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Abstract  

Inflammation is a complex biological response that serves to protect the body’s tissues 

following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At 

the start of an inflammatory response, pro-inflammatory mediators induce changes in the 

endothelial lining of the blood vessels and in leukocytes. This results in increased vascular 

permeability and increased expression of adhesion proteins, and promotes adhesion of 

leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for 

neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, 

where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-

talk with other immune cells to coordinate the immune response in preparation for tissue 

repair. Many signalling proteins are critically involved in the complex signalling processes 

that underpin the inflammatory response and cross-talk between endothelium and leukocytes. 

As key regulators of cell-cell and cell-substratum adhesion, small GTPases act as important 

controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of 

inflammation. Here we summarise key processes that are dependent upon small GTPases in 

leukocytes during these early inflammatory events. We place a particular focus on the 

regulation of integrin-dependent events and their control by Rho and Rap family GTPases as 

well as their regulators during neutrophil adhesion, chemotaxis and recruitment.   
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List of abbreviations  

GTP – guanosine trisphosphate 

GTPase – guanosine trisphosphatase 

TNF-a - tumour necrosis factor a 

EC – endothelial cell 

TEM – transendothelial migration 

GEF – guanine nucleotide exchange factor 

GAP – GTPase activating protein 

GDI – GDP dissociation inhibitor 

PIP3 - phosphatidylinositol-(3,4,5)-trisphosphate 

PI3K – phosphoinositide 3-kinase 

LAD - leukocyte adhesion deficiency   
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Inflammation as an innate, immuno-vascular response      

Classical inflammation is a complex immuno-vascular response that is triggered by harmful 

stimuli such as pathogens, tissue injury or irritants. Inflammation precedes and sets the 

foundation for healing. The induction of inflammation is triggered by the release of 

vasoactive pro-inflammatory mediators. These mediators trigger rapid vascular changes, 

including vessel dilation, decreased blood flow and increased vascular permeability [1, 2]. 

The extent of these events is dependent upon the vascular bed, with e.g. high permeability in 

post-capillary venules and very little in brain vessels. These vascular changes permit blood 

plasma and antimicrobial proteins, such as complement factors and antibodies contained 

within it to enter the surrounding tissue, leading to oedema in a process that is referred to as 

‘vascular leakage’ (Fig 1).  

 

Pro-inflammatory mediators also activate circulating leukocytes. In the interest of space we 

will focus this discussion on the neutrophil, a particularly important innate immune cell in 

early inflammation [3, 4]. Slowed blood flow leads to leukocyte margination, initiating close 

mechanical contact with endothelial cells (ECs). Meanwhile, endothelial exposure to pro-

inflammatory cytokines induces increased display of adhesion molecules and their ligands on 

the luminal side of the vessel and on the neutrophil (Fig 1), enabling the leukocyte adhesion 

cascade (reviewed in [5]). In a selectin and integrin-mediated process, leukocytes develop 

increasingly strong and long-lived interactions with endothelial cells. Individual stages 

include selectin-mediated tethering and rolling, selectin and integrin-mediated slow rolling 

and crawling, until integrin-mediated firm adhesion of the leukocyte. The process culminates 

in integrin-dependent diapedesis (extravasation; Fig 1). Neutrophils breach several barriers, 

the endothelial cells, basement membrane and pericytes. Of these, neutrophil transendothelial 

migration (TEM) is most studied. TEM can occur by two routes, through endothelial 
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junctions (paracellular) or through EC bodies (transcellular), with paracellular TEM observed 

most frequently in areas with weak endothelial junctions [6]. Intravital imaging has indicated 

that leukocytes scan the endothelium and the underlying pericytes for transmigration sites, 

which are used repeatedly [7].  

 

Many of the seminal findings in leukocyte-EC interactions were made by studying leukocyte 

adhesion in flow chambers in vitro, as well as by intravital imaging of post-capillary venules 

in the cremaster muscle, a site that is amenable to exteriorization and intravital imaging. With 

the advent of major advances in intravital imaging, other, less accessible vascular beds are 

also being analysed, e.g. lung and liver. A growing body of work indicates that specialisation 

of individual vascular beds dictates their requirement for individual adhesion proteins on both 

leukocyte and EC and for the occurrence of individual steps of the cascade (reviewed in [8]). 

For example, neutrophil recruitment in ICAM-1/P-selectin doubly deficient mice is affected 

in the peritoneum, but not in the lungs [9]. The current thinking is therefore that leukocyte-

EC interactions are not uniform across all sites in the body.  

