm,p(r) is a polynomial of degree p in the ball B(0, 1) that is
expressed in terms of the shifted Legendre polynomials and satisfies the compact m-moment
conditions together with suitable continuity conditions. In our experiments we use η2,3(r) =
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Algorithm 1: Dimension-adaptive SQ-EIM-RB algorithm

Input: tolerances tol , tolEIM, tolRB, tolEIM-RB, maximum cardinality Nmax, starting
truncation level J , NE , map z(y) = s(E(y));

Output: index sets ΛN , Λ̃N = ΛN ∪RΛN , quadratures QΛN [z], QΛ̃N
[z];

1 Initialize: N = NP = NI = 1,ν = 0,ΛN = Λ̃N = {0}, RΛN = {∅}, A = 0, E = 2 · tol ;
a) construct initial sparse grid GΛN from (3.7);
b) solve the primal and dual Hi-Fi problems at GΛN ;
c) construct initial EIM-RB primal and dual spaces, initialize auxiliary EIM with

NE terms at random points, store offline quantities, initialize RBF approxima-
tion (3.81);

d) calculate initial SQ approximation Qold = QΛN [z] as in (3.8);
2 while N < Nmax and E > tol do
3 find N(ν,ΛN ) as in (3.19), Utrain = {∅};
4 for µ ∈ N(ν,ΛN ) and ΛN ∪ {µ} is downward closed do Utrain = Utrain ∪Gµ;

// Train EIM-RB on Utrain

5 find yNI,P+1 = arg supy∈Utrain

[
π(y)∆z

NI ,NP ,ND
(y)
]
, Ntrain = 0;

6 while EEIM-RB(yNI,P+1) > tolEIM-RB and Ntrain < #(Utrain) do
7 if EEIM(yNI,P+1) > tolEIM then
8 enrich main and auxiliary EIM approximations at yNI,P+1, NI = NI + 1;
9 end

10 if ERB(yNI,P+1) > tolRB then
11 solve primal and dual Hi-Fi problems at yNI,P+1, enrich spaces;
12 NP = NP + 1, add αh(yNI,P+1) to RBF approximation;

13 end

14 update offline quantities, find yNI,P+1 = arg supy∈Utrain

[
π(y)∆z

NI ,NP ,ND
(y)
]
;

15 Ntrain = Ntrain + 1;

16 end
17 for µ ∈ N(ν,ΛN ) and ΛN ∪ {µ} is downward closed do

18 Λ̃N = Λ̃N ∪ {µ}, RΛN = RΛN ∪ {µ};
19 evaluate QΛ̃N

[z] using EIM-RB approximation ẑNI ,NP ,ND ;

20 compute profit P (µ) = (QΛ̃N
−Qold)[z], Qold = QΛ̃N

;

21 end
22 choose τ from RΛN with the highest profit and set ν = τ ;

// Check for dimension activation

23 if ∃j = 1, . . . , J such that Aj = 0 and τj > 0 then

24 Aj = 1, J = J + 1, Λ̃N = Λ̃N ∪ {eJ}, RΛN = RΛN ∪ {eJ};
25 train EIM-RB on Utrain = GeJ as in 5-16;
26 compute profit P (eJ) = (QΛ̃N

−Qold)[z], Qold = QΛ̃N
;

27 ν = arg max [max(P (τ ), P (eJ))];

28 end

29 ΛN+1 = ΛN ∪ {ν}, RΛN+1
= RΛN \{ν}, Λ̃N+1 = Λ̃N , E = P (ν), N = N + 1;

30 end
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σ

(a) (b)

Figure 4.1: (a) Realization of conductivity random field σ with σ+ = 3.3, σ∗ = 0,
σ0 = 1/2, Var[q] = 1 and Whittle-Matérn covariance function with ν = 15/2 and M1/2 =
diag(1250, 1250, 300). (b) Horizontal slice (z = 150) of the mesh used in Experiment 1 with
nc = 62786 cells, refined at the source (depicted with red square) xs = (−500,−350, 300) and
receiver (depicted with yellow star) xr = (300, 450, 200) positions.

−15(−11 + 42− 51r2 + 20r3)/2π, which satisfies the 2-moment conditions and has continuity
C0. A similar representation can be used for the receiver.

