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Abstract. In this paper we study a continuous time, optimal stochastic investment problem
under limited resources in a market with N firms. The investment processes are subject to a
time-dependent stochastic constraint. Rather than using a dynamic programming approach, we
exploit the concavity of the profit functional to derive some necessary and sufficient first order
conditions for the corresponding Social Planner optimal policy. Our conditions are a stochastic
infinite-dimensional generalization of the Kuhn-Tucker Theorem. As a subproduct we obtain an
enlightening interpretation of the first order conditions for a single firm in Bank [5].

In the infinite-horizon case, with operating profit functions of Cobb-Douglas type, our
method allows the explicit calculation of the optimal policy in terms of the ‘base capacity’
process, i.e. the unique solution of the Bank and El Karoui representation problem [4].

Keywords: stochastic irreversible investment, optimal stopping, the Bank and El Karoui
Representation Theorem, base capacity, Lagrange multiplier optional measure.
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1 Introduction

In the last years the theory of irreversible investment under uncertainty has received much
attention in Economics as well as in Mathematics (see, for example, the extensive review in
Dixit and Pindyck [15]). From the mathematical point of view, optimal irreversible investment
problems under uncertainty are singular stochastic control problems. In fact, the economic
constraint that does not allow disinvestment may be modeled as a ‘monotone follower’ problem;
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that is, a problem in which investment strategies are given by nondecreasing stochastic processes,
not necessarily absolutely continuous with respect to the Lebesgue measure as functions of time.
The pioneering papers by Karatzas [20], Karatzas and Shreve [21], El Karoui and Karatzas [16]
(among others) started the application of ‘monotone follower’ problems to Economics. These
Authors studied the problem of optimally minimizing a convex cost (or optimally maximizing a
concave profit) functional when the capacity is a Brownian motion tracked by a nondecreasing
process, i.e. the monotone follower. They showed that any such control problem is connected to
a suitable optimal stopping problem whose value function v is the derivative of the value function
V of the control problem. Moreover, the optimal control ν∗ defines an optimal stopping time
τ∗ by the simple formula τ∗ := inf{t ∈ [0, T ) : ν∗(t) > 0} ∧ T . Later on, this kind of link
has been established also for more complicated dynamics of the controlled diffusion; that is the
case, for example, of a Geometric Brownian motion (Baldursson and Karatzas [1]), or of a quite
general controlled Ito diffusion (see Boetius and Kohlmann [8], Chiarolla and Haussmann [12],
Chiarolla and Ferrari [13], among others). More recently, Boetius [9], Chiarolla and Haussmann
[10] and [11], and Karatzas and Wang [24] showed that such connection holds in the case of
bounded variation stochastic control problems as well; the value function of the control problem
V satisfies ∂

∂xV = v, where v is the saddle point of a suitable Dynkin game, that is a zero-sum
optimal stopping game.

In the last decade several papers handled singular stochastic control problems of the mono-
tone follower type by deriving first order conditions for optimality. That is the case, for instance,
of Bank and Riedel [2] in which the Authors studied an intertemporal utility maximization
problem with Hindy, Huang and Kreps preferences, of Bank and Riedel [3] in which the optimal
dynamic choice of durable and perishable goods is analyzed, or of Riedel and Su [27] in which
a very general irreversible investment problem with unlimited resources is treated. In these
papers the optimal consumption, or investment policy, is constructed as the running supremum
of a desirable value. Such level of satisfaction is the unique optional solution of a stochastic
backward equation in the spirit of Bank-El Karoui (cf. [4], Theorem 3) and may be represented
in terms of the value functions of a family of standard optimal stopping problems.

The link between irreversible investment problems and optimal stopping is also relevant in
Economics. In fact a firm operating in a market with uncertainty not only has to decide how
to invest but also when to invest. The optimal timing problem is then related to option theory,
since it may be viewed as a ‘real option’, an option whose strike price is the cost of investment.
It follows that exercising a real option means to invest properly at an optimal time.

The investment problem becomes even harder if one takes into account the fact that the
available resources may be limited. The problem turns into a ‘finite fuel’ singular stochastic
control problem since the total amount of effort (fuel) available to the controller (for example,
the firm’s manager) is limited. The mathematical literature on this field started in 1967 with
Bather and Chernoff [6] in the context of controlling the motion of a spaceship. Finite fuel
monotone follower problems were then studied by Benes, Shepp and Witsenhausen in 1980 [7].
In 1985 Chow, Menaldi and Robin [14] and Karatzas [22] used a PDE approach and purely
probabilistic arguments, respectively, to show that the optimal policy of a ‘monotone follower’
problem with constant finite fuel is ‘follow the unconstrained optimal policy until there is some
fuel to spend’. Much more difficult is the case of finite fuel given by a time-dependent process,
either deterministic or stochastic.

In 2005 Bank [5], without relying on any Markovian assumption, generalized the optimal
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policy proposed by Karatzas [22] to the case of a stochastic, increasing, adapted finite fuel
process θ(t). The Author characterized the optimal policy of a cost minimization problem as
the unique process satisfying some first order conditions for optimality (cf. [5], Theorem 1),
‘the optimal control should be exercised only when its impact on future costs is maximal; on
the other hand, when the cost functional’s subgradient tends to decrease, then all the available
fuel must be used’. More in detail, if S(ν) is the Snell envelope of the total cost functional’s
subgradient ∇νC(ν) (i.e., S(ν)(t) := ess inft≤τ≤T E{∇νC(ν)(τ)|Ft}), and M(ν) + A(ν) is its
Doob-Meyer decomposition, then Bank [5] proved that ν∗ is optimal if and only if

(i) ν∗ is flat off {∇νC(ν∗) = S(ν∗)},
(ii) A(ν∗) is flat off {ν∗ = θ}.

(1.1)

Moreover, the Author constructed the optimal control ν∗ in terms of the ‘base capacity’ process,
i.e. a desirable value of capacity. Mathematically such process is the unique optional solution
of the Bank-El Karoui representation problem [4].

In this paper we generalize Bank’s single firm problem to the case of a Social Planner in a
market with N firms in which the total investment is bounded by a stochastic, time-dependent,
increasing, adapted finite fuel θ(t); that is, the case

∑N
i=1 ν

(i)(t) ≤ θ(t) P-a.s. for all t ∈ [0, T ].
The Social Planner’s objective is to pursue a vector ν∗ ∈ RN+ of efficient irreversible investment
processes that maximize the aggregate expected profit, net of investment cost, i.e.

sup∑N
i=1 ν

(i)≤θ

N∑
i=1

E
{∫ T

0
e−δ(t) R(i)(X(t), ν(i)(t))dt−

∫
[0,T )

e−δ(t)dν(i)(t)

}
. (1.2)

Here the operating profit function R(i) of firm i, i = 1, 2, ..., N , depends directly on the cumula-
tive control exercised since we do not allow for dynamics of the productive capacity. As in Kobila
[25], and Riedel and Su [27], the uncertain status of the economy is modeled by an exogeneous
economic shock {X(t), t ∈ [0, T ]}. Although our finite fuel θ is increasing as in Bank [5], his
results cannot be directly applied to each firm since for each i the investment bound θ−

∑
j 6=i ν

(j)

is not an increasing process. To overcome this difficulty we develop a new approach based on a
stochastic generalization of the classical Kuhn-Tucker method. That is accomplished as follows.
By applying a version of Komlòs’ theorem for optional random measures (cf. Kabanov [19],
Lemma 3.5) we prove existence and uniqueness of optimal irreversible investment policies. Then
we use the concavity of the profit functional to characterize the optimal Social Planner policy as
the unique solution of some stochastic Kuhn-Tucker conditions. The Lagrange multiplier takes
the form of a nonnegative optional random measure on [0, T ] whose support is the set of times
for which the constraint is binding, i.e. when all the fuel is spent. Hence, as a subproduct we
obtain an enlightening interpretation of the first order conditions that Bank [5] proved for a
single firm optimal investment problem. In fact, we show that process A(ν∗) in (1.1) is equal to
the Lagrange multiplier of our control problem. As expected in optimization under inequality
constraints, our Lagrange multiplier λ grows only when the resource constraint is binding (see
our equation (3.9) below). This condition corresponds exactly to Bank’s (1.1)-(ii).

