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Abstract 

The dimerization and high-order oligomerization of transcription factors has endowed them with 

cooperative regulatory capabilities that play important roles in many cellular functions. However, such 

advanced regulatory capabilities have not been fully exploited in synthetic biology and genetic 

engineering. Here, we engineered a C-terminally fused oligomerization domain to improve the 

cooperativity of transcription factors. First, we found that two of three designed oligomerization 

domains significantly increased the cooperativity and ultrasensitivity of a transcription factor for the 

regulated promoter. Then, seven additional transcription factors were used to assess the modularity of 

the oligomerization domains, and their ultrasensitivity was generally improved, as assessed by their 

Hill coefficients. Moreover, we also demonstrated that the allosteric capability of the 

ligand-responsive domain remained intact when fusing with the designed oligomerization domain. As 

an example application, we showed that the engineered ultrasensitive transcription factor could be 

used to significantly improve the performance of a “stripe-forming” gene circuit. We envision that the 

oligomerization modules engineered in this study could act as a powerful tool to rapidly tune the 

underlying response profiles of synthetic gene circuits and metabolic pathway controllers. 

Keywords: transcription factor; ultrasensitivity; high-order oligomerization domain; genetic 

circuit; stripe-forming function; Hill coefficient. 
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Transcription factors are central cellular regulators in natural and synthetic biological systems 
1-3

. A 

typical transcription factor is generally composed of several functional domains, including a 

DNA-binding domain to recognize the specific DNA sequence, an allosteric domain to respond to 

cellular signals, and an oligomerization domain to increase the regulatory cooperativity 
4
. Numerous 

DNA-binding domains have been engineered to recognize new sequences 
5, 6

, and some allosteric 

domains have been mutated to specifically respond to new ligands 
7, 8

. For example, the 

arabinose-responsive AraC domain has been engineered to recognize an important metabolic 

intermediate, mevalonate 
9
. However, thus far, oligomerization domains have not been fully exploited 

in engineered biological systems. 

 The oligomerization of transcription factors typically leads to DNA looping on the regulated 

promoters, which is regarded as an important transcriptional regulatory mechanism in both 

prokaryotic and eukaryotic cells 
10, 11

. Several transcription factors, such as LacI, LysR, CI, and P53, 

can form tetramers or higher-order oligomers when binding to their multi-adjacent operators 
12-15

, and 

their native forms have been used to increase the ultrasensitivity and reduce the basal expression in 

synthetic gene systems 
16, 17

. However, most transcription factors lack such high-order oligomerization 

domains, and thus are incapable of generating higher cooperativity in their regulatory systems, 

resulting in imperfect performances in the engineered systems. For example, FapR as a Malonyl-CoA 

sensor only generate less than 5-fold dynamic range when dynamically controlling the conversion 

from Malonyl-CoA to biofuels, no matter how to vary the combination of operators and promoter, 

possibly due that the native FapR is incapable of cooperatively binding these operators. 
18, 19

. 

We have developed a modular high-order oligomerization domain, which generally and effectively 

improved the cooperativity for transcription factors. To validate the generalizability of the domain, we 

tested the domain on a diverse set of transcription factors, and the results showed their cooperativity 

were dramatically increased. Meanwhile, the modularity of the oligomerization domain was supported 

by the intact allosteric capability of the fused ligand-responsive sensors. To demostrate the application 

of the modular oligomerization domain, a chimeric LmrA repressor was integrated into an incoherent 

feedforward gene circuit, which led to a significantly improved bandpass filtering function of the 

circuit.  