 

Small GTPases  

The Ras superfamily of small GTPases comprises several families, including Ras, Rho, Arf 

and Rab. Put very simply, Rap GTPases, which are part the Ras family, regulate cell-cell and 

cell-substratum interactions, Rho GTPases are most famous for regulating dynamic actin 

rearrangements, whilst Arf and Rab small GTPases regulate intracellular transport. They are 

all required for complex cellular processes such as single/collective cell migration that are 

dependent on the actin cytoskeleton and the dynamic generation and dissolution of adhesive 

contacts [10-12]. As such small GTPases are key regulators of the neutrophil, a highly 
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specialised cell that is able to change rapidly between circulating in the blood stream, 

adhering to the vessel wall under conditions of blood flow and migrating through tissue. 

 

Small GTPases cycle between an active, GTP-bound and an inactive GDP-bound state (Fig 

2). Small GTPases rely on their regulators, GTPase activating proteins (GAPs), guanine 

nucleotide exchange factors (GEFs) and GDP dissociation inhibitors (GDIs) [13]. GAPs 

increase the endogenous GTPase activity of the GTPase, inactivating it. In contrast, GEFs 

catalyse the exchange of GDP for GTP, thereby moving the small GTPase into the active 

state. Finally, GDIs sequester a subset of mostly Rho and Rab family small GTPases in the 

cytosol by shielding their lipid modification and protecting them from being activated. The 

number of Rho and Rap GEFs and GAPs outweighs that of the small GTPases themselves. 

These regulators fine-tune the precise timing and location of the GTPase activity. Each 

GEF/GAP is itself activated only under specific circumstances using defined upstream 

regulators at the right time and place [13]. Modes of regulation of small GTPases and their 

regulators are diverse, and can depend amongst other mechanisms, on the formation of 

protein complexes, phosphorylation events and second messengers, such as the 

phosphoinositide 3-kinase (PI3K) lipid product phosphatidylinositol-(3,4,5)-trisphosphate 

(PIP3) [14].  

 

Small GTPases and neutrophils 

Neutrophil biology and their regulation in health and disease have been the subject of several 

excellent recent reviews (e.g. [3, 4]). Neutrophils are terminally differentiated, short-lived 

abundant circulating innate immune cells. These highly specialised leukocytes chemotax 

(move towards a chemoattractant) to sites of inflammation with exquisite speed and 

directionality. They efficiently and quickly phagocytose opsonised and non-opsonised 
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bacteria and yeasts, and produce reactive oxygen species and degranulate (releasing a range 

of potent proteases and cytotoxic compounds that are stored in their specialised granules) to 

kill the ingested microbes inside the phagosome. These dynamic functions are all subject to 

regulation by small GTPases (Table 1 and [15-18]). In the following we concentrate on the 

function of Rho and Rap small GTPases in leukocyte-endothelial cell interactions.  

 

Integrins 

Integrins are extracellular receptors comprised of two chains (a/b) that are expressed by all 

nucleated cells [19]. Using their extracellular domains, integrin bind to their ligands. Whereas 

integrin ligands are normally extracellular matrix proteins, ligands of leukocyte integrins are 

often expressed on the surface of other cells, e.g. endothelial ICAMs and VCAMs. Integrin 

intracellular tails form dynamic links to the cellular actin cytoskeleton. In this way integrins 

mediate cell adhesion to anchor cells and to partake in dynamic cellular functions requiring 

such contacts, such as cell migration.  

 

Integrins signal bidirectionally [19] with ligand binding-induced signalling referred to as 

‘outside-in signalling’, whereas ‘inside-out signalling’, refers to intracellular signalling that 

regulates integrin activation. This allows inactive integrins in their bent conformation to 

adopt intermediate and finally the active (extended) conformations (see Fig 3 for a simplified 

drawing). Mechanistically, interactions with intracellular activators, notably talin and kindlin, 

convert the inactive integrin to the active conformation [20]. Integrin ligand binding activity 

is furthermore regulated by clustering, which promotes ligand binding avidity. The regulation 

of the integrin ligand binding avidity and affinity states are tightly interconnected, although 

the precise molecular mechanism underpinning integrin avidity remains controversial. In 

addition to regulation of ligand binding activity, integrins are subject to dynamic 
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internalisation and recycling events that are regulated by a number of different pathways 

which employ Rab and/or Arf family small GTPases [12]. Our understanding of the 

regulation of integrin trafficking is currently growing at a rapid pace, with experiments 

typically performed cultured adherent cell lines. Intracellular trafficking events are at times 

integrin receptor and also cell line dependent. Neutrophils are known to express numerous 

Rab and Arf GTPases [21, 22]. The Arf6 GEF cytohesin1 has been reported to regulate Mac-

1 in neutrophils [23], but for the most part, specific roles of Arf/Rab-dependent integrin 

trafficking remain to be elucidated in the neutrophil.  