When the N firms have operating profit functions of Cobb-Douglas type, with a different
parameter for each of them, our generalized stochastic Kuhn-Tucker approach allows for the
explicit calculation of the Social Planner optimal investment strategy. Such optimal policy is
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given in terms of the ‘base capacity’ process, i.e. the unique solution of the Bank-El Karoui
Representation Problem [4]. Finally, when the finite fuel is constant, we recover two classical
monotone follower problems for which we are able to identify the compensator part in the
Doob-Meyer decomposition of the profit (cost) functional’s supergradient (subgradient) as the
Lagrange multiplier of the optimal investment problem.

The paper is organized as follows. In Section 2 we set the model. In Section 3 we introduce
the generalized stochastic Kuhn-Tucker conditions for the Social Planner problem. Finally, in
Section 4 we solve an N -firm Social Planner optimization problem and we test our approach on
some ‘finite-fuel’ problems from the literature (cf. [5] and [22], among others).

2 The Model

We consider a market with N firms on a time horizon T ≤ +∞. Let (Ω,F , {Ft}t∈[0,T ] ,P)
be a complete filtered probability space with the filtration {Ft, t ∈ [0, T ]} satisfying the usual
conditions. The cumulative irreversible investment of firm i, i = 1, 2, ..., N , denoted by ν(i)(t),
is an adapted process, nondecreasing, left-continuous, finite a.s. s.t. ν(i)(0) = y(i) > 0.

The firms are financed entirely by equities but we focus primarily on the irreversibility of
investments and do not model precisely the rest of the economy. It is reasonable to assume that
the firms cannot invest in natural resources as much as they like. In fact, we assume that the
total amount of natural resources available at time t is a finite quantity θ(t); that is,

N∑
i=1

ν(i)(t) ≤ θ(t), P− a.s., for t ∈ [0, T ]. (2.1)

The stochastic time-dependent constraint {θ(t), t ∈ [0, T ]} is the cumulative amount of resources
extracted up to time t. It is a nonnegative and increasing adapted process with left-continuous
paths, which starts at time zero from θ(0) = θo > 0. We assume

E{θ(T )} < +∞. (2.2)

We denote by Sθ the nonempty set of admissible investment plans, i.e.

Sθ := {ν : Ω× [0, T ]→ RN+ , nondecreasing, left-continuous, adapted process s.t.

ν(i)(0) = y(i), P− a.s., i = 1, 2, ..., N, and
N∑
i=1

ν(i)(t) ≤ θ(t), P− a.s. ∀t ∈ [0, T ]}.

Let {X(t), t ∈ [0, T ]} be some exogenous real-valued state variable progressively measurable
with respect to Ft. It may be regarded as an economic shock, reflecting the changes in tech-
nological ouput, demand and macroeconomic conditions which have direct or indirect effect on
the firm’s profit. At the moment we do not make any Markovian assumption.

We take the capital good as numeraire, hence we express profits, costs etc. in real terms,
not nominal ones. Hence the price of a unitary investment is equal to one. We take the point
of view of a fictitious Social Planner aiming to maximize the aggregate expected profit, net
of investment costs, JSP (ν) (see equation (2.5) below), by allocating efficiently the available



Irreversible Investment under Limited Resources 5

resources. We denote by δ(t) the Social Planner discount factor. δ(t) is a nonnegative, optional
process, bounded uniformly in (ω, t) ∈ Ω× [0, T ]. Assumption (2.2) ensures

E
{∫

[0,T )
e−δ(t) dν(i)(t)

}
< +∞, i = 1, 2, ..., N, (2.3)

i.e. the investment plan’s expected net present value of firm i is finite.
The operating profit function of firm i is R(i) : R×R+ → R+, i = 1, 2, ..., N . At time t, when

the investment of firm i is ν(i)(t), R(i)
(
X(t), ν(i)(t)

)
represents the amount of goods produced

by firm i under the shock process X(t). The Social Planner problem is

VSP := sup
ν∈Sθ

JSP (ν), (2.4)

where

JSP (ν) :=
N∑
i=1

Ji(ν(i)) (2.5)

and, for i = 1, 2, ..., N ,

Ji(ν(i)) = E
{∫ T

0
e−δ(t) R(i)(X(t), ν(i)(t))dt−

∫
[0,T )

e−δ(t)dν(i)(t)

}
. (2.6)

Notice that Ji(ν(i)) is the expected total profit, net of investment costs, of firm i when the Social
Planner picks ν ∈ Sθ.

The operating profit functions satisfy the following concavity and regularity assumptions.

Assumption 2.1.

1. For every x ∈ R and i = 1, 2, ..., N , the mapping y → R(i)(x, y) is increasing, strictly

concave, with continuous decreasing partial derivative R
(i)
y (x, y) satisfying the Inada con-

ditions
lim
y→0

R(i)
y (x, y) =∞, lim

y→∞
R(i)
y (x, y) = 0.

2. R(i)
(
X(ω, t), ν(i)(ω, t)

)
is dP⊗ dt-integrable, for i = 1, 2, ..., N .

3. The process (ω, t) −→ sup
ν(i)(ω,t) : ν∈Sθ

R(i)(X(ω, t), ν(i)(ω, t)) is dP⊗dt-integrable, for i = 1, 2, ..., N .

Under (2.2) and Assumption 2.1 the net profit Ji(ν(i)) is well defined and finite for all admissible
plans.

In the next Section we show how to handle constraint (2.1) in order to find the solution to
Social Planner problem (2.4).
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3 A Stochastic Kuhn-Tucker Approach

In this Section we aim to find an optimal investment plan by means of a gradient approach. As
in [27], proof of Theorem 2.6, by applying a suitable version of Komlòs’ Theorem for optional
random measures (cf. [19], Lemma 3.5) we obtain existence and uniqueness of a solution to
problem (2.4). In fact, Komlòs’ Theorem states that if a sequence of random variables (Zn)n∈N
is bounded from above in expectation, then there exists a subsequence (Znk)k∈N which converges
in the Cesàro sense to some random variable Z. In our case the limit provided by Komlòs’
Theorem turns out to be the optimal investment strategy.

Theorem 3.1. Under (2.2) and Assumption 2.1, there exists a unique optimal vector of irre-
versible investment plans ν∗ ∈ Sθ for problem (2.4).

Proof. Let ν ∈ Sθ and denote by H the space of optional measures on [0, T ]. Then, the invest-
ment strategies ν(i) may be regarded as elements of H, hence Sθ ⊂ HN .

Let (νn)n∈N be a maximizing sequence of investment plans in Sθ, i.e. a sequence such

that lim
n→∞

JSP (νn) = VSP . By (2.2) we have that the sequence (E{ν(i)n (T )})n∈N is bounded

for i = 1, 2, ..., N ; in fact, E{ν(i)n (T )} ≤ E {θ(T )} < ∞. By a version of Komlòs’ Theorem for
optional measures (cf. [19], Lemma 3.5), there exists a subsequence (ν̂n)n∈N that converges
weakly a.s. in the Cesàro sense to some random vector ν∗ ∈ HN . That is, for i = 1, 2, ..., N , we
have, almost surely,

Î(i)n (t) :=
1

n

n∑
j=0

ν̂
(i)
j (t)→ ν

(i)
∗ (t), as n→∞, (3.1)

for every point of continuity of ν
(i)
∗ , i = 1, 2, ..., N . Notice that ν̂n ∈ Sθ for all n implies that

also the Cesàro sequence În belongs to Sθ due to the convexity of Sθ, hence
∑N

i=1 Î
(i)
n (t) ≤ θ(t),

for n ∈ N. It follows that, almost surely,

N∑
i=1

ν
(i)
∗ (t) ≤ θ(t), (3.2)

which means ν∗ ∈ Sθ.
Since (ν

(i)
n )n∈N is a maximizing sequence so is (Î

(i)
n )n∈N by concavity of the profit functional.

Then Jensen inequality and the dominated convergence theorem yield

JSP (ν∗) ≥ lim
n→∞

1

n

n∑
j=0

JSP (ν̂n) = VSP . (3.3)

Finally, uniqueness follows from the strict concavity of the Social Planner profit functional.