Results 

The design of synthetic high-order oligomerization domains and cognate regulated 

promoters 

Inspired by the natural DNA looping regulation of the lac operon in Escherichia coli 
15

, we first 

selected the oligomerization domain of the LacI repressor, and fused it to the C-terminus of a CymR 

repressor that was dimeric but lacked high-oligomerization capability (Figure 1A). Two operators 

were placed separately on the upstream and downstream of a tested promoter (named OU and OD, 
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respectively) to facilitate the binding of each CymR dimer to each CymO operator, and a reporter gene 

(sfgfp) was used to measure the regulated promoter activity (see the Methods section and 

supplementary Figure S1 for details). We expected that the two engineered CymR dimers would 

cooperatively bind to the two CymO operators, and improve their repression capability and 

ultrasensitivity for the regulated promoter activity (Figure 1B). However, we found that the tetramer 

domain of LacI (named LacIoligomer) only slightly increased the repression capability in the chimeric 

CymR-LacIoligomer repressor, possibly due to the 20-residue LacIoligomer domain being too small to form 

a stable and functional structure in the chimeric repressor (gray line in Figure 1B). Next, we chose two 

larger oligomeric domains from the CI and CI434 repressors, i.e. 93-236 amino acid (aa) of CI 

repressor and 70-210aa of CI434 repressor (named CIoligomer and CI434oligomer, respectively) 
20, 21

, to 

evaluate their effect on the chimeric CymR repressor. We found that both the CIoligomer and 

CI434oligomer domains successfully improved the repression ability of the chimeric CymR (Figure 1B). 

A common feature of the two domains was they were folded into independent domains in their native 

proteins
13, 22

, indicating that the independent folding of the oligomerization domain (named 

“oligomeric domain”) was important for modularly maintaining their cooperative capability in the 

chimeric transcription factors. 

Next, we added more flexible linkers to further improve the flexibility and modularity of the 

oligomeric domains. The GGGGS and (GGGGS)2 peptides, as flexible linkers, were inserted between 

the oligomeric domains and the CymR repressor. In comparison with the naked CI434oligomer domain, 

the two additional linkers slightly increased the repression ability of the chimeric CymR (Figure 1C). 

In the following study, we chose the longest linker (GGGGS)2 as our designed linker to bridge the 

oligomeric domains and the transcription factors.  

The oligomeric domains increased the ultrasensitivity of all tested transcriptional 

repressors. 

To quantify the ultrasensitivity of transcriptional regulation, Hill coefficients (Equation 1) were used 

to characterize the slopes of the input-output response curves of the repressor and regulated promoter 

systems. The transcriptional level of the repressor as input and the activity of the regulated promoter 

as output were measured independently by a reporter gene as described in our previous report
23

, 

briefly, the input promoter activity and cognate output promoter activity were independently detected 

by a same reporter gene (sfgfp), and titrated with the IPTG inducers (Figure S1). We first compared 

the wild-type and engineered LmrA to evaluate the contribution of oligomeric domains on their 

ultrasensitivity. For convenience, the engineered oligomeric LmrA (LmrA-CI434oligomer) was named as 

LmrA
*
 (the same naming rule is applied to other engineered repressors; e.g., CymR

*
 for the chimeric 

CymR). With the oligomeric domain, the Hill coefficient of the LmrA
*
 repressor was increased from 

1.9 to 3.3 on the same dual operator (OU-OD), when comparing with the wild type LmrA (Figure 2A, 

red line vs. blue line). Without the oligomeric domain in the repressor, the additional upstream 
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operator did not significantly improve the Hill coefficient in the dual operator (OU-OD) (Figure 2A, 

blue line vs. black line). These results supported that the wild type LmrA repressor inherently lacked 

tetra- and higher-order oligomerization capabilities. Similarly, we found that without the additional 

operator (OU), the chimeric LmrA
*
 alone did not improve the Hill coefficient (Figure 2B). Based on 

the previous study, we also demonstrated that two extra operators (Odis) located on the 200 base pair 

(bp) upstream of the dual operator (OU-OD) further increased the Hill coefficient from 3.3 to 4.4 by the 

DNA looping regulation (Figure 2C), indicating that an octamer might have formed and improved the 

ultrasensitivity of the chimeric LmrA
*
 for its regulated operators. In order to further investigate the 

length effect of DNA looping on the Hill coefficient, two lengths (500 bp and 700 bp) were inserted 

between the extra operators (Odis) and the dual operators (OU-OD), and the results showed that their 

Hill coefficients were similar to the 200 bp length (Figure S2). 