4.1. SQ algorithm. For our numerical experiment, we set σ+ = 3.3, Var[q] = 1, σ∗(x) = 0
and σ0(x) = 1/2. The smoothness parameter is chosen to be ν = 15/2, which according to
the analysis in section 3.1.1 should theoretically lead to a convergence rate O(N−1). We use
the weight matrix M1/2 = diag(1250, 1250, 300) for the weighted Euclidean norm to account
for anisotropy in the z direction. A realization of the conductivity random field is depicted
in Figure 4.1(a), while Figure 4.2(a) shows the decay of the normalized eigenvalues λj and
norms ‖ψj‖L∞(D−) for this choice of covariance function, which agrees with the theoretical
estimates. We start from J = 10 dimensions, which capture about 85% of the variance in
the KL expansion. As a first test, we employ Algorithm 1 for the approximation of E[f ] with
f(y) = s(y) = s(E(y)) = ex · δxr(E(y)) = Ex(xr;y), f(y) = s(y)2, f(y) = |s(y)|2, using
a separate simulation for each choice of f . We set the tolerance as tol = 10−5 · |QΛ1 [f ]| ≈
4 · 10−6. We set the tolerance as tol = 10−5 · |QΛ1 [f ]| ≈ 4 · 10−6. Approximating the
“true” value of the integrals as E[f ] ≈ QΛ̃400

[f ] (see Table 4.2), we report the convergence
of the relative error with respect to the number of indices in Figure 4.2(b). The results
show a convergence ratio that is in agreement with the theoretical estimate, although the
decrease of the error is not monotonic. Note that convergence is observed even for the non-
holomorphic function f = |s|2. The computational effort required for N = 400 amounts
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(a) (b)

Figure 4.2: (a) Normalized eigenvalues λj and norms ‖ψj‖L∞(D−) for Whittle-Matérn covari-

ance function with ν = 15/2 and M1/2 = diag(1250, 1250, 300). (b) Convergence of relative
error |E[f ]−QΛN [f ]|/|E[f ]| with respect to the number of indices N for the plain SQ algorithm
with f = s, f = s2 and f = |s|2. The “true” value is approximated as E[f ] ≈ QΛ̃400

[f ].

to NSQ = 13402, NSQ = 12696, NSQ = 12967 solutions of Hi-Fi forward problems for the
three choices of f respectively. Figure 4.3(a) shows the sparse grid levels for the activated
dimensions at N = 400, using the plain SQ algorithm for the approximation of E[s]. The
graph indicates that the first two dimensions are the most important, but there isn’t a clear
decrease in the sparse grid levels utilized for higher dimensions, which is an indication of the
complex effect that different dimensions have on the computed QoIs. We also use the mean
conductivity E[σ(x,y)] = 3.3χD+(x)+0.5 exp(0.5)χD−(x) to compute the value s(E(E[σ])) =
(4.4828− 5.7186i)× 10−6, which shows in comparison with E[s(E(σ))] in Table 4.2 the effect
of non-linearity.

4.2. SQ-EIM-RB algorithm. As a next step, we employ the SQ-EIM-RB algorithm, where
now we use the approximation QΛN [f̂ ], with f̂ being the EIM-RB representation for f = s, f =

s2, f = |s|2, i.e. f̂ = ẑs, f̂ = ẑs
2
, f̂ = ẑ|s|

2
respectively. We use a separate simulation for the

choices f = s and f = s2 but to save computational effort we compute QΛN [ẑs
2
] and QΛN [ẑ|s|

2
]

using the same simulation, with the profits from the first driving the sparse grid algorithm,
and by utilising the same RB space for both quantities as mentioned in section 3.2.3. We
additionally set the tolerances as tolEIM-RB = 102 · tol , tolEIM = 10−2 · tolEIM-RB, tolRB =
10−1 · tolEIM-RB and we initialize the auxiliary EIM approximation with NE = 10 terms using
randomly chosen values for y. Choosing an EIM tolerance that is lower than the RB tolerance
was necessary in practice to achieve convergence up to the desired accuracy. Figure 4.3(b)
shows the convergence of the relative error with respect to the number of indices. We don’t
have an a priori convergence theory for this case to compare, so our reference is the estimate
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(a) (b)

Figure 4.3: (a) Activated dimensions and corresponding sparse grid levels for the approxima-
tion of E[s] by the plain SQ algorithm. (b) Convergence of relative error |E[f ]−QΛN [f̂ ]|/|E[f ]|
with respect to the number of indices N for the SQ-EIM-RB Algorithm 1 with f = s, f = s2

and f = |s|2, and EIM-RB approximations f̂ = ẑs, f̂ = ẑs
2
, f̂ = ẑ|s|

2
respectively. The “true”

value is approximated as E[f ] ≈ QΛ̃400
[f ].

