

Edinburgh Research Explorer

Planning in hybrid relational MDPs

Citation for published version:
Nitti, D, Belle, V, De Laet, T & De Raedt, L 2017, 'Planning in hybrid relational MDPs' Machine Learning,
vol. 106, no. 12, pp. 1905-1932. DOI: 10.1007/s10994-017-5669-x

Digital Object Identifier (DOI):
10.1007/s10994-017-5669-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Machine Learning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. Jun. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/200748098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10994-017-5669-x
https://www.research.ed.ac.uk/portal/en/publications/planning-in-hybrid-relational-mdps(b5d4b310-d548-4ad5-994a-2ab2ec5ebba0).html

Mach Learn
DOI 10.1007/s10994-017-5669-x

Planning in hybrid relational MDPs

Davide Nitti1 · Vaishak Belle2 ·
Tinne De Laet3 · Luc De Raedt1

Received: 18 February 2016 / Accepted: 18 August 2017
© The Author(s) 2017

Abstract We study planning in relational Markov decision processes involving discrete and
continuous states and actions, and an unknown number of objects. This combination of hybrid
relational domains has so far not received a lot of attention. While both relational and hybrid
approaches have been studied separately, planning in such domains is still challenging and
often requires restrictive assumptions and approximations. We propose HYPE: a sample-
based planner for hybrid relational domains that combines model-based approaches with
state abstraction. HYPE samples episodes and uses the previous episodes as well as the
model to approximate the Q-function. In addition, abstraction is performed for each sampled
episode, this removes the complexity of symbolic approaches for hybrid relational domains.
In our empirical evaluations,we show thatHYPE is a general andwidely applicable planner in
domains ranging fromstrictly discrete to strictly continuous to hybrid ones, handles intricacies
such as unknown objects and relational models. Moreover, empirical results showed that
abstraction provides significant improvements.

Keywords MDP · Probabilistic planning · Logic programming · Relational MDP · Hybrid ·
Hybrid relational MDP · Probabilistic programming · Abstraction · Logical regression ·
Importance sampling

Editors: Katsumi Inoue, Akihiro Yamamoto, and Hayato Ohwada.

B Davide Nitti
davide.nitti@cs.kuleuven.be

1 Department of Computer Science, KU Leuven, 3001 Leuven, Belgium

2 School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, UK

3 Faculty of Engineering Science, KU Leuven, 3001 Leuven, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5669-x&domain=pdf
http://orcid.org/0000-0002-0031-6094

Mach Learn

1 Introduction

Markov decision processes (MDPs) (Sutton and Barto 1998) are a natural and general frame-
work for modeling probabilistic planning problems. Since the world is inherently relational,
an important extension is that of relational MDPs (Wiering and van Otterlo 2012), where the
state is represented in terms of first-order logic, that is objects and relations between them.
However, while significant progress has been made in developing robust planning algorithms
for discrete, relational and continuous MDPs separately, the more intricate combination of
those (hybrid relational) and settings with an unknown number of objects have received less
attention.

The recent advances of probabilistic programming languages [e.g., BLOG (Milch et al.
2005a), Church (Goodman et al. 2008), ProbLog (Kimmig 2008), Anglican (Wood et al.
2014), distributional clauses (Gutmann et al. 2011)] has significantly improved the expressive
power of formal representations for probabilistic models.

While it is known that these languages can express decision problems (Srivastava et al.
2014; Van den Broeck et al. 2010), including hybrid relational MDPs, it is less clear if
the inbuilt general-purpose inference system can cope with the challenges (e.g., scale, time
constraints) posed by actual planning problems, and compete with existing state-of-the-art
planners.

In this paper, we consider the problem of effectively planning in propositional and rela-
tional domains where reasoning and handling unknowns may be needed in addition to coping
with mixtures of discrete and continuous variables. In particular, we adopt dynamic distri-
butional clauses (DDC) (Nitti et al. 2013, 2014) [an extension of distributional clauses
(Gutmann et al. 2011) and based on distribution semantics (Sato 1995)] to describe the MDP
and perform inference. In such general settings, exact solutions may be intractable, and so
approximate solutions are the best we can hope for. Popular approximate solutions include
Monte Carlo methods to estimate the expected reward of a policy (i.e., policy evaluation).

Monte Carlo methods provide state-of-the-art results in probabilistic planners (Kocsis and
Szepesvári 2006; Keller and Eyerich 2012). Monte Carlo planners have been mainly applied
in discrete domains [with some notable exceptions, such as Mansley et al. (2011), Couetoux
(2013), for continuous domains]. Typically, for continuous states, function approximation
(e.g., linear regression) is applied. In that sense, one of the few Monte Carlo planners that
works in arbitrary MDPs with no particular assumptions is sparse sampling (SST) (Kearns
et al. 2002); but aswe demonstrate later, it is often slow in practice.We remark thatmost, if not
all, Monte Carlo methods require only a way to sample from the model of interest. While this
property seems desirable, it prevents us from exploiting the actual probabilities of the model,
as discussed (but unaddressed) in Keller and Eyerich (2012). In this paper we address this
issue proposing a planner that exploits the knowledge of the model via importance sampling
to perform policy evaluation.

The first contribution of this paper is HYPE: a conceptually simple but powerful planning
algorithm for a given (hybrid relational) MDP in DDC. However, HYPE can be adapted for
other languages, such as RDDL (Sanner 2010). The proposed planner exploits the knowledge
of themodel via importance sampling to perform policy evaluation, and thus, policy improve-
ment. Importance sampling has been used in off-policy Monte Carlo methods (Peshkin and
Shelton 2002; Shelton 2001a, b), where policy evaluation is performed using trajectories
sampled from another policy. We remark that standard off-policy Monte Carlo methods have
been used in reinforcement learning, which are essentially model-free settings. In our set-
ting, given a planning domain, the proposed planner introduces a new off-policy method that

123

Mach Learn

exploits the model and works, under weak assumptions, in discrete, relational, continuous,
hybrid domains as well as those with an unknown number of objects.

The second contribution of this paper is a sample-based abstraction algorithm for HYPE.
In particular, using individual samples of trajectories, it removes irrelevant facts from the
sampled states with an approach based on logical regression. There exists several exact
methods that perform symbolic dynamic programming, that is dynamic programming at the
level of abstract states (set of states). Those methods has been successfully used in relational
domains (Kersting et al. 2004; Wang et al. 2008). However, abstraction is more challenging
in hybrid relational domains, even though some attempts have beenmade (Sanner et al. 2011;
Zamani et al. 2012) in propositional domains, under expressivity restrictions. To overcome the
complexity of logical regression in general hybrid relational domains we perform abstraction
at the level of sampled episodes. Such an approach carries over the benefits of symbolic
methods to sampling approaches. We provide detailed derivations behind this abstraction,
and show that it comes with a significant performance improvement.

The first contribution is based on the previous paper Nitti et al. (2015b) and the second
contribution on the workshop paper Nitti et al. (2015a). This paper extends previous works
with an algorithm for logical regression to abstract samples, a more detailed theoretical
justification for abstraction and additional experiments.

2 Background

2.1 Markov decision processes

In aMDP, a putative agent is assumed to interact with its environment, described using a set S
of states, a set A of actions that the agent can perform, a transition function p : S× A× S →
[0, 1], and a reward function R : S × A → R. That is, when in state s and on doing a,
the probability of reaching s′ is given by p(s′|s, a), for which the agent receives the reward
R(s, a). The agent is taken to operate over a finite number of time steps t = 0, 1, . . . , T ,
with the goal of maximizing the expected reward: E[∑T

t=0 γ t R(st , at)] = E[G(E)], where
γ ∈ [0, 1] is a discount factor, E =< s0, a0, s1, a1, . . . , sT , aT > is the state and action
sequence called episode and G(E) = ∑T

t=0 γ t R(st , at) is the total discounted reward of E .
This paper focuses on maximizing the reward in a finite horizon MDP; however the same

ideas are extendable for infinite horizons. This is achieved by computing a (deterministic)
policy π : S × D → A that determines the agent’s action at state s and remaining steps d
(horizon). The expected reward starting from state st and following a policy π is called the
value function (V -function):

V π
d (st) = E[G(Et)|st , π] = E

[
t+d∑

k=t

γ k−t R(sk, ak) | st , π
]

, (1)

where Et =<st , at , st+1, at+1, . . . , sT , aT> is the subset of E from time t . Furthermore, the
expected reward starting from state st while executing action at and following a policy π is
called the action-value function (Q-function):

Qπ
d (st , at) = E[G(Et)|st , at , π] = E

[
t+d∑

k=t

γ k−t R(sk, ak) | st , at , π
]

. (2)

123

Mach Learn

Since T = t+d , in the following formulas we will use T for compactness. An optimal policy
π∗ is a policy that maximizes the V -function for all states. The optimal policy satisfies the
Bellman equation:

V ∗
d (st) = maxa

(
R(st , at) + γ

∫

st+1

p(st+1|st , at)V ∗
d−1(st+1)dst+1

)
. (3)

This formula is used to solve the MDP in value iteration methods.
Alternatively, sample-based planners useMonteCarlomethods to solve anMDP and find a

(near) optimal policy. Such planners simulate (by sampling) interaction with the environment
in episodes Em = 〈m0 , am0 , sm1 , am1 , . . . , smT , amT 〉, following some policy π . Each episode is a
trajectory of T time steps, and we let smt denote the state visited at time t during episode m.

(So, after M episodes, M × T states would be explored). After or during episode generation,
the sample-based planner updates Qd(smt , amt) for each t according to a backup rule, for
example, averaging the total rewards obtained starting from (smt , amt) till the end. The policy
is improved using a strategy that trades off exploitation and exploration, e.g., the ε-greedy
strategy. In this case the policy used to sample the episodes is not deterministic; we indicate
with π(at |st) the probability to select action at in state st under the policy π . Under certain
conditions, after a sufficiently large number of episodes, the policy converges to a (near)
optimal policy, and the planner can execute the greedy policy argmaxaQd(st , a).

2.2 Logic programming

In this sectionwe briefly introduce logic programming concepts. SeeNilsson andMałiszyński
(1996), Apt (1997), Lloyd (1987) for an extensive introduction.