To estimate the generalization of the cooperative capability, we selected seven other diverse 

repressors, and fused them with the CI434oligomer oligomeric domain. Among the selected repressors, 

three (Cro, MazE, and YefM) were composed of a single domain responsible for both DNA-binding 

and weak dimerization 
24-26

, while AmtR contained two separate domains responsible for 

DNA-binding and dimerization functions 
27

. Three ligand-responsive repressors (PhlF, CymR, and 

TrpR) contained one DNA-binding domain and one dimerization domain to sense specific metabolites 

28-31
. As shown in Figure 2D, the oligomeric domain dramatically improved the repression capability 

and Hill coefficients of all the tested transcription factors (Figure 2D). The only unusual case was the 

AmtR
*
 repressor, for which both the Hill coefficients and repression capability were slightly decreased 

when comparing the chimeric repressor to the wild type AmtR. However, the Hill coefficients and 

repression capability of the AmtR
*
 repressor were indeed increased when comparing the dual (OU-OD) 

with single (OD) operators (i.e., shown with the subtitle “AmtR
*
(OD/OU-OD)” in Figure 2D). On the 

contrary, for the PhlF and Cro repressors, the dimerization affinities were enhanced by the same 

oligomeric domain, resulting in the increased repression of the chimeric PhlF
*
 and Cro

*
 in the 

single-operator systems (Figure S3); meanwhile, their tetramerization in the dual operators further 

improved their repression capability. Taken together, we concluded that the synthetic oligomeric 

domain increased the tetramerization capability of the transcription factors, but, in a few cases, 

reduced or enhanced the intrinsic dimerization affinity of the dimeric transcription factors. 

 

The oligomeric domains did not affect the allosteric capability of the 

ligand-responsive transcription factors.  

 

We next investigated whether the ligand-responsive transcription factors kept their allosteric function 

when fusing with an oligomeric domain. Two ligand-responsive repressors (CymR and PhlF), in 

which cumate and 2,4-diacetylphoroglucinol (DAPG) can respectively bind to the CymR and PhlF 
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repressor, and result in the decrease of their repression on the regulated promoters, were chosen to 

measure the effects of additional oligomeric domains on their cooperativity and ultrasensitivity 

(Figure 3).  For the CymR, the leaked expression of the regulated promoter for the oligomeric 

CymR
*
 was reduced 10-fold when compared with that of the cognate wild type repressor. Meanwhile, 

the fully induced expressions of the regulated promoters were nearly the same for the oligomeric and 

wild type CymR repressors (Figure 3A). Similarily, the oligomeric domain in the PhlF slightly 

reduced the leaked expression, but dramatically increased the Hill coefficient, as indicated by the 

dose-response curve (from 1.61 to 2.42; Figure 3B). This was possibly due to the low leaked 

expression of the wild type PhlF not being further reduced. More interestingly, both chimeric CymR
*
 

and PhlF
*
 repressors had similar sensitivities as their wild type forms regarding their effective inducer 

concentrations (Figure 3A and 3B). We hypothesized that the oligomeric domain did not affect the 

sensing and allosteric capability of the tested transcription factor, but dramatically improved their 

cooperativity or ultrasensitivity for the regulated promoters. 

 

Ultrasensitive chimeric transcription factors predictably tuned and improved the 

gene circuit functions. 

 

After determining the success of the designed ultrasensitive transcription factors, we tested the 

cooperativity and ultrasensitivity, to improve the performance of the synthetic gene circuits. We 

constructed a state-of-the-art incoherent feedforward loop (IFFL) circuit in which an input 

(D-1-thiogalactopyranoside; IPTG), via a LacI-repressed Ptac promoter, simultaneously regulated the 

expression of both the LmrA repressor and an activator (T7 RNAP) as a first layer of the gene circuit. 

As the second layer, the activator and the LmrA repressor co-regulated the same output promoter 

(Figure 4A), resulting in a stripe-forming function. Based on the characterized dose-response curves 

of LmrA
*
 and LmrA, we predicted that the cooperation capability of LmrA

*
 would slightly decrease 

the repression ability in the low- and intermediate-input regions (Figure 2A), but would dramatically 

increase the repression ability in the high-input region (Figure 2A). Thus, it would more efficiently 

convert a gradually increased input gradient into central maximal and peaked “stripe-forming” output 

gene expression 
32

. As shown in Figure 4B, the stripe-forming circuit produced an 8.98-fold peak for 

the chimeric LmrA
*
 repressor (blue line in Figure 4B), but only up to a 3.3–fold peak for the wild type 

repressor (red line in Figure 4B). We anticipated that the synthetic oligomeric domain, as a modular 

system part, could be readily integrated into other genetic circuits to significantly tune and improve 

the desired functions. 