(a) (b)

Figure 4.4: (a) Bottom: behaviour of maxy∈Utrain EEIM-RB(y) as the algorithm runs through
the training sets Utrain. The last considered value of maxy∈Utrain EEIM-RB(y) in each Utrain is
depicted with an orange star. Top: percentage of points in each Utrain used in the enrichment
of the EIM-RB approximation. (b) Sparse grid error indicator E , equal to the profit P (ν) for
the chosen index ν, in each iteration of algorithm 1, with respect to the number of indices N .
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(a) (b)

Figure 4.5: (a) Effectivity ηs(y) of the error estimator ∆s
NI ,NP ,ND

(y) for each selected y. (b)
Ratio of interpolated αI(y) to discrete αh(y) coercivity factor for each selected y.

NI NP f̂ evaluations active dimensions

s 143 86 12530 30
s2, |s|2 150 69 11279 36

Table 4.1: Number of terms NI in the EIM approximation, reduced space size NP = ND =
ND2 and number of evaluations of the EIM-RB approximation f̂ , for the three different choices
of f at N = 400.

from the SQ theory. The results show an error decay that is comparable to the plain SQ
case but with larger fluctuations. Observe that the use of f = s2 to drive the algorithm and
build the reduced space affects the performance of the approximation for the case f = |s|2.
At N = 400, we get the reduced space sizes, number of function evaluations and active
dimensions summarized in Table 4.1 and the values outlined in Table 4.2. Figure 4.4(a)
shows at the bottom the behaviour of the quantity maxy∈Utrain as the algorithm progresses
through the training sets Utrain. We mark the last value of this quantity for each training set
(corresponding to the last y in each set or the first y in each set for which the tolerance criterion
is satisfied) with an orange star. Therefore an orange star above the tolerance means that
all points y in that training set were used for the enrichment of the EIM-RB approximation,
while an orange star below the tolerance means that only a percentage of the points were used.
This percentage is depicted at the top of Figure 4.4(a). We can also see that there are spikes
in the values of maxy∈Utrain , which can be attributed to training sets that are related with the
activation of new dimensions. In Figure 4.4(b), we report the error indicator E = P (ν) for the
chosen indices ν which shows a clear decrease but with some deterioration as the tolerance
limits are approached.
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plain SQ SQ-EIM-RB

E[s] (4.4828− 5.7186i)× 10−6 (4.4820− 5.7218i)× 10−6

Cov[s, s] (−1.436− 0.806i)× 10−12 (−1.424− 0.824i)× 10−12

Cov[s, s] 1.830× 10−12 1.793× 10−12

Table 4.2: Values in SI units of the mean E[s], covariance Cov[s, s] and pseudo-covariance
Cov[s, s] as approximated by the plain SQ (using QΛ̃400

[f ]) and SQ-EIM-RB (using QΛ̃400
[f̂ ])

methods at N = 400.

More information on the EIM-RB approximation scheme can be derived from Figure 4.5(a)
which shows the effectivity of the EIM-RB error estimator ∆s

NI ,NP ,ND
(y), defined as ηs(y) =

∆s
NI ,NP ,ND

(y)

|s(Eh(y))−ẑsNI ,NP ,ND (y)| . It varies in the range 0.33 − 1300.24 with a mean equal to 8.13. Val-

ues lower than 1 are attributed to the approximation of αh(y) by αI(y), while large values
are additionally attributed to the corresponding large condition numbers of the underlying
variational problem. Furthermore, Figure 4.5(b) depicts the ratio of the RBF interpolated
coercivity factor αI(y) to the discrete coercivity factor ah(y) for each selected y. We can see
that the ratio varies in the range 0.23− 4.74 with a mean that is close to unity, which shows
that the RBF interpolant gives a reasonable approximation for most y.