We now aim to characterize the Social Planner optimal policy as the unique solution of a
set of first order generalized stochastic Kuhn-Tucker conditions. Notice that the strict concave
functionals Ji, i = 1, 2, ..., N , admit the supergradient

∇yJi(ν(i))(t) := E
{ ∫ T

t
e−δ(s)R(i)

y (X(s), ν(i)(s)) ds
∣∣∣Ft}− e−δ(t)1{t<T} (3.4)

for t ∈ [0, T ].
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Remark 3.2. The quantity ∇yJi(ν(i))(t), i = 1, 2, ..., N , may be interpreted as the marginal
expected profit resulting from an additional infinitesimal investment at time t when the invest-
ment plan is ν(i). Mathematically, ∇yJi(ν(i)) is the Riesz representation of the profit gradient at
ν(i). More precisely, define ∇yJi(ν(i)) as the optional projection of the progressively measurable
process

Φi(ω, t) :=

∫ T

t
e−δ(ω,s)R(i)

y (X(ω, s), ν(i)(ω, s)) ds − e−δ(ω,t)1{t<T}, (3.5)

for ω ∈ Ω, and t ∈ [0, T ]. Hence ∇yJi(ν(i)) is uniquely determined up to P-indistinguishability
and it holds

E
{ ∫

[0,T )
∇yJi(ν(i))(t)dν(i)(t)

}
= E

{ ∫
[0,T )

Φi(t)dν
(i)(t)

}
for all admissible ν(i)(t) (cf. Theorem 1.33 in [18]).

3.1 Generalized Stochastic Kuhn-Tucker Conditions

Let B[0, T ] denote the Borel σ-algebra on [0, T ]. Recall that if β(t) is a right-continuous, adapted
and nondecreasing process, then the bracket operator

〈α, β〉 = E
{ ∫

[0,T )
α(t) dβ(t)

}
(3.6)

is well defined (possibly infinite) for all processes α(t) which are nonnegative and FT ⊗B[0, T ]-
measurable. Notice that the bracket is preserved when we pass from α to its optional projection
α(o) (cf. [18], Theorem 1.33); that is

〈α, β〉 = 〈α(o), β〉. (3.7)

Since the constraint is θ(t) −
∑N

i=1 ν
(i)(t) ≥ 0, P-a.s. for all t ∈ [0, T ] (cf. (2.1)), we define

the Lagrangian functional of problem (2.4) as

Lθ(ν, λ) = JSP (ν) + 〈θ −
N∑
i=1

ν(i), λ〉

=

N∑
i=1

E
{∫ T

0
e−δ(t) R(i)(X(t), ν(i)(t))dt−

∫
[0,T )

e−δ(t)dν(i)(t)

}
(3.8)

+E
{ ∫

[0,T )
[θ(t)−

N∑
i=1

ν(i)(t)]dλ(t)

}
,

where dλ(ω, t) is a nonnegative optional measure, which may be interpreted as the Lagrange
multiplier of Social Planner problem (2.4). By using Fubini’s Theorem we write the bracket
〈θ −

∑N
i=1 ν

(i), λ〉 in a more convenient form, that is

〈θ −
N∑
i=1

ν(i), λ〉 = E
{ ∫

[0,T )
[θ(t)−

N∑
i=1

ν(i)(t)]dλ(t)

}

= E
{ ∫

[0,T )

[ ∫
[0,t)

(dθ(s)−
N∑
i=1

dν(i)(s))
]
dλ(t)

}
+ K E

{ ∫
[0,T )

dλ(t)

}
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= E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
(dθ(t)−

N∑
i=1

dν(i)(t))

}
+ K E

{ ∫
[0,T )

dλ(t)

}
,

where K := θo −
∑N

i=1 y
(i) = θ(0)−

∑N
i=1 ν

(i)(0). Hence

Lθ(ν, λ) = JSP (ν) + 〈θ −
N∑
i=1

ν(i), λ〉

=
N∑
i=1

E
{∫ T

0
e−δ(t) R(i)(X(t), ν(i)(t))dt−

∫
[0,T )

e−δ(t)dν(i)(t)

}

+E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
(dθ(t)−

N∑
i=1

dν(i)(t))

}
+ K E

{ ∫
[0,T )

dλ(t)

}
.

We now obtain stochastic Kuhn-Tucker conditions for optimality with a stochastic Lagrange
multiplier process that takes care of our dynamic resource constraint. A similar approach may
be found in [2] for an intertemporal utility maximization problem under a constant badget
constraint, with Hindy, Huang and Kreps preferences.

Theorem 3.3. Under (2.2) and Assumption 2.1, an admissible investment vector ν∗ is the
unique solution of the Social Planner problem (2.4) if there exists a nonnegative Lagrange mul-
tiplier measure dλ(ω, t) such that E{

∫
[0,T ) dλ(t)} < ∞, and the following generalized stochastic

Kuhn-Tucker conditions hold true for i = 1, 2, ..., N

∇yJi(ν(i)∗ )(t) ≤ E
{ ∫

[t,T )
dλ(s)

∣∣∣Ft}, P− a.s., ∀t ∈ [0, T ),

∫
[0,T )

[
∇yJi(ν(i)∗ )(t)− E

{ ∫
[t,T )

dλ(s)
∣∣∣Ft}]dν(i)∗ (t) = 0, P− a.s.,

E
{ ∫

[0,T )
[θ(t)−

N∑
i=1

ν
(i)
∗ (t)]dλ(t)

}
= 0.

(3.9)

Proof. Let ν∗ satisfy the first order Kuhn-Tucker conditions (3.9) and let ν be an arbitrary
admissible plan. By concavity of R(i)(x, ·), i = 1, 2, ..., N , and Fubini’s Theorem we have

JSP (ν∗)− JSP (ν) =
N∑
i=1

E
{ ∫ T

0
e−δ(t)[R(i)(X(t), ν

(i)
∗ (t))−R(i)(X(t), ν(i)(t)) ]dt

−
∫
[0,T )

e−δ(t)d(ν
(i)
∗ (t)− ν(i)(t))

}

≥
N∑
i=1

E
{ ∫ T

0
e−δtR(i)

y (X(t), ν
(i)
∗ (t)) (ν

(i)
∗ (t)− ν(i)(t)) dt
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−
∫
[0,T )

e−δ(t)d(ν
(i)
∗ (t)− ν(i)(t))

}

=
N∑
i=1

E
{ ∫

[0,T )

∫ T

s
e−δ(t)R(i)

y (X(t), ν
(i)
∗ (t)) dt d(ν

(i)
∗ (s)− ν(i)(s)) (3.10)

−
∫
[0,T )

e−δ(s)d(ν
(i)
∗ (s)− ν(i)(s))

}

=

N∑
i=1

E
{ ∫

[0,T )
∇yJi(ν(i)∗ )(t) d(ν

(i)
∗ (t)− ν(i)(t))

}
.

Now (3.9) implies

JSP (ν∗)− JSP (ν) ≥
N∑
i=1

E
{ ∫

[0,T )
∇yJi(ν(i)∗ )(t) d(ν

(i)
∗ (t)− ν(i)(t))

}

≥
N∑
i=1

E
{ ∫

[0,T )
E
{ ∫

[t,T )
dλ(s)

∣∣∣Ft} d(ν
(i)
∗ (t)− ν(i)(t))

}
(3.11)

=
N∑
i=1

E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
d(ν

(i)
∗ (t)− ν(i)(t))

}
and the nonnegativity of dλ(t), the admissibility of ν, and another application of Fubini’s The-
orem give

JSP (ν∗)− JSP (ν) ≥
N∑
i=1

E
{ ∫

[0,T )

[ ∫
[t,T )

dλ(s)
]
d(ν

(i)
∗ (t)− ν(i)(t))

}

= E
{ ∫

[0,T )

N∑
i=1

[ν
(i)
∗ (t)− ν(i)(t)]dλ(t)

}

= E
{ ∫

[0,T )
[θ(t)−

N∑
i=1

ν(i)(t)]dλ(t)

}
≥ 0,

where the last line follows from (3.9), third condition.