Discussion 

In this study, we have designed and demonstrated a modular protein oligomerization system to 

Page 5 of 17

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

efficiently improve the ultrasensitivity of transcription factors. These engineered ultrasensitive 

transcription factors could improve the digital behaviors of biocomputing circuits, such as the 

logic-gate circuits. The stochastic nature of transcription factors typically limit the fidelity of the 

biological signal propagation in a living cell; however, the digital-like characteristics of the engineered 

transcription factors could result in a steep transition between the OFF and ON states for a basic 

logic-gate 
33

. A steep transition would reduce the biological noise propagation within a layered 

logic-gate circuit, and thus facilitate building large scale gene circuits 
34-36

.  

The engineered CIoligomer and CI434oligomer domains can be modularly fused to the C-terminus of 

any transcription factor. However, for some transcriptional activators, if the C-terminus is the 

DNA-binding domain, it could not be fused to the additional oligomeric domain. In such cases, the 

N-terminal oligomeric domains could be used from the N-terminal oligomerized transcription factors, 

such as the MvaT from Pseudomonas aeruginosa 
37

 and the P53 from mammalian cells 
12

. For 

example, the oligomerization capability of the intact MvaT activator was validated by measuring the 

interaction of two chimeric proteins 
37

.  

When fusing the CI434oligomer domain to transcription factors, we noticed they could enhance or 

reduce the dimerization of some transcription factors. For example, the dimerization affinity of AmtR 

was decreased, and the affinities of PhlF and Cro were increased by a same oligomeric domain 
38

. The 

reported crystal structures for AmtR and Cro support the above hypothesis. In an AmtR dimer, the two 

C-terminal ends are far away from each other, and are separated by a large homodimeric domain. Thus, 

the dimerization of AmtR might be interfered by the fused oligomeric domain. In contrast, for the Cro 

dimer, the distance between the two C-terminal ends is small, and its native dimerization capability is 

very weak. Hence, it is reasonable to speculate that the oligomeric domain could disrupt the 

dimerization affinity for the AmtR repressor, but may promote the stability for the weakly dimerized 

Cro protein
39

. To eliminate the potential interference between the higher-order oligomeric domain and 

the homodimeric domains, we will need to develop more flexible linkers or shorten the distance 

between the two C-terminal ends. 

We expect that the modular oligomeric domain could be used in many other prokaryotic cells and 

eukaryotic systems. We have introduced the chimeric PhlF
*
 and CymR

*
 regulators into Streptomyces 

and a mammalian cell line as advanced genetic switches, and the preliminary data indicated strong 

cooperativity existing for the above dual operators systems, but more quantitative data need to validate 

the above speculations. Therefore, we suggest that the modular cooperative components engineered in 

this study could be powerful tools for synthetic biology, to aid in the design of sophisticated genetic 

circuits, or temporally-regulated metabolic pathways in a wide variety of engineered hosts. 

 

Materials and methods 
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Media 

Bacterial strains were grown in Luria-Bertani (LB) (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L 

NaCl) (Fisher Scientific, Waltham, MA, USA) liquid media or on agar plates (media with 1.5% agar) 

for plasmid construction and strain maintenance. All of the induction studies were done using M9 

minimal media supplemented with 6.8 g/L Na2PO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl (all 

from Sigma-Aldrich, St. Louis, MO, USA), 2 mM MgSO4 (Fischer Scientific), 100 µM CaCl2 

(Sigma-Aldrich), 0.4% glucose (Sigma-Aldrich), and 0.2% casamino acids (Acros Organics, Geel, 

Belgium). Both the LB and M9 media were supplemented with 20 µg/mL of chloramphenicol (Acros 

Organics), 25 µg/mL ampicillin (Acros Organics), and appropriate concentrations of isopropyl–

D-1-thiogalactopyranoside (IPTG) (USB Molecular Biology Reagents/Affymetrix, Santa Clara, CA, 

USA), or L (+)-arabinose (Sigma-Aldrich). Phosphate-buffered saline (PBS) with 2 mg/mL 

kanamycin was utilized throughout the studies. 