5. Conclusion. In this work, we have examined theoretically and numerically a computa-
tional framework based on Sparse Grid quadrature and model reduction that enables efficient
uncertainty quantification for the low-frequency, time-harmonic Maxwell equations with log-
normal conductivity random field and regularized source and receiver representations. We
focused on the second-order characterization of the measurement s given by the mean E[s],
the covariance Cov[s, s] and the pseudo-covariance Cov[s, s]. It is shown that the SQ theory
applies also for this model, predicting dimension-independent convergence rates that agree
with the numerical results produced using a dimension-adaptive algorithm. Additionally, we
have described a model reduction scheme based on the weighted Reduced Basis and Empir-
ical Interpolation methods that allows to reduce the computational cost in the case where
the dimension of the discretised problem is high. The computational framework we proposed,
as outlined in Algorithm 1 is adaptive and it is based on goal-oriented, primal-dual based,
a posteriori error estimators. The performance of the combined SQ-EIM-RB algorithm was
tested numerically to show the efficiency of the estimators for most sample values and the
convergence of the quadrature scheme with rate comparable to the plain SQ case.

Going forward, additional challenges are both theoretical and computational. An a priori
convergence estimate for the combined SQ-EIM-RB approach would give more insight into its
properties. An additional issue we haven’t addressed is the case of many sources and receivers
which would be computationally expensive with a straightforward model reduction approach.
These topics, together with the application of the framework for the corresponding Bayesian
inverse problem, are to be addressed in future work.

Appendix A. Coercivity, continuity and perturbation. We prove here the coercivity and
continuity of the sesquilinear form as defined in (2.14), using ‖ · ‖ to denote the L2(D,C3)
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norm.

|a(u,v;σ)| ≤ |(µ−1∇× u,∇× v)|+ |ıω| |(σu,v)|(A.1)

≤ ‖µ−1‖L∞(D)‖∇ × u‖‖∇ × v‖+ ω‖σ‖L∞(D)‖u‖‖v‖(A.2)

≤ max(µ−1
min, ωσmax)(‖∇ × u‖‖∇ × v‖+ ‖u‖‖v‖)(A.3)

≤ γ(‖∇ × u‖2 + ‖u‖2)1/2(‖∇ × v‖2 + ‖v‖2)1/2(A.4)

≤ γ‖u‖H(curl,D)‖v‖H(curl,D),(A.5)

with continuity constant γ = max(µ−1
min, ωσmax). It is also coercive on H(curl, D) since for

m ∈ C with |m| > 0 we have

|m||a(u,u;σ)| ≥ |<(ma(u,u;σ))| ≥ <(ma(u,u;σ))(A.6)

= <(m)‖∇ × u‖2µ−1 + =(m)ω‖u‖2σ(A.7)

≥ min

(
ess inf
x∈D

(<(m)µ−1), ω ess inf
x∈D

(=(m)σ)

)
(‖∇ × u‖2 + ‖u‖2)(A.8)

= ‖u‖2H(curl,D),(A.9)

where we have chosen <(m) = µmax and =(m) = 1
ωσmin

. The coercivity constant is α = 1/|m|.
Suppose for two conductivities σ and σ̃ that satisfy the assumption (2.12) we have two

solutions of (2.14), E and Ẽ respectively (possibly having different coercivity constants α, α̃).
Subtracting we get

a(E,v;σ)− a(Ẽ,v; σ̃) = 0,(A.10)

which gives

(A.11) a(E − Ẽ,v;σ) = l(v) = ıω

∫
D

(σ − σ̃)Ẽ · v dx.

Therefore

(A.12) ‖E − Ẽ‖V ≤
1

α
‖l‖V ∗ ≤

ω

α
‖σ − σ̃‖L∞(D)‖Ẽ‖V ≤

ω‖f‖V ∗
min(α, α̃)2

‖σ − σ̃‖L∞(D).