An atomic formula (atom) is a predicate applied to a list of terms that represents objects.
A term is a constant symbol, a logical variable or a function (functor) applied to terms. For
example, inside(1,2) is an atomic formula, where inside is a predicate, sometimes
called relation, and 1,2 are terms, in particular constant symbols that refer to objects. A
literal is an atomic formula or a negated atomic formula. A clause, in logic programming,
is a first-order formula with a head (atom), and a body (a list of literals). For example, the
clause

inside(A,B) ← inside(A,C),inside(C,B).

states that for all A,B and C, A is inside B if A is inside C and C is inside B (transitivity
property). A,B and C are logical variables, that informally refer to an arbitrary object or
value. A clause usually contains non-ground literals, that is, literals with logical variables
(e.g., inside(A,B)). A clause with logical variables is assumed to be preceded by universal
quantifiers for each logical variable, e.g., in the above clause: ∀A,∀B,∀C. A substitution θ

replaces the variables with other terms. For example, for θ = {A = 1,B = 2,C = 3} the
above clause becomes:

inside(1,2) ← inside(1,3),inside(3,1).

and states that if inside(1,3) and inside(3,1) are true, then inside(1,2) is true. We
indicate with θ = mgu(A,B) the most general unifier, i.e. the most general substitution θ

that makes Aθ = Bθ .
AnHerbrand interpretation I is a set of ground atomic formulas that are assumed to be true.

The facts not in I are assumed to be false. In this paper, Herbrand interpretations represent
states. For example, I = {inside(1,3),inside(2,3)} represents a world state where 1
and 2 are inside 3, any other fact is false.

123

Mach Learn

In this paper we refer to complete (full) states and partial (abstract) states. In a full state
any fact has an assignment true/false, and any other variable has a value. In a partial (abstract)
state some of the facts or variables have an assignment. The remaining facts and variables are
left undefined. Formally, an abstract state is a conjunctive formulaF that represents the set of
complete states that satisfies F , that is, F = l1 ∧ . . .∧ ln where all variables are existentially
quantified and each literal li is either an atom or a negated atom. We will extend the usual
notions of substitution, unification and subsumption to these expressions. In addition, an
abstract state F subsumes a state s (notation s � F) if and only if there exists a substitution
θ such thatFθ ⊆ s. For example, the abstract state ont(1,2),not(ont(2,table)) repre-
sents all the states where object 1 is on top of object 2 and 2 is not on a table. An abstract state
might contain logical variables, e.g., ont(1,A) represents the set of all the states where 1 is
on top of an arbitrary object. An example of such state is ont(1,2),ont(2,3), subsumed
by ont(1,A): ont(1,2),ont(2,3) � ont(1,A). In this paper we consider only grounded
abstract states, that is, without logical variables.

2.3 Relational MDPs

In first-order (relational) MDPs, the state is represented in terms of logic formulas. In par-
ticular, in relational MDPs based on logic programming, a state is a Herbrand interpretation
and the actions are described as facts. The state transition model and the reward function are
compactly defined in terms of probabilistic rules exploiting first-order logic. For example,
in a blocksworld we can say that if on(A,C),clean(B) holds then action move(A,B) will
add on(A,B) with probability 0.9 to the state and remove on(A,C),clean(B), otherwise
with probability 0.1 the state will remain unchanged. In addition, it is often convenient to
define when an action is applicable in a given state. This can be specified again in terms of
rules (clauses). The conditions that make an action applicable are often called preconditions.

A relational MDP can be solved using the Bellman equation applied to abstract states
with logical regression, instead of single states individually. This method is called symbolic
dynamic programming (SDP), and it has been successfully used to solve bigMDPs efficiently
(Kersting et al. 2004; Wang et al. 2008; Joshi et al. 2010; Hölldobler et al. 2006). Similar
principles have been applied in (propositional) continuous and hybrid domains (Sanner et al.
2011; Zamani et al. 2012). Despite the effectiveness of such approaches, theymake restrictive
assumptions (e.g., deterministic transition model for continuous variables) to keep exact
inference tractable. For more general domains approximations are needed (Zamani et al.
2013). Another issue of SDP is keeping the structures that represent the V -function compact.
Despite the recent progress, and the availability of regression methods for inference in hybrid
domains (Belle and Levesque 2014), SDP remains a challenging approach in general hybrid
relational domains, including MDPs where the number of variables can change over time.

In Sect. 5 we will show how to simplify abstraction by performing regression on the
sampled episodes.

3 Dynamic distributional clauses

Standard relational MDPs cannot handle continuous variables. To overcome this limitation
we consider hybrid relationalMDPs formulated using probabilistic logic programming (Kim-
mig et al. 2010; Gutmann et al. 2011; Nitti et al. 2013). In particular, we adopt (dynamic)
distributional clauses (Nitti et al. 2013; Gutmann et al. 2011), an expressive probabilistic

123

Mach Learn

language that supports discrete and continuous variables and an unknown number of objects,
in the spirit of BLOG (Milch et al. 2005a).

A distributional clause (DC) is of the formh ∼ D ← b1, . . . ,bn, where thebi are literals
and∼ is a binary predicate written in infix notation. The intended meaning of a distributional
clause is that each ground instance of the clause (h ∼ D ← b1, . . . ,bn)θ defines the random
variable hθ as being distributed according to Dθ whenever all the biθ hold, where θ is a
substitution. Furthermore, a term�(d) constructed from the reserved functor�/1 represents
the value of the random variable d .

Example 1 Consider the following clauses:

n ∼ poisson(6). (4)

pos(P) ∼ uniform(1,10) ← between(1,�(n),P). (5)

left(A,B) ← �(pos(A)) >�(pos(B)). (6)

Capitalized terms such as P,A and B are logical variables, which can be substituted with
any constant. Clause (4) states that the number of people n is governed by a Poisson distri-
bution with mean 6; clause (5) models the position pos(P) as a random variable uniformly
distributed from 1 to 10, for each person P such that P is between 1 and �(n). Thus, if the
outcome of n is two (i.e., �(n) = 2) there are 2 independent random variables pos(1) and
pos(2). Finally, clause (6) shows how to define the predicate left(A,B) from the positions
of any A and B. Ground atoms such as left(1,2) are binary random variables that can be
true or false, while terms such as pos(1) represent random variables that can take concrete
values from the domain of their distribution.

A distributional program is a set of distributional clauses (some of which may be deter-
ministic) that defines a distribution over possible worlds, which in turn defines the underlying
semantics. A possible world is generated starting from the empty set S = ∅; for each dis-
tributional clause h ∼ D ← b1, . . . ,bn, whenever the body {b1θ, . . . ,bnθ} is true in the
set S for the substitution θ , a value v for the random variable hθ is sampled from the dis-
tribution Dθ and �(hθ) = v is added to S. This is repeated until a fixpoint is reached, i.e.,
no further variables can be sampled. Dynamic distributional clauses (DDC) extend distribu-
tional clauses in admitting temporally-extended domains by associating a time index to each
random variable.

Example 2 Let us consider an object search scenario (objsearch) used in the experiments,
in which a robot looks for a specific object in a shelf. Some of the objects are visible, others
are occluded. The robot needs to decide which object to remove to find the object of interest.
Every time the robot removes an object, the objects behind it become visible. This happens
recursively, i.e., each new uncovered object might occlude other objects. The number and
the types of occluded objects depend on the object covering them. For example, a box might
cover several objects because it is big. This scenario involves an unknown number of objects
and can be written as a partially observableMDP. However, it can be also described as aMDP
in DDC where the state is the type of visible objects; in this case the state grows over time
when new objects are observed or shrink when objects are removed without uncovering new

123

Mach Learn

objects. The probability of observing new objects is encoded in the state transition model,
for example:

type(X)t+1 ∼ val(T) ← �(type(X)t) = T, not(removeObj(X)). (7)

numObjBehind(X)t+1 ∼ poisson(1) ← �(type(X)t) = box,removeObj(X). (8)

type(ID)t+1 ∼ finite([0.2 : glass,0.3 : cup,0.4 : box,0.1 : can])←
�(type(X)t) = box,removeobj(X),�(numObjBehind(X)t+1) = N,getLastID(Last)t,

NewID is Last + 1,EndNewID is NewID + N,between(NewID,EndNewID,ID). (9)

Clause (7) states that the type of each object remains unchanged when we do not perform a
remove action. Otherwise, if we remove the object, its type is removed from the state at time
t + 1 because it is not needed anymore. Clauses (8) and (9) define the number and the type
of objects behind a box X, added to the state when we perform a remove action on X. Similar
clauses are defined for other types. The predicate getLastID(Last)t returns the highest
object ID in the state and is needed to make sure that any new object has a different ID.

DDC can be easily extended to define MDPs. In the previous example we showed how
to define a state transition model. To complete the MDP specification we need to define a
reward function R(st , at), the terminal states that indicate when the episode terminates, and
the applicability of an action at is a state st as in PDDL. For objsearch we have:

stopt ←�(type(X)t) = can.

reward(20)t ← stopt.

reward(−1)t ← not(stopt).

That is, a state is terminal when we observe the object of interest (e.g., a can), for which a
reward of 20 is obtained. The remaining states are nonterminal with reward −1. To define
action applicability we use a set of clauses of the form

applicable(action)t ← preconditionst.

For example, action removeobj is applicable for each object in the state, that is when its
type is defined with an arbitrary value Type:

applicable(removeobj(X))t ←�(type(X)t) = Type.

In DDC a (complete) state contains facts as in standard relational MDPs and statements
�(variable) = v (the value of variable is v) for continuous or categorical random
variables, e.g.: ont(1,2),cleant(1),ont(1,table),�(energyt) = 1.3. All the facts
not in the state are assumed false and all variables not in the state are assumed not existent.

4 HYPE: planning by importance sampling

In this sectionwe introduceHYPE (= hybrid episodic planner), a planner for hybrid relational
MDPs described in DDC. HYPE is a planner that adopts an off-policy strategy (Sutton
and Barto 1998) based on importance sampling and derived from the transition model.
Related work is discussed more comprehensively in Sect. 6, but as we note later, sample-
based planners typically only require a generative model (a way to generate samples) and
do not exploit the model of the MDP (i.e., the actual probabilities) (Keller and Eyerich
2012). In our case, this knowledge leads to an effective planning algorithm that works in

123

Mach Learn

discrete, continuous, and hybrid domains, and/or domainswith an unknownnumber of objects
under weak assumptions. Moreover, HYPE performs abstraction of sampled episodes. In this
section we introduce HYPE without abstraction; the latter will be introduced in Sect. 5.

4.1 Basic algorithm

In a nutshell, HYPE samples episodes Em and stores for each visited state smt an estimation of
the V -function (e.g., the total reward obtained from that state). The action selection follows an
given strategy (e.g., ε-greedy), where the Q-function is estimated as the immediate reward
plus the weighted average of the previously stored V -function points at time t + 1. This
is justified by means of importance sampling as explained later. The essential steps of our
planning system HYPE are given in Algorithm 1.