 

Molecular biology reagents 

Restriction enzymes, T4 polynucleotide kinase, and T4 DNA ligase used in this study were purchased 

from New England Biolabs (Frankfurt, Germany). Plasmid DNA preparations were made by using the 

oligo-linker mediated assembly (OLMA) method 
40

. Primers and short segments of single-stranded 

DNA (oligonucleotides) were purchased from BGI (Beijing Genomics Institute, Beijing, China). 

Plasmid DNA concentrations were measured using a Nano Drop
®

 ND-2000 spectrophotometer 

(Peqlab, Erlangen, Germany). 

 

Staining and plasmids 

All plasmid constructs were transformed into and maintained in Escherichia coli strain DH5α 

(TransGen Biotech, Beijing, China). The E. coli stain T7E1a was previously developed by our lab by 

integrating the T7 RNA polymerase into E. coli DH10B (TransGen Biotech) using the pOSIP vector 
40

 

and was used as the test strain. The OLMA method was used for plasmid construction throughout the 

study unless otherwise specified. Two vectors were previously constructed by our lab for procedural 

DNA assembly, the Repressor Generator Plasmid (RGP) and the Promoter Tester Plasmid (PTP), as 

described in our previous report 
41

. The RGP was designed as the vector for a series of plasmids using 

IPTG-induced expression of different repressors. In addition to the p15A origin, the Amp
R
 and LacI 

genes were overexpressed by a constitutive promoter, and two BsaI sites flanked a LacZ alpha 

fragment and was positioned such that the recognition sites were eliminated from the vector after 

digestion. Using the Golden Gate cloning reaction, the RGP series of plasmids were constructed with 

the LacZ alpha fragment replaced by the wild type or reconstructed repressors of interest. The PTP 

was prepared to characterize the strength of the promoters with different operators. In addition to 

pSC101 and Cm
R
, the PTP also had two BsaI sites flanking a LacZ alpha fragment, which could be 
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eliminated from the vector after digestion to insert the promoters of interest by substituting the LacZ 

alpha fragment. The promoters were constructed by total synthesis and ligation. 

 

Cell growth conditions 

The cells were grown according to the following protocol before assaying their fluorescence, as 

reported previously
23

. First, cells were inoculated from single colonies on LB agar plates and grown 

overnight in 4 mL of LB liquid media in Falcon tubes at 37°C with shaking (250 rpm). Then, the 

overnight cultures were diluted 200-fold into prewarmed M9 media in 96-well plates. The plates were 

then incubated at 37°C with orbital shaking, and the optical density at 600 nm was recorded every five 

min using a Safire plate spectrophotometer (Tecan, San Jose, CA, USA) Once the diluted cultures 

reached an OD600 of 0.12–0.14 (~3 h), the cultures were diluted 700 fold and placed into 96-well 

plates with prewarmed M9 media containing the inducer. These new plates were incubated at 37°C in 

a Digital Thermostatic Shaker (Elmi, Riga, Latvia), with shaking at 1,000 rpm for 6 h to maintain 

exponential growth. Finally, after the 6-h induction, a sample of each culture was transferred to a new 

plate containing 150 mL of PBS and 2 mg/mL of kanamycin, to prevent protein synthesis. 

 

Fluorescence measurements 

The fluorescence distribution of each sample was measured using a LSRII flow cytometry system (BD 

Biosciences, San Jose, CA, USA) with appropriate voltage settings (FSC:516, SSC:286, FITC:680, 

B:650). Each sample contained at least 50,000 cells and was gated by the forward and side scattering 

using FlowJo, version 7.6 (Ashland, OR, USA). The geometric mean of each sample was calculated. 

The autofluorescence of E. coli DH10B cells with negative-control plasmids alone was measured and 

subtracted from the mean value to generate the reported values of fluorescence. 