Conditions (3.9) are also necessary for optimality under the assumption that

ω → θ(ω, T )

∫ T

0
R(i)(X(ω, t), θ(ω, T ))dt is dP− integrable, i = 1, 2, ..., N. (3.12)

The proof is based on arguments similar to those used in the finite-dimensional Kuhn-Tucker
Theorem. Denote by T the set of all stopping times in [0, T ], P-a.s., and notice that

∇yJi(ν(i)∗ )(τ) ≤ E
{∫

[τ,T )
dλ(s)

∣∣∣Fτ},
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for every i = 1, 2, ..., N and for all τ ∈ T . In fact, if not, then there would exist some τ ∈ T
such that ∇yJi(ν(i)∗ )(τ) > E{

∫
[τ ,T ) dλ(s)|Fτ} which, togheter with the continuity of R

(i)
y and

the linearity of investment costs, would imply that a sufficiently small extra investment at τ is

profitable and hence contradict the optimality of ν
(i)
∗ , i = 1, 2, ..., N .

In the next Lemma we show that under (3.12) the optimal policy ν∗ solves the linearized
problem

sup
ν∈Sθ

N∑
i=1

E
{ ∫

[0,T )
Φ∗i (s)dν

(i)(s)

}
(3.13)

where Φ∗i is the progressively measurable process associated to ∇yJi(ν(i)∗ ), i = 1, 2, ..., N , and
defined in (3.5). Solutions of the linear problem will then be characterized by some ‘flat-off
conditions’ in the second Lemma.

Lemma 3.4. Let ν∗ be optimal for problem (2.4) and assume (3.12). Then it solves (3.13).

Proof. Let ν be an admissible plan. For i = 1, 2, ..., N and ε ∈ (0, 1), set ν
(i)
ε = εν(i) + (1− ε)ν(i)∗

and let Φε
i be the progressively measurable process defined in (3.5) associated to ∇νiJi(ν

(i)
ε ).

Then limε→0 ν
(i)
ε (t) = ν

(i)
∗ (t), P-a.s., as well as limε→0 Φε

i(t) = Φ∗i (t), P-a.s., by continuity of R
(i)
y .

Optimality of ν∗, concavity of y → R(i)(X(t), y) and Fubini’s Theorem, imply

0 ≥ 1

ε
[JSP (νε)− JSP (ν∗)]

=
1

ε

N∑
i=1

E
{ ∫ T

0
e−δ(t)[R(i)(X(t), ν(i)ε (t))−R(i)(X(t), ν

(i)
∗ (t)) ]dt

−ε
∫
[0,T )

e−δ(t)d(ν(i)(t)− ν(i)∗ (t))

}
(3.14)

≥
N∑
i=1

E
{ ∫

[0,T )
Φε
i(t)d(ν(i)(t)− ν(i)∗ (t))

}
,

since ε(ν(i) − ν(i)∗ ) = ν
(i)
ε − ν(i)∗ .

In order to prove that

N∑
i=1

E
{ ∫

[0,T )
Φ∗i (t) d(ν(i)(t)− ν(i)∗ (t))

}
≤ 0

we need to apply Fatou’s Lemma to conclude (by (3.14))

N∑
i=1

E
{ ∫

[0,T )
Φ∗i (t) d(ν(i)(t)− ν(i)∗ (t))

}
≤ lim inf

ε→0

N∑
i=1

E
{ ∫

[0,T )
Φε
i(t) d(ν(i)(t)− ν(i)∗ (t))

}
≤ 0.

To check the hypothesis of Fatou’s Lemma, we must find dP-integrable random variables, Gi(ω),
i = 1, 2, ..., N , such that

Iεi (ω) :=

∫
[0,T )

Φε
i(ω, t) d(ν(i)(ω, t)− ν(i)∗ (ω, t)) ≥ Gi(ω), ω ∈ Ω, ε ∈ (0, 1).
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We write Iεi as

Iεi =

∫ T

0
e−δ(t)R(i)

y (X(t), ν(i)ε (t))(ν(i)(t)− ν(i)∗ (t))dt−
∫
[0,T )

e−δ(t)d(ν(i)(t)− ν(i)∗ (t)) (3.15)

by Fubini’s Theorem. Then, from concavity of R(i)(x, ·) and

ν(i)ε (t)


≤ ν(i)(t), on {t : ν(i)(t)− ν(i)∗ (t) ≥ 0},

> ν(i)(t), on {t : ν(i)(t)− ν(i)∗ (t) < 0}.

(3.16)

we obtain

Iεi ≥
∫ T

0
e−δ(t)R(i)

y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)∗ (t))1{ν(i)≥ν(i)∗ }
(t)dt

+

∫ T

0
e−δ(t)R(i)

y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)∗ (t))1{ν(i)<ν(i)∗ }
(t)dt

−
∫
[0,T )

e−δ(t)d(ν(i)(t)− ν(i)∗ (t))

=

∫ T

0
e−δ(t)R(i)

y (X(t), ν(i)(t)) (ν(i)(t)− ν(i)∗ (t))dt

−
∫
[0,T )

e−δ(t)d(ν(i)(t)− ν(i)∗ (t))

=

∫
[0,T )
∇yJi(ν(i))(t) d(ν(i)(t)− ν(i)∗ (t)).

Hence we define

Gi(ω) :=

∫
[0,T )
∇yJi(ν(i))(ω, t)d(ν(i)(ω, t)− ν(i)∗ (ω, t)), ω ∈ Ω, i = 1, 2, ..., N. (3.17)

Now (2.2), Assumption 2.1 and condition (3.12), imply the integrability of Gi(ω) since |Gi(ω)| ≤
C[θ(ω, T ) + (1 + θ(ω, T ))

∫ T
0 R(i) (X(ω, t), θ(ω, T )) dt], ω ∈ Ω, with C a constant.

Lemma 3.5. Let fi, i = 1, 2, ..., N be optional processes and define

µ(s) := max
{
f+1 (s), f+2 (s), ..., f+N (s)

}
. (3.18)

Then every solution ν̂ to the linear optimization problem

sup
ν∈Sθ

N∑
i=1

E
{ ∫

[0,T )
fi(s) dν

(i)(s)

}
(3.19)

satisfies the ‘flat-off conditions’

E
{ ∫

[0,T )
(fi(s)− µ(s)) dν̂(i)(s)

}
= 0, i = 1, 2, ..., N. (3.20)
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Proof. Obviously

N∑
i=1

E
{ ∫

[0,T )
fi(s) dν

(i)(s)

}
≤

N∑
i=1

E
{ ∫

[0,T )
µ(s) dν(i)(s)

}
. (3.21)

The equality holds if and only if ν satisfies (3.20). In fact (3.20) implies the equality. Conversely,
if equality holds in (3.21), then

∑N
i=1 E{

∫
[0,T )(fi(s) − µ(s)) dν(i)(s)} = 0. Hence (3.20) follows

from the fact that the integrands are nonpositive.

Remark 3.6. We point out that our stochastic Kuhn-Tucker approach may be generalized to the
case of investment processes also bounded from below by a stochastic process. In that case the
Lagrangian functional is defined in terms of two Lagrange multipliers, dλ1(ω, t) and dλ2(ω, t).

4 Applications of the Kuhn-Tucker Conditions

In this Section we test our approach on some ‘finite-fuel’ problems from the literature (cf. [5]
and [22], among others) and we solve a N -firms Social Planner optimization problem. In the
following examples we assume δ(t) = δt, with δ > 0, and T = +∞.