Algorithm 1 HYPE without abstraction
1: function SampleEpisode(d, smt ,m) � Horizon d, state smt in episode m
2: if d = 0 then
3: return 0
4: end if
5: for each applicable action a in smt do � Q-function estimation

6: Q̃m
d (smt , a) ← R(smt , a) + γ

∑m−1
i=0 wi Ṽ i

d−1(s
i
t+1)

∑m−1
i=0 wi

7: end for
8: amt ← policy({Q̃m

d (smt , a)}) � action policy, e.g., ε-greedy
9: sample smt+1 ∼ p(st+1 | smt , amt) � sample next state
10: G(Em

t) ← R(smt , amt) + γ ·SampleEpisode (d − 1, smt+1,m) � recursive call

11: Ṽ m
d (smt) ← G(Em

t)

12: store (smt , Ṽ m
d (smt), d)

13: return Ṽ m
d (smt) � V-function estimation for smt at horizon d

14: end function

The algorithm realizes the following key ideas:

– Q̃ and Ṽ denote approximations of the Q and V -function respectively.
– Lines 8 select an action according to a given strategy.
– Lines 9–12 sample the next step and recursively the remaining episode of total length

T , then stores the total discounted reward G(Em
t) starting from the current state smt .

This quantity can be interpreted as a sample of the expectation in formula (1), thus an
estimator of the V -function. For this and other reasons explained later, G(Em

t) is stored
as Ṽ m

d (smt).
– Most significantly, line 6 approximates the Q-function using theweighted average of the

stored Ṽ i
d−1(s

i
t+1) points:

Q̃m
d

(
smt , a

) ← R
(
smt , a

) + γ

∑m−1
i=0 wi Ṽ i

d−1

(
sit+1

)

∑m−1
i=0 wi

, (10)

wherewi is aweight function for episode i at state sit+1.Theweight exploits the transition
model and is defined as:

wi = p
(
sit+1 | smt , a

)

q
(
sit+1

) α(m−i). (11)

123

Mach Learn

V 1
9 = 97

V 2
9 = 98 V 3

9 = 90

s = (0, 0)
a a

Fig. 1 Leftweight computation for the objpush domain. Right a sampled episode that reaches the goal (blue),
and avoids the undesired region (red) (Color figure online)

Here, for evaluating an action a at the current state st , we let wi be the ratio of the transition
probability of reaching a stored state sit+1 and the probability used to sample sit+1, denoted
using q. Recent episodes are considered more significant than previous ones, and so α is a
parameter for realizing this. We provide a detailed justification for line 6 below.

We note that line 6 requires us to go over a finite set of actions, and so in the presence of
continuous action spaces (e.g., real-valued parameter for a move action), we can discretize
the action space or sample from it. More sophisticated approaches are possible (Forbes and
Andre 2002; Smart and Kaelbling 2000).

Example 3 As a simple illustration, consider the following example called objpush. We have
an object on a table and an arm that can push the object in a set of directions; the goal is to
move the object close to a point g, avoiding an undesired region (Fig. 1). The state consists
of the object position (x, y), with push actions parameterized by the displacement (DX,DY).
The state transition model is a Gaussian around the previous position plus the displacement:

pos(ID)t+1∼ gaussian(�(pos(ID)t)+ (DX,DY),cov)←push(ID, (DX,DY)).

(12)

The clause is valid for any object ID; nonetheless, for simplicity, we will consider a scenario
with a single object. The terminal states and rewards in DDC are:

stopt← dist(�(pos(A)t), (0.6,1.0)) < 0.1.

reward(100)t← stopt.

reward(−1)t← not(stopt),dist(�(pos(A)t), (0.5,0.8)) >= 0.2.

reward(−10)t← not(stopt),dist(�(pos(A)t), (0.5,0.8)) < 0.2. (13)

That is, a state is terminal when there is an object close to the goal point (0.6, 1.0) (i.e.,
distance lower than 0.1), and so, a reward of 100 is obtained. The nonterminal states have
reward −10 whether inside an undesired region centered in (0.5, 0.8) with radius 0.2, and
R(st , at) = −1 otherwise.

Let us assume we previously sampled some episodes of length T = 10, and we want to
sample the m = 4-th episode starting from s0 = (0, 0). We compute Q̃m

10((0, 0), a) for each
action a (line 6). Thus, we compute the weightswi using (11) for each stored sample Ṽ i

9 (si1).
For example, Fig. 1 shows the computation of Q̃m

10((0, 0), a) for action a′ = (−0.4, 0.3) and
a′′ = (0.9, 0.5), where we have three previous samples i = {1, 2, 3} at depth 9. A shadow
represents the likelihood p(si1|s0 = (0, 0), a) (left for a′ and right for a′′). The weight wi

(11) for each sample si1 is obtained by dividing this likelihood by q(si1) (with α = 1). If
qi (si1) is uniform over the three samples, sample i = 2 with total reward Ṽ 2

9 (s21) = 98 will
have higher weight than samples i = 1 and i = 3. The situation is reversed for a′′. Note that

123

Mach Learn

we can estimate Q̃m
d (smt , a) using episodes i that may never encounter smt , at provided that

p(sit+1|smt , at) > 0.

4.2 Computing the (approximate) Q-function

The purpose of this section is to motivate our approximation to the Q-function using the
weighted average of the V -function points in line 6. Let us begin by expanding the definition
of the Q-function from (2) as follows:

Qπ
d (st , at) = R(st , at) + γ

∫

st+1:T ,at+1:T
G(Et+1)p(st+1:T , at+1:T |st , at , π)dst+1:T , at+1:T , (14)

where G(Et+1) is the total (discounted) reward from time t + 1 to T : G(Et+1) =∑T
k=t+1 γ k−t−1R(sk, ak). Given that we sample trajectories from the target distribution

p(st+1:T , at+1:T |st , at , π), we obtain the following approximation to the Q-function equal-
ing the true value in the sampling limit:

Qπ
d (st , at) ≈ R(st , at) + 1

N
γ

∑

i

G
(
Ei
t+1

)
. (15)

Policy evaluation can be performed sampling trajectories using another policy, this is called
off-policy Monte Carlo (Sutton and Barto 1998). For example, we can evaluate the greedy
policy while the data is generated from a randomized one to enable exploration. This is
generally performed using (normalized) importance sampling (Shelton 2001a). We let wi be
the ratio of the target and proposal distributions to restate the sampling limit as follows:

Qπ
d (st , at) ≈ R(st , at) + 1

∑
wi

γ
∑

i

wi G
(
Ei
t+1

)
. (16)

In standard off-policy Monte Carlo the proposal distribution is of the form:

p
(
st+1:T , at+1:T |st , at , π ′) =

T−1∏

k=t

π ′ (ak+1|sk+1) p (sk+1|sk, ak) .

The target distribution has the same form, the only difference is that the policy is π instead
of π ′. In this case the weight becomes equal to the policy ratio because the transition model
cancels out. This is desirable when the model is not available, for example in model-free
Reinforcement Learning. The question is whether the availability of the transition model can
be used to improve off-policy methods. This paper shows that the answer to that question is
positive.

We will now describe the proposed solution. Instead of considering only trajectories that
start from st , at as samples, we consider all sampled trajectories from time t + 1 to T . Since
we are ignoring steps before t + 1, the proposal distribution for sample i is the marginal

p
(
st+1:T , at+1:T |s0, π i

)
= qi (st+1)π

i (at+1|st+1)

T−1∏

k=t+1

π i (ak+1|sk+1)p(sk+1|sk, ak),

123

Mach Learn

where qi is the marginal probability p(st+1|s0, π i). To compute Q̃m
d (smt , a) we use (16),

where the weight wi (for 0 ≤ i ≤ m − 1) becomes the following:

p
(
sit+1|smt , a

)
π

(
ait+1|sit+1

) ∏T−1
k=t+1 π

(
aik+1|sik+1

)
p

(
sik+1|sik, aik

)

qi
(
sit+1

)
π i

(
ait+1|sit+1

) ∏T−1
k=t+1 π i

(
aik+1|sik+1

)
p

(
sik+1|sik, aik

)

= p
(
sit+1|smt , a

)

qi
(
sit+1

)

∏T−1
k=t π

(
aik+1|sik+1

)

∏T−1
k=t π i

(
aik+1|sik+1

) (17)

≈ p
(
sit+1|smt , a

)

qi
(
sit+1

) α(m−i). (18)

Thus, we obtain line 6 in the algorithm given that Ṽ i
d−1(s

i
t) = G(Ei

t+1). In our algorithm
the target (greedy) policy π is not explicitly defined, therefore the policy ratio is hard to
compute. We replace the unknown policy ratio with a quantity proportional to α(m−i) where
0 < α ≤ 1; thus, formula (17) is replacedwith (18). The quantity α(m−i) becomes smaller for
an increasing difference between the current episode indexm and the i-th episode. Therefore,
the recent episodes are weighted (on average) more than the previous ones, as in recently-
weighted average applied in on-policyMonte Carlo (Sutton and Barto 1998). This is justified
because the policy is improved over time, thus recent episodes should have higher weight.

In general, qi (sit+1) is not available in closed form; we adopt the following approximation:

qi
(
sit+1

)
= p

(
sit+1|s0, πi

)
=

∫

st ,at
p

(
sit+1|st , at

)
p (st , at |s0, πi)

≈ 1

2D + 1

i+D∑

j=i−D

p
(
sit+1|s jt , a j

t

)
, (19)

where we are assuming that π j ≈ π i for i − D < j < i + D, and the samples s jt , a j
t refer

to episode E j . Each episode E j is sampled from p(s0:T , a0:T |s0, π j), thus samples (s jt , a j
t)

are distributed as p(st , at |s0, π j) and are used in the estimation of the integral.
The likelihood p(sit+1|smt , a) is required to compute the weight. This probability can be

decomposed using the chain rule, e.g., for a state with 3 variables we have:

p
(
sit+1|smt , a

)
= p

(
v3|v2, v1, smt , a

)
p

(
v2|v1, smt , a

)
p

(
v1|smt , a

)
,

where sit+1 = {v1, v2, v3}. In DDC this is performed evaluating the likelihood of each
variable in vi following the topological order defined in the DDC program. The target and
the proposal distributions might be mixed distributions of discrete and continuous random
variables; importance sampling can be applied in such distributions as discussed in Owen
(2013, Chapter 9.8).

To summarize, for each state smt , Q(smt , at) is evaluated as the immediate reward plus the
weighted average of storedG(Ei

t+1) points. In addition, for each state s
m
t the total discounted

reward G(Em
t) is stored. We would like to remark that we can estimate the Q-function also

for states and actions that have never been visited, as shown in Example 1. This is possible
without using function approximations (beyond importance sampling).