 

The b2 integrins aMb2 (also known as CD11b/CD18, Mac1 or CR3) and aLb2 (also known as 

CD11a/CD18 or LFA1) are the major neutrophil integrins, but neutrophils also express other 

leukocyte integrins such as a4b1 (CD49d/CD29; VLA4) as well as RGD binding integrins, 

e.g. a5b1 (CD49e/CD29, fibronectin receptor) avb3 (CD51/CD61, vitronectin receptor). b2 

integrin function is probably best characterised in neutrophil firm adhesion to endothelial 

ICAM-1 and TEM in post-capillary venules, thanks to a large body of work by many 

investigators who employed blocking and/or affinity status specific antibodies as well as 

knock-out mice as well as neutrophils from leukocyte adhesion deficiency (LAD) patients. In 

recent years, use of ever advancing imaging techniques has helped to visualise these 

processes in increasingly fine detail. Such investigations have built onto older observations to 

illustrate how neutrophils flatten their bodies [24, 25] and employ catch-bonds [26], long 

tethers [24], and slings [27] to enable and stabilise rolling even under conditions of high 

sheer stress. In contrast, neutrophil recruitment to the alveoli of the inflamed lung, and 

extravascular migration have been shown to depend on b1 integrins (e.g. [28, 29]). a5b1 and 

aLb2 integrins were shown to be subject to recycling from the rear towards the front of the 

migrating neutrophil [30, 31].  
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Small GTPases in the regulation of (leukocyte) integrins 

Rap small GTPases represent the best understood enzymatic regulators of the activity status 

of integrins. Rap1A-deficient mice are characterised by integrin-dependent leukocyte 

adhesion defects [32, 33]. Three distinct Rap effectors, RAPL [34], RIAM [35] and RADIL 

[36] have all been shown to function as links to integrin affinity and avidity. The mechanism 

involving RIAM-mediated integrin regulation is best characterised. Formation of Rap1-

RIAM-talin complexes allows the recruitment of talin to integrin, inducing integrin activation 

[37]. Genetic experiments indicate that RIAM is particularly important for the activation of 

leukocyte b2 integrins [38, 39], whilst alternative mechanisms appear to operate in other cell 

types such as platelets [40]. Several Rap GEFs were shown to be involved in integrin 

activation. The cAMP activated Rap GEFs Epac1/2 [41-43] were shown to regulate integrin-

mediated adhesion in many cell types, including in some leukocytes (e.g. [44-46]). Although 

expressed by neutrophils, Epac activation is not thought to be sufficient for neutrophil 

integrin activation [47]. A rare mutation in CalDAG GEF1 (also known as RasGRP2) was 

found to results in LAD type III [48], and neutrophils from CalDAG GEF1-deficient mice 

have adhesion and recruitment defects in keeping with this disease [49]. 

 

The Rho GTPases, RhoA, Rac and Cdc42, are also involved in dynamic cell-matrix adhesion 

[50]. The function of Rho GTPases in integrin outside-in signalling has been clearly 

documented (reviewed in [51]), but there is little evidence for Rho-dependent integrin inside-

out signalling from experimentation with cultured adherent cell lines. In contrast, analyses of 

leukocytes under flow conditions have shown that Rap and Rho small GTPases are involved 

in the activation of leukocyte integrins (Fig 4). The first leukocyte-EC interaction, neutrophil 

capture, relies on display of stored endothelial P-selectin. This is followed by rolling 
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mediated by endothelial P-selectin / E-selectin and leukocyte L-selectin each binding their 

carbohydrate ligands on their counterparts. Leukocyte rolling induces a shift in the leukocyte 

integrin aLb2 activation to an intermediate state, which in turn promotes slow rolling. 