4.1 The Finite Fuel Monotone Follower of Bank [5]

In the setting of Section 2, under (2.2) and Assumption 2.1, we take N = 1 and T = +∞. We
set ν := ν(1), y := y(1), R := R(1) and J := J1. Notice that with

c(ω, t, ν(ω, t)) := −e−δtR(X(ω, t), ν(ω, t)),

and instantaneous cost of investment

k(ω, t) := −e−δt,

we recover Bank’s model [5]. Recall that Bank’s optimal investment (cf. [5], Theorem 2) was
given by

ν∗(t) := sup
0≤s<t

(l(s) ∧ θ(s)) ∨ y (4.1)

in terms of the ‘base capacity’ process l(t) (cf. [27] for this definition) which solves uniquely the
stochastic backward equation (cf. [4], Theorem 3)

E
{ ∫ ∞

τ
e−δsRy(X(s), sup

τ≤u<s
l(u)) ds

∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (4.2)

When l(t) is a continuous process we show the optimality of ν∗(t) by means of our Generalized
Kuhn-Tucker conditions; as a subproduct we obtain an enlightening interpretation of the first
order conditions stated in [5], Theorem 1, for a single firm optimal investment problem. Notice
that continuity of l(t) is guaranteed when the shock process X(t) is continuous as well, as in the
case of a diffusion (cf. [27], Theorem 6.5).
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Recall that the supergradient of the net profit functional is the unique optional process given
by

∇yJ (ν)(t) := E
{ ∫ ∞

t
e−δsRy (X(s), ν(s)) ds

∣∣∣Ft}− e−δt. (4.3)

By Theorem 3.3 an investment plan ν∗(t) is optimal if

∇yJ (ν∗)(t) ≤ E
{ ∫ ∞

t
dλ(s)

∣∣∣Ft}, P− a.s., t ≥ 0, (4.4)

∫ ∞
0

[
∇yJ (ν∗)(t)− E

{ ∫ ∞
t

dλ(s)
∣∣∣Ft}] dν∗(t) = 0, P− a.s., (4.5)

ν∗(t) ≤ θ(t), P− a.s., ∀t ≥ 0, (4.6)

E
{ ∫ ∞

0
(θ(t)− ν∗(t)) dλ(t)

}
= 0, (4.7)

for some nonnegative optional random measure dλ(ω, t) such that E{
∫∞
0 dλ(s)} < +∞.

Lemma 4.1. For almost every ω ∈ Ω one has [Ry (X(ω, t), θ(ω, t))− δ]1{ν∗(ω,·)=θ(ω,·)}(t) ≥ 0.

Proof. Fix t ≥ 0. Then, for any stopping time τ1 ≥ t a.s., equation (4.2) and the decreasing
property of Ry in its second argument imply that

e−δt ≤ E
{ ∫ τ1

t
e−δsRy(X(s), sup

t≤u<s
l(u)) ds

∣∣∣Ft}+ E
{
e−δτ1

∣∣∣Ft} a.s.,

hence

E
{ ∫ τ1

t
e−δsRy(X(s), l(t)) ds

∣∣∣Ft} ≥ E
{
e−δt − e−δτ1

∣∣∣Ft} a.s.

In particular, for ε > 0, define τ1(ε) := inf{s ≥ t : Ry (X(s), l(t)) > Ry (X(t), l(t)) + ε} to obtain

E
{ ∫ τ1(ε)

t
e−δsRy (X(s), l(t)) ds

∣∣∣Ft} ≤ 1

δ
(Ry (X(t), l(t)) + ε)E

{
e−δt − e−δτ1(ε)

∣∣∣Ft} a.s.;

that is, Ry (X(t), l(t)) + ε ≥ δ a.s. for all ε > 0. It follows Ry (X(t), l(t)) ≥ δ a.s., and
hence [Ry (X(t), θ(t))− δ]1{l(·)≥θ(·)}(t) ≥ 0 a.s. for all t ≥ 0, which provides the result since
ν∗(ω, t) = θ(ω, t) is equivalent to l(ω, t) ≥ θ(ω, t) for almost every ω ∈ Ω.

Theorem 4.2. If the base capacity process l(t) has continuous paths, then ν∗(t) (cf. (4.1)) is
optimal and the Lagrange multiplier dλ(t) is absolutely continuous with respect to the Lebesgue
measure.

Proof. It sufficies to check the Generalized Kuhn-Tucker conditions (4.4) - (4.7) for ν∗(t). Ob-
viously ν∗(t) satisfies (4.6). Recall that the available resources process θ(t) is increasing and
left-continuous. To show (4.4) and (4.5), fix τ ∈ T , set τ0 := τ , and recursively define{

τ2n := inf{s > τ2n−1 : l(s) ≤ θ(s+)}
τ2n+1 := inf{s > τ2n : l(s) > θ(s)} (4.8)
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with the convention inf{∅} = +∞. Notice that time τ2n+1, n ≥ 0, is a time of increase for l(t).
Then

ν∗(s) = θ(s) for s ∈ (τ2n+1, τ2n+2],

and
ν∗(s) = sup

τ2n≤u<s
l(u) for s ∈ (τ2n, τ2n+1],

by the continuity of l(t). Moreover we have l(s) ≤ θ(s) for s ∈ (τ, τ1], hence supτ≤u<s (l(u) ∧ θ(u)) =
supτ≤u<s l(u).

Recalling (4.1) and the previous considerations we have

E
{ ∫ ∞

τ
e−δsRy (X(s), ν∗(s)) ds

∣∣∣Fτ}
= E

{ ∫ τ1

τ
e−δsRy(X(s), ν∗(s))ds

∣∣∣Fτ}
+

∞∑
n=1

E
{ ∫ τn+1

τn

e−δsRy(X(s), ν∗(s))ds
∣∣∣Fτ}

≤ E
{ ∫ τ1

τ
e−δsRy(X(s), sup

τ≤u<s
l(u) ∧ θ(u))ds

∣∣∣Fτ} (4.9)

+

∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}

+
∞∑
n=1

E
{ ∫ τ2n+1

τ2n

e−δsRy(X(s), sup
τ2n≤u<s

l(u))ds
∣∣∣Fτ},

where the equality holds if and only if τ is a point of increase for ν∗. By definition of τ1, from
(4.9) we get

E
{ ∫ ∞

τ
e−δsRy(X(s), ν∗(s))ds

∣∣∣Fτ}
≤ E

{ ∫ τ1

τ
e−δsRy(X(s), sup

τ≤u<s
l(u))ds

∣∣∣Fτ} (4.10)

+
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}

+

∞∑
n=1

E
{ ∫ τ2n+1

τ2n

e−δsRy(X(s), sup
τ2n≤u<s

l(u))ds
∣∣∣Fτ}.

Since τ1 and all odd indexed stopping times are times of increase for the process l(t), hence
supτ≤u<s l(u) = supτ1≤u<s l(u) for s > τ1, and supτ2n≤u<s l(u) = supτ2n+1≤u<s l(u) for s > τ2n+1.
Therefore, from (4.10) the stochastic backward equation (4.2) implies

E
{ ∫ ∞

τ
e−δsRy(X(s), ν∗(s))ds

∣∣∣Fτ} = E
{
e−δτ − e−δτ1

∣∣∣Fτ}
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+
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δsRy(X(s), θ(s))ds
∣∣∣Fτ}

+

∞∑
n=1

E
{
e−δτ2n − e−δτ2n+1

∣∣∣Fτ}

= e−δτ +
∞∑
n=1

E
{ ∫ τ2n

τ2n−1

e−δs[Ry(X(s), θ(s))− δ]ds
∣∣∣Fτ}

= e−δτ + E
{∫ ∞

τ
e−δs[Ry(X(s), θ(s))− δ]1{ν∗=θ}(s)ds

∣∣∣Fτ} .
Notice that the process e−δt[Ry(X(t), θ(t)) − δ]1{ν∗=θ}(t) is nonnegative by Lemma 4.1 and it
is Ft ⊗ B([0, t])−measurable. Hence, we set

dλ(t) := e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t)dt (4.11)

and we show that it is the optional measure Lagrange multiplier. Let us start by showing that
dλ(t) is an optional random measure on R+. That is, the continuous, increasing process

Λ(t) :=

∫
[0,t)

dλ(s) (4.12)

is adapted to the filtration {Ft}t≥0. Assumption 2.1 and concavity of R in the second argument,
imply that

E{Λ(t)} = E
{ ∫ t

0
e−δs[Ry(X(s), θ(s))− δ]1{ν∗=θ}(s) ds

}
≤ E

{ ∫ t

0
e−δsRy(X(s), θo)1{ν∗=θ}(s) ds

}
≤ E

{∫ ∞
0

e−δsRy(X(s), θo) ds

}
(4.13)

≤ 1

θo
E
{∫ ∞

0
sup

ν(s)∈Sθ
R(X(s), ν(s)) ds

}
< +∞.

Hence Λ(t) is dP-integrable and e−δt[Ry(X(t), θ(t))−δ]1{ν∗=θ}(t) is dP⊗dt-integrable on Ω×R+.
Therefore, by Fubini’s Theorem, the application ω → Λ(ω, t) is Ft-measurable and hence Λ is
adapted. Then it is predictable since it is continuous.

It follows that (4.4) and (4.5) hold and hence the process (4.1) is optimal by Theorem 3.3.