 

Data analysis 

The GFP expression level was calculated as follows: 

max( )
n

n n

K
F V

K R
β β= + − ⋅

+
      (1) 

Where R refers to the number of repressor proteins, and K is the in vivo dissociation constant for a 

repressor from the promoter. The relationship of F versus R is an inverse sigmoid curve (Hill function). 

When compared with the experimental results of the fluorescence measurements, Vmax is the GFP 

expression level of the original T7 promoter without the operon site, and R = 0. As measured in our 

study, the value of Vmax was 2388 (U). However,  is a basal expression level depending on the 

repressor binding-site. Fitting the experimental data to equation 1, and allowing  and n to vary 

simultaneously, the repression quality or response sensitivity was characterized by a Hill coefficient 

β

K
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(n). Least-square fitting was used to produce quantitative curves as close as possible to the 

experimental results, thus characterizing the repressive quality of each reconstructed repressor. Using 

the function fminsearch of matlab, the parameters were determined by searching the minimal solution 

of a sum through one data set: 

     (2) 

All data fitting and the data plotting of experimental results were performed using MATLAB, version 

7.11.0.584 (R2010b) (Mathworks, Sunnyvale, CA, USA). 

 

Supporting Information 

Figure S1-3 supporting the results in the main text; Table S1-4 including the sequences of the 

used genetic parts and the parameters for model fitting. 
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Figure legends 

Figure 1. The design and evaluation of the engineered oligomeric domains. (A) A diagram of the 

design of the oligomeric domains. The rectangle on the bottom represents the operator binding by 

transcription factors, and two operators can facilitate two oligomeric transcription factors to form a 

DNA loop around the regulated promoter. (B) The dose-response curves of the wild type (WT) CymR 

and three engineered CymR repressors with oligomeric domains from LacI (gray line), CI (blue line), 

and CI434 (red line), respectively. The “au” in the figure means arbitrary unit. (C) The dose-response 

curves of the engineered CymR linker, CI434oligomer, with different numbers of the “GGGGS” peptide 

as the flexible linkers (black line, no linker; blue line, one copy of “GGGGS,” red line, two copies of 

“GGGGS”). Data points indicate the means, and error bars denote the standard deviations from three 

independent replicates. 

Figure 2. Generalization of the designed CI434oligomer oligomeric domain. (A) The dose-response 

curve for the oligomeric LmrA
*
 repressor regulated on the dual OU-OD operators (red line) compared 

with the controlled ones without the oligomeric domain (blue line), or only with the single-operator 

(black line). (B, C) Comparing the dual OU-OD operators with the single OD operator (B) or the 

Odist+OU-OD tetra-operators (C) to evaluate the effects of the number of operators on engineered 

LmrA
*
 regulation. (D) The evaluation of the oligomeric domain and dual operators on the 

cooperativity for seven transcription factors (PhlF, AmtR, CymR, TrpR, MazE, YefM, and Cro). Error 

bars indicate standard deviations from three independent replicates. The inserted numbers indicate the 

Hill coefficients of each response curve.  

Figure 3. Modularity of the oligomeric domain on the ligand-responsive transcription factors. (A) 

The response curves of the regulated promoters as a function of cumate concentration, which 

inactivated the DNA-binding ability of the CymR (blue line) and CymR
*
 (red line) repressor. (B) The 

response curves of the regulated promoters as a function of the 2,4-diacetylphoroglucinol (DAPG) 

concentration, which inactivated the DNA-binding ability of the PhlF (blue line) and PhlF
*
 (red line) 

repressor. Data points indicate the means, and error bars denote the standard deviations from three 

independent replicates. 

Figure 4. Improvement of the performance of the gene circuit by the oligomeric domain. (A) The 

design of the incoherent feedforward loop (IFFL) circuits with the WT LmrA (bottom panel) or the 
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engineered LmrA
*
 (top panel) as the repressor node. (B) The pulsed output of the IFFL circuits as a 

function of the input isopropyl–D-1-thiogalactopyranoside (IPTG) gradient. The blue line is the IFFL 

circuit with the WT LmrA repressor, while the red line is the one for the engineered LmrA
*
. Error bars 

denote standard deviations from three independent replicates.  
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