Chemokines encountered during rolling induce further leukocyte integrin activation to the 

fully extended conformation. Cal-DAG-GEF1-mediated Rap1A activation was shown to be 

required for slow rolling of neutrophils to occur, due to Rap’s role in rolling-mediated 

leukocyte integrin activation [52]. Rac2-deficient mouse neutrophils, and those isolated from 

a patient who carried a dominant negative Rac2 mutation were characterised by defective 

rolling on P-selectin [53, 54]. It remains unclear whether this defect might have been 

secondary to a defect in conveying aLb2 activation. Neutrophils deficient in the Rac GEF P-

Rex1 also displayed a defect in slow rolling, which was shown to be due to a role of P-Rex1 

in the selectin-mediated activation of leukocyte integrins [55]. Intravital imaging of airway 

postcapillary venules in inflamed lungs suggested that the Rac GEFs P-Rex1 and Vav GEFs 

together regulate Rac-mediated aLb2-activation in this context [56]. RhoA and Rac were also 

shown to mediate rapid chemokine-induced aLb2 activation (inside-out signalling) in T 

lymphocytes under flow conditions [57, 58]. In contrast to neutrophils, primary T cells are 

amenable to being cultured and transfected. Careful analysis of signalling events in primary 

human lymphocytes identified CXCL12-induced aLb2 inside-out signalling involved GaI-

JAK2/3-Vav1-Rho-PLD1-Rap1 signalling [59, 60]. Additional knock-down studies with 

primary human lymphocytes identified that further Rho GEFs, SOS1, ArhGEF1 and DOCK2 

are also involved in the chemokine-mediated affinity regulation of aLb2 [61].  In contrast, 

Cdc42 was shown to counteract chemokine-driven leukocyte integrin activation under flow 

[59] and to interfere with chemoattractant-driven Rap activation [62].  
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As is often the case with switching off biological processes, our understanding of integrin 

inactivation lags far behind that of integrin activation. It stands to reason that such 

mechanisms not only exist, but, given the importance of integrin signalling, will be subject to 

tight regulation. Neutrophils from mice deficient in the PI3K and Rap-regulated RhoA and 

Arf6 GAP ARAP3, or those in which ARAP3 was uncoupled from activation by PI3K, were 

characterised by increased b2 integrin ligand binding, by increased adhesion under static and 

flow conditions and by increased outside-in signalling in vitro. In vivo, these neutrophils were 

characterised by reduced crawling and increased firm adhesion and by a recruitment defect in 

sterile inflammation in the context of bone marrow chimeras [63, 64]. Collectively, this is 

suggestive of a function of small GTPases also in the regulation of integrin inactivation. 

Moreover, two mechanisms that compete with integrin activation have recently been 

described (Fig 3). First, SHARPIN binding to integrin a subunits was shown to interfere with 

talin and kindlin binding to b-subunits and integrin activation [65]. SHARPIN was 

subsequently shown to bind the a subunit of lymphocyte aLb2, and to colocalise with aLb2 to 

the trailing end of migrating T lymphocytes; in vivo, Sharpin-deficient T lymphocytes were 

deficient in homing to lymph nodes [66]. Second, sequestration of GTP-Rap by SHANK1/3 

proteins has recently been shown to interfere with Rap-RIAM-talin mediated integrin 

activation in cancer cells, promoting the inactive integrin state ([67]; Fig 3).  

 

Further information on small GTPase-dependent functions in the regulation of integrins in 

inflammation is bound to emerge in the future. It will be exciting to watch this space.  
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Figure Legends 

Figure 1. Vascular leakage and leukocyte-endothelial cell interactions in inflammation. 

With the induction of an inflammatory response, the endothelium is stimulated and 

remodeled by the cytokines released by tissue resident immune cells such as macrophages, 

resulting in the upregulation of P and E selectins and vascular leakage. At the same time, the 

leukocyte recruitment cascade is initiated which involves several sequential stages, tethering, 

rolling, firm adhesion and transendothelial migration. Circulating neutrophils are captured by 
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the endothelium through the binding the selectin glycoprotein ligand 1 (PSGL-1) by the P- 

and E-selectins on the endothelial cells. Loosely tethered neutrophils then start rolling on the 

endothelium, and the engagement of the selectins and glycoproteins induces inside-out 

signaling in the neutrophil, shifting the conformation of b2 integrins, initially aLb2 /LFA1 

and later aMb2/Mac1 from inactive to intermediate with higher ligand binding affinity to 

ICAM ligands expressed by the endothelium. This mediates crawling along, and 

subsequently firm adhesion of neutrophils to the endothelium. To reach the site of 

inflammation, neutrophils transmigrate across the endothelium in a process that requires 

leukocyte integrins and endothelial junctional proteins such as PECAM-1.  