Remark 4.3. The usual interpretation of the Lagrange multiplier as the shadow price of the
value function may be heuristically shown as follows. After an integration by parts on the cost
term, we may write the value function as

V (θ) = E
{∫ ∞

0
e−δt

[
R(X(t), sup

0≤s<t
(l(s) ∧ θ(s)))− δ sup

0≤s<t
(l(s) ∧ θ(s))

]
dt

}
.

Now, if ν∗(t) = sup0≤s<t(l(s) ∧ θ(s)), then 1{ν∗=θ} is the derivative (in some sense) of ν∗
with respect to θ. We thus expect that the ‘derivative’ of V with respect to the constraint θ is
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e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t), which is exactly the density of the Lagrange multiplier in the
case of a continuous ‘base capacity’ l(t).

Proposition 4.4. The process G(t) := E{Λ(∞) |Ft} is a uniformly integrable martingale.

Proof. By Assumption 2.1 the random variable Λ(∞) (cf. (4.12)) is dP-integrable. Hence the
process G(t) is a uniformly integrable martingale.

Proposition 4.5. The process

U(t) := E
{ ∫ ∞

t
dλ(s)

∣∣∣Ft} = E{Λ(∞) |Ft} − Λ(t) = G(t)− Λ(t) (4.14)

is a supermartingale of class (D) and G(t)− Λ(t) is its unique Doob-Meyer decomposition.

Proof. Recall (cf. proof of Theorem 4.2) that the process Λ(t) of (4.12) is increasing, adapted,
continuous and integrable. Then U(t) is dP-integrable. Moreover, being dλ nonnegative, for
s ≤ t we have E{U(t) |Fs} ≤ U(s), i.e. U(t) is a supermartingale. Assumption 2.1 guarantees
that it belongs to class (D). Hence G(t)− Λ(t) is the unique Doob-Meyer decomposition of the
supermartingale U(t) and therefore the process Λ(t) is the compensator of U(t).

If S(ν) is the Snell envelope of the supergradient ∇yJ (ν), i.e.

S(ν)(t) = ess sup
t≤τ≤+∞

E {∇yJ (ν)(τ)|Ft} , (4.15)

then [5], Theorem 1, claims that the optimal investment plan ν∗ is characterized by the following
conditions {

ν∗ is flat off {∇yJ (ν∗) = S(ν∗)}
A(ν∗) is flat off {ν∗ = θ}, (4.16)

where A(ν∗) is the predictable increasing process in the Doob-Meyer decomposition of the super-
martingale S(ν∗). Moreover S(ν∗)(t) = E {A(∞)−A(t) |Ft} since ∇yJ (ν∗)(∞) = 0. If (3.12)
holds, then (4.16), (4.4) and (4.5) imply that

U(t) ≡ S(ν∗)(t) (4.17)

at times of investment (when A(ν∗) and dλ are not flat). This argument allows an enlighten-
ing interpretation of the increasing, predictable, integrable process Λ(t). In fact at times of
investment

G(t)− Λ(t) = E
{ ∫ ∞

t
dλ(s)

∣∣∣Ft} ≡ S(ν∗)(t) =M(ν∗)(t)−A(ν∗)(t), (4.18)

where M(ν∗) is the martingale process in the unique Doob-Meyer decomposition of S(ν∗). By
uniqueness

E
{ ∫ ∞

0
dλ(s)

∣∣∣Ft} ≡M(ν∗)(t) and Λ(t) ≡ A(ν∗)(t), (4.19)

hence
dA(ν∗)(t) ≡ dλ(t), P− a.s., ∀t ≥ 0. (4.20)
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Therefore the second first order condition of (4.16) coincides with the Kuhn-Tucker condition
(4.7); that is the Lagrange multiplier acts only when the constraint is binding.

When l(t) is continuous, the explicit form of the Lagrange multiplier is known (cf. (4.11)),
hence the compensator A(ν∗)(t) is known as well. It follows that its paths are absolutely con-
tinuous with respect to the Lebesgue measure and the Radon-Nykodym derivative of dA(ν∗)(t)
is e−δt[Ry(X(t), θ(t))− δ]1{ν∗=θ}(t).

4.2 N Firms: Finite Fuel and Operating Profit of Cobb-Douglas Type

In the setting of Section 2, with T = +∞, we consider the Social Planner optimal investment
problem (2.4) for a market with N firms endowed with operating profit functions of Cobb-

Douglas type, i.e. R(i) (x, y) = xαi y1−αi
1−αi with αi ∈ (0, 1), i = 1, 2, ..., N .

Suppose that the economic shock process X(t) is given by X(t) = exp {Y (t)} for some Levy
process Y (t) such that Y (0) = 0 and with finite Laplace transform. Then (cf. [27], Proposition
7.1)

l(i)(t) = kiX(t), i = 1, 2, ..., N, (4.21)

with

ki =

(
E
{∫ +∞

0
e−δteαi inf0≤u<t Y (u)dt

}) 1
αi

, i = 1, 2, ..., N,

is the unique optional solution of the stochastic backward equation

E
{ ∫ ∞

τ
e−δsR(i)

y (X(s), sup
τ≤u<s

l(i)(u)) ds
∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (4.22)

Define the optional process

βi(t) :=
l(i)(t)∑N
j=1 l

(j)(t)
. (4.23)

Here βi(t) may be thought as the fraction of desirable investment of the i-th firm. By (4.21),
for t ≥ 0 and i = 1, 2, ..., N, we have that βi(t) is constant in time; in fact βi(t) = ki∑N

j=1 kj
=: βi.

Fix τ ∈ T and introduce the random times
σ1(τ) = inf{s ≥ τ :

∑N
i=1 l

(i)(s) > θ(s)}

σ2(τ) = inf{s ≥ τ : l(i)(s) > βiθ(s), ∀i = 1, 2, ..., N}.
(4.24)

Lemma 4.6. For all τ ∈ T we have σ1(τ) = σ2(τ) P-almost surely.

Proof. Notice that (4.21) implies σ1(τ) = inf{s ≥ τ : X(s) > θ(s)∑N
i=1 ki

} = inf{s ≥ τ : kiX(s) >

βiθ(s), ∀i = 1, 2, ..., N} = σ2(τ).

Remark 4.7. If τ ∈ T is a time of investment for all firms, that is dν
(i)
∗ (τ) > 0 for all i, then

the first Kuhn-Tucker condition in (3.9) guarantees that

E
{ ∫ +∞

τ
e−δsR(i)

y (X(s), ν
(i)
∗ (s)) ds

∣∣∣Fτ } = E
{ ∫ +∞

τ
e−δsR(j)

y (X(s), ν
(j)
∗ (s)) ds

∣∣∣Fτ }.
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Notice that if X is continuous, then l(i) is continuous too due to (4.21).

Theorem 4.8. If the shock process X(t) is continuous then the process ν∗ with components

ν
(i)
∗ (t) = sup

0≤u<t
(l(i)(u) ∧ βiθ(u)) ∨ y(i), i = 1, 2, ..., N, (4.25)

is optimal for problem (2.4). Moreover, the Lagrange multiplier dλ(t) associated to (2.4) is
absolutely continuous with respect to the Lebesgue measure.

Proof. Let us check that ν
(i)
∗ (t) satisfies the first order conditions of Theorem 3.3. Obviously∑N

i=1 ν
(i)
∗ (t) ≤ θ(t) a.s. for all t ≥ 0.

The arguments of the proof are similar to those in the proof of Theorem 4.2. Fix τ ∈ T , set
τ0 := τ and define the sequence of stopping times τn as in (4.8) but with

∑N
i=1 l

(i) instead of l;
that is, {

τ2n+1 := inf{s > τ2n :
∑N

i=1 l
(i)(s) > θ(s)}

τ2n+2 := inf{s > τ2n+1 :
∑N

i=1 l
(i)(s) ≤ θ(s+)}.

(4.26)

Notice that the continuity of l(i) implies

ν
(i)
∗ (s) = sup

τ2n≤u<s
l(i)(u) for s ∈ (τ2n, τ2n+1].

Also τ2n+1 = σ1(τ2n) = σ2(τ2n) by Lemma 4.6, hence τ2n+1 is a time of increase for all l(i). It
follows

ν
(i)
∗ (s) = βiθ(s) for s ∈ (τ2n+1, τ2n+2].