123

Mach Learn

4.3 Extensions

Our derivation follows a Monte Carlo perspective, where each stored point is the total dis-
counted reward of a given trajectory: Ṽ m

d (smt) ← G(Em
t). However, following the Bellman

equation, Ṽ m
d (smt) ← maxa Q̃m

d (smt , a) can be used instead (replacing line 11 in Algorithm
1). The Q-function estimation formula in line 6 is not affected; indeed we can repeat the
same derivation using the Bellman equation and approximate it with importance sampling:

Qπ
d (st , at) = R(st , at) + γ

∫

st+1

V π
d−1(st+1)p(st+1|st , at)dst+1

≈ R(st , a) + γ
∑ wi

∑
wi

Ṽ i
d−1

(
sit+1

)
= Q̃m

d (st , at), (20)

with wi = p(sit+1|st ,at)
qi (sit+1)

and sit+1 the state sampled in episode i for which we have an estima-

tion of Ṽ i
d−1(s

i
t+1), while q

i (sit+1) is the probability with which s
i
t+1 has been sampled. This

derivation is valid for a fixed policy π ; for a changing policy we can make similar considera-
tions to the previous approach and add the termα(m−i). Ifwe choose Ṽ i

d−1(s
i
t+1) ← G(Ei

t+1),
we obtain the same result as in (10) and (18) for the Monte Carlo approach.

Instead of choosing between the two approaches we can use a linear combination, i.e.,
we replace line 11 with Ṽ m

d (smt) ← λG(Em
t) + (1 − λ)maxa Q̃m

d (smt , a). The analysis
from earlier applies by letting λ = 1. However, for λ = 0, we obtain a local value
iteration step, where the stored Ṽ is obtained maximizing the estimated Q̃ values. Any
intermediate value balances the two approaches (this is similar to, and inspired by, TD(λ)

Sutton and Barto 1998). Another strategy consists in storing the maximum of the two:
Ṽ m
d (smt) ← max(G(Em

t),maxa Q̃m
d (smt , a)). In other words, we alternate Monte Carlo and

Bellman backup according to which one has the highest value. This strategy works often well
in practice; indeed it avoids a typical issue in (on-policy) Monte Carlo methods: bad policies
or exploration lead to low rewards, averaged in the estimated Q/V -function.

4.4 Practical improvements

In this section we briefly discuss some practical improvements of HYPE. To evaluate the
Q-function the algorithm needs to query all the stored examples, making the algorithm poten-
tially slow. This issue can be mitigated with solutions used in instance-based learning, such
as hashing and indexing. For example, in discrete domains we avoid multiple computations
of the likelihood and the proposal distribution for samples of the same state. In addition,
assuming policy improvement over time, only the Nstore most recent episodes are kept, since
older episodes are generally sampled with a worse policy.

HYPE’s algorithm relies on importance sampling to estimate the Q-function, thus we
should guarantee that p > 0 ⇒ q > 0, where p is the target and q is the proposal distribution.
This is not always the case, like when we sample the first episode. Nonetheless we can have
an indication of the estimation reliability. In our algorithm we use

∑
wi with expectation

equal to the number of samples: E[∑ wi] = m. If
∑

wi < thres the samples available are
considered insufficient to compute Qm

d (smt , a), thus action a can be selected according to an
exploration policy. It is also possible to add a fictitiousweighted point in line 6, that represents
the initial Qm

d (smt , a) guess. This can be used to exploit heuristics during sampling.
A more problematic situation is when, for some action at in some state st , we always

obtain null weights, that is, p(sit+1|st , at) = 0 for each of the previous episodes i , no matter

123

Mach Learn

how many episodes are generated. This issue is solved by adding noise to the state transition
model, e.g., Gaussian noise for continuous random variables. This effectively ‘smoothes’
the V -function. Indeed the Q-function is a weighted sum of V -function points, where the
weights are proportional to a noisy version of the state transition likelihood.

5 Abstraction

By exploiting the (relational) model, we can improve the algorithm by using abstract states,
because often, only some parts of the state determine the total reward. The idea is to generalize
the specific states into abstract states by removing the irrelevant facts (for the outcome of
the episode). This resembles symbolic methods to exactly solve MDPs in propositional and
relational domains (Wiering and van Otterlo 2012). The main idea in symbolic methods is to
apply the Bellman equation on abstract states, using logical regression (backward reasoning).
As described in Sects. 2.3 and 6, symbolic methods are more challenging in hybrid relational
MDPs. The main issues are the intractability of the integral in the Bellman equation (3), and
the complexity of symbolic manipulation in complex hybrid relational domains.

Algorithm 2 HYPE with abstraction
1: function sampleEpisode(d, smt ,m) � Horizon d, state smt , episode m
2: if d = 0 then
3: return (∅, 0)
4: end if
5: for each applicable action a in smt do � Q-function estimation

6: Q̃m
d (smt , a) ← R(smt , a) + γ

∑m−1
i=0 wi Ṽ i

d−1(ŝ
i
t+1)

∑m−1
i=0 wi

7: end for
8: amt ← policy({Q̃m

d (smt , a)}) � action policy, e.g., ε-greedy
9: sample smt+1 ∼ p(st+1|smt , amt)

10: (ŝmt+1, v) ←SAMPLEEPISODE(d − 1, smt+1,m)
11: ŝmt ← REGRESS({R(smt , amt) ∧ ŝmt+1}, {smt , amt , ŝmt+1}) � abstraction
12: G(Em

t) ← R(smt , amt) + γ v

13: Ṽ m
d (smt) ← G(Em

t)

14: store (ŝmt , Ṽ m
d (smt), d)

15: return (ŝmt , Ṽ m
d (smt))

16: end function

To overcome these difficulties, we propose to perform abstraction at the level of samples.
The modified algorithm with abstraction is sketched in Algorithm 2. The main differences
with Algorithm 1 are:

– Q-function estimation from abstracted states (line 6)
– regression of the current state (line 11)
– the procedure returns the abstract state and its V -function, instead of the latter only (line

15). This is required for recursive regression.

5.1 Basic principles of abstraction

Before describing abstraction formally, let us consider the blocksworld example to give an
intuition. Figure 2 shows a sampled episode from the first state (bottom left) to the last state

123

Mach Learn

goal on(2,1) with reward 100, -1 otherwise

31
2

4
5

R(sit+2) = 100
G(Ei

t+2) = 100

2 31 4
5

R(sit+1) = −1
G(Ei

t+1) = 99

32
1

4
5

R(sit) = −1
G(Ei

t) = 98
21
4

3
5

p(ŝit+1|smt , a)

Fig. 2 Blocksworld with abstraction. Current full state on the right, and a sampled episode on the left. The
abstracted states are circled

(top left) that ends in the goal state on(2,1). Informally, the relevant part of the episode is
the set of facts that are responsible for reaching the goal, or more generally responsible for
obtaining a given total reward. This relevant part is called the abstracted episode. Figure 2
shows the abstract states (circled) that together define the abstract episode. Intuitively, objects
3, 4, 5 and their relations are irrelevant to reach the goal on(2,1), and thus do not belong to
the abstracted episode.

The abstraction helps to exploit the previous episodes in more cases, speeding up the
convergence. For example, Fig. 2 shows the computation of a weight wi [using (11)] to
compute the Q-function of the (full) state smt depicted on the right, exploiting the abstract
state ŝit+1 indicated by the arrow (from episode i). If the action ismoving 4 on top of 5we have

p(ŝit+1|smt , a) > 0 ⇒ wi > 0. Thus, the Q-function estimate Q̃m
d (st , a) will include w1 · 99

in the weighted average (line 6 in Algorithm 2), making the action appealing. In contrast,
without abstraction all actions get weight 0, because the full state sit+1 is not reachable from
smt (i.e. p(sit+1|smt , a) = 0). Therefore, episode i cannot be used to compute the Q-function.
For this reason abstraction requires fewer samples to converge to a near-optimal policy.

This idea is valid in continuous domains. For example, in the objpush scenario, the goal
is to put any object in a given region; if the goal is reached, only one object is responsible,
any other object is irrelevant in that particular state.

5.2 Mathematical derivation

In this section we formalize sample-based abstraction and describe the assumptions that
justify the Q-function estimation on abstract states (line 6 of Algorithm 2).

5.2.1 Abstraction applied to importance sampling

The Q-function estimation (16) can be reformulated for abstract states as follows. For an
episode from time t , Et =<st , at , . . . , sT , aT>, let us consider an arbitrary partition Et =
{Êt , E ′

t } such thatG(Et) = G(Êt), i.e., the total reward depends only on Êt . The relevant part
of the episode has the form Êt =<ŝt , at , . . . , ŝT , aT>, while E ′

t = Et \ Êt =<s′
t , . . . , s

′
T>

is the remaining non-relevant part.1 The partial episode Êt is called abstract because
the irrelevant variables have been marginalized, in contrast Et is called full or complete.
The Q-function estimation (16) is reformulated for abstract states marginalizing irrelevant
variables:

1 We assumed that the actions are relevant, otherwise they will belong to E ′.

123

Mach Learn

Qπ
d

(
smt , a

) =
∫

Et

p
(
Et |smt , a, π

)
G(Et)dEt =

=
∫

Êt

(∫

E ′
t

p
(
Êt , E

′
t |smt , a, π

)
dE ′

t

)

G
(
Êt

)
d Êt =

=
∫

Êt

p
(
Êt |smt , a, π

)
G

(
Êt

)
d Êt =

= R
(
ŝmt , a

) + γ

∫

Êt+1

p
(
Êt+1|smt , a, π

)
G

(
Êt+1

)
d Êt+1 =

= R
(
ŝmt , a

) + γ

∫

Êt+1

p
(
Êt+1|smt , a, π

)

q
(
Êt+1

)

︸ ︷︷ ︸

w
(
Êt+1

)

q
(
Êt+1

)
G

(
Êt+1

)
d Êt+1

≈ R
(
ŝmt , a

) + γ
1

∑m−1
i=0 w

(
Ê i
t+1

)
m−1∑

i=0

w
(
Ê i
t+1

)
G

(
Ê i
t+1

)
. (21)

The above estimation is based on importance sampling just like in the non-abstract case (16),
with similar target and proposal distributions. The main difference is the marginalization of
irrelevant variables.