Appendix B. Properties of anisotropic Whittle-Matérn covariance. The anisotropic
Whittle-Matérn covariance can be thought of as the isotropic case under a linear coordinate
transformation. Writing M−1 = QTΛQ, where Λ is a diagonal matrix with the eigenvalues
of M−1 on the diagonal and Q is an orthogonal matrix with the corresponding eigenvectors
as columns, we can define new coordinates x′ = Λ1/2Qx, so that ‖x‖M = ‖x′‖2. In general,
properties of the anisotropic case can be derived from existing analysis using the equivalence
of finite-dimensional norms. Moreover, if we define

(B.1) c(r) =
1

2ν−1Γ(ν)
(r)ν Kν (r) ,
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then the Fourier transform of C(x,y) = c(‖x− y‖2) in d spatial dimensions is

(B.2) f(w) =
Γ(ν + d/2)

Γ(ν)

2d/2

(1 + ‖w‖22)ν+d/2
,

and the Fourier transform of CA = C(x′,y′) = c(‖x′ − y′‖2) = c(‖x − y‖M ) is g(w) =√
detMf(

√
wTMw). Using a theorem from Widom [69], one can show that

(B.3) λj ≤ K(D,M, d, ν)j−(2ν/d+1).

An alternative way to derive this bound is to notice that C(x′,y′) obeys the conditions in [7]

(B.4) k(1 + ‖w‖22)−(ν+d/2) ≤ g(w) ≤ K(1 + ‖w‖22)−(ν+d/2), 0 < k ≤ K.

and

(B.5) lim
R→∞

∫
‖x′‖>R

|∂αc(x′)| dx′ = 0, |α| ≤ 2 dν + d/2e .

Additionally, in [7] it is proved that these conditions lead to the following bound for the
eigenfunctions

(B.6) ‖φj‖L∞(D) ≤ Kλ
−s/(2ν+d)
j , d/2 < s < ν + d/2,

which taking s = d/2 + ε, with ε > 0 sufficiently small, and using (B.3) gives the (not always
sharp) bound

(B.7) ‖ψj‖L∞(D) ≤ Kj−ν/d+ε.

Appendix C. Parametric partial derivatives and weighted Sobolev-type norms. We
start by finding an expression for the partial derivative ∂µE(y) for µ = ej = (δij)i≥1, j ∈ N
as in [6, 28]. We consider two solutions E(y+ hej) and E(y) to problem (2.36) with |h| < 1,
for the same source term and the same σ∗, σ0, σ+ and define the function

(C.1) wh(y) =
E(y + hej)−E(y)

h
.

so that limh→0wh = ∂µE. Subtracting the two variational formulations we get

a(E(y + hej),v;σ(y + hej))− a(E(y),v;σ(y)) = 0,(C.2)

which leads to

(C.3) a(wh(y), v;σ(y)) = ıω

∫
D

σ(y + hej)− σ(y)

h
E(y + hej) · v dx = lh(v).
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If l0(v) = ıω(∂µσ(y)E(y),v)L2(D,C3), then using (A.12) we have

|lh(v)− l0(v)| = ω

∣∣∣∣∫
D

(
σ(y + hej)− σ(y)

h
E(y + hej)− ∂µσ(y)E(y)

)
· v dx

∣∣∣∣
(C.4)

≤ Kω

(∥∥∥∥σ(y + hej)− σ(y)

h

∥∥∥∥
L∞(D)

‖E(y + hej)−E(y)‖V

(C.5)

+

∥∥∥∥σ(y + hej)− σ(y)

h
− ∂µσ(y)

∥∥∥∥
L∞(D)

‖E(y)‖V

)
‖v‖V

(C.6)

≤ Kω

(
ω‖f‖V ∗

min(α(y), α(y + hej))2

∥∥∥∥σ(y + hej)− σ(y)

h

∥∥∥∥
L∞(D)

‖σ(y + hej)− σ(y)‖L∞(D)

(C.7)

+

∥∥∥∥σ(y + hej)− σ(y)

h
− ∂µσ(y)

∥∥∥∥
L∞(D)

‖f‖V ∗
α(y)

)
‖v‖V → 0 as h→ 0

(C.8)

which shows that, under our assumptions on σ, lh → l0 in V ∗ as h → 0. So the partial
derivative ∂µE(y) ∈ V is the solution to

(C.9) a(∂µE(y),v;σ(y)) = ıω

∫
D
∂µσ(y)E(y) · v dx, µ = ej , ∀v ∈ V,

and by recursion it follows that

(C.10) a(∂µE(y),v;σ(y)) = ıω
∑
ν≤µ
ν 6=µ

(
µ

ν

)∫
D
∂µ−νσ(y)∂νE(y) · v dx, µ,ν ∈ F ,

The partial derivatives of the parameter are given by

(C.11) ∂µ−νσ(y) = χD−(σ(y)− σ∗)ψµ−ν , ψµ−ν =
∏
j≥1

ψ
µj−νj
j

which leads to the bound (see e.g. [40])

(C.12)

∥∥∥∥∂µ−νσ(y)

σ(y)

∥∥∥∥
L∞(D)

≤ ‖ψ‖µ−νL∞(D).