The paracellular mechanism, where leukocytes use EC junctions is shown here. Please note 

that the selectin and integrin usage and dependency for leukocyte extravasation does not 

appear to be universal across all endothelial beds.  

 

Figure 2. The small GTPase cycle. Small GTPases are molecular switches that regulate 

many cellular functions. They cycle between an active, GTP-bound (drawn in green) and an 

inactive, GDP-bound form (drawn in red). Guanosine phosphate groups are indicated by blue 

dots, and lipid modifications are indicated in brown.  Guanine nucleotide exchange on small 

GTPases is catalysed by GEFs. The frequently slow intrinsic GTPase activity of small 

GTPases is activated by GAPs. Some small GTPases (especially Rho and Rab families) are in 

addition regulated by GDIs. GDI-dependent sequestration of the lipid modification of the 

small GTPase in the cytoplasm prevents degradation, nucleotide exchange and membrane 

association. Both GEFs and GAPs are subject to regulation by a variety of mechanisms, 

including, phosphorylation, second messengers and formation of protein complexes. 

Together, these mechanisms achieve the correct spatiotemporal activation of small GTPases 

in any given situation.  
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Figure 3. Rap-dependent regulation of integrin inside-out signalling. The shift from the 

inactive (bent) to the active (extended) conformation is regulated by integrin inside-out 

signalling. Talin (and kindlin, not shown) binding to the cytoplasmic tail of the integrin b 

subunit is required for integrin activation, and regulated by the small GTPase Rap in 

combination with its effectors, the best understood of which is RIAM. Formation of a Rap-

RIAM-talin complex that binds integrin mediates integrin activation.  Several GEFs upstream 

of Rap have been identified in integrin inside-out signalling, of which CalDAG-GEF1 is 

thought to be particularly important in neutrophils. Two negative regulators have been 

described that interfere with Rap/talin-mediated integrin activation. SHANK proteins can 

sequester Rap and interfere with the formation of the Rap-RIAM-talin complex, whereas 

SHARPIN binding to the integrin a subunit cytoplasmic tail interferes with the complex 

binding to the b subunit. 

 

Figure 4. Regulation of leukocyte integrin inside-out signalling by Rho GTPases. 

Chemokine-driven integrin activation in the leukocyte adhesion cascade depends on Rho 

GTPase signalling in neutrophils and thymocytes. In thymocytes, CXCL12 binding causes 

Vav (and other) RhoGEF activation, inducing RhoA activation. This drives Rap activation 

(and Rap-mediated integrin activation) by making use of an indirect mechanism involving 

PLD1 and an as-yet-undefined Rap GEF.    
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Neutrophil Function Small GTPase involved References 

Adhesion Rac2 (under flow) 

RhoA 

Rap 

Arf6 

[53] 

[68] 

[69] 

[23] 

Spreading Rac2 

Rap1 

[53] 

[32] 

Polarisation Cdc42 

Rac2 

RhoG 

Rap1 

[70, 71] 

[72] 

[73] 

[69] 

Chemotaxis Rac1, Rac2 

Cdc42 

RhoA 

Rap1b 

Rab27 

Arf6 

[53, 72] 

[70, 71] 

[68] 

[69, 74] 

[75] 

[23, 76] 

Recruitment Rac1, Rac2 

RhoA 

Rap1b 

Rab27 

Arf6 

[53, 77] 

[68] 

[74] 

[75, 78] 

[76] 

Phagocytosis Arf6 

Rab5a 

Rap1 

[23] 

[79] 

[32] 
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NADPH Oxidase Rac2 (but not Rac1) 

RhoG 

Rap1 

Arf6 

Rab27 

[53, 77] 

[80] 

[32] 

[81, 82] 

[83] 

Degranulation Arf6 

Rab27 

[81] 

[83] 

Apoptosis RhoG 

Cdc42 

[80] 

[84] 

NET release Rac2 

Rab27 

[85] 

[86] 

 
 

Table 1. Neutrophils are subject to regulation by multiple small GTPases. Neutrophils carry 

out a range of specialised functions which allow them to ingest and kill pathogens and to 

generate inflammation. These functions are regulated by small GTPases as well as their 

regulators (not shown here). Please note that regulators identified in other model systems 

(e.g. macrophages in the case of phagocytosis) have not been included in this table. We 

apologise to the authors of many primary research papers that could not be cited here.  