5.2.2 Importance weights for abstract episodes

Formula (21) is valid for any partition such that G(Et) = G(Êt), but computing the weights
w(Êt+1)might be hard in general. To simplify the weight computation let us assume that the
chosen partition guarantees the Markov property on abstract states, i.e., p(ŝt+1|s0:t , a0:t) =
p(ŝt+1|ŝt , at). To estimate Qπ

d (smt , a) (episode m), the weight for abstract episode i < m
becomes the following:

w
(
Êt+1

)
=

p
(
Êt+1|smt , a, π

)

qi
(
Êt+1

) =
∫
E ′
t+1

p
(
st+1:T , at+1:T |smt , a, π

)
dE ′

t+1
∫
E ′
t+1

p
(
st+1:T , at+1:T |s0, π i

)
dE ′

t+1

= p
(
ŝt+1:T , at+1:T |smt , a, π

)

p
(
ŝt+1:T , at+1:T |s0, π i

)

= p
(
ŝt+1|smt , a

)
π

(
at+1|ŝt+1, smt , a

)

qi
(
ŝt+1

)
π i

(
at+1|ŝt+1, s0

)

∏T−1
k=t+1 π

(
ak+1|ŝt+1:k+1, at+1:k , smt , a

)
p

(
ŝk+1|ŝk , ak

)

∏T−1
k=t+1 π i

(
ak+1|ŝt+1:k+1, at+1:k , s0

)
p

(
ŝk+1|ŝk , ak

)

= p
(
ŝt+1|smt , a

)

qi
(
ŝt+1

)

∏T−1
k=t π

(
ak+1|ŝt+1:k+1, at+1:k , smt , a

)

∏T−1
k=t π i

(
ak+1|ŝt+1:k+1, at+1:k , s0

) (22)

≈ p
(
ŝt+1|smt , a

)

qi
(
ŝt+1

)

∏T−1
k=t π

(
ak+1|ŝt+1:k+1, at+1:k , s0

)

∏T−1
k=t π i

(
ak+1|ŝt+1:k+1, at+1:k , s0

) (23)

≈ p
(
ŝt+1|smt , a

)

qi (ŝt+1)
α(m−i), (24)

where qi (ŝt+1) = p(ŝt+1|s0, π i) and can be approximated with (19) by replacing st+1 with
ŝt+1. The final weight formula for abstracted states is similar to the non-abstract case. The

123

Mach Learn

difference is abstraction of the next state ŝt+1, while the state smt in which the Q-function is
estimated remains a complete state.

We will now explain the weight derivation and motivate the approximations adopted.
Until formula (22) the only assumption made is the Markov property on abstract states. No
assumptions are made about the action distributions (policies) π, π i , thus the probability of
an action at might depend on abstracted states in previous steps. Then (23) is replaced by
(22) as discussed later. Finally, the policy ratio in (23) is replaced in (24) as in HYPE without
abstraction.

Let us now discuss the approximation introduced in (23). Using (23) instead of (22) is
equivalent to using the following target distribution:

p
(
ŝt+1|smt , a

)

qi
(
ŝt+1

) p
(
ŝt+1:T , at+1:T |s0, π

) = p
(
ŝt+1|smt , a

)
p

(
ŝt+2:T , at+1:T |ŝt+1, s0, π

)
,

instead of

p
(
ŝt+1:T , at+1:T |smt , a, π

) = p
(
ŝt+1|smt , a

)
p

(
ŝt+2:T , at+1:T |ŝt+1, s

m
t , a, π

)
. (25)

Since the state transition model is the same in both distributions, the only difference is the
marginalized action distribution (target policy). The one used in (23) is

π
(
ak+1|ŝt+1:k+1, at+1:k, s0

)
(26)

instead of π(ak+1|ŝt+1:k+1, at+1:k, smt , a) for k = t, . . . , T − 1. It is not straightforward to
analyze this result because these actions distributions are obtained from the same policy π by
applying a different marginalization. Nonetheless, it is worth mentioning that the marginal-
ized target policy (26) does not depend on the specific state smt , but only on abstract states
and on the initial state s0. This is arguably a desirable property for the (marginalized) target
policy.

Using (26) as target policy, and thus (23) as weight, is useful when the proposal policies
are equal to the target policy: ∀i : π = π i . In this case the weight is exactly:

w
(
Ei
t+1

)
= p

(
ŝit+1|smt , a

)

qi
(
ŝit+1

) , (27)

because the policy ratio cancels out. This formula is also applicable when ∀i : π = π i and
π(a|st) = π(a|ŝt) or at least π(ak+1|ŝt+1:k+1, at+1:k, smt , a) = π(ak+1|ŝt+1:k+1, at+1:k, s0)
= π(ak+1|ŝt+1:k+1, at+1:k), that are indeed special cases of (26) and (23). Imposing or assum-
ing π(a|st) = π(a|ŝt) seems a reasonable choice, even though (26) is a weaker assumption.
The optimal policy π∗, might depend only on abstract states, thus π∗(a|st) = π∗(a|ŝt).
Indeed, we expect that the optimal policy depends only on the relevant part of the state.
However, we can neither assume π i (a|st) = π i (a|ŝt) nor π i (ak+1|ŝt+1:k+1, at+1:k, s0) =
π i (ak+1|ŝt+1:k+1, at+1:k) as proposal policy. This is because the proposal policy π i used to
sample episode i has to explore with a non-zero probability all the actions: abstract states
are generally not sufficient to determine the admissible actions. Thus, the dependence on
the initial state s0 is inevitable. In conclusion, the marginal target policy (26) is one of the
weakest assumptions to guarantee a weight (27) for ∀i : π = π i . For π �= π i the weight
becomes (23).

Now let us focus on (24) derived from (23). Since the policies π i used in the episodes are
assumed to improve over time, we replaced the policy ratio in (23) with a quantity that favors
recent episodes as in the propositional case [formula (18)]. Another way of justifying (24) is
estimating for each stored abstract episode i , the Q-function Qπ i

d (smt , a), with target policy

123

Mach Learn

π = π i , and using only the i-th sample. With a marginalized target policy given by (26),
the single weight of each estimate Qπ i

d (smt , a) is exactly (27). The used Q-function estimate

can be a weighted average of Qπ i

d (smt , a), where recent estimates (higher index i) receive
higher weights because the policy is assumed to improve over time. Thus, the final weights
are given by (24).

HYPE with abstraction adopts formula (21) and weights (24) for Q-function estimation.
Note that during episode sampling the states are complete, nonetheless, to computeQπ

d (smt , a)

at episode m all previously abstracted episodes i < m are considered. Finally, when the
sampling of episode m is terminated, it is abstracted (line 11) and stored (line 14).

5.2.3 Ineffectiveness of lazy instantiation

Before explaining the proposed abstraction in detail, let us consider an alternative solution that
samples abstract episodes directly, instead of sampling a complete episode and performing
abstraction afterwards. If we are able to determine and sample partial states ŝmt , we can
sample abstract episodes directly and perform Q-function estimation. Sampling the relevant
partial episode Êt can be easily performed using lazy instantiation, where given the query
G(Et), only relevant random variables are sampled until the query can be answered. Lazy
instantiation can exploit context-specific independencies and be extended for distributions
with a countably infinite number of variables, as in BLOG (Milch et al. 2005a, b). Similarly,
Distributional Clauses search relevant random variables (or facts) using backward reasoning,
while sampling is performed in a forward way. For example, to prove Rt the algorithm needs
to sample the variables ŝt relevant for Rt , ŝt depends on ŝt−1 and the action at−1 depends
on the admissible actions that again depend on ŝt−1, and so on. At some point variables
can be sampled because they depend on known facts (e.g., initial state s0). This procedure
guarantees that G(Et) = G(Êt), p(ŝt+1|s0:t , at) = p(ŝt+1|ŝt , at) and π i (a|st) = π i (a|ŝt),
thus (22) is exactly equal to (23) and it simplifies to p(ŝt+1|smt ,a)

qi (ŝt+1)

∏T−1
k=t π(ak+1|ŝk+1)

∏T−1
k=t π i (ak+1|ŝk+1)

. Finally, the

approximation (24) can be used. Unfortunately, this method avoids only sampling variables
that are completely irrelevant, therefore in many practical domains it will sample (almost) the
entire state. Indeed, evaluating the admissible actions often requires sampling the entire state.
In other words, the abstract state ŝt ⊆ st that guarantees π i (a|st) = π i (a|ŝt) is often equal
to st . The solution adopted in this paper is ignoring the requirement π i (a|st) = π i (a|ŝt)
and approximate (22) with (23), or equivalently using (26) as marginalized target policy
distribution.

5.3 Sample-based abstraction by logical regression

In this section we describe how to implement the proposed sample-based abstraction. The
implementation is based on dynamic distributional clauses for two reasons: DDC allow to
represent complex hybrid relational domains and provides backward reasoning procedures
useful for abstraction as we will now describe.

Algorithm 2 samples complete episodes and performs abstraction afterwards. The abstrac-
tion of Êt from Et (REGRESS function at line 11) is decomposed recursively employing
backward reasoning (regression) from the last step t = T till reaching s0. We first regress the
query R(sT , aT) using sT to obtain the abstract state ŝT = ÊT (computing themost general ŝT
such that R(ŝT , aT) = R(sT , aT)). For t = T −1, . . . , 0we regress the query R(st , at)∧ ŝt+1

using at , st ∈ Et to obtain the most general ŝt ⊆ st that guarantees R(ŝt , at) = R(st , at)

123

Mach Learn

and p(ŝt+1|st , at) = p(ŝt+1|ŝt , at). Note that Êt = ŝt ∪ Êt+1. This method assumes
that the actions are given, thus it avoids determining the admissible actions, keeping the
abstract states smaller. For this reason, REGRESS guarantees only G(Et) = G(Êt) and
p(ŝt+1|ŝ0:t , at) = p(ŝt+1|ŝt , at), in contrast π i (a|st) = π i (a|ŝt) is not guaranteed. Those
conditions are sufficient to apply (23) and (24) as described in the previous section. Note that
derivation (21) assumes a fixed partition, thus exploits only conditional independencies, but
the idea can be extended to context-specific independencies.

Algorithm 3 Episode abstraction
1: function Regress(Query,Facts) � regress Query using Facts
2: S ← ∅
3: for L ∈ Query, L �= action(_) do
4: Find θ = mgu(L , F) with F ∈ Facts
5: if ∃(H ∼ D ← B), ∃β s.t. Facts � Bβ and F is �(Hβ) = v then � the clause could have

generated F
6: Query ← Queryθβ\F ∪ Bβ

7: else � Lθ = F not regressable
8: S ← S ∪ F
9: Query ← Queryθ\F
10: end if
11: end for
12: return S
13: end function

The algorithm REGRESS for regressing a query (formula) using a set of facts is depicted
in Algorithm 3. The algorithm tries to repeatedly find literals in the query that could have
been generated using the set of facts and a distributional clause. If it finds such a literal, it
will be replaced by the condition part of the clause in the query. If not, it will add the fact to
the state to be returned.