Recalling the continuity and coercivity of the sesquilinear form gives

(C.13) α(y)‖u(y)‖2V ≤ |a(u(y),u(y);σ(y))| ≤ γ(y)‖u(y)‖2V .
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We define an equivalent L2 norm for any strictly positive function z by

(C.14) ‖u‖2L2(D,C3,z) =

∫
D
zu · u dx = ‖

√
zu‖2L2(D,C3).

Notice that

(C.15) ‖u(y)‖L2(D,C3,σ(y)) ≤
1√
ω
|a(u(y),u(y);σ(y))|1/2 ≤

√
γ(y)

ω
‖u(y)‖V .

We use (C.13), (C.15), (C.10), (C.12) and the Cauchy-Schwarz inequality to get (analogously
to relation 77 in [6])

‖∂µE(y)‖2V ≤
1

α(y)
|a(∂µE(y), ∂µE(y);σ(y))|

(C.16)

≤ ω

α(y)

∣∣∣∣∣∣∣∣
∑
ν≤µ
ν 6=µ

(
µ

ν

)∫
D
∂µ−νσ(y)∂νE(y) · ∂µE(y) dx

∣∣∣∣∣∣∣∣(C.17)

≤ ω

α(y)

∑
ν≤µ
ν 6=µ

(
µ

ν

)∥∥∥∥∂µ−νσ(y)

σ(y)

∥∥∥∥
L∞(D)

∣∣∣∣∫
D

√
σ(y)

√
σ(y)∂νE(y) · ∂µE(y) dx

∣∣∣∣(C.18)

≤ ω

α(y)

∑
ν≤µ
ν 6=µ

(
µ

ν

)
‖ψ‖µ−νL∞(D)‖∂

νE(y)‖L2(D,C3,σ)‖∂µE(y)‖L2(D,C3,σ)(C.19)

≤ Kµ
γ(y)

α(y)
‖∂µE(y)‖V

∑
ν≤µ
ν 6=µ

‖∂νE(y)‖V ,(C.20)

with constant Kµ = maxν≤µ
ν 6=µ
‖ψ‖µ−νL∞(D)

(
|µ|
b|µ|/2c

)#(supp(µ))

> 0, where b·c denotes the floor

function. We can apply this relation recursively to arrive at

(C.21) ‖∂µE(y)‖V ≤ K
(
γ(y)

α(y)

)|µ| ‖f‖V ∗
α(y)

, µ ∈ F ,

which according to our assumptions on σ, guarantees the finiteness of ‖∂µE(y)‖Lp(U,V ) for
0 ≤ p <∞.

Now we prove that an analogue to Theorem 4.1 in [6] applies. For an integer r ≥ 1 and a
sequence (ρj)j≥1 such that

(C.22) sup
x∈D−

∞∑
j=1

ρj |ψj(x)| = K < C(r) =
ln 2√
r
,
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there exists a constant C(K, r) such that

(C.23)
∑

‖µ‖l∞≤r

ρ2µ

µ!
|a(∂µE(y), ∂µE(y);σ(y))| ≤ C(K, r)|a(E(y),E(y);σ(y))|.

The proof follows [6]; we describe here only the required changes. For k ≥ 0 and

(C.24) ηk =
∑
|µ|=k
‖µ‖l∞≤r

ρ2µ

µ!
|a(∂µE(y), ∂µE(y);σ(y))|,

it is only required to prove that ηk ≤ η0δ
k for a fixed δ < 1. Using the notation

(C.25) ε(µ,ν) =

√
µ!ρµ−ν |ψ|µ−ν√
ν!(µ− ν)!

,

we have from (C.10) and the Cauchy-Schwarz inequality that
(C.26)

ηk
ω
≤

∫
D

∑
|µ|=k
‖µ‖l∞≤r

∑
ν≤µ
ν 6=µ

ε(µ,ν)σ(y)
|ρν∂νE(y)|2

ν!