Fix i = 1, 2, ..., N, and consider E{
∫∞
τ e−δsR

(i)
y (X(s), ν

(i)
∗ (s))ds |Fτ}. Split the integral into two

integrals
∫ τ1
τ and

∫∞
τ1

. Since τ1 is a time of increase for every l(i), Remark (4.7) holds and we
may write

E
{ ∫ ∞

τ
e−δsR(i)

y (X(s), ν
(i)
∗ (s))ds

∣∣∣Fτ} = E
{ ∫ τ1

τ
e−δsR(i)

y (X(s), ν
(i)
∗ (s))ds

∣∣∣Fτ} (4.27)

+E
{ ∫ ∞

τ1

e−δsβiR
(i)
y (X(s), ν

(i)
∗ (s))ds

∣∣∣Fτ}+ E
{ ∫ ∞

τ1

e−δs
∑
j 6=i

βjR
(j)
y (X(s), ν

(i)
∗ (s))ds

∣∣∣Fτ}
since Fτ ⊆ Fτ1 . Now, as in the proof of Theorem 4.2, we use the stopping times τn to split the
last two integrals above and by the backward equation (4.22) corresponding to l(i)(t) we may
write

E
{ ∫ ∞

τ
e−δsR(i)

y (X(s), ν
(i)
∗ (s))ds

∣∣∣Fτ} (4.28)

≤ e−δτ + E
{ ∫ ∞

τ
e−δs

[ N∑
i=1

βiR
(i)
y (X(s), βiθ(s))− δ

]
1{

∑N
i=1 ν

(i)
∗ =θ}(s)ds

∣∣∣Fτ},
with equality if and only if dν

(i)
∗ (τ) > 0. Hence

ρ(t) := e−δt
[ N∑
i=1

βi(R
(i)
y (X(t), βiθ(t))− δ)

]
1{

∑N
i=1 ν

(i)
∗ =θ}(t)
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is nonnegative by Lemma 4.1. We may now define the Lagrange multiplier for the N -firms Social
Planner problem by dλ(t) := ρ(t)dt since such dλ is a nonnegative optional measure as in the
proof of Theorem 4.2.

Remark 4.9. For general operating profit functions satisfying Assumption 2.1, we expect the
solution for the Social Planner problem (2.4) to be

ν
(i)
∗ (t) = sup

0≤u<t
(l(i)(u) ∧ βi(u)θ(u)) ∨ y(i), i = 1, 2, ..., N,

with

βi(t) :=
l(i)(t)∑N
j=1 l

(j)(t)
.

4.3 Constant Finite Fuel and Quadratic Cost

Here we consider a monotone follower problem with constant finite fuel similar to those studied
by Karatzas ([20], [22]), and Karatzas and Shreve [21] (among others). In particular we discuss
the example (cf. [5]) of optimal cost minimization for a firm that does not incur into investment’s
costs and has a running cost flow given by the convex function c(x, y) = 1

2(x−y)2 of the economic
shock x and the investment y. That is, we study the constrained convex minimization problem

inf
ν∈Sθo

C(ν) := inf
ν∈Sθo

E
{ ∫ ∞

0
δe−δs

1

2
(W (t)− ν(t))2 dt

}
(4.29)

where W (t) is a standard Brownian motion and θo is the positive constant finite fuel such that
ν(t) ≤ θo, P-a.s. for all t ≥ 0.

We expect to find a nonpositive Lagrange multiplier. Notice that

∇yC(ν)(t) = E
{ ∫ ∞

t
δe−δs(ν(s)−W (s)) ds

∣∣∣Ft}. (4.30)

Moreover, the backward equation

E
{ ∫ ∞

τ
δe−δs sup

τ≤u<s
l(u) ds

∣∣∣Fτ} = e−δτW (τ), ∀τ ∈ T , (4.31)

is uniquely solved by the base capacity

l(s) = W (s)− c, (4.32)

where c is the positive constant c := E{
∫∞
0 δe−δs sup0≤u<sW (u) ds}, by independence and

time-homogeneity of Brownian increments.
From [5] we know that the optimal investment policy is

ν∗(t) = sup
0≤s<t

((W (s)− c) ∧ θo) ∨ ν(0), (4.33)

which is the well known strategy of reflecting the Brownian motion at the threshold c until all
the fuel is spent (cf. [22]).
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We may write the subgradient (4.30) at ν∗ as

∇yC(ν∗)(t) = E
{ ∫ ∞

t
δe−δs (ν∗(s)−W (s)) ds

∣∣∣Ft}− 0

= E
{ ∫ ∞

t
δe−δs (ν∗(s)−W (s)) ds

∣∣∣Ft}
−E
{ ∫ ∞

t
δe−δs sup

t≤u<s
(W (u)− c) ds

∣∣∣Ft}+ e−δtW (t)

= E
{ ∫ ∞

t
δe−δs

[
ν∗(s)− sup

t≤u<s
(W (u)− c)

]
ds
∣∣∣Ft}

where we have used (4.31) in the second equality with l given by (4.32). With this trivial trick
we are in the same setting as [5], proof of Theorem 2. Hence we have that the Snell envelope of
the subgradient evaluated at the optimum ν∗ (cf. (4.33)) is

S(ν∗)(t) = E
{ ∫ ∞

t
δe−δs

[
ν∗(s)− sup

t≤u<s
(W (u)− c)

]
∧ 0 ds

∣∣∣Ft} (4.34)

or, equivalently,

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)
δe−δs

[
θo − sup

t≤u<s
(W (u)− c)

]
ds
∣∣∣Ft}

with
τθo(t) := inf{s ≥ t : W (s)− c > θo}, (4.35)

by means of (4.33). Notice that τθo(t) is a time of increase for W (t) − c. Hence we have
supt≤u<s(W (u)− c) = supτθo (t)≤u<s(W (u)− c) for s ∈ (τθo(t),+∞]. Therefore (4.31) implies

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)
δe−δs θo ds

∣∣∣Ft}− E
{
e−δτθo (t)W (τθo(t))

∣∣∣Ft};

that is,

S(ν∗)(t) = E
{
e−δτθo (t)

[
θo −W (τθo(t))

] ∣∣∣Ft}. (4.36)

Now we first find the explicit form of the Snell envelope S(ν∗)(t), and then we use it to
identify the compensator part of its Doob-Meyer decomposition; that is, the Lagrange multiplier
of problem (4.29) (cf. (4.20)). We start by showing that S(ν∗) is an Fu-martingale until the
base capacity l(t) = W (t) − c is below the finite fuel θo; that is, {S(ν∗)(u ∧ τθ0(t)}u≥t is an
Fu-martingale. In fact, by [26], Corollary 3.6 it suffices to prove that {S(ν∗)(u∧ τθ0(t)}u≥t is an
Fu∧τθo (t)-martingale, and that follows by iterated conditioning and the fact that τθo(u1∧τθo(t)) =
τθo(u2 ∧ τθo(t)) for all u1, u2 ∈ [t,∞). Next, we define

σθo(t) := inf{s > t : W (s) ≤ θo + c},

and we show that S(ν∗) is an Fu-submartingale when the base capacity l(t) is above the finite
fuel θo; that is {S(ν∗)(u∧σθo(t)}u≥t is an Fu-submartingale. Again, as above, it suffices to prove
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that it is an an Fu∧σθo (t)-submartingale. In fact, from τθo(u ∧ σθ0(t)) = u ∧ σθo(t) for all u ≥ t,

the martingale property of W and δe−δsW (s)ds = −d(e−δsW (s)) + e−δsdW (s), follows that

the process S(ν∗)(u ∧ σθo(t) +
∫ u∧σθo (t)
t δe−δs(θo −W (s))ds is an Fu∧σθo (t)-martingale, hence an

Fu-martingale. Therefore S(ν∗)(u ∧ σθo(t)) is an Fu-submartingale with absolutely continuous
compensator A(ν∗) given by

dA(ν∗)(s) := −δe−δs (θo −W (s)) ds, s ∈ [t, u ∧ σθo(t)], u ≥ t, (4.37)

since W (·) < θo on [t, u ∧ σθo(t)], u ≥ t.
Now, as the Lagrange multiplier (4.11) acts only when ν∗(t) = θo, i.e. only when l(t) > θo,

we conclude that the Lagrange multiplier of problem (4.29) is

dλ(t) = δe−δt [θo −W (t)] 1{W (·)>θo+c}(t) dt, (4.38)

which, as expected, is negative and coincides with the opposite of the optional measure dA(ν∗)(t)
(cf. (4.37)).