Example 4 To illustrate the algorithm, consider the blocksworld example in Fig. 2. Let
us consider the abstraction of the episode on the left. To prove the last reward we
need to prove the goal, thus ŝ2 = on(2,1)2. Now let us consider time step 1, the
proof for the immediate reward is not(on(2,1)1), while the proof for the next abstract
state ŝ2 is on(2,table)1,clear(1)1,clear(2)1, therefore the abstract state becomes
ŝ1 = on(2,table)1,clear(1)1,clear(2)1, not(on(2,1)1). Analogously, s′

0 =
on(1,2)0,on(2,table)0,clear(1)0,not(on(2,1)0). The same procedure is applica-
ble to continuous variables.

6 Related work

6.1 Non-relational planners

There is an extensive literature on MDP planners, we will focus mainly on Monte Carlo
approaches. Themost notable sample-based planners include sparse sampling (SST) (Kearns
et al. 2002), UCT (Kocsis and Szepesvári 2006) and their variations. SST creates a lookahead
tree of depth D, starting from state s0. For each action in a given state, the algorithm samples
C times the next state. This produces a near-optimal solution with theoretical guarantees.
In addition, this algorithm works with continuous and discrete domains with no particular

123

Mach Learn

assumptions. Unfortunately, the number of samples grows exponentially with the depth D,
therefore the algorithm is extremely slow in practice. Some improvements have beenproposed
(Walsh et al. 2010), although the worst-case performance remains exponential. UCT (Kocsis
and Szepesvári 2006) uses upper confidence bound for multi-armed bandits to trade off
between exploration and exploitation in the tree search, and inspired successful Monte Carlo
tree search methods (Browne et al. 2012). Instead of building the full tree, UCT chooses the
action a that maximizes an upper confidence bound of Q(s, a), following the principle of
optimism in the face of uncertainty. Several improvements and extensions for UCT have been
proposed, including handling continuous actions (Mansley et al. 2011) [see Munos (2014)
for a review], and continuous states (Couetoux 2013) with a simple Gaussian distance metric;
however the knowledge of the probabilistic model is not directly exploited. For continuous
states, parametric function approximation is often used (e.g., linear regression), nonetheless
the model needs to be carefully tailored for the domain to solve (Wiering and van Otterlo
2012).

There exist algorithms that exploit instance-based methods (e.g. Forbes and Andre 2002;
Smart and Kaelbling 2000; Driessens and Ramon 2003) for model-free reinforcement learn-
ing. They basically store Q-point estimates, and then use e.g., neighborhood regression to
evaluate Q(s, a) given a new point (s, a). While these approaches are effective in some
domains, they require the user to design a distance metric that takes into account the domain.
This is straightforward in some cases (e.g., in Euclidean spaces), but it can be harder in others.
We argue that the knowledge of the model can avoid (or simplify) the design of a distance
metric in several cases, where the importance sampling weights and the transition model,
can be considered as a kernel.

The closest related works include Shelton (2001a, b), Peshkin and Shelton (2002), Precup
et al. (2000), they use importance sampling to evaluate a policy from samples generated with
another policy. Nonetheless, they adopt importance sampling differently without knowledge
of theMDPmodel. Although this property seems desirable, the availability of the actual prob-
abilities cannot be exploited, apart from sampling, in their approaches. The same conclusion
is valid for practically any sample-based planner, which only needs a sample generator of the
model. The work of Keller and Eyerich (2012) made a similar statement regarding PROST, a
state-of-the-art discrete planner based on UCT, without providing a way to use the state tran-
sition probabilities directly. Our algorithm tries to alleviate this, exploiting the probabilistic
model in a sample-based planner via importance sampling.

For more general domains that contain discrete and continuous (hybrid) variables sev-
eral approaches have been proposed under strict assumptions. For example, Sanner et al.
(2011) provide exact solutions, but assume that continuous aspects of the transition model
are deterministic. In a related effort (Feng et al. 2004), hybridMDPs are solved using dynamic
programming, but assuming that transition model and reward is piecewise constant or linear.
Another planner HAO* (Meuleau et al. 2009) uses heuristic search to find an optimal plan in
hybrid domains with theoretical guarantees. However, they assume that the Bellman equation
integral can be computed.

For domains with an unknown number of objects, some probabilistic programming lan-
guages such as BLOG (Milch et al. 2005a), Church (Goodman et al. 2008), Anglican (Wood
et al. 2014), and DC (Gutmann et al. 2011) can cope with such uncertainty. To the best of our
knowledge DTBLOG (Srivastava et al. 2014; Vien and Toussaint 2014) are the only propos-
als that are able to perform decision making in such domains using a POMDP framework.
Furthermore, BLOG is one of the few languages that explicitly handles data association and
identity uncertainty. The current paper does not focus on POMDP, nor on identity uncertainty;

123

Mach Learn

however, interesting domains with unknown number of objects can be easily described as an
MDP that HYPE can solve.

Among the mentioned sample-based planners, one of the most general is SST, which does
not make any assumption on the state and action space, and only relies on Monte Carlo
approximation. In addition, it is one of the few planners that can be easily applied to any
DDC program, including MDPs with an unknown number of objects. For this reason SST
was implemented for DDC and used as baseline for our experiments.

6.2 Relational planners and abstraction

There exists several modeling languages for planning, the most recent is RDDL [40] that
supports hybrid relational domains. A RDDL domain can be mapped in DDC and solved
with HYPE. Nonetheless, RDDL does not support a state space with an unknown number of
variables as in Example 2.

Relational MDPs can be solved using model-free approaches based on relational rein-
forcement learning (Džeroski et al. 2001; Tadepalli et al. 2004; Driessens and Ramon 2003),
or model-based methods such as ReBel (Kersting et al. 2004), FODD (Wang et al. 2008),
PRADA (Lang and Toussaint 2010), FLUCAP (Hölldobler et al. 2006) and many others.
However, those approaches only support discrete action-state (relational) spaces.

Among model-based approaches, several symbolic methods have been proposed to solve
MDPs exactly in propositional [see Mausam and Kolobov (2012) for a review] and relational
domains (Kersting et al. 2004; Wang et al. 2008; Joshi et al. 2010; Hölldobler et al. 2006).
They perform dynamic programming at the level of abstract states; this approach is gen-
erally called symbolic dynamic programming (SDP). Similar principles have been applied
in (propositional) continuous and hybrid domains (Sanner et al. 2011; Zamani et al. 2012),
where compact structures (e.g., ADD and XADD) are used to represent the V -function.
Despite the effectiveness of such approaches, they make restrictive assumptions (e.g., deter-
ministic transition model for continuous variables) to keep exact inference tractable. For
more general domains approximations are needed, for example sample-based methods or
confidence intervals (Zamani et al. 2013). Another issue of SDP is keeping the structures
that represent the V -function compact. Some solutions are available in the literature, such as
pruning or real-time SDP (Vianna et al. 2015). Despite the recent progress, and the availabil-
ity of regression methods for inference in hybrid domains (Belle and Levesque 2014), SDP
remains a challenging approach in general hybrid relational domains.

Recently, abstraction has received a lot of attention in theMonte Carlo planning literature.
Like in our work, the aim is to simplify the planning task by aggregating together states that
behave similarly. There are several ways to define state equivalence, see Li et al. (2006)
for a review. Some approaches adopt model equivalence: states are equivalent if they have
the same reward and the probabilities to end up in other abstract states are the same. Other
approaches define the equivalence in terms of the V /Q-function. In particular, we take note
of the following advances: (a) Givan et al. (2003) who compute equivalence classes of states
based on exact model equivalence, (b) Jiang et al. (2014) who appeal to approximate local
homomorphisms derived from a learned model, (c) Anand et al. (2015) who extend Jiang
and Givan in grouping state-action pairs, and (d) Hostetler et al. (2014) who aggregate states
considering the V /Q-function with tight loss bounds.

In our work, in contrast, we consider equivalence (abstraction) at the level of episodes, not
states. Two episodes are equivalent if they have the same total reward. In addition, a Markov
property condition on abstract states is added to make the weights in (21) easier to compute.
Abstraction is performed independently in each episode, determining, by logical regression,

123

Mach Learn

the set of facts (or random variables) sufficient to guarantee the mentioned conditions. Note
that the same full state st might have different abstractions in different episodes, even for the
same action at . This is generally not the case in otherworks. The proposed abstraction directly
exploits the structure of the model (independence assumptions) to perform abstraction. For
this reason it relies on the (context-specific) independence assumptions explicitly encoded
in the model. However, it is possible to discover independence assumptions not explicitly
encoded and include them in the model (e.g., using independence tests).

7 Experiments

This section answers the following questions:

(Q1) Does HYPE without abstraction obtain the correct results?
(Q2) How is the performance of HYPE in different domains?
(Q3) How does HYPE compare with state-of-the-art planners?
(Q4) Is abstraction beneficial?

The domains used in the experiments are written in DDC; the algorithms were imple-
mented in YAP Prolog and C++, and run on a Intel Core i7 Desktop. We will first describe
experiments without abstraction, then compare HYPE with and without abstraction.

7.1 HYPE without abstraction

In this sectionwe considerHYPEwithout abstraction. The algorithmHYPEand its theoretical
foundations are based on approximations (e.g., Monte Carlo). For this reason we tested the
correctness of HYPE results in different planning domains (Q1). In particular, we tested
HYPE on a nonlinear version of the hybrid mars rover domain (Sanner et al. 2011) (called
simplerover1) for which the exact V -function is available. In this domain there is a rover
that needs to take pictures. The state consists of a two-dimensional continuous rover position
(x, y) and one discrete variable h to indicate whether the picture at a target point was taken.
In this simplified domain we consider two actions: move with reward −1 that moves the
rover towards the target point (0, 0) by 1/3 of the current distance, and take-pic that takes the
picture at the current location. The reward of take-pic is max(0, 4 − x2 − y2) if the picture
has not been already taken (h = false) and 0 otherwise. In other words, the agent has to
minimize the movement cost and take a picture as close as possible to the target point (0, 0).
We choose 31 initial rover positions and ran the algorithm with depth d = 3 for 100 episodes
each. An experiment took on average 1.4 s. Figure 3 shows the results where the line is the
exact V provided by Sanner et al. (2011), and dots are estimated V points. The results show
that the algorithm converges to the optimal V -function with a negligible error.