1
2
∑
ν≤µ
ν 6=µ

ε(µ,ν)σ(y)
|ρµ∂µE(y)|2

µ!


1
2

dx.

Defining also

(C.27) τk =
∑
|µ|=k
‖µ‖l∞≤r

ρ2µ

µ!
‖∂µE(y)‖2L2(D,C3,σ),

and following the steps in [6] leads to

(C.28)
ηk
ω
≤

(
k−1∑
l=0

(
√
rK)k−l

(k − l)!
τl

)1/2

τ
1/2
k .

Noticing that τk ≤ ηk
ω and following the last argument in [6] completes the proof.

Finally, we prove that Assumption 3.3 applies, i.e. given 0 < p < 1, q = 2p/(2 − p),
r > 10/q and a positive sequence ρ = (ρj)j≥1 such that (ρ−1

j )j≥1 ∈ lq(N), there holds

(C.29)
∑

‖µ‖l∞≤r

ρ2µ

µ!

∫
U
‖∂µE(y)‖2V dγG(y) <∞.

Assuming an integer r ≥ 1 and a positive sequence (ρj)j≥1 such that (C.22) holds, we start
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from (C.13), integrate over U and sum over ‖µ‖l∞ ≤ r to obtain

∑
‖µ‖l∞≤r

ρ2µ

µ!

∫
U
‖∂µE(y)‖2V dγG(y)(C.30)

≤
∫
D

1

α(y)

 ∑
‖µ‖l∞≤r

ρ2µ

µ!
|a(∂µE(y), ∂µE(y);σ(y))|

 dγG(y)(C.31)

≤ C(K, r)

∫
U

1

α(y)
|a(E(y),E(y);σ(y))| dγG(y)(C.32)

≤ C(K, r)

∫
U

γ(y)

α(y)
‖E(y)‖2V dγG(y)(C.33)

≤ C(K, r)‖f‖2V ∗
∫
U

γ(y)

α(y)3
dγG(y) <∞,(C.34)

where the last term is finite due to our assumptions on σ(x,y).
Since we assumed r ≥ 1, we can choose r to be smallest integer such that r > 10/q. Then

the assumption supx∈D−
∑∞

j=1 ρj |ψj(x)| <∞ means up to multiplication with a constant that
(C.22) holds and thus (C.29) follows, proving the theorem.

Appendix D. A posteriori error estimate derivation. For z = s we have (omitting
y-dependence)

|z(Eh)− ẑNI ,NP ,ND | = |z(Eh)− z(ENI ,NP ) + f(Edu
NI ,ND

)− aNI (ENI ,NP ,E
du
NI ,ND

)|
= |s(εNI ,NP ) + a(Eh,E

du
NI ,ND

)− aNI (ENI ,NP ,E
du
NI ,ND

)|
= | − aNI (εNI ,NP ,E

du
h,NI

) + a(Eh,E
du
NI ,ND

)

+ aNI (εNI ,NP ,E
du
NI ,ND

)− aNI (Eh,E
du
NI ,ND

)|
= | − aNI (εNI ,NP , ε

du
ND

) + a(ENI ,NP + εNI ,NP ,E
du
NI ,ND

)

− aNI (ENI ,NP + εNI ,NP ,E
du
NI ,ND

)|
= | − rdu

NI ,ND
(εNI ,NP ;y) + a(ENI ,NP ,E

du
NI ,ND

)− aNI (ENI ,NP ,E
du
NI ,ND

)

+ a(εNI ,NP ,E
du
NI ,ND

)− aNI (εNI ,NP ,E
du
NI ,ND

)|
/ ‖rdu

NI ,ND
‖V ∗h ‖εNI ,NP ‖V + δaNI ,NE (ENI ,NP ,E

du
NI ,ND

;y)

+ ‖εNI ,NP ‖V ‖δ
a
NI ,NE

(·,Edu
NI ,ND

;y)‖V ∗h

/

(
‖rdu
NI ,ND

‖V ∗h + ‖δaNI ,NE (·,Edu
NI ,ND

;y)‖V ∗h
)(
‖rpr
NI ,NP

‖V ∗h + ‖δaNI ,NE (ENI ,NP , ·;y)‖V ∗h
)

αh

+ δaNI ,NE (ENI ,NP ,E
du
NI ,ND

;y) := ∆z
NI ,NP ,ND

.
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