Remark 4.10. In [7] Benes, Shepp and Witsenhausen considered a problem with the same cost
functional but they allowed controls of bounded variation.

4.4 Constant Finite Fuel and Operating Profit of Cobb-Douglas Type

We consider the maximization problem of profit, net of investment costs,

sup
ν∈Sθo

J (ν) := sup
ν∈Sθo

E
{ ∫ ∞

0
e−δsR (X(s), ν(s)) ds−

∫ ∞
0

e−δsdν(s)

}
. (4.39)

The finite fuel is given by the positive constant θo, hence the controls satisfy 0 ≤ ν(t) ≤ θo
P-a.s., for all t ≥ 0. The economic shock process X(t) is modeled by a Geometric Brownian
motion

X(t) = x0e
(µ− 1

2
σ2)t+σW (t) with x0 > 0. (4.40)

The firm’s operating profit function is of the Cobb-Douglas type and depends on the economic
shock x and the investment policy y; i.e., R (x, y) = 1

1−αx
αy1−α with 0 < α < 1. As pointed

out in [27] this construction is consistent with a competitive firm which produces at decreasing
returns to scale or with a monopolist firm facing a constant elasticity demand function and
constant returns to scale production. Notice that problem (4.39) has been studied in detail in
[25] in the case of θo = +∞ by a dynamic programming approach.

It is known (cf. [5]) that the unique optimal solution for problem (4.39) is given by

ν∗(t) = sup
0≤s<t

(l(s) ∧ θo) ∨ ν(0), (4.41)

where the optional process l(t) uniquely solves the stochastic backward equation (cf. [4])

E
{ ∫ ∞

τ
e−δsXα(s)

(
sup
τ≤u<s

l(u)
)−α

ds
∣∣∣Fτ} = e−δτ , ∀τ ∈ T . (4.42)
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As shown in [27], Proposition 7.1, when the shock process is of exponential Levy type, i.e.
X(t) = x0e

Y (t), with Y (t) a Levy process such that Y (0) = 0, then the solution of (4.42) is given
by the base capacity

l(t) = kX(t), (4.43)

where k = (1δE{e
αY (τ(δ))})

1
α , Y (t) := inf0≤u≤t Y (u) and τ(δ) is an independent exponentially

distributed time with parameter δ.
From (4.39) we have

∇yJ (ν)(t) = E
{ ∫ ∞

t
e−δsXα(s)ν−α(s)ds

∣∣∣Ft}− e−δt. (4.44)

Following [5], proof of Theorem 2, we know that the Snell envelope of supergradient (4.44)
evaluated at the optimal control policy (4.41) is

S(ν∗)(t) (4.45)

= E
{ ∫ ∞

t
e−δs

[
Xα(s)

((
sup

0≤u<s
(kX(u) ∧ θo) ∨ ν(0)

)−α
−
(

sup
t≤u<s

kX(u)
)−α)]+

ds
∣∣∣Ft}.

Fix t ≥ 0 and define the stopping time

τθo(t) := inf{s ≥ t : kX(s) > θo}. (4.46)

It is a time of increase for X(t). Now we split the integral into
∫ τθo (t)
t +

∫∞
τθo (t)

, then the first

one vanishes due to (4.46) and we are left with

S(ν∗)(t) = E
{ ∫ ∞

τθo (t)
e−δs

[
Xα(s)

(
(θo)

−α − ( sup
t≤u<s

kX(u))−α
)]
ds
∣∣∣Ft}

= (θo)
−αE

{ ∫ ∞
τθo (t)

e−δsXα(s) ds
∣∣∣Ft}− E

{
e−δτθo (t)

∣∣∣Ft}
where we have used (4.42) to obtain the second equality.

Lemma 4.11. Assume δ > µ+ σ2. Then for every t ≥ 0, one has

E
{ ∫ ∞

τθo (t)
e−δsXα(s) ds

∣∣∣Ft} =
1

(δ − µα) + 1
2σ

2α(1− α)
E
{
e−δτθo (t)Xα(τθo(t))

∣∣∣Ft}. (4.47)

Proof. The proof follows from the Markov property and the Laplace transform of a Gaussian
process. Independence of Brownian increments, together with W (u+τθo(t))−W (τθo(t)) ∼W (u),
allow us to write

E
{ ∫ ∞

τθo (t)
e−δsXα(s) ds

∣∣∣Ft} = E
{
E
{ ∫ ∞

τθo (t)
e−δsXα(s) ds

∣∣∣Fτθo (t)} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))E

{ ∫ ∞
0

e−δueα(µ−
1
2
σ2)u+ασ(W (u+τθo (t))−W (τθo (t))) ds

} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))E

{ ∫ ∞
0

e−δueα(µ−
1
2
σ2)u+ασW (u) ds

} ∣∣∣Ft}
= E

{
e−δτθo (t)Xα(τθo(t))

∫ ∞
0

e−(δ−µα)u−
1
2
σ2α(1−α)udu

∣∣∣Ft}.
Notice that (δ − µα) + 1

2σ
2α(1− α) > 0 by the assumption, hence (4.47) follows.
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Now Lemma 4.11 and (4.47) imply

S(ν∗)(t) =
(θo)

−α

(δ − µα) + 1
2σ

2α(1− α)
E
{
e−δτθo (t)Xα(τθo(t))

∣∣∣Ft}− E
{
e−δτθo (t)

∣∣∣Ft}. (4.48)

By arguments similar to those used in Subsection 4.3 we find the explicit form of the Snell
envelope S(ν∗)(t) and hence we identify the compensator part of its Doob-Meyer decomposition
as the Lagrange multiplier of problem (4.39). In fact, we have that S(ν∗) is an Fu-martingale
until the base capacity l(t) = kX(t) is below the finite fuel θo, since τθo(u1 ∧ τθo(t)) = τθo(u2 ∧
τθo(t)) for all u1, u2 ∈ [t,∞). Then, if

σθo(t) := inf{s > t : kX(s) ≤ θo},

we show that S(ν∗) is an Fu-supermartingale when the base capacity l(t) is above the finite
fuel θo; that is {S(ν∗)(u ∧ σθo(t)}u≥t is an Fu-supermartingale. It suffices to prove that it is an
Fu∧σθo (t)-supermartingale (cf. [26], Corollary 3.6). In fact, from τθo(u ∧ σθ0(t)) = u ∧ σθo(t) for

all u ≥ t and d(e−δsXα(s)) = −δe−δsXα(s)ds + e−δsdXα(s) follows that the process S(ν∗)(u ∧
σθo(t) +

∫ u∧σθo (t)
t e−δs(Xα(s)(θo)

−α − δ)ds is an Fu∧σθo (t)-martingale, hence an Fu-martingale.
Notice that Xα(s)(θo)

−α > δ for all s ∈ [t, u ∧ σ(t)). In fact, we have Xα(s)(θo)
−α > k−α

for s ∈ [t, u ∧ σ(t)) since k = (1δE{e
αY (τ(δ))})

1
α , Y (u) := inf0≤s≤u

[(
µ− 1

2σ
2
)
s+ σW (s)

]
, and

E{eαY (τ(δ))} = β−(β− − α)−1 < 1 with β− the negative root of 1
2σ

2x2 +
(
µ− 1

2σ
2
)
x − δ = 0

and α > 0. Therefore, S(ν∗)(u ∧ σθo(t)) is an Fu-supermartingale with absolutely continuous
compensator A(ν∗) given by

dA(ν∗)(u) := e−δu
(
Xα(u)(θo)

−α − δ
)
du. (4.49)

Finally, as the Lagrange multiplier optional measure dλ (cf. (4.11)) acts only at times when
ν∗(t) = θo (i.e., only when l(t) > θo), we conclude that for problem (4.39), dλ must be

dλ(t) = e−δt
(
Xα(t)(θo)

−α − δ
)
1{kX(·)>θo}(t) dt; (4.50)

that is, dλ(t) coincides with the random measure dA(ν∗)(t) (cf. (4.49)).
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