The domain simplerover1 is deterministic, and so, to make it more realistic we converted
it to a probabilistic MDP adding Gaussian noise to the state transition model (with a variance
σ 2 = 0.0005 when the rover does not move and σ 2 = 0.02 when the rover moves). The
resultingMDP (simplerover2) is hard (if not impossible) to solve exactly. Thenwe performed
experiments for different horizons, number of pictures points (1–4, each one is a discrete
variable) and summed the rewards. For each instance the planner searches for an optimal
policy and executes it, and after each executed action it samples additional episodes to
refine the policy (replanning). The proposed planner is compared with SST which must
replan every step. The results for both planners are always comparable, which confirms the

123

Mach Learn

Fig. 3 V-function for different rover positions (with fixed X = 0.16) in simplerover1 domain (left). A possible
episode in marsrover (right) each picture can be taken inside the respective circle (red if already taken, green
otherwise) (Color figure online)

empirical correctness of HYPE (Please provide a definition for the significance of [bold,
italics, underline, letter a, asterisk] in the table.Table 1).

To answer (Q2) and (Q3) we studied the planner in a variety of settings, from discrete, to
continuous, to hybrid domains, to those with an unknown number of objects. We performed
experiments in amore realisticmars rover domain that is publicly available,2 calledmarsrover
(Fig. 3). In this domain we consider one robot and 5 picture points that need to be taken.
The state is similar to simplerover domains: a continuous two-dimensional position and a
binary variable for each picture point. However, inmarsrover the robot can move an arbitrary
displacement along the twodimensions. The continuous action space is discretized as required
by HYPE and SST. The movement of the robot causes a negative reward proportional to the
displacement and the pictures can be taken only close to the interest point. Each taken picture
provides a different reward.

Other experiments were performed in the continuous objpush MDP described in Sect. 4
(Fig. 1), and in discrete benchmark domains of the IPPC 2011 competition. In particular,
we tested a pair of instances of Game of life (called game in the experiments) and sysadmin
domains. Game of life consists of a grid X times Y cells, where each cell can be dead or alive.
The state of each cell changes over time and depends on the neighboring cells. In addition,
the agent can set a cell to alive or do nothing. The reward depends on the number of cells
alive. We consider instances with 3 × 3 cells, and thus a state of 9 binary variables and 10
actions. The sysadmin domain consists of a network of computers. Each computer might be
running or crashed. The probability of a computer to crash depends on how many computers
it is connected to. The agent can choose at each step to reboot a computer or do nothing. The
goal is to maximize the number of computers running and minimize the number of reboots
required. We consider instances with 10 computers (i.e. 10 binary random variables) and
so there are 11 actions. The results in the discrete IPPC 2011 domains are compared with
PROST (Keller and Eyerich 2012), the IPPC 2011 winner, and shown in Table 1 in terms of
scores, i.e., the average reward normalizated with respect to IPPC 2011 results; score 1 is the

2 http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html.

123

http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

Mach Learn

Table 1 Experiments without abstraction: d is the horizon used by the planner, T the total number of steps,
M is the maximum number of episodes sampled for HYPE, while C is the SST parameter (number of samples
for each state and action). Time refers to the plan execution of one instance, from the starting state till the goal
or the maximum number of steps is reached, with a timeout of 1800 s. PROST results refer to the IPPC2011
planning competition

Domain Planner d T Param. Reward Time (s) Size

gamel HYPE 5 40 M = 1200 0.87 ± 0.11 662 9 discrete variables
10 actionsSST 5 40 C = 1 0.34 ± 0.15 986

HYPE 4 40 M = 1200 0.89 ± 0.07 312

SST 4 40 C = 2 0.79 ± 0.08 1538

PROST 0.99 ± 0.02

game2 HYPE 5 40 M = 1200 0.67 ± 0.18 836 9 discrete variables
10 actionsSST 5 40 C = 1 0.14 ± 0.20 1000

HYPE 4 40 M = 1200 0.76 ± 0.19 582

SST 4 40 C = 2 0.27 ± 0.22 1528

PROST 1.00 ± 0.19

sysadminl HYPE 5 40 M = 1200 0.94 ± 0.07 422 10 discrete variables
11 actionsSST 5 40 C = 1 0.47 ± 0.13 1068

HYPE 4 40 M = 1200 0.98 ± 0.06 346

SST 4 40 C = 2 0.66 ± 0.08 1527

PROST 1.00 ± 0.05

sysadmin2 HYPE 5 40 M = 1200 0.87 ± 0.11 475 10 discrete variables
11 actionsSST 5 40 C = 1 0.31 ± 0.12 1062

HYPE 4 40 M = 1200 0.86 ± 0.11 392

SST 4 40 C = 2 0.46 ± 0.12 1532

PROST 0.98 ± 0.09

objpush HYPE 9 30 M = 4500 83.7 ± 7.6 472 2 continuous variables
4 actionsSST 9 30 C = 1 82.7 ± 2.7 330

HYPE 10 30 M = 4500 86.4 ± 1.0 1238

SST 10 30 C = 1 82.4 ± 1.9 1574

HYPE 12 30 M = 2000 87.5 ± 0.5 373

SST ≥11 30 C = 1 N/A Timeout

simplerover2 HYPE 8 8 M = 200 11.8 ± 0.2 38 2 continuous variables
1, 2, 3, 4 discrete variables
2, 3, 4, 5 actions

SST 8 8 C = 1 11.4 ± 0.3 48

HYPE 9 9 M = 500 11.7 ± 0.2 195

SST 9 9 C = 1 11.3 ± 0.3 238

HYPE 10 10 M = 500 11.9 ± 0.3 218

SST 10 10 C = 1 11.2 ± 0.3 1043

marsrover HYPE 6 40 M = 6000 249.8 ± 33.5 985 2 continuous variables
5 discrete variables
10 actions

SST 6 40 C = 1 227.7 ± 27.3 787

HYPE 7 40 M = 6000 269.0 ± 29.4 983

SST 7 40 C = 1 N/A Timeout

HYPE 10 40 M = 4000 296.3 ± 19.5 1499

SST ≥ 8 40 C = 1 N/A Timeout

123

Mach Learn

Table 1 continued

Domain Planner d T Param. Reward Time (s) Size

objsearch HYPE 5 5 M = 500 2.53 ± 1.03 13 Variable size

SST 5 5 C = 5 1.46 ± 1.00 45

HYPE 5 5 M = 600 3.64 ± 1.09 17

SST 5 5 C = 6 2.48 ± 1.00 138

HYPE 6 6 M = 600 3.30 ± 1.60 20

SST 6 6 C = 5 0.58 ± 1.40 889

For each experiment the best algorithm is in bold.

highest result obtained (on average), score 0 is the maximum between the random and the
no operation policy.

As suggested by Keller and Eyerich (2012), limiting the horizon of the planner increases
the performance in several cases. We exploited this idea for HYPE as well as SST (sim-
plerover2 excluded). For SST we were forced to use small horizons to keep plan time under
30min. In all experimentswe followed the IPPC2011 schema, that is each instance is repeated
30 times (objectsearch excluded), the results are averaged and the 95% confidence interval
is computed. However, for every instance we replan from scratch for a fair comparison with
SST. In addition, time and number of samples refers to the plan execution of one instance.

The results (Table 1) highlight that our planner obtains generally better results than SST,
especially at higher horizons. HYPE obtains good results in discrete domains but does not
reach state-of-art results (score 1) for twomain reasons. The first is the lack of a heuristic, that
can dramatically improve the performance, indeed, heuristics are an important component
of PROST (Keller and Eyerich 2012), the IPPC winning planner. The second reason is the
time performance that allows us to sample a limited number of episodes and will not allow
all the IPPC 2011 domains to finish in 24 h. This is caused by a non-optimized Prolog
implementation and by the expensive Q-function evaluation; however, we are confident that
heuristics and other improvements will significantly improve performance and results. In
particular, the weight computation can be performed on a subset of stored V-state points,
excluding points for which the weight is known to be small or zero. For example, in the
objpush domain, the points too far from the current position plus action displacement can
be discarded because the weight will be negligible. Thus, a nearest neighbor search can be
used for a fast retrieval of relevant stored V-points.

Moreover, we performed experiments in the objectsearch scenario (Sect. 3), where the
number of objects is unknown, even though the domain is modeled as a fully observable
MDP. The results are averaged over 400 runs, and confirm better performance for HYPE
with respect to SST.

7.2 HYPE with abstraction

To evaluate the effectiveness of abstraction (Q4) we performed experiments with the
blocksworld (BW with 4 or 6 objects) and a continuous version of it (BWC with 4 or 6
objects) with an energy level of the agent and object weights. The energy decreases with a
quantity proportional to the weight of the object moved plus Gaussian noise. If the energy
becomes 0 the action fails, otherwise the probability of success is 0.9. The reward is −1
before reaching the goal and 10 + Energy if the goal is reached. Then we performed exper-

123

Mach Learn

Table 2 Experiments with and without abstraction

Domain Abstract d T M Reward Success (%) Time (s) Size

BW 4 No 10 10 200 74.6 ± 7.4 82 38 4 objects

Yes 10 10 200 80.3 ± 7.2 88 32

BW 6 No 16 16 200 −16.0 ± 0.0 0 112 6 objects

Yes 16 16 200 54.8 ± 13.4 68 42

BWC 4 No 10 10 200 11.8 ± 2.7 84 52 4 objects

Yes 10 10 200 14.2 ± 1.9 94 24 1 cont. variable

BWC 6 No 18 18 200 −18.0 ± 0.0 0 186 6 objects

Yes 18 18 200 8.4 ± 2.4 94 70 1 cont. variable

pushl No 20 30 1000 67.6 ± 11 86 734 4 cont. variables

Yes 20 30 1000 84.0 ± 4.7 98 652

push2 No 20 30 1000 −30.0 ± 0.0 0 1963 6 cont. variables

Yes 20 30 1000 30.5 ± 14.0 58 910

push3 No 20 40 500 −17.4 ± 12.6 20 638 6 cont. variables

Yes 20 40 500 89.3 ± 1.5 100 122

marsl No 30 40 1500 280.0 ± 11.8 90 1492 2 cont. variables

Yes 30 40 1500 273.3 ± 11.0 86 780 5 discrete variables

mars2 No 30 40 1000 209.3 ± 27.7 37 2817 4 cont. variables

Yes 30 40 1000 287.7 ± 23.6 87 902 5 discrete variables

N is the number of sampled episodes, d is the horizon used by the planner, T is the maximum number of steps,
‘success’ is the number of times the goal is reached

iments with the objpush scenario. This time we consider multiple objects on the table. We
considered different goals: move an arbitrary object in the goal region (domain push1 with
2 objects), and move a specific object in the goal region (push2 and push3 with 3 objects).
Finally, we performed experiments with the marsrover domain, with one robot (mars1) or
two of them (mars2), and 5 picture points that need to be taken.

The current implementation supports negation only for ground formulas. Regression of
nonground formulas is possible when the domain is purely relational. However, it becomes
challenging when there are continuous random variables and logical variables in a negated
formula. If we assume that the domain is fixed (e.g., known number of objects used), logical
variables can be replaced with objects in the domain, making the formulas ground. For this
reason we will not consider domains with an unknown number of objects, which HYPE
without abstraction can solve.

The experiments are shown in Table 2. The rewards are averaged over 50 runs and a
95% confidence interval is computed. The results highlight that abstraction improves the
expected total reward for the same number of samples or achieves comparable results. In
addition, HYPE with abstraction is always faster. The latter is probably due to a faster
weight computation with abstract states and due to the generation of better plans that are
generally shorter and thus faster. This suggests that the overhead caused by the abstraction
procedure is negligible and worthwhile. We do remark that in domains where the whole
state is always relevant, abstraction gives no added value. For example, the reward in Game
of life and sysadmin depends always on the full state, thus abstraction is not useful because
abstract state and full state coincide. Nonetheless, other type of abstractions can be beneficial.

123

Mach Learn

Indeed, the proposed abstraction (Algorithm 3) produces grounded abstract states (i.e., states
where the facts do not have logical variables), this is required to allow abstraction in complex
domains. In more restricted domains (e.g., discrete) more effective abstractions can improve
the performance. For example, abstractions used in SDP (Kersting et al. 2004; Wang et al.
2008; Joshi et al. 2010; Hölldobler et al. 2006) produce abstract states with logical variables.

8 Conclusions

We proposed a sample-based planner for MDPs described in DDC under weak assumptions,
and showed how the state transition model can be exploited in off-policy Monte Carlo. The
experimental results show that the algorithm produces good results in discrete, continuous,
hybrid domains as well as those with an unknown number of objects. Most significantly,
it challenges and outperforms SST. Moreover, we extended HYPE with abstraction. We
formally described how (context-specific) independence assumptions can be exploited to
perform episode abstraction. This is valid for propositional as well as relational domains. A
theoretical derivation has been provided to justify the assumptions and the approximations
used. Finally, empirical results showed that abstraction provides significant improvements.

References

Anand, A., Grover, A., & Singla, P. (2015). ASAP-UCT: Abstraction of state-action pairs in UCT. In Proceed-
ings of IJCAI (pp. 1509–1515).

Apt, K. (1997). From logic programming to Prolog. Prentice-Hall international series in computer science.
Upper Saddle River: Prentice Hall.

Belle, V., & Levesque, H. J. (2014). PREGO: An action language for belief-based cognitive robotics in
continuous domains. In Proceedings of the twenty-eighth AAAI conference on artificial intelligence, July
27–31, 2014, Québec City, Québec, Canada (pp. 989–995).

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A
survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI
in Games, 4(1), 1–43. http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html.

Couetoux, A. (2013). Monte Carlo tree search for continuous and stochastic sequential decision making
problems. Thesis, Université Paris Sud - Paris XI.

Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational reinforcement learning.
In Proceedings of the ICML (pp. 123–130).

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning,
43(1–2), 7–52.

Feng,Z.,Dearden,R.,Meuleau,N.,&Washington,R. (2004).Dynamic programming for structured continuous
Markov decision problems. In Proceedings of the UAI (pp. 154–161).

Forbes, J., & Andre, D. (2002). Representations for learning control policies. In Proceedings of the ICML
workshop on development of representations (pp. 7–14).

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in markov decision
processes. Artificial Intelligence, 147(12), 163–223.

Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language
for generative models. In Proceedings of the UAI (pp. 220–229).

Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference
in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680.

Hölldobler, S., Karabaev, E., & Skvortsova, O. (2006). Flucap: A heuristic search planner for first-orderMDPs.
Journal of Artificial Intelligence Research, 27, 419–439.

Hostetler, J., Fern, A., & Dietterich, T. (2014). State aggregation in Monte Carlo tree search. In Proceedings
of AAAI.

Jiang, N., Singh, S., & Lewis, R. (2014). Improving UCT planning via approximate homomorphisms. In
Proceedings of the 2014 international conference on autonomous agents and multi-agent systems (pp.
1289–1296). International Foundation for Autonomous Agents and Multiagent Systems.

123

http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html

Mach Learn

Joshi, S., Kersting, K., & Khardon, R. (2010). Self-taught decision theoretic planning with first order decision
diagrams. In ICAPS (pp. 89–96).

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning, 49(2–3), 193–208.

Keller, T., & Eyerich, P. (2012). PROST: Probabilistic planning based on UCT. In Proceedings of the ICAPS.
Kersting, K., Otterlo, M. V., & De Raedt, L. (2004). Bellman goes relational. In Proceedings of the ICML

(p. 59).
Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., & Rocha, R. (2010). On the implementation of the

probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming (TPLP),
11, 235–262.

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of
ProbLog programs. In Logic programming. Lecture notes in computer science (pp. 175–189). Berlin:
Springer.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the ECML.
Lang, T., & Toussaint, M. (2010). Planning with noisy probabilistic relational rules. Journal of Artificial

Intelligence Research, 39, 1–49.
Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for MDPS. In

ISAIM.
Lloyd, J. (1987). Foundations of logic programming. New York: Springer.
Mansley, C. R., Weinstein, A., & Littman, M. L. (2011). Sample-based planning for continuous actionMarkov

decision processes. In Proceedings of the ICAPS.
Mausam, A. K. (2012). Planning with Markov decision processes: An AI perspective. San Rafael: Morgan &

Claypool Publishers.
Meuleau, N., Benazera, E., Brafman, R. I., Hansen, E. A., &Mausam, M. (2009). A heuristic search approach

to planning with continuous resources in stochastic domains. Journal of Artificial Intelligence Research,
34(1), 27.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005a). BLOG: Probabilistic models
with unknown objects. In Proceedings of the IJCAI.

Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005b). Approximate inference for
infinite contingent Bayesian networks. In Proceedings of the 10th international workshop on artificial
intelligence and statistics.

Munos, R. (2014). From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization
and planning. Foundations and Trends® in Machine Learning, 7, 1–129.

Nilsson, U., & Małiszyński, J. (1996). Logic, programming and Prolog (2nd ed.). Hoboken: Wiley.
Nitti, D., Belle, V., De Laet, T., & De Raedt, L. (2015). Sample-based abstraction for hybrid relational MDPs.

European workshop on reinforcement learning (EWRL 2015), 10–11.
Nitti, D., Belle, V., & De Raedt, L. (2015). Planning in discrete and continuous Markov decision processes

by probabilistic programming. In Proceedings of the European conference on machine learning and
knowledge discovery in databases (ECML/PKDD), 2015.

Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings
of the IROS.

Nitti, D., De Laet, T., & De Raedt, L. (2014). Relational object tracking and learning. In Proceedings of the
ICRA.

Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc/.
Peshkin, L., & Shelton, C. R. (2002). Learning from scarce experience. In Proceedings of the ICML (pp.

498–505).
Precup,D., Sutton,R. S.,&Singh, S. P. (2000).Eligibility traces for off-policy policy evaluation. InProceedings

of the ICML.
Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language description. Unpub-

lished paper.
Sanner, S., Delgado, K. V., & de Barros, L. N. (2011). Symbolic dynamic programming for discrete and

continuous state MDPs. In Proceedings of the UAI (pp. 643–652).
Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings

of the twelfth international conference on logic programming (pp. 715–729). MIT Press.
Shelton, C. R. (2001a). Importance sampling for reinforcement learning with multiple objectives. Ph.D. thesis,

MIT.
Shelton, C. R. (2001b). Policy improvement for POMDPs using normalized importance sampling. In Pro-

ceedings of the UAI (pp. 496–503).
Smart, W. D., &Kaelbling, L. P. (2000). Practical reinforcement learning in continuous spaces. In Proceedings

of the ICML.

123

http://statweb.stanford.edu/~owen/mc/

Mach Learn

Srivastava, S., Russell, S., Ruan, P., & Cheng, X. (2014). First-order open-universe POMDPs. In Proceedings
of the UAI.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.
Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An overview. In Proceed-

ings of the ICML-2004 workshop on relational reinforcement learning (pp. 1–9).
Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic

probabilistic Prolog. In Proceedings of the AAAI (pp. 1217–1222).
Vianna, L. G. R., de Barros, L. N., & Sanner, S. (2015). Real-time symbolic dynamic programming. In

Proceedings of the twenty-ninth AAAI conference on artificial intelligence, January 25–30, 2015, Austin,
Texas, USA (pp. 3402–3408).

Vien, N. A., & Toussaint, M. (2014). Model-based relational RL when object existence is partially observable.
In Proceedings of the ICML.

Walsh, T. J., Goschin, S., & Littman, M. L. (2010). Integrating sample-based planning and model-based
reinforcement learning. In Proceedings of the AAAI.

Wang, C., Joshi, S., & Khardon, R. (2008). First order decision diagrams for relational MDPs. Journal of
Artificial Intelligence Research (JAIR), 31, 431–472.

Wiering, M., & van Otterlo, M. (2012). Reinforcement learning: State-of-the-art. Adaptation, learning, and
optimization. Berlin: Springer.

Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming
inference. In Proceedings of the 17th international conference on artificial intelligence and statistics
(pp. 1024–1032).

Zamani, Z., Sanner, S., Delgado, K. V., & de Barros, L. N. (2013). Robust optimization for hybrid MDPs with
state-dependent noise. In IJCAI 2013, Proceedings of the 23rd international joint conference on artificial
intelligence, Beijing, China, August 3–9, 2013.

Zamani, Z., Sanner, S., & Fang, C. (2012). Symbolic dynamic programming for continuous state and action
MDPs. In Proceedings of the AAAI.

123

	Planning in hybrid relational MDPs
	Abstract
	1 Introduction
	2 Background
	2.1 Markov decision processes
	2.2 Logic programming
	2.3 Relational MDPs

	3 Dynamic distributional clauses
	4 HYPE: planning by importance sampling
	4.1 Basic algorithm
	4.2 Computing the (approximate) Q-function
	4.3 Extensions
	4.4 Practical improvements

	5 Abstraction
	5.1 Basic principles of abstraction
	5.2 Mathematical derivation
	5.2.1 Abstraction applied to importance sampling
	5.2.2 Importance weights for abstract episodes
	5.2.3 Ineffectiveness of lazy instantiation

	5.3 Sample-based abstraction by logical regression

	6 Related work
	6.1 Non-relational planners
	6.2 Relational planners and abstraction

	7 Experiments
	7.1 HYPE without abstraction
	7.2 HYPE with abstraction

	8 Conclusions
